2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
139 #include "net-sysfs.h"
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
204 static inline void dev_base_seq_inc(struct net *net)
206 while (++net->dev_base_seq == 0);
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 static inline void rps_lock(struct softnet_data *sd)
224 spin_lock(&sd->input_pkt_queue.lock);
228 static inline void rps_unlock(struct softnet_data *sd)
231 spin_unlock(&sd->input_pkt_queue.lock);
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
238 struct net *net = dev_net(dev);
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
249 dev_base_seq_inc(net);
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
257 static void unlist_netdevice(struct net_device *dev)
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
268 dev_base_seq_inc(dev_net(dev));
275 static RAW_NOTIFIER_HEAD(netdev_chain);
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
285 #ifdef CONFIG_LOCKDEP
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
367 /*******************************************************************************
369 Protocol management and registration routines
371 *******************************************************************************/
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
391 if (pt->type == htons(ETH_P_ALL))
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
410 void dev_add_pack(struct packet_type *pt)
412 struct list_head *head = ptype_head(pt);
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
418 EXPORT_SYMBOL(dev_add_pack);
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
433 void __dev_remove_pack(struct packet_type *pt)
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
438 spin_lock(&ptype_lock);
440 list_for_each_entry(pt1, head, list) {
442 list_del_rcu(&pt->list);
447 pr_warn("dev_remove_pack: %p not found\n", pt);
449 spin_unlock(&ptype_lock);
451 EXPORT_SYMBOL(__dev_remove_pack);
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
462 * This call sleeps to guarantee that no CPU is looking at the packet
465 void dev_remove_pack(struct packet_type *pt)
467 __dev_remove_pack(pt);
471 EXPORT_SYMBOL(dev_remove_pack);
473 /******************************************************************************
475 Device Boot-time Settings Routines
477 *******************************************************************************/
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
493 struct netdev_boot_setup *s;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
518 int netdev_boot_setup_check(struct net_device *dev)
520 struct netdev_boot_setup *s = dev_boot_setup;
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
535 EXPORT_SYMBOL(netdev_boot_setup_check);
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
548 unsigned long netdev_boot_base(const char *prefix, int unit)
550 const struct netdev_boot_setup *s = dev_boot_setup;
554 sprintf(name, "%s%d", prefix, unit);
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
560 if (__dev_get_by_name(&init_net, name))
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
570 * Saves at boot time configured settings for any netdevice.
572 int __init netdev_boot_setup(char *str)
577 str = get_options(str, ARRAY_SIZE(ints), ints);
582 memset(&map, 0, sizeof(map));
586 map.base_addr = ints[2];
588 map.mem_start = ints[3];
590 map.mem_end = ints[4];
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
596 __setup("netdev=", netdev_boot_setup);
598 /*******************************************************************************
600 Device Interface Subroutines
602 *******************************************************************************/
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
628 EXPORT_SYMBOL(__dev_get_by_name);
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
670 struct net_device *dev;
673 dev = dev_get_by_name_rcu(net, name);
679 EXPORT_SYMBOL(dev_get_by_name);
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
705 EXPORT_SYMBOL(__dev_get_by_index);
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
746 struct net_device *dev;
749 dev = dev_get_by_index_rcu(net, ifindex);
755 EXPORT_SYMBOL(dev_get_by_index);
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
774 struct net_device *dev;
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 struct net_device *dev;
790 for_each_netdev(net, dev)
791 if (dev->type == type)
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
800 struct net_device *dev, *ret = NULL;
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
828 struct net_device *dev, *ret;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
842 * dev_valid_name - check if name is okay for network device
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
849 bool dev_valid_name(const char *name)
853 if (strlen(name) >= IFNAMSIZ)
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
859 if (*name == '/' || isspace(*name))
865 EXPORT_SYMBOL(dev_valid_name);
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
890 p = strnchr(name, IFNAMSIZ-1, '%');
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
897 if (p[1] != 'd' || strchr(p + 2, '%'))
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
908 if (i < 0 || i >= max_netdevices)
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
934 * dev_alloc_name - allocate a name for a device
936 * @name: name format string
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
947 int dev_alloc_name(struct net_device *dev, const char *name)
953 BUG_ON(!dev_net(dev));
955 ret = __dev_alloc_name(net, name, buf);
957 strlcpy(dev->name, buf, IFNAMSIZ);
960 EXPORT_SYMBOL(dev_alloc_name);
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
966 BUG_ON(!dev_net(dev));
969 if (!dev_valid_name(name))
972 if (strchr(name, '%'))
973 return dev_alloc_name(dev, name);
974 else if (__dev_get_by_name(net, name))
976 else if (dev->name != name)
977 strlcpy(dev->name, name, IFNAMSIZ);
983 * dev_change_name - change name of a device
985 * @newname: name (or format string) must be at least IFNAMSIZ
987 * Change name of a device, can pass format strings "eth%d".
990 int dev_change_name(struct net_device *dev, const char *newname)
992 char oldname[IFNAMSIZ];
998 BUG_ON(!dev_net(dev));
1001 if (dev->flags & IFF_UP)
1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1007 memcpy(oldname, dev->name, IFNAMSIZ);
1009 err = dev_get_valid_name(dev, newname);
1014 ret = device_rename(&dev->dev, dev->name);
1016 memcpy(dev->name, oldname, IFNAMSIZ);
1020 write_lock_bh(&dev_base_lock);
1021 hlist_del_rcu(&dev->name_hlist);
1022 write_unlock_bh(&dev_base_lock);
1026 write_lock_bh(&dev_base_lock);
1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 write_unlock_bh(&dev_base_lock);
1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 ret = notifier_to_errno(ret);
1034 /* err >= 0 after dev_alloc_name() or stores the first errno */
1037 memcpy(dev->name, oldname, IFNAMSIZ);
1040 pr_err("%s: name change rollback failed: %d\n",
1049 * dev_set_alias - change ifalias of a device
1051 * @alias: name up to IFALIASZ
1052 * @len: limit of bytes to copy from info
1054 * Set ifalias for a device,
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1062 if (len >= IFALIASZ)
1067 kfree(dev->ifalias);
1068 dev->ifalias = NULL;
1073 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1076 dev->ifalias = new_ifalias;
1078 strlcpy(dev->ifalias, alias, len+1);
1084 * netdev_features_change - device changes features
1085 * @dev: device to cause notification
1087 * Called to indicate a device has changed features.
1089 void netdev_features_change(struct net_device *dev)
1091 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1093 EXPORT_SYMBOL(netdev_features_change);
1096 * netdev_state_change - device changes state
1097 * @dev: device to cause notification
1099 * Called to indicate a device has changed state. This function calls
1100 * the notifier chains for netdev_chain and sends a NEWLINK message
1101 * to the routing socket.
1103 void netdev_state_change(struct net_device *dev)
1105 if (dev->flags & IFF_UP) {
1106 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1107 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1110 EXPORT_SYMBOL(netdev_state_change);
1112 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1114 return call_netdevice_notifiers(event, dev);
1116 EXPORT_SYMBOL(netdev_bonding_change);
1119 * dev_load - load a network module
1120 * @net: the applicable net namespace
1121 * @name: name of interface
1123 * If a network interface is not present and the process has suitable
1124 * privileges this function loads the module. If module loading is not
1125 * available in this kernel then it becomes a nop.
1128 void dev_load(struct net *net, const char *name)
1130 struct net_device *dev;
1134 dev = dev_get_by_name_rcu(net, name);
1138 if (no_module && capable(CAP_NET_ADMIN))
1139 no_module = request_module("netdev-%s", name);
1140 if (no_module && capable(CAP_SYS_MODULE)) {
1141 if (!request_module("%s", name))
1142 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1146 EXPORT_SYMBOL(dev_load);
1148 static int __dev_open(struct net_device *dev)
1150 const struct net_device_ops *ops = dev->netdev_ops;
1155 if (!netif_device_present(dev))
1158 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1159 ret = notifier_to_errno(ret);
1163 set_bit(__LINK_STATE_START, &dev->state);
1165 if (ops->ndo_validate_addr)
1166 ret = ops->ndo_validate_addr(dev);
1168 if (!ret && ops->ndo_open)
1169 ret = ops->ndo_open(dev);
1172 clear_bit(__LINK_STATE_START, &dev->state);
1174 dev->flags |= IFF_UP;
1175 net_dmaengine_get();
1176 dev_set_rx_mode(dev);
1178 add_device_randomness(dev->dev_addr, dev->addr_len);
1185 * dev_open - prepare an interface for use.
1186 * @dev: device to open
1188 * Takes a device from down to up state. The device's private open
1189 * function is invoked and then the multicast lists are loaded. Finally
1190 * the device is moved into the up state and a %NETDEV_UP message is
1191 * sent to the netdev notifier chain.
1193 * Calling this function on an active interface is a nop. On a failure
1194 * a negative errno code is returned.
1196 int dev_open(struct net_device *dev)
1200 if (dev->flags & IFF_UP)
1203 ret = __dev_open(dev);
1207 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1208 call_netdevice_notifiers(NETDEV_UP, dev);
1212 EXPORT_SYMBOL(dev_open);
1214 static int __dev_close_many(struct list_head *head)
1216 struct net_device *dev;
1221 list_for_each_entry(dev, head, unreg_list) {
1222 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1224 clear_bit(__LINK_STATE_START, &dev->state);
1226 /* Synchronize to scheduled poll. We cannot touch poll list, it
1227 * can be even on different cpu. So just clear netif_running().
1229 * dev->stop() will invoke napi_disable() on all of it's
1230 * napi_struct instances on this device.
1232 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1235 dev_deactivate_many(head);
1237 list_for_each_entry(dev, head, unreg_list) {
1238 const struct net_device_ops *ops = dev->netdev_ops;
1241 * Call the device specific close. This cannot fail.
1242 * Only if device is UP
1244 * We allow it to be called even after a DETACH hot-plug
1250 dev->flags &= ~IFF_UP;
1251 net_dmaengine_put();
1257 static int __dev_close(struct net_device *dev)
1262 list_add(&dev->unreg_list, &single);
1263 retval = __dev_close_many(&single);
1268 static int dev_close_many(struct list_head *head)
1270 struct net_device *dev, *tmp;
1271 LIST_HEAD(tmp_list);
1273 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1274 if (!(dev->flags & IFF_UP))
1275 list_move(&dev->unreg_list, &tmp_list);
1277 __dev_close_many(head);
1279 list_for_each_entry(dev, head, unreg_list) {
1280 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1281 call_netdevice_notifiers(NETDEV_DOWN, dev);
1284 /* rollback_registered_many needs the complete original list */
1285 list_splice(&tmp_list, head);
1290 * dev_close - shutdown an interface.
1291 * @dev: device to shutdown
1293 * This function moves an active device into down state. A
1294 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1295 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1298 int dev_close(struct net_device *dev)
1300 if (dev->flags & IFF_UP) {
1303 list_add(&dev->unreg_list, &single);
1304 dev_close_many(&single);
1309 EXPORT_SYMBOL(dev_close);
1313 * dev_disable_lro - disable Large Receive Offload on a device
1316 * Disable Large Receive Offload (LRO) on a net device. Must be
1317 * called under RTNL. This is needed if received packets may be
1318 * forwarded to another interface.
1320 void dev_disable_lro(struct net_device *dev)
1323 * If we're trying to disable lro on a vlan device
1324 * use the underlying physical device instead
1326 if (is_vlan_dev(dev))
1327 dev = vlan_dev_real_dev(dev);
1329 dev->wanted_features &= ~NETIF_F_LRO;
1330 netdev_update_features(dev);
1332 if (unlikely(dev->features & NETIF_F_LRO))
1333 netdev_WARN(dev, "failed to disable LRO!\n");
1335 EXPORT_SYMBOL(dev_disable_lro);
1338 static int dev_boot_phase = 1;
1341 * register_netdevice_notifier - register a network notifier block
1344 * Register a notifier to be called when network device events occur.
1345 * The notifier passed is linked into the kernel structures and must
1346 * not be reused until it has been unregistered. A negative errno code
1347 * is returned on a failure.
1349 * When registered all registration and up events are replayed
1350 * to the new notifier to allow device to have a race free
1351 * view of the network device list.
1354 int register_netdevice_notifier(struct notifier_block *nb)
1356 struct net_device *dev;
1357 struct net_device *last;
1362 err = raw_notifier_chain_register(&netdev_chain, nb);
1368 for_each_netdev(net, dev) {
1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 err = notifier_to_errno(err);
1374 if (!(dev->flags & IFF_UP))
1377 nb->notifier_call(nb, NETDEV_UP, dev);
1388 for_each_netdev(net, dev) {
1392 if (dev->flags & IFF_UP) {
1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 nb->notifier_call(nb, NETDEV_DOWN, dev);
1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1402 raw_notifier_chain_unregister(&netdev_chain, nb);
1405 EXPORT_SYMBOL(register_netdevice_notifier);
1408 * unregister_netdevice_notifier - unregister a network notifier block
1411 * Unregister a notifier previously registered by
1412 * register_netdevice_notifier(). The notifier is unlinked into the
1413 * kernel structures and may then be reused. A negative errno code
1414 * is returned on a failure.
1416 * After unregistering unregister and down device events are synthesized
1417 * for all devices on the device list to the removed notifier to remove
1418 * the need for special case cleanup code.
1421 int unregister_netdevice_notifier(struct notifier_block *nb)
1423 struct net_device *dev;
1428 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1433 for_each_netdev(net, dev) {
1434 if (dev->flags & IFF_UP) {
1435 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1436 nb->notifier_call(nb, NETDEV_DOWN, dev);
1438 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1439 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1446 EXPORT_SYMBOL(unregister_netdevice_notifier);
1449 * call_netdevice_notifiers - call all network notifier blocks
1450 * @val: value passed unmodified to notifier function
1451 * @dev: net_device pointer passed unmodified to notifier function
1453 * Call all network notifier blocks. Parameters and return value
1454 * are as for raw_notifier_call_chain().
1457 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1460 return raw_notifier_call_chain(&netdev_chain, val, dev);
1462 EXPORT_SYMBOL(call_netdevice_notifiers);
1464 static struct static_key netstamp_needed __read_mostly;
1465 #ifdef HAVE_JUMP_LABEL
1466 /* We are not allowed to call static_key_slow_dec() from irq context
1467 * If net_disable_timestamp() is called from irq context, defer the
1468 * static_key_slow_dec() calls.
1470 static atomic_t netstamp_needed_deferred;
1473 void net_enable_timestamp(void)
1475 #ifdef HAVE_JUMP_LABEL
1476 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1480 static_key_slow_dec(&netstamp_needed);
1484 WARN_ON(in_interrupt());
1485 static_key_slow_inc(&netstamp_needed);
1487 EXPORT_SYMBOL(net_enable_timestamp);
1489 void net_disable_timestamp(void)
1491 #ifdef HAVE_JUMP_LABEL
1492 if (in_interrupt()) {
1493 atomic_inc(&netstamp_needed_deferred);
1497 static_key_slow_dec(&netstamp_needed);
1499 EXPORT_SYMBOL(net_disable_timestamp);
1501 static inline void net_timestamp_set(struct sk_buff *skb)
1503 skb->tstamp.tv64 = 0;
1504 if (static_key_false(&netstamp_needed))
1505 __net_timestamp(skb);
1508 #define net_timestamp_check(COND, SKB) \
1509 if (static_key_false(&netstamp_needed)) { \
1510 if ((COND) && !(SKB)->tstamp.tv64) \
1511 __net_timestamp(SKB); \
1514 static int net_hwtstamp_validate(struct ifreq *ifr)
1516 struct hwtstamp_config cfg;
1517 enum hwtstamp_tx_types tx_type;
1518 enum hwtstamp_rx_filters rx_filter;
1519 int tx_type_valid = 0;
1520 int rx_filter_valid = 0;
1522 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1525 if (cfg.flags) /* reserved for future extensions */
1528 tx_type = cfg.tx_type;
1529 rx_filter = cfg.rx_filter;
1532 case HWTSTAMP_TX_OFF:
1533 case HWTSTAMP_TX_ON:
1534 case HWTSTAMP_TX_ONESTEP_SYNC:
1539 switch (rx_filter) {
1540 case HWTSTAMP_FILTER_NONE:
1541 case HWTSTAMP_FILTER_ALL:
1542 case HWTSTAMP_FILTER_SOME:
1543 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1544 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1545 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1546 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1547 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1548 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1549 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1550 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1551 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1552 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1553 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1554 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1555 rx_filter_valid = 1;
1559 if (!tx_type_valid || !rx_filter_valid)
1565 static inline bool is_skb_forwardable(struct net_device *dev,
1566 struct sk_buff *skb)
1570 if (!(dev->flags & IFF_UP))
1573 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1574 if (skb->len <= len)
1577 /* if TSO is enabled, we don't care about the length as the packet
1578 * could be forwarded without being segmented before
1580 if (skb_is_gso(skb))
1587 * dev_forward_skb - loopback an skb to another netif
1589 * @dev: destination network device
1590 * @skb: buffer to forward
1593 * NET_RX_SUCCESS (no congestion)
1594 * NET_RX_DROP (packet was dropped, but freed)
1596 * dev_forward_skb can be used for injecting an skb from the
1597 * start_xmit function of one device into the receive queue
1598 * of another device.
1600 * The receiving device may be in another namespace, so
1601 * we have to clear all information in the skb that could
1602 * impact namespace isolation.
1604 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1606 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1607 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1608 atomic_long_inc(&dev->rx_dropped);
1617 if (unlikely(!is_skb_forwardable(dev, skb))) {
1618 atomic_long_inc(&dev->rx_dropped);
1625 skb->tstamp.tv64 = 0;
1626 skb->pkt_type = PACKET_HOST;
1627 skb->protocol = eth_type_trans(skb, dev);
1631 return netif_rx(skb);
1633 EXPORT_SYMBOL_GPL(dev_forward_skb);
1635 static inline int deliver_skb(struct sk_buff *skb,
1636 struct packet_type *pt_prev,
1637 struct net_device *orig_dev)
1639 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1641 atomic_inc(&skb->users);
1642 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1646 * Support routine. Sends outgoing frames to any network
1647 * taps currently in use.
1650 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1652 struct packet_type *ptype;
1653 struct sk_buff *skb2 = NULL;
1654 struct packet_type *pt_prev = NULL;
1657 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1658 /* Never send packets back to the socket
1661 if ((ptype->dev == dev || !ptype->dev) &&
1662 (ptype->af_packet_priv == NULL ||
1663 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1665 deliver_skb(skb2, pt_prev, skb->dev);
1670 skb2 = skb_clone(skb, GFP_ATOMIC);
1674 net_timestamp_set(skb2);
1676 /* skb->nh should be correctly
1677 set by sender, so that the second statement is
1678 just protection against buggy protocols.
1680 skb_reset_mac_header(skb2);
1682 if (skb_network_header(skb2) < skb2->data ||
1683 skb2->network_header > skb2->tail) {
1684 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1685 ntohs(skb2->protocol),
1687 skb_reset_network_header(skb2);
1690 skb2->transport_header = skb2->network_header;
1691 skb2->pkt_type = PACKET_OUTGOING;
1696 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1701 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1702 * @dev: Network device
1703 * @txq: number of queues available
1705 * If real_num_tx_queues is changed the tc mappings may no longer be
1706 * valid. To resolve this verify the tc mapping remains valid and if
1707 * not NULL the mapping. With no priorities mapping to this
1708 * offset/count pair it will no longer be used. In the worst case TC0
1709 * is invalid nothing can be done so disable priority mappings. If is
1710 * expected that drivers will fix this mapping if they can before
1711 * calling netif_set_real_num_tx_queues.
1713 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1716 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1718 /* If TC0 is invalidated disable TC mapping */
1719 if (tc->offset + tc->count > txq) {
1720 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1725 /* Invalidated prio to tc mappings set to TC0 */
1726 for (i = 1; i < TC_BITMASK + 1; i++) {
1727 int q = netdev_get_prio_tc_map(dev, i);
1729 tc = &dev->tc_to_txq[q];
1730 if (tc->offset + tc->count > txq) {
1731 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1733 netdev_set_prio_tc_map(dev, i, 0);
1739 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1740 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1742 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1746 if (txq < 1 || txq > dev->num_tx_queues)
1749 if (dev->reg_state == NETREG_REGISTERED ||
1750 dev->reg_state == NETREG_UNREGISTERING) {
1753 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1759 netif_setup_tc(dev, txq);
1761 if (txq < dev->real_num_tx_queues)
1762 qdisc_reset_all_tx_gt(dev, txq);
1765 dev->real_num_tx_queues = txq;
1768 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1772 * netif_set_real_num_rx_queues - set actual number of RX queues used
1773 * @dev: Network device
1774 * @rxq: Actual number of RX queues
1776 * This must be called either with the rtnl_lock held or before
1777 * registration of the net device. Returns 0 on success, or a
1778 * negative error code. If called before registration, it always
1781 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1785 if (rxq < 1 || rxq > dev->num_rx_queues)
1788 if (dev->reg_state == NETREG_REGISTERED) {
1791 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1797 dev->real_num_rx_queues = rxq;
1800 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1804 * netif_get_num_default_rss_queues - default number of RSS queues
1806 * This routine should set an upper limit on the number of RSS queues
1807 * used by default by multiqueue devices.
1809 int netif_get_num_default_rss_queues(void)
1811 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1813 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1815 static inline void __netif_reschedule(struct Qdisc *q)
1817 struct softnet_data *sd;
1818 unsigned long flags;
1820 local_irq_save(flags);
1821 sd = &__get_cpu_var(softnet_data);
1822 q->next_sched = NULL;
1823 *sd->output_queue_tailp = q;
1824 sd->output_queue_tailp = &q->next_sched;
1825 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1826 local_irq_restore(flags);
1829 void __netif_schedule(struct Qdisc *q)
1831 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1832 __netif_reschedule(q);
1834 EXPORT_SYMBOL(__netif_schedule);
1836 void dev_kfree_skb_irq(struct sk_buff *skb)
1838 if (atomic_dec_and_test(&skb->users)) {
1839 struct softnet_data *sd;
1840 unsigned long flags;
1842 local_irq_save(flags);
1843 sd = &__get_cpu_var(softnet_data);
1844 skb->next = sd->completion_queue;
1845 sd->completion_queue = skb;
1846 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1847 local_irq_restore(flags);
1850 EXPORT_SYMBOL(dev_kfree_skb_irq);
1852 void dev_kfree_skb_any(struct sk_buff *skb)
1854 if (in_irq() || irqs_disabled())
1855 dev_kfree_skb_irq(skb);
1859 EXPORT_SYMBOL(dev_kfree_skb_any);
1863 * netif_device_detach - mark device as removed
1864 * @dev: network device
1866 * Mark device as removed from system and therefore no longer available.
1868 void netif_device_detach(struct net_device *dev)
1870 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1871 netif_running(dev)) {
1872 netif_tx_stop_all_queues(dev);
1875 EXPORT_SYMBOL(netif_device_detach);
1878 * netif_device_attach - mark device as attached
1879 * @dev: network device
1881 * Mark device as attached from system and restart if needed.
1883 void netif_device_attach(struct net_device *dev)
1885 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1886 netif_running(dev)) {
1887 netif_tx_wake_all_queues(dev);
1888 __netdev_watchdog_up(dev);
1891 EXPORT_SYMBOL(netif_device_attach);
1893 static void skb_warn_bad_offload(const struct sk_buff *skb)
1895 static const netdev_features_t null_features = 0;
1896 struct net_device *dev = skb->dev;
1897 const char *driver = "";
1899 if (dev && dev->dev.parent)
1900 driver = dev_driver_string(dev->dev.parent);
1902 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1903 "gso_type=%d ip_summed=%d\n",
1904 driver, dev ? &dev->features : &null_features,
1905 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1906 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1907 skb_shinfo(skb)->gso_type, skb->ip_summed);
1911 * Invalidate hardware checksum when packet is to be mangled, and
1912 * complete checksum manually on outgoing path.
1914 int skb_checksum_help(struct sk_buff *skb)
1917 int ret = 0, offset;
1919 if (skb->ip_summed == CHECKSUM_COMPLETE)
1920 goto out_set_summed;
1922 if (unlikely(skb_shinfo(skb)->gso_size)) {
1923 skb_warn_bad_offload(skb);
1927 offset = skb_checksum_start_offset(skb);
1928 BUG_ON(offset >= skb_headlen(skb));
1929 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1931 offset += skb->csum_offset;
1932 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1934 if (skb_cloned(skb) &&
1935 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1936 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1941 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1943 skb->ip_summed = CHECKSUM_NONE;
1947 EXPORT_SYMBOL(skb_checksum_help);
1950 * skb_gso_segment - Perform segmentation on skb.
1951 * @skb: buffer to segment
1952 * @features: features for the output path (see dev->features)
1954 * This function segments the given skb and returns a list of segments.
1956 * It may return NULL if the skb requires no segmentation. This is
1957 * only possible when GSO is used for verifying header integrity.
1959 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1960 netdev_features_t features)
1962 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1963 struct packet_type *ptype;
1964 __be16 type = skb->protocol;
1965 int vlan_depth = ETH_HLEN;
1968 while (type == htons(ETH_P_8021Q)) {
1969 struct vlan_hdr *vh;
1971 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1972 return ERR_PTR(-EINVAL);
1974 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1975 type = vh->h_vlan_encapsulated_proto;
1976 vlan_depth += VLAN_HLEN;
1979 skb_reset_mac_header(skb);
1980 skb->mac_len = skb->network_header - skb->mac_header;
1981 __skb_pull(skb, skb->mac_len);
1983 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1984 skb_warn_bad_offload(skb);
1986 if (skb_header_cloned(skb) &&
1987 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1988 return ERR_PTR(err);
1992 list_for_each_entry_rcu(ptype,
1993 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1994 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1995 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1996 err = ptype->gso_send_check(skb);
1997 segs = ERR_PTR(err);
1998 if (err || skb_gso_ok(skb, features))
2000 __skb_push(skb, (skb->data -
2001 skb_network_header(skb)));
2003 segs = ptype->gso_segment(skb, features);
2009 __skb_push(skb, skb->data - skb_mac_header(skb));
2013 EXPORT_SYMBOL(skb_gso_segment);
2015 /* Take action when hardware reception checksum errors are detected. */
2017 void netdev_rx_csum_fault(struct net_device *dev)
2019 if (net_ratelimit()) {
2020 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2024 EXPORT_SYMBOL(netdev_rx_csum_fault);
2027 /* Actually, we should eliminate this check as soon as we know, that:
2028 * 1. IOMMU is present and allows to map all the memory.
2029 * 2. No high memory really exists on this machine.
2032 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2034 #ifdef CONFIG_HIGHMEM
2036 if (!(dev->features & NETIF_F_HIGHDMA)) {
2037 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2038 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2039 if (PageHighMem(skb_frag_page(frag)))
2044 if (PCI_DMA_BUS_IS_PHYS) {
2045 struct device *pdev = dev->dev.parent;
2049 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2050 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2051 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2052 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2061 void (*destructor)(struct sk_buff *skb);
2064 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2066 static void dev_gso_skb_destructor(struct sk_buff *skb)
2068 struct dev_gso_cb *cb;
2071 struct sk_buff *nskb = skb->next;
2073 skb->next = nskb->next;
2076 } while (skb->next);
2078 cb = DEV_GSO_CB(skb);
2080 cb->destructor(skb);
2084 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2085 * @skb: buffer to segment
2086 * @features: device features as applicable to this skb
2088 * This function segments the given skb and stores the list of segments
2091 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2093 struct sk_buff *segs;
2095 segs = skb_gso_segment(skb, features);
2097 /* Verifying header integrity only. */
2102 return PTR_ERR(segs);
2105 DEV_GSO_CB(skb)->destructor = skb->destructor;
2106 skb->destructor = dev_gso_skb_destructor;
2111 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2113 return ((features & NETIF_F_GEN_CSUM) ||
2114 ((features & NETIF_F_V4_CSUM) &&
2115 protocol == htons(ETH_P_IP)) ||
2116 ((features & NETIF_F_V6_CSUM) &&
2117 protocol == htons(ETH_P_IPV6)) ||
2118 ((features & NETIF_F_FCOE_CRC) &&
2119 protocol == htons(ETH_P_FCOE)));
2122 static netdev_features_t harmonize_features(struct sk_buff *skb,
2123 __be16 protocol, netdev_features_t features)
2125 if (!can_checksum_protocol(features, protocol)) {
2126 features &= ~NETIF_F_ALL_CSUM;
2127 features &= ~NETIF_F_SG;
2128 } else if (illegal_highdma(skb->dev, skb)) {
2129 features &= ~NETIF_F_SG;
2135 netdev_features_t netif_skb_features(struct sk_buff *skb)
2137 __be16 protocol = skb->protocol;
2138 netdev_features_t features = skb->dev->features;
2140 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2141 features &= ~NETIF_F_GSO_MASK;
2143 if (protocol == htons(ETH_P_8021Q)) {
2144 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2145 protocol = veh->h_vlan_encapsulated_proto;
2146 } else if (!vlan_tx_tag_present(skb)) {
2147 return harmonize_features(skb, protocol, features);
2150 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2152 if (protocol != htons(ETH_P_8021Q)) {
2153 return harmonize_features(skb, protocol, features);
2155 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2156 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2157 return harmonize_features(skb, protocol, features);
2160 EXPORT_SYMBOL(netif_skb_features);
2163 * Returns true if either:
2164 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2165 * 2. skb is fragmented and the device does not support SG, or if
2166 * at least one of fragments is in highmem and device does not
2167 * support DMA from it.
2169 static inline int skb_needs_linearize(struct sk_buff *skb,
2172 return skb_is_nonlinear(skb) &&
2173 ((skb_has_frag_list(skb) &&
2174 !(features & NETIF_F_FRAGLIST)) ||
2175 (skb_shinfo(skb)->nr_frags &&
2176 !(features & NETIF_F_SG)));
2179 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2180 struct netdev_queue *txq)
2182 const struct net_device_ops *ops = dev->netdev_ops;
2183 int rc = NETDEV_TX_OK;
2184 unsigned int skb_len;
2186 if (likely(!skb->next)) {
2187 netdev_features_t features;
2190 * If device doesn't need skb->dst, release it right now while
2191 * its hot in this cpu cache
2193 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2196 if (!list_empty(&ptype_all))
2197 dev_queue_xmit_nit(skb, dev);
2199 features = netif_skb_features(skb);
2201 if (vlan_tx_tag_present(skb) &&
2202 !(features & NETIF_F_HW_VLAN_TX)) {
2203 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2210 if (netif_needs_gso(skb, features)) {
2211 if (unlikely(dev_gso_segment(skb, features)))
2216 if (skb_needs_linearize(skb, features) &&
2217 __skb_linearize(skb))
2220 /* If packet is not checksummed and device does not
2221 * support checksumming for this protocol, complete
2222 * checksumming here.
2224 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2225 skb_set_transport_header(skb,
2226 skb_checksum_start_offset(skb));
2227 if (!(features & NETIF_F_ALL_CSUM) &&
2228 skb_checksum_help(skb))
2234 rc = ops->ndo_start_xmit(skb, dev);
2235 trace_net_dev_xmit(skb, rc, dev, skb_len);
2236 if (rc == NETDEV_TX_OK)
2237 txq_trans_update(txq);
2243 struct sk_buff *nskb = skb->next;
2245 skb->next = nskb->next;
2249 * If device doesn't need nskb->dst, release it right now while
2250 * its hot in this cpu cache
2252 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2255 skb_len = nskb->len;
2256 rc = ops->ndo_start_xmit(nskb, dev);
2257 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2258 if (unlikely(rc != NETDEV_TX_OK)) {
2259 if (rc & ~NETDEV_TX_MASK)
2260 goto out_kfree_gso_skb;
2261 nskb->next = skb->next;
2265 txq_trans_update(txq);
2266 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2267 return NETDEV_TX_BUSY;
2268 } while (skb->next);
2271 if (likely(skb->next == NULL))
2272 skb->destructor = DEV_GSO_CB(skb)->destructor;
2279 static u32 hashrnd __read_mostly;
2282 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2283 * to be used as a distribution range.
2285 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2286 unsigned int num_tx_queues)
2290 u16 qcount = num_tx_queues;
2292 if (skb_rx_queue_recorded(skb)) {
2293 hash = skb_get_rx_queue(skb);
2294 while (unlikely(hash >= num_tx_queues))
2295 hash -= num_tx_queues;
2300 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2301 qoffset = dev->tc_to_txq[tc].offset;
2302 qcount = dev->tc_to_txq[tc].count;
2305 if (skb->sk && skb->sk->sk_hash)
2306 hash = skb->sk->sk_hash;
2308 hash = (__force u16) skb->protocol;
2309 hash = jhash_1word(hash, hashrnd);
2311 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2313 EXPORT_SYMBOL(__skb_tx_hash);
2315 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2317 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2318 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2319 dev->name, queue_index,
2320 dev->real_num_tx_queues);
2326 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2329 struct xps_dev_maps *dev_maps;
2330 struct xps_map *map;
2331 int queue_index = -1;
2334 dev_maps = rcu_dereference(dev->xps_maps);
2336 map = rcu_dereference(
2337 dev_maps->cpu_map[raw_smp_processor_id()]);
2340 queue_index = map->queues[0];
2343 if (skb->sk && skb->sk->sk_hash)
2344 hash = skb->sk->sk_hash;
2346 hash = (__force u16) skb->protocol ^
2348 hash = jhash_1word(hash, hashrnd);
2349 queue_index = map->queues[
2350 ((u64)hash * map->len) >> 32];
2352 if (unlikely(queue_index >= dev->real_num_tx_queues))
2364 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2365 struct sk_buff *skb)
2368 const struct net_device_ops *ops = dev->netdev_ops;
2370 if (dev->real_num_tx_queues == 1)
2372 else if (ops->ndo_select_queue) {
2373 queue_index = ops->ndo_select_queue(dev, skb);
2374 queue_index = dev_cap_txqueue(dev, queue_index);
2376 struct sock *sk = skb->sk;
2377 queue_index = sk_tx_queue_get(sk);
2379 if (queue_index < 0 || skb->ooo_okay ||
2380 queue_index >= dev->real_num_tx_queues) {
2381 int old_index = queue_index;
2383 queue_index = get_xps_queue(dev, skb);
2384 if (queue_index < 0)
2385 queue_index = skb_tx_hash(dev, skb);
2387 if (queue_index != old_index && sk) {
2388 struct dst_entry *dst =
2389 rcu_dereference_check(sk->sk_dst_cache, 1);
2391 if (dst && skb_dst(skb) == dst)
2392 sk_tx_queue_set(sk, queue_index);
2397 skb_set_queue_mapping(skb, queue_index);
2398 return netdev_get_tx_queue(dev, queue_index);
2401 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2402 struct net_device *dev,
2403 struct netdev_queue *txq)
2405 spinlock_t *root_lock = qdisc_lock(q);
2409 qdisc_skb_cb(skb)->pkt_len = skb->len;
2410 qdisc_calculate_pkt_len(skb, q);
2412 * Heuristic to force contended enqueues to serialize on a
2413 * separate lock before trying to get qdisc main lock.
2414 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2415 * and dequeue packets faster.
2417 contended = qdisc_is_running(q);
2418 if (unlikely(contended))
2419 spin_lock(&q->busylock);
2421 spin_lock(root_lock);
2422 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2425 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2426 qdisc_run_begin(q)) {
2428 * This is a work-conserving queue; there are no old skbs
2429 * waiting to be sent out; and the qdisc is not running -
2430 * xmit the skb directly.
2432 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2435 qdisc_bstats_update(q, skb);
2437 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2438 if (unlikely(contended)) {
2439 spin_unlock(&q->busylock);
2446 rc = NET_XMIT_SUCCESS;
2449 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2450 if (qdisc_run_begin(q)) {
2451 if (unlikely(contended)) {
2452 spin_unlock(&q->busylock);
2458 spin_unlock(root_lock);
2459 if (unlikely(contended))
2460 spin_unlock(&q->busylock);
2464 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2465 static void skb_update_prio(struct sk_buff *skb)
2467 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2469 if (!skb->priority && skb->sk && map) {
2470 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2472 if (prioidx < map->priomap_len)
2473 skb->priority = map->priomap[prioidx];
2477 #define skb_update_prio(skb)
2480 static DEFINE_PER_CPU(int, xmit_recursion);
2481 #define RECURSION_LIMIT 10
2484 * dev_loopback_xmit - loop back @skb
2485 * @skb: buffer to transmit
2487 int dev_loopback_xmit(struct sk_buff *skb)
2489 skb_reset_mac_header(skb);
2490 __skb_pull(skb, skb_network_offset(skb));
2491 skb->pkt_type = PACKET_LOOPBACK;
2492 skb->ip_summed = CHECKSUM_UNNECESSARY;
2493 WARN_ON(!skb_dst(skb));
2498 EXPORT_SYMBOL(dev_loopback_xmit);
2501 * dev_queue_xmit - transmit a buffer
2502 * @skb: buffer to transmit
2504 * Queue a buffer for transmission to a network device. The caller must
2505 * have set the device and priority and built the buffer before calling
2506 * this function. The function can be called from an interrupt.
2508 * A negative errno code is returned on a failure. A success does not
2509 * guarantee the frame will be transmitted as it may be dropped due
2510 * to congestion or traffic shaping.
2512 * -----------------------------------------------------------------------------------
2513 * I notice this method can also return errors from the queue disciplines,
2514 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2517 * Regardless of the return value, the skb is consumed, so it is currently
2518 * difficult to retry a send to this method. (You can bump the ref count
2519 * before sending to hold a reference for retry if you are careful.)
2521 * When calling this method, interrupts MUST be enabled. This is because
2522 * the BH enable code must have IRQs enabled so that it will not deadlock.
2525 int dev_queue_xmit(struct sk_buff *skb)
2527 struct net_device *dev = skb->dev;
2528 struct netdev_queue *txq;
2532 /* Disable soft irqs for various locks below. Also
2533 * stops preemption for RCU.
2537 skb_update_prio(skb);
2539 txq = dev_pick_tx(dev, skb);
2540 q = rcu_dereference_bh(txq->qdisc);
2542 #ifdef CONFIG_NET_CLS_ACT
2543 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2545 trace_net_dev_queue(skb);
2547 rc = __dev_xmit_skb(skb, q, dev, txq);
2551 /* The device has no queue. Common case for software devices:
2552 loopback, all the sorts of tunnels...
2554 Really, it is unlikely that netif_tx_lock protection is necessary
2555 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2557 However, it is possible, that they rely on protection
2560 Check this and shot the lock. It is not prone from deadlocks.
2561 Either shot noqueue qdisc, it is even simpler 8)
2563 if (dev->flags & IFF_UP) {
2564 int cpu = smp_processor_id(); /* ok because BHs are off */
2566 if (txq->xmit_lock_owner != cpu) {
2568 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2569 goto recursion_alert;
2571 HARD_TX_LOCK(dev, txq, cpu);
2573 if (!netif_xmit_stopped(txq)) {
2574 __this_cpu_inc(xmit_recursion);
2575 rc = dev_hard_start_xmit(skb, dev, txq);
2576 __this_cpu_dec(xmit_recursion);
2577 if (dev_xmit_complete(rc)) {
2578 HARD_TX_UNLOCK(dev, txq);
2582 HARD_TX_UNLOCK(dev, txq);
2583 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2586 /* Recursion is detected! It is possible,
2590 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2596 rcu_read_unlock_bh();
2601 rcu_read_unlock_bh();
2604 EXPORT_SYMBOL(dev_queue_xmit);
2607 /*=======================================================================
2609 =======================================================================*/
2611 int netdev_max_backlog __read_mostly = 1000;
2612 int netdev_tstamp_prequeue __read_mostly = 1;
2613 int netdev_budget __read_mostly = 300;
2614 int weight_p __read_mostly = 64; /* old backlog weight */
2616 /* Called with irq disabled */
2617 static inline void ____napi_schedule(struct softnet_data *sd,
2618 struct napi_struct *napi)
2620 list_add_tail(&napi->poll_list, &sd->poll_list);
2621 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2625 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2626 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2627 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2628 * if hash is a canonical 4-tuple hash over transport ports.
2630 void __skb_get_rxhash(struct sk_buff *skb)
2632 struct flow_keys keys;
2635 if (!skb_flow_dissect(skb, &keys))
2639 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2640 swap(keys.port16[0], keys.port16[1]);
2644 /* get a consistent hash (same value on both flow directions) */
2645 if ((__force u32)keys.dst < (__force u32)keys.src)
2646 swap(keys.dst, keys.src);
2648 hash = jhash_3words((__force u32)keys.dst,
2649 (__force u32)keys.src,
2650 (__force u32)keys.ports, hashrnd);
2656 EXPORT_SYMBOL(__skb_get_rxhash);
2660 /* One global table that all flow-based protocols share. */
2661 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2662 EXPORT_SYMBOL(rps_sock_flow_table);
2664 struct static_key rps_needed __read_mostly;
2666 static struct rps_dev_flow *
2667 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2668 struct rps_dev_flow *rflow, u16 next_cpu)
2670 if (next_cpu != RPS_NO_CPU) {
2671 #ifdef CONFIG_RFS_ACCEL
2672 struct netdev_rx_queue *rxqueue;
2673 struct rps_dev_flow_table *flow_table;
2674 struct rps_dev_flow *old_rflow;
2679 /* Should we steer this flow to a different hardware queue? */
2680 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2681 !(dev->features & NETIF_F_NTUPLE))
2683 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2684 if (rxq_index == skb_get_rx_queue(skb))
2687 rxqueue = dev->_rx + rxq_index;
2688 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2691 flow_id = skb->rxhash & flow_table->mask;
2692 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2693 rxq_index, flow_id);
2697 rflow = &flow_table->flows[flow_id];
2699 if (old_rflow->filter == rflow->filter)
2700 old_rflow->filter = RPS_NO_FILTER;
2704 per_cpu(softnet_data, next_cpu).input_queue_head;
2707 rflow->cpu = next_cpu;
2712 * get_rps_cpu is called from netif_receive_skb and returns the target
2713 * CPU from the RPS map of the receiving queue for a given skb.
2714 * rcu_read_lock must be held on entry.
2716 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2717 struct rps_dev_flow **rflowp)
2719 struct netdev_rx_queue *rxqueue;
2720 struct rps_map *map;
2721 struct rps_dev_flow_table *flow_table;
2722 struct rps_sock_flow_table *sock_flow_table;
2726 if (skb_rx_queue_recorded(skb)) {
2727 u16 index = skb_get_rx_queue(skb);
2728 if (unlikely(index >= dev->real_num_rx_queues)) {
2729 WARN_ONCE(dev->real_num_rx_queues > 1,
2730 "%s received packet on queue %u, but number "
2731 "of RX queues is %u\n",
2732 dev->name, index, dev->real_num_rx_queues);
2735 rxqueue = dev->_rx + index;
2739 map = rcu_dereference(rxqueue->rps_map);
2741 if (map->len == 1 &&
2742 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2743 tcpu = map->cpus[0];
2744 if (cpu_online(tcpu))
2748 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2752 skb_reset_network_header(skb);
2753 if (!skb_get_rxhash(skb))
2756 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2757 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2758 if (flow_table && sock_flow_table) {
2760 struct rps_dev_flow *rflow;
2762 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2765 next_cpu = sock_flow_table->ents[skb->rxhash &
2766 sock_flow_table->mask];
2769 * If the desired CPU (where last recvmsg was done) is
2770 * different from current CPU (one in the rx-queue flow
2771 * table entry), switch if one of the following holds:
2772 * - Current CPU is unset (equal to RPS_NO_CPU).
2773 * - Current CPU is offline.
2774 * - The current CPU's queue tail has advanced beyond the
2775 * last packet that was enqueued using this table entry.
2776 * This guarantees that all previous packets for the flow
2777 * have been dequeued, thus preserving in order delivery.
2779 if (unlikely(tcpu != next_cpu) &&
2780 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2781 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2782 rflow->last_qtail)) >= 0))
2783 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2785 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2793 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2795 if (cpu_online(tcpu)) {
2805 #ifdef CONFIG_RFS_ACCEL
2808 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2809 * @dev: Device on which the filter was set
2810 * @rxq_index: RX queue index
2811 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2812 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2814 * Drivers that implement ndo_rx_flow_steer() should periodically call
2815 * this function for each installed filter and remove the filters for
2816 * which it returns %true.
2818 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2819 u32 flow_id, u16 filter_id)
2821 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2822 struct rps_dev_flow_table *flow_table;
2823 struct rps_dev_flow *rflow;
2828 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2829 if (flow_table && flow_id <= flow_table->mask) {
2830 rflow = &flow_table->flows[flow_id];
2831 cpu = ACCESS_ONCE(rflow->cpu);
2832 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2833 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2834 rflow->last_qtail) <
2835 (int)(10 * flow_table->mask)))
2841 EXPORT_SYMBOL(rps_may_expire_flow);
2843 #endif /* CONFIG_RFS_ACCEL */
2845 /* Called from hardirq (IPI) context */
2846 static void rps_trigger_softirq(void *data)
2848 struct softnet_data *sd = data;
2850 ____napi_schedule(sd, &sd->backlog);
2854 #endif /* CONFIG_RPS */
2857 * Check if this softnet_data structure is another cpu one
2858 * If yes, queue it to our IPI list and return 1
2861 static int rps_ipi_queued(struct softnet_data *sd)
2864 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2867 sd->rps_ipi_next = mysd->rps_ipi_list;
2868 mysd->rps_ipi_list = sd;
2870 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2873 #endif /* CONFIG_RPS */
2878 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2879 * queue (may be a remote CPU queue).
2881 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2882 unsigned int *qtail)
2884 struct softnet_data *sd;
2885 unsigned long flags;
2887 sd = &per_cpu(softnet_data, cpu);
2889 local_irq_save(flags);
2892 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2893 if (skb_queue_len(&sd->input_pkt_queue)) {
2895 __skb_queue_tail(&sd->input_pkt_queue, skb);
2896 input_queue_tail_incr_save(sd, qtail);
2898 local_irq_restore(flags);
2899 return NET_RX_SUCCESS;
2902 /* Schedule NAPI for backlog device
2903 * We can use non atomic operation since we own the queue lock
2905 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2906 if (!rps_ipi_queued(sd))
2907 ____napi_schedule(sd, &sd->backlog);
2915 local_irq_restore(flags);
2917 atomic_long_inc(&skb->dev->rx_dropped);
2923 * netif_rx - post buffer to the network code
2924 * @skb: buffer to post
2926 * This function receives a packet from a device driver and queues it for
2927 * the upper (protocol) levels to process. It always succeeds. The buffer
2928 * may be dropped during processing for congestion control or by the
2932 * NET_RX_SUCCESS (no congestion)
2933 * NET_RX_DROP (packet was dropped)
2937 int netif_rx(struct sk_buff *skb)
2941 /* if netpoll wants it, pretend we never saw it */
2942 if (netpoll_rx(skb))
2945 net_timestamp_check(netdev_tstamp_prequeue, skb);
2947 trace_netif_rx(skb);
2949 if (static_key_false(&rps_needed)) {
2950 struct rps_dev_flow voidflow, *rflow = &voidflow;
2956 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2958 cpu = smp_processor_id();
2960 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2968 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2973 EXPORT_SYMBOL(netif_rx);
2975 int netif_rx_ni(struct sk_buff *skb)
2980 err = netif_rx(skb);
2981 if (local_softirq_pending())
2987 EXPORT_SYMBOL(netif_rx_ni);
2989 static void net_tx_action(struct softirq_action *h)
2991 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2993 if (sd->completion_queue) {
2994 struct sk_buff *clist;
2996 local_irq_disable();
2997 clist = sd->completion_queue;
2998 sd->completion_queue = NULL;
3002 struct sk_buff *skb = clist;
3003 clist = clist->next;
3005 WARN_ON(atomic_read(&skb->users));
3006 trace_kfree_skb(skb, net_tx_action);
3011 if (sd->output_queue) {
3014 local_irq_disable();
3015 head = sd->output_queue;
3016 sd->output_queue = NULL;
3017 sd->output_queue_tailp = &sd->output_queue;
3021 struct Qdisc *q = head;
3022 spinlock_t *root_lock;
3024 head = head->next_sched;
3026 root_lock = qdisc_lock(q);
3027 if (spin_trylock(root_lock)) {
3028 smp_mb__before_clear_bit();
3029 clear_bit(__QDISC_STATE_SCHED,
3032 spin_unlock(root_lock);
3034 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3036 __netif_reschedule(q);
3038 smp_mb__before_clear_bit();
3039 clear_bit(__QDISC_STATE_SCHED,
3047 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3048 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3049 /* This hook is defined here for ATM LANE */
3050 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3051 unsigned char *addr) __read_mostly;
3052 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3055 #ifdef CONFIG_NET_CLS_ACT
3056 /* TODO: Maybe we should just force sch_ingress to be compiled in
3057 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3058 * a compare and 2 stores extra right now if we dont have it on
3059 * but have CONFIG_NET_CLS_ACT
3060 * NOTE: This doesn't stop any functionality; if you dont have
3061 * the ingress scheduler, you just can't add policies on ingress.
3064 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3066 struct net_device *dev = skb->dev;
3067 u32 ttl = G_TC_RTTL(skb->tc_verd);
3068 int result = TC_ACT_OK;
3071 if (unlikely(MAX_RED_LOOP < ttl++)) {
3072 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3073 skb->skb_iif, dev->ifindex);
3077 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3078 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3081 if (q != &noop_qdisc) {
3082 spin_lock(qdisc_lock(q));
3083 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3084 result = qdisc_enqueue_root(skb, q);
3085 spin_unlock(qdisc_lock(q));
3091 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3092 struct packet_type **pt_prev,
3093 int *ret, struct net_device *orig_dev)
3095 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3097 if (!rxq || rxq->qdisc == &noop_qdisc)
3101 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3105 switch (ing_filter(skb, rxq)) {
3119 * netdev_rx_handler_register - register receive handler
3120 * @dev: device to register a handler for
3121 * @rx_handler: receive handler to register
3122 * @rx_handler_data: data pointer that is used by rx handler
3124 * Register a receive hander for a device. This handler will then be
3125 * called from __netif_receive_skb. A negative errno code is returned
3128 * The caller must hold the rtnl_mutex.
3130 * For a general description of rx_handler, see enum rx_handler_result.
3132 int netdev_rx_handler_register(struct net_device *dev,
3133 rx_handler_func_t *rx_handler,
3134 void *rx_handler_data)
3138 if (dev->rx_handler)
3141 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3142 rcu_assign_pointer(dev->rx_handler, rx_handler);
3146 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3149 * netdev_rx_handler_unregister - unregister receive handler
3150 * @dev: device to unregister a handler from
3152 * Unregister a receive hander from a device.
3154 * The caller must hold the rtnl_mutex.
3156 void netdev_rx_handler_unregister(struct net_device *dev)
3160 RCU_INIT_POINTER(dev->rx_handler, NULL);
3161 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3163 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3166 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3167 * the special handling of PFMEMALLOC skbs.
3169 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3171 switch (skb->protocol) {
3172 case __constant_htons(ETH_P_ARP):
3173 case __constant_htons(ETH_P_IP):
3174 case __constant_htons(ETH_P_IPV6):
3175 case __constant_htons(ETH_P_8021Q):
3182 static int __netif_receive_skb(struct sk_buff *skb)
3184 struct packet_type *ptype, *pt_prev;
3185 rx_handler_func_t *rx_handler;
3186 struct net_device *orig_dev;
3187 struct net_device *null_or_dev;
3188 bool deliver_exact = false;
3189 int ret = NET_RX_DROP;
3191 unsigned long pflags = current->flags;
3193 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3195 trace_netif_receive_skb(skb);
3198 * PFMEMALLOC skbs are special, they should
3199 * - be delivered to SOCK_MEMALLOC sockets only
3200 * - stay away from userspace
3201 * - have bounded memory usage
3203 * Use PF_MEMALLOC as this saves us from propagating the allocation
3204 * context down to all allocation sites.
3206 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3207 current->flags |= PF_MEMALLOC;
3209 /* if we've gotten here through NAPI, check netpoll */
3210 if (netpoll_receive_skb(skb))
3213 orig_dev = skb->dev;
3215 skb_reset_network_header(skb);
3216 skb_reset_transport_header(skb);
3217 skb_reset_mac_len(skb);
3224 skb->skb_iif = skb->dev->ifindex;
3226 __this_cpu_inc(softnet_data.processed);
3228 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3229 skb = vlan_untag(skb);
3234 #ifdef CONFIG_NET_CLS_ACT
3235 if (skb->tc_verd & TC_NCLS) {
3236 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3241 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3244 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3245 if (!ptype->dev || ptype->dev == skb->dev) {
3247 ret = deliver_skb(skb, pt_prev, orig_dev);
3253 #ifdef CONFIG_NET_CLS_ACT
3254 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3260 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3261 && !skb_pfmemalloc_protocol(skb))
3264 rx_handler = rcu_dereference(skb->dev->rx_handler);
3265 if (vlan_tx_tag_present(skb)) {
3267 ret = deliver_skb(skb, pt_prev, orig_dev);
3270 if (vlan_do_receive(&skb, !rx_handler))
3272 else if (unlikely(!skb))
3278 ret = deliver_skb(skb, pt_prev, orig_dev);
3281 switch (rx_handler(&skb)) {
3282 case RX_HANDLER_CONSUMED:
3284 case RX_HANDLER_ANOTHER:
3286 case RX_HANDLER_EXACT:
3287 deliver_exact = true;
3288 case RX_HANDLER_PASS:
3295 /* deliver only exact match when indicated */
3296 null_or_dev = deliver_exact ? skb->dev : NULL;
3298 type = skb->protocol;
3299 list_for_each_entry_rcu(ptype,
3300 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3301 if (ptype->type == type &&
3302 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3303 ptype->dev == orig_dev)) {
3305 ret = deliver_skb(skb, pt_prev, orig_dev);
3311 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3314 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3317 atomic_long_inc(&skb->dev->rx_dropped);
3319 /* Jamal, now you will not able to escape explaining
3320 * me how you were going to use this. :-)
3328 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3333 * netif_receive_skb - process receive buffer from network
3334 * @skb: buffer to process
3336 * netif_receive_skb() is the main receive data processing function.
3337 * It always succeeds. The buffer may be dropped during processing
3338 * for congestion control or by the protocol layers.
3340 * This function may only be called from softirq context and interrupts
3341 * should be enabled.
3343 * Return values (usually ignored):
3344 * NET_RX_SUCCESS: no congestion
3345 * NET_RX_DROP: packet was dropped
3347 int netif_receive_skb(struct sk_buff *skb)
3349 net_timestamp_check(netdev_tstamp_prequeue, skb);
3351 if (skb_defer_rx_timestamp(skb))
3352 return NET_RX_SUCCESS;
3355 if (static_key_false(&rps_needed)) {
3356 struct rps_dev_flow voidflow, *rflow = &voidflow;
3361 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3364 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3371 return __netif_receive_skb(skb);
3373 EXPORT_SYMBOL(netif_receive_skb);
3375 /* Network device is going away, flush any packets still pending
3376 * Called with irqs disabled.
3378 static void flush_backlog(void *arg)
3380 struct net_device *dev = arg;
3381 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3382 struct sk_buff *skb, *tmp;
3385 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3386 if (skb->dev == dev) {
3387 __skb_unlink(skb, &sd->input_pkt_queue);
3389 input_queue_head_incr(sd);
3394 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3395 if (skb->dev == dev) {
3396 __skb_unlink(skb, &sd->process_queue);
3398 input_queue_head_incr(sd);
3403 static int napi_gro_complete(struct sk_buff *skb)
3405 struct packet_type *ptype;
3406 __be16 type = skb->protocol;
3407 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3410 if (NAPI_GRO_CB(skb)->count == 1) {
3411 skb_shinfo(skb)->gso_size = 0;
3416 list_for_each_entry_rcu(ptype, head, list) {
3417 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3420 err = ptype->gro_complete(skb);
3426 WARN_ON(&ptype->list == head);
3428 return NET_RX_SUCCESS;
3432 return netif_receive_skb(skb);
3435 inline void napi_gro_flush(struct napi_struct *napi)
3437 struct sk_buff *skb, *next;
3439 for (skb = napi->gro_list; skb; skb = next) {
3442 napi_gro_complete(skb);
3445 napi->gro_count = 0;
3446 napi->gro_list = NULL;
3448 EXPORT_SYMBOL(napi_gro_flush);
3450 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3452 struct sk_buff **pp = NULL;
3453 struct packet_type *ptype;
3454 __be16 type = skb->protocol;
3455 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3458 enum gro_result ret;
3460 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3463 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3467 list_for_each_entry_rcu(ptype, head, list) {
3468 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3471 skb_set_network_header(skb, skb_gro_offset(skb));
3472 mac_len = skb->network_header - skb->mac_header;
3473 skb->mac_len = mac_len;
3474 NAPI_GRO_CB(skb)->same_flow = 0;
3475 NAPI_GRO_CB(skb)->flush = 0;
3476 NAPI_GRO_CB(skb)->free = 0;
3478 pp = ptype->gro_receive(&napi->gro_list, skb);
3483 if (&ptype->list == head)
3486 same_flow = NAPI_GRO_CB(skb)->same_flow;
3487 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3490 struct sk_buff *nskb = *pp;
3494 napi_gro_complete(nskb);
3501 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3505 NAPI_GRO_CB(skb)->count = 1;
3506 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3507 skb->next = napi->gro_list;
3508 napi->gro_list = skb;
3512 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3513 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3515 BUG_ON(skb->end - skb->tail < grow);
3517 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3520 skb->data_len -= grow;
3522 skb_shinfo(skb)->frags[0].page_offset += grow;
3523 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3525 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3526 skb_frag_unref(skb, 0);
3527 memmove(skb_shinfo(skb)->frags,
3528 skb_shinfo(skb)->frags + 1,
3529 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3540 EXPORT_SYMBOL(dev_gro_receive);
3542 static inline gro_result_t
3543 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3546 unsigned int maclen = skb->dev->hard_header_len;
3548 for (p = napi->gro_list; p; p = p->next) {
3549 unsigned long diffs;
3551 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3552 diffs |= p->vlan_tci ^ skb->vlan_tci;
3553 if (maclen == ETH_HLEN)
3554 diffs |= compare_ether_header(skb_mac_header(p),
3555 skb_gro_mac_header(skb));
3557 diffs = memcmp(skb_mac_header(p),
3558 skb_gro_mac_header(skb),
3560 NAPI_GRO_CB(p)->same_flow = !diffs;
3561 NAPI_GRO_CB(p)->flush = 0;
3564 return dev_gro_receive(napi, skb);
3567 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3571 if (netif_receive_skb(skb))
3579 case GRO_MERGED_FREE:
3580 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3581 kmem_cache_free(skbuff_head_cache, skb);
3593 EXPORT_SYMBOL(napi_skb_finish);
3595 void skb_gro_reset_offset(struct sk_buff *skb)
3597 NAPI_GRO_CB(skb)->data_offset = 0;
3598 NAPI_GRO_CB(skb)->frag0 = NULL;
3599 NAPI_GRO_CB(skb)->frag0_len = 0;
3601 if (skb->mac_header == skb->tail &&
3602 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3603 NAPI_GRO_CB(skb)->frag0 =
3604 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3605 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3608 EXPORT_SYMBOL(skb_gro_reset_offset);
3610 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3612 skb_gro_reset_offset(skb);
3614 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3616 EXPORT_SYMBOL(napi_gro_receive);
3618 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3620 __skb_pull(skb, skb_headlen(skb));
3621 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3622 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3624 skb->dev = napi->dev;
3630 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3632 struct sk_buff *skb = napi->skb;
3635 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3641 EXPORT_SYMBOL(napi_get_frags);
3643 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3649 skb->protocol = eth_type_trans(skb, skb->dev);
3651 if (ret == GRO_HELD)
3652 skb_gro_pull(skb, -ETH_HLEN);
3653 else if (netif_receive_skb(skb))
3658 case GRO_MERGED_FREE:
3659 napi_reuse_skb(napi, skb);
3668 EXPORT_SYMBOL(napi_frags_finish);
3670 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3672 struct sk_buff *skb = napi->skb;
3679 skb_reset_mac_header(skb);
3680 skb_gro_reset_offset(skb);
3682 off = skb_gro_offset(skb);
3683 hlen = off + sizeof(*eth);
3684 eth = skb_gro_header_fast(skb, off);
3685 if (skb_gro_header_hard(skb, hlen)) {
3686 eth = skb_gro_header_slow(skb, hlen, off);
3687 if (unlikely(!eth)) {
3688 napi_reuse_skb(napi, skb);
3694 skb_gro_pull(skb, sizeof(*eth));
3697 * This works because the only protocols we care about don't require
3698 * special handling. We'll fix it up properly at the end.
3700 skb->protocol = eth->h_proto;
3706 gro_result_t napi_gro_frags(struct napi_struct *napi)
3708 struct sk_buff *skb = napi_frags_skb(napi);
3713 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3715 EXPORT_SYMBOL(napi_gro_frags);
3718 * net_rps_action sends any pending IPI's for rps.
3719 * Note: called with local irq disabled, but exits with local irq enabled.
3721 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3724 struct softnet_data *remsd = sd->rps_ipi_list;
3727 sd->rps_ipi_list = NULL;
3731 /* Send pending IPI's to kick RPS processing on remote cpus. */
3733 struct softnet_data *next = remsd->rps_ipi_next;
3735 if (cpu_online(remsd->cpu))
3736 __smp_call_function_single(remsd->cpu,
3745 static int process_backlog(struct napi_struct *napi, int quota)
3748 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3751 /* Check if we have pending ipi, its better to send them now,
3752 * not waiting net_rx_action() end.
3754 if (sd->rps_ipi_list) {
3755 local_irq_disable();
3756 net_rps_action_and_irq_enable(sd);
3759 napi->weight = weight_p;
3760 local_irq_disable();
3761 while (work < quota) {
3762 struct sk_buff *skb;
3765 while ((skb = __skb_dequeue(&sd->process_queue))) {
3767 __netif_receive_skb(skb);
3768 local_irq_disable();
3769 input_queue_head_incr(sd);
3770 if (++work >= quota) {
3777 qlen = skb_queue_len(&sd->input_pkt_queue);
3779 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3780 &sd->process_queue);
3782 if (qlen < quota - work) {
3784 * Inline a custom version of __napi_complete().
3785 * only current cpu owns and manipulates this napi,
3786 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3787 * we can use a plain write instead of clear_bit(),
3788 * and we dont need an smp_mb() memory barrier.
3790 list_del(&napi->poll_list);
3793 quota = work + qlen;
3803 * __napi_schedule - schedule for receive
3804 * @n: entry to schedule
3806 * The entry's receive function will be scheduled to run
3808 void __napi_schedule(struct napi_struct *n)
3810 unsigned long flags;
3812 local_irq_save(flags);
3813 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3814 local_irq_restore(flags);
3816 EXPORT_SYMBOL(__napi_schedule);
3818 void __napi_complete(struct napi_struct *n)
3820 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3821 BUG_ON(n->gro_list);
3823 list_del(&n->poll_list);
3824 smp_mb__before_clear_bit();
3825 clear_bit(NAPI_STATE_SCHED, &n->state);
3827 EXPORT_SYMBOL(__napi_complete);
3829 void napi_complete(struct napi_struct *n)
3831 unsigned long flags;
3834 * don't let napi dequeue from the cpu poll list
3835 * just in case its running on a different cpu
3837 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3841 local_irq_save(flags);
3843 local_irq_restore(flags);
3845 EXPORT_SYMBOL(napi_complete);
3847 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3848 int (*poll)(struct napi_struct *, int), int weight)
3850 INIT_LIST_HEAD(&napi->poll_list);
3851 napi->gro_count = 0;
3852 napi->gro_list = NULL;
3855 napi->weight = weight;
3856 list_add(&napi->dev_list, &dev->napi_list);
3858 #ifdef CONFIG_NETPOLL
3859 spin_lock_init(&napi->poll_lock);
3860 napi->poll_owner = -1;
3862 set_bit(NAPI_STATE_SCHED, &napi->state);
3864 EXPORT_SYMBOL(netif_napi_add);
3866 void netif_napi_del(struct napi_struct *napi)
3868 struct sk_buff *skb, *next;
3870 list_del_init(&napi->dev_list);
3871 napi_free_frags(napi);
3873 for (skb = napi->gro_list; skb; skb = next) {
3879 napi->gro_list = NULL;
3880 napi->gro_count = 0;
3882 EXPORT_SYMBOL(netif_napi_del);
3884 static void net_rx_action(struct softirq_action *h)
3886 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3887 unsigned long time_limit = jiffies + 2;
3888 int budget = netdev_budget;
3891 local_irq_disable();
3893 while (!list_empty(&sd->poll_list)) {
3894 struct napi_struct *n;
3897 /* If softirq window is exhuasted then punt.
3898 * Allow this to run for 2 jiffies since which will allow
3899 * an average latency of 1.5/HZ.
3901 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3906 /* Even though interrupts have been re-enabled, this
3907 * access is safe because interrupts can only add new
3908 * entries to the tail of this list, and only ->poll()
3909 * calls can remove this head entry from the list.
3911 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3913 have = netpoll_poll_lock(n);
3917 /* This NAPI_STATE_SCHED test is for avoiding a race
3918 * with netpoll's poll_napi(). Only the entity which
3919 * obtains the lock and sees NAPI_STATE_SCHED set will
3920 * actually make the ->poll() call. Therefore we avoid
3921 * accidentally calling ->poll() when NAPI is not scheduled.
3924 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3925 work = n->poll(n, weight);
3929 WARN_ON_ONCE(work > weight);
3933 local_irq_disable();
3935 /* Drivers must not modify the NAPI state if they
3936 * consume the entire weight. In such cases this code
3937 * still "owns" the NAPI instance and therefore can
3938 * move the instance around on the list at-will.
3940 if (unlikely(work == weight)) {
3941 if (unlikely(napi_disable_pending(n))) {
3944 local_irq_disable();
3946 list_move_tail(&n->poll_list, &sd->poll_list);
3949 netpoll_poll_unlock(have);
3952 net_rps_action_and_irq_enable(sd);
3954 #ifdef CONFIG_NET_DMA
3956 * There may not be any more sk_buffs coming right now, so push
3957 * any pending DMA copies to hardware
3959 dma_issue_pending_all();
3966 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3970 static gifconf_func_t *gifconf_list[NPROTO];
3973 * register_gifconf - register a SIOCGIF handler
3974 * @family: Address family
3975 * @gifconf: Function handler
3977 * Register protocol dependent address dumping routines. The handler
3978 * that is passed must not be freed or reused until it has been replaced
3979 * by another handler.
3981 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3983 if (family >= NPROTO)
3985 gifconf_list[family] = gifconf;
3988 EXPORT_SYMBOL(register_gifconf);
3992 * Map an interface index to its name (SIOCGIFNAME)
3996 * We need this ioctl for efficient implementation of the
3997 * if_indextoname() function required by the IPv6 API. Without
3998 * it, we would have to search all the interfaces to find a
4002 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4004 struct net_device *dev;
4008 * Fetch the caller's info block.
4011 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4015 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4021 strcpy(ifr.ifr_name, dev->name);
4024 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4030 * Perform a SIOCGIFCONF call. This structure will change
4031 * size eventually, and there is nothing I can do about it.
4032 * Thus we will need a 'compatibility mode'.
4035 static int dev_ifconf(struct net *net, char __user *arg)
4038 struct net_device *dev;
4045 * Fetch the caller's info block.
4048 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4055 * Loop over the interfaces, and write an info block for each.
4059 for_each_netdev(net, dev) {
4060 for (i = 0; i < NPROTO; i++) {
4061 if (gifconf_list[i]) {
4064 done = gifconf_list[i](dev, NULL, 0);
4066 done = gifconf_list[i](dev, pos + total,
4076 * All done. Write the updated control block back to the caller.
4078 ifc.ifc_len = total;
4081 * Both BSD and Solaris return 0 here, so we do too.
4083 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4086 #ifdef CONFIG_PROC_FS
4088 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4090 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4091 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4092 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4094 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4096 struct net *net = seq_file_net(seq);
4097 struct net_device *dev;
4098 struct hlist_node *p;
4099 struct hlist_head *h;
4100 unsigned int count = 0, offset = get_offset(*pos);
4102 h = &net->dev_name_head[get_bucket(*pos)];
4103 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4104 if (++count == offset)
4111 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4113 struct net_device *dev;
4114 unsigned int bucket;
4117 dev = dev_from_same_bucket(seq, pos);
4121 bucket = get_bucket(*pos) + 1;
4122 *pos = set_bucket_offset(bucket, 1);
4123 } while (bucket < NETDEV_HASHENTRIES);
4129 * This is invoked by the /proc filesystem handler to display a device
4132 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4137 return SEQ_START_TOKEN;
4139 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4142 return dev_from_bucket(seq, pos);
4145 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4148 return dev_from_bucket(seq, pos);
4151 void dev_seq_stop(struct seq_file *seq, void *v)
4157 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4159 struct rtnl_link_stats64 temp;
4160 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4162 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4163 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4164 dev->name, stats->rx_bytes, stats->rx_packets,
4166 stats->rx_dropped + stats->rx_missed_errors,
4167 stats->rx_fifo_errors,
4168 stats->rx_length_errors + stats->rx_over_errors +
4169 stats->rx_crc_errors + stats->rx_frame_errors,
4170 stats->rx_compressed, stats->multicast,
4171 stats->tx_bytes, stats->tx_packets,
4172 stats->tx_errors, stats->tx_dropped,
4173 stats->tx_fifo_errors, stats->collisions,
4174 stats->tx_carrier_errors +
4175 stats->tx_aborted_errors +
4176 stats->tx_window_errors +
4177 stats->tx_heartbeat_errors,
4178 stats->tx_compressed);
4182 * Called from the PROCfs module. This now uses the new arbitrary sized
4183 * /proc/net interface to create /proc/net/dev
4185 static int dev_seq_show(struct seq_file *seq, void *v)
4187 if (v == SEQ_START_TOKEN)
4188 seq_puts(seq, "Inter-| Receive "
4190 " face |bytes packets errs drop fifo frame "
4191 "compressed multicast|bytes packets errs "
4192 "drop fifo colls carrier compressed\n");
4194 dev_seq_printf_stats(seq, v);
4198 static struct softnet_data *softnet_get_online(loff_t *pos)
4200 struct softnet_data *sd = NULL;
4202 while (*pos < nr_cpu_ids)
4203 if (cpu_online(*pos)) {
4204 sd = &per_cpu(softnet_data, *pos);
4211 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4213 return softnet_get_online(pos);
4216 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4219 return softnet_get_online(pos);
4222 static void softnet_seq_stop(struct seq_file *seq, void *v)
4226 static int softnet_seq_show(struct seq_file *seq, void *v)
4228 struct softnet_data *sd = v;
4230 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4231 sd->processed, sd->dropped, sd->time_squeeze, 0,
4232 0, 0, 0, 0, /* was fastroute */
4233 sd->cpu_collision, sd->received_rps);
4237 static const struct seq_operations dev_seq_ops = {
4238 .start = dev_seq_start,
4239 .next = dev_seq_next,
4240 .stop = dev_seq_stop,
4241 .show = dev_seq_show,
4244 static int dev_seq_open(struct inode *inode, struct file *file)
4246 return seq_open_net(inode, file, &dev_seq_ops,
4247 sizeof(struct seq_net_private));
4250 static const struct file_operations dev_seq_fops = {
4251 .owner = THIS_MODULE,
4252 .open = dev_seq_open,
4254 .llseek = seq_lseek,
4255 .release = seq_release_net,
4258 static const struct seq_operations softnet_seq_ops = {
4259 .start = softnet_seq_start,
4260 .next = softnet_seq_next,
4261 .stop = softnet_seq_stop,
4262 .show = softnet_seq_show,
4265 static int softnet_seq_open(struct inode *inode, struct file *file)
4267 return seq_open(file, &softnet_seq_ops);
4270 static const struct file_operations softnet_seq_fops = {
4271 .owner = THIS_MODULE,
4272 .open = softnet_seq_open,
4274 .llseek = seq_lseek,
4275 .release = seq_release,
4278 static void *ptype_get_idx(loff_t pos)
4280 struct packet_type *pt = NULL;
4284 list_for_each_entry_rcu(pt, &ptype_all, list) {
4290 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4291 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4300 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4304 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4307 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4309 struct packet_type *pt;
4310 struct list_head *nxt;
4314 if (v == SEQ_START_TOKEN)
4315 return ptype_get_idx(0);
4318 nxt = pt->list.next;
4319 if (pt->type == htons(ETH_P_ALL)) {
4320 if (nxt != &ptype_all)
4323 nxt = ptype_base[0].next;
4325 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4327 while (nxt == &ptype_base[hash]) {
4328 if (++hash >= PTYPE_HASH_SIZE)
4330 nxt = ptype_base[hash].next;
4333 return list_entry(nxt, struct packet_type, list);
4336 static void ptype_seq_stop(struct seq_file *seq, void *v)
4342 static int ptype_seq_show(struct seq_file *seq, void *v)
4344 struct packet_type *pt = v;
4346 if (v == SEQ_START_TOKEN)
4347 seq_puts(seq, "Type Device Function\n");
4348 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4349 if (pt->type == htons(ETH_P_ALL))
4350 seq_puts(seq, "ALL ");
4352 seq_printf(seq, "%04x", ntohs(pt->type));
4354 seq_printf(seq, " %-8s %pF\n",
4355 pt->dev ? pt->dev->name : "", pt->func);
4361 static const struct seq_operations ptype_seq_ops = {
4362 .start = ptype_seq_start,
4363 .next = ptype_seq_next,
4364 .stop = ptype_seq_stop,
4365 .show = ptype_seq_show,
4368 static int ptype_seq_open(struct inode *inode, struct file *file)
4370 return seq_open_net(inode, file, &ptype_seq_ops,
4371 sizeof(struct seq_net_private));
4374 static const struct file_operations ptype_seq_fops = {
4375 .owner = THIS_MODULE,
4376 .open = ptype_seq_open,
4378 .llseek = seq_lseek,
4379 .release = seq_release_net,
4383 static int __net_init dev_proc_net_init(struct net *net)
4387 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4389 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4391 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4394 if (wext_proc_init(net))
4400 proc_net_remove(net, "ptype");
4402 proc_net_remove(net, "softnet_stat");
4404 proc_net_remove(net, "dev");
4408 static void __net_exit dev_proc_net_exit(struct net *net)
4410 wext_proc_exit(net);
4412 proc_net_remove(net, "ptype");
4413 proc_net_remove(net, "softnet_stat");
4414 proc_net_remove(net, "dev");
4417 static struct pernet_operations __net_initdata dev_proc_ops = {
4418 .init = dev_proc_net_init,
4419 .exit = dev_proc_net_exit,
4422 static int __init dev_proc_init(void)
4424 return register_pernet_subsys(&dev_proc_ops);
4427 #define dev_proc_init() 0
4428 #endif /* CONFIG_PROC_FS */
4432 * netdev_set_master - set up master pointer
4433 * @slave: slave device
4434 * @master: new master device
4436 * Changes the master device of the slave. Pass %NULL to break the
4437 * bonding. The caller must hold the RTNL semaphore. On a failure
4438 * a negative errno code is returned. On success the reference counts
4439 * are adjusted and the function returns zero.
4441 int netdev_set_master(struct net_device *slave, struct net_device *master)
4443 struct net_device *old = slave->master;
4453 slave->master = master;
4459 EXPORT_SYMBOL(netdev_set_master);
4462 * netdev_set_bond_master - set up bonding master/slave pair
4463 * @slave: slave device
4464 * @master: new master device
4466 * Changes the master device of the slave. Pass %NULL to break the
4467 * bonding. The caller must hold the RTNL semaphore. On a failure
4468 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4469 * to the routing socket and the function returns zero.
4471 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4477 err = netdev_set_master(slave, master);
4481 slave->flags |= IFF_SLAVE;
4483 slave->flags &= ~IFF_SLAVE;
4485 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4488 EXPORT_SYMBOL(netdev_set_bond_master);
4490 static void dev_change_rx_flags(struct net_device *dev, int flags)
4492 const struct net_device_ops *ops = dev->netdev_ops;
4494 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4495 ops->ndo_change_rx_flags(dev, flags);
4498 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4500 unsigned int old_flags = dev->flags;
4506 dev->flags |= IFF_PROMISC;
4507 dev->promiscuity += inc;
4508 if (dev->promiscuity == 0) {
4511 * If inc causes overflow, untouch promisc and return error.
4514 dev->flags &= ~IFF_PROMISC;
4516 dev->promiscuity -= inc;
4517 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4522 if (dev->flags != old_flags) {
4523 pr_info("device %s %s promiscuous mode\n",
4525 dev->flags & IFF_PROMISC ? "entered" : "left");
4526 if (audit_enabled) {
4527 current_uid_gid(&uid, &gid);
4528 audit_log(current->audit_context, GFP_ATOMIC,
4529 AUDIT_ANOM_PROMISCUOUS,
4530 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4531 dev->name, (dev->flags & IFF_PROMISC),
4532 (old_flags & IFF_PROMISC),
4533 audit_get_loginuid(current),
4535 audit_get_sessionid(current));
4538 dev_change_rx_flags(dev, IFF_PROMISC);
4544 * dev_set_promiscuity - update promiscuity count on a device
4548 * Add or remove promiscuity from a device. While the count in the device
4549 * remains above zero the interface remains promiscuous. Once it hits zero
4550 * the device reverts back to normal filtering operation. A negative inc
4551 * value is used to drop promiscuity on the device.
4552 * Return 0 if successful or a negative errno code on error.
4554 int dev_set_promiscuity(struct net_device *dev, int inc)
4556 unsigned int old_flags = dev->flags;
4559 err = __dev_set_promiscuity(dev, inc);
4562 if (dev->flags != old_flags)
4563 dev_set_rx_mode(dev);
4566 EXPORT_SYMBOL(dev_set_promiscuity);
4569 * dev_set_allmulti - update allmulti count on a device
4573 * Add or remove reception of all multicast frames to a device. While the
4574 * count in the device remains above zero the interface remains listening
4575 * to all interfaces. Once it hits zero the device reverts back to normal
4576 * filtering operation. A negative @inc value is used to drop the counter
4577 * when releasing a resource needing all multicasts.
4578 * Return 0 if successful or a negative errno code on error.
4581 int dev_set_allmulti(struct net_device *dev, int inc)
4583 unsigned int old_flags = dev->flags;
4587 dev->flags |= IFF_ALLMULTI;
4588 dev->allmulti += inc;
4589 if (dev->allmulti == 0) {
4592 * If inc causes overflow, untouch allmulti and return error.
4595 dev->flags &= ~IFF_ALLMULTI;
4597 dev->allmulti -= inc;
4598 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4603 if (dev->flags ^ old_flags) {
4604 dev_change_rx_flags(dev, IFF_ALLMULTI);
4605 dev_set_rx_mode(dev);
4609 EXPORT_SYMBOL(dev_set_allmulti);
4612 * Upload unicast and multicast address lists to device and
4613 * configure RX filtering. When the device doesn't support unicast
4614 * filtering it is put in promiscuous mode while unicast addresses
4617 void __dev_set_rx_mode(struct net_device *dev)
4619 const struct net_device_ops *ops = dev->netdev_ops;
4621 /* dev_open will call this function so the list will stay sane. */
4622 if (!(dev->flags&IFF_UP))
4625 if (!netif_device_present(dev))
4628 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4629 /* Unicast addresses changes may only happen under the rtnl,
4630 * therefore calling __dev_set_promiscuity here is safe.
4632 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4633 __dev_set_promiscuity(dev, 1);
4634 dev->uc_promisc = true;
4635 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4636 __dev_set_promiscuity(dev, -1);
4637 dev->uc_promisc = false;
4641 if (ops->ndo_set_rx_mode)
4642 ops->ndo_set_rx_mode(dev);
4645 void dev_set_rx_mode(struct net_device *dev)
4647 netif_addr_lock_bh(dev);
4648 __dev_set_rx_mode(dev);
4649 netif_addr_unlock_bh(dev);
4653 * dev_get_flags - get flags reported to userspace
4656 * Get the combination of flag bits exported through APIs to userspace.
4658 unsigned int dev_get_flags(const struct net_device *dev)
4662 flags = (dev->flags & ~(IFF_PROMISC |
4667 (dev->gflags & (IFF_PROMISC |
4670 if (netif_running(dev)) {
4671 if (netif_oper_up(dev))
4672 flags |= IFF_RUNNING;
4673 if (netif_carrier_ok(dev))
4674 flags |= IFF_LOWER_UP;
4675 if (netif_dormant(dev))
4676 flags |= IFF_DORMANT;
4681 EXPORT_SYMBOL(dev_get_flags);
4683 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4685 unsigned int old_flags = dev->flags;
4691 * Set the flags on our device.
4694 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4695 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4697 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4701 * Load in the correct multicast list now the flags have changed.
4704 if ((old_flags ^ flags) & IFF_MULTICAST)
4705 dev_change_rx_flags(dev, IFF_MULTICAST);
4707 dev_set_rx_mode(dev);
4710 * Have we downed the interface. We handle IFF_UP ourselves
4711 * according to user attempts to set it, rather than blindly
4716 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4717 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4720 dev_set_rx_mode(dev);
4723 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4724 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4726 dev->gflags ^= IFF_PROMISC;
4727 dev_set_promiscuity(dev, inc);
4730 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4731 is important. Some (broken) drivers set IFF_PROMISC, when
4732 IFF_ALLMULTI is requested not asking us and not reporting.
4734 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4735 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4737 dev->gflags ^= IFF_ALLMULTI;
4738 dev_set_allmulti(dev, inc);
4744 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4746 unsigned int changes = dev->flags ^ old_flags;
4748 if (changes & IFF_UP) {
4749 if (dev->flags & IFF_UP)
4750 call_netdevice_notifiers(NETDEV_UP, dev);
4752 call_netdevice_notifiers(NETDEV_DOWN, dev);
4755 if (dev->flags & IFF_UP &&
4756 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4757 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4761 * dev_change_flags - change device settings
4763 * @flags: device state flags
4765 * Change settings on device based state flags. The flags are
4766 * in the userspace exported format.
4768 int dev_change_flags(struct net_device *dev, unsigned int flags)
4771 unsigned int changes, old_flags = dev->flags;
4773 ret = __dev_change_flags(dev, flags);
4777 changes = old_flags ^ dev->flags;
4779 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4781 __dev_notify_flags(dev, old_flags);
4784 EXPORT_SYMBOL(dev_change_flags);
4787 * dev_set_mtu - Change maximum transfer unit
4789 * @new_mtu: new transfer unit
4791 * Change the maximum transfer size of the network device.
4793 int dev_set_mtu(struct net_device *dev, int new_mtu)
4795 const struct net_device_ops *ops = dev->netdev_ops;
4798 if (new_mtu == dev->mtu)
4801 /* MTU must be positive. */
4805 if (!netif_device_present(dev))
4809 if (ops->ndo_change_mtu)
4810 err = ops->ndo_change_mtu(dev, new_mtu);
4814 if (!err && dev->flags & IFF_UP)
4815 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4818 EXPORT_SYMBOL(dev_set_mtu);
4821 * dev_set_group - Change group this device belongs to
4823 * @new_group: group this device should belong to
4825 void dev_set_group(struct net_device *dev, int new_group)
4827 dev->group = new_group;
4829 EXPORT_SYMBOL(dev_set_group);
4832 * dev_set_mac_address - Change Media Access Control Address
4836 * Change the hardware (MAC) address of the device
4838 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4840 const struct net_device_ops *ops = dev->netdev_ops;
4843 if (!ops->ndo_set_mac_address)
4845 if (sa->sa_family != dev->type)
4847 if (!netif_device_present(dev))
4849 err = ops->ndo_set_mac_address(dev, sa);
4851 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4852 add_device_randomness(dev->dev_addr, dev->addr_len);
4855 EXPORT_SYMBOL(dev_set_mac_address);
4858 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4860 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4863 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4869 case SIOCGIFFLAGS: /* Get interface flags */
4870 ifr->ifr_flags = (short) dev_get_flags(dev);
4873 case SIOCGIFMETRIC: /* Get the metric on the interface
4874 (currently unused) */
4875 ifr->ifr_metric = 0;
4878 case SIOCGIFMTU: /* Get the MTU of a device */
4879 ifr->ifr_mtu = dev->mtu;
4884 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4886 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4887 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4888 ifr->ifr_hwaddr.sa_family = dev->type;
4896 ifr->ifr_map.mem_start = dev->mem_start;
4897 ifr->ifr_map.mem_end = dev->mem_end;
4898 ifr->ifr_map.base_addr = dev->base_addr;
4899 ifr->ifr_map.irq = dev->irq;
4900 ifr->ifr_map.dma = dev->dma;
4901 ifr->ifr_map.port = dev->if_port;
4905 ifr->ifr_ifindex = dev->ifindex;
4909 ifr->ifr_qlen = dev->tx_queue_len;
4913 /* dev_ioctl() should ensure this case
4925 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4927 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4930 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4931 const struct net_device_ops *ops;
4936 ops = dev->netdev_ops;
4939 case SIOCSIFFLAGS: /* Set interface flags */
4940 return dev_change_flags(dev, ifr->ifr_flags);
4942 case SIOCSIFMETRIC: /* Set the metric on the interface
4943 (currently unused) */
4946 case SIOCSIFMTU: /* Set the MTU of a device */
4947 return dev_set_mtu(dev, ifr->ifr_mtu);
4950 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4952 case SIOCSIFHWBROADCAST:
4953 if (ifr->ifr_hwaddr.sa_family != dev->type)
4955 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4956 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4957 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4961 if (ops->ndo_set_config) {
4962 if (!netif_device_present(dev))
4964 return ops->ndo_set_config(dev, &ifr->ifr_map);
4969 if (!ops->ndo_set_rx_mode ||
4970 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4972 if (!netif_device_present(dev))
4974 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4977 if (!ops->ndo_set_rx_mode ||
4978 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4980 if (!netif_device_present(dev))
4982 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4985 if (ifr->ifr_qlen < 0)
4987 dev->tx_queue_len = ifr->ifr_qlen;
4991 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4992 return dev_change_name(dev, ifr->ifr_newname);
4995 err = net_hwtstamp_validate(ifr);
5001 * Unknown or private ioctl
5004 if ((cmd >= SIOCDEVPRIVATE &&
5005 cmd <= SIOCDEVPRIVATE + 15) ||
5006 cmd == SIOCBONDENSLAVE ||
5007 cmd == SIOCBONDRELEASE ||
5008 cmd == SIOCBONDSETHWADDR ||
5009 cmd == SIOCBONDSLAVEINFOQUERY ||
5010 cmd == SIOCBONDINFOQUERY ||
5011 cmd == SIOCBONDCHANGEACTIVE ||
5012 cmd == SIOCGMIIPHY ||
5013 cmd == SIOCGMIIREG ||
5014 cmd == SIOCSMIIREG ||
5015 cmd == SIOCBRADDIF ||
5016 cmd == SIOCBRDELIF ||
5017 cmd == SIOCSHWTSTAMP ||
5018 cmd == SIOCWANDEV) {
5020 if (ops->ndo_do_ioctl) {
5021 if (netif_device_present(dev))
5022 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5034 * This function handles all "interface"-type I/O control requests. The actual
5035 * 'doing' part of this is dev_ifsioc above.
5039 * dev_ioctl - network device ioctl
5040 * @net: the applicable net namespace
5041 * @cmd: command to issue
5042 * @arg: pointer to a struct ifreq in user space
5044 * Issue ioctl functions to devices. This is normally called by the
5045 * user space syscall interfaces but can sometimes be useful for
5046 * other purposes. The return value is the return from the syscall if
5047 * positive or a negative errno code on error.
5050 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5056 /* One special case: SIOCGIFCONF takes ifconf argument
5057 and requires shared lock, because it sleeps writing
5061 if (cmd == SIOCGIFCONF) {
5063 ret = dev_ifconf(net, (char __user *) arg);
5067 if (cmd == SIOCGIFNAME)
5068 return dev_ifname(net, (struct ifreq __user *)arg);
5070 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5073 ifr.ifr_name[IFNAMSIZ-1] = 0;
5075 colon = strchr(ifr.ifr_name, ':');
5080 * See which interface the caller is talking about.
5085 * These ioctl calls:
5086 * - can be done by all.
5087 * - atomic and do not require locking.
5098 dev_load(net, ifr.ifr_name);
5100 ret = dev_ifsioc_locked(net, &ifr, cmd);
5105 if (copy_to_user(arg, &ifr,
5106 sizeof(struct ifreq)))
5112 dev_load(net, ifr.ifr_name);
5114 ret = dev_ethtool(net, &ifr);
5119 if (copy_to_user(arg, &ifr,
5120 sizeof(struct ifreq)))
5126 * These ioctl calls:
5127 * - require superuser power.
5128 * - require strict serialization.
5134 if (!capable(CAP_NET_ADMIN))
5136 dev_load(net, ifr.ifr_name);
5138 ret = dev_ifsioc(net, &ifr, cmd);
5143 if (copy_to_user(arg, &ifr,
5144 sizeof(struct ifreq)))
5150 * These ioctl calls:
5151 * - require superuser power.
5152 * - require strict serialization.
5153 * - do not return a value
5163 case SIOCSIFHWBROADCAST:
5166 case SIOCBONDENSLAVE:
5167 case SIOCBONDRELEASE:
5168 case SIOCBONDSETHWADDR:
5169 case SIOCBONDCHANGEACTIVE:
5173 if (!capable(CAP_NET_ADMIN))
5176 case SIOCBONDSLAVEINFOQUERY:
5177 case SIOCBONDINFOQUERY:
5178 dev_load(net, ifr.ifr_name);
5180 ret = dev_ifsioc(net, &ifr, cmd);
5185 /* Get the per device memory space. We can add this but
5186 * currently do not support it */
5188 /* Set the per device memory buffer space.
5189 * Not applicable in our case */
5194 * Unknown or private ioctl.
5197 if (cmd == SIOCWANDEV ||
5198 (cmd >= SIOCDEVPRIVATE &&
5199 cmd <= SIOCDEVPRIVATE + 15)) {
5200 dev_load(net, ifr.ifr_name);
5202 ret = dev_ifsioc(net, &ifr, cmd);
5204 if (!ret && copy_to_user(arg, &ifr,
5205 sizeof(struct ifreq)))
5209 /* Take care of Wireless Extensions */
5210 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5211 return wext_handle_ioctl(net, &ifr, cmd, arg);
5218 * dev_new_index - allocate an ifindex
5219 * @net: the applicable net namespace
5221 * Returns a suitable unique value for a new device interface
5222 * number. The caller must hold the rtnl semaphore or the
5223 * dev_base_lock to be sure it remains unique.
5225 static int dev_new_index(struct net *net)
5231 if (!__dev_get_by_index(net, ifindex))
5236 /* Delayed registration/unregisteration */
5237 static LIST_HEAD(net_todo_list);
5239 static void net_set_todo(struct net_device *dev)
5241 list_add_tail(&dev->todo_list, &net_todo_list);
5244 static void rollback_registered_many(struct list_head *head)
5246 struct net_device *dev, *tmp;
5248 BUG_ON(dev_boot_phase);
5251 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5252 /* Some devices call without registering
5253 * for initialization unwind. Remove those
5254 * devices and proceed with the remaining.
5256 if (dev->reg_state == NETREG_UNINITIALIZED) {
5257 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5261 list_del(&dev->unreg_list);
5264 dev->dismantle = true;
5265 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5268 /* If device is running, close it first. */
5269 dev_close_many(head);
5271 list_for_each_entry(dev, head, unreg_list) {
5272 /* And unlink it from device chain. */
5273 unlist_netdevice(dev);
5275 dev->reg_state = NETREG_UNREGISTERING;
5280 list_for_each_entry(dev, head, unreg_list) {
5281 /* Shutdown queueing discipline. */
5285 /* Notify protocols, that we are about to destroy
5286 this device. They should clean all the things.
5288 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5290 if (!dev->rtnl_link_ops ||
5291 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5292 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5295 * Flush the unicast and multicast chains
5300 if (dev->netdev_ops->ndo_uninit)
5301 dev->netdev_ops->ndo_uninit(dev);
5303 /* Notifier chain MUST detach us from master device. */
5304 WARN_ON(dev->master);
5306 /* Remove entries from kobject tree */
5307 netdev_unregister_kobject(dev);
5310 /* Process any work delayed until the end of the batch */
5311 dev = list_first_entry(head, struct net_device, unreg_list);
5312 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5316 list_for_each_entry(dev, head, unreg_list)
5320 static void rollback_registered(struct net_device *dev)
5324 list_add(&dev->unreg_list, &single);
5325 rollback_registered_many(&single);
5329 static netdev_features_t netdev_fix_features(struct net_device *dev,
5330 netdev_features_t features)
5332 /* Fix illegal checksum combinations */
5333 if ((features & NETIF_F_HW_CSUM) &&
5334 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5335 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5336 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5339 /* Fix illegal SG+CSUM combinations. */
5340 if ((features & NETIF_F_SG) &&
5341 !(features & NETIF_F_ALL_CSUM)) {
5343 "Dropping NETIF_F_SG since no checksum feature.\n");
5344 features &= ~NETIF_F_SG;
5347 /* TSO requires that SG is present as well. */
5348 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5349 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5350 features &= ~NETIF_F_ALL_TSO;
5353 /* TSO ECN requires that TSO is present as well. */
5354 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5355 features &= ~NETIF_F_TSO_ECN;
5357 /* Software GSO depends on SG. */
5358 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5359 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5360 features &= ~NETIF_F_GSO;
5363 /* UFO needs SG and checksumming */
5364 if (features & NETIF_F_UFO) {
5365 /* maybe split UFO into V4 and V6? */
5366 if (!((features & NETIF_F_GEN_CSUM) ||
5367 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5368 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5370 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5371 features &= ~NETIF_F_UFO;
5374 if (!(features & NETIF_F_SG)) {
5376 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5377 features &= ~NETIF_F_UFO;
5384 int __netdev_update_features(struct net_device *dev)
5386 netdev_features_t features;
5391 features = netdev_get_wanted_features(dev);
5393 if (dev->netdev_ops->ndo_fix_features)
5394 features = dev->netdev_ops->ndo_fix_features(dev, features);
5396 /* driver might be less strict about feature dependencies */
5397 features = netdev_fix_features(dev, features);
5399 if (dev->features == features)
5402 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5403 &dev->features, &features);
5405 if (dev->netdev_ops->ndo_set_features)
5406 err = dev->netdev_ops->ndo_set_features(dev, features);
5408 if (unlikely(err < 0)) {
5410 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5411 err, &features, &dev->features);
5416 dev->features = features;
5422 * netdev_update_features - recalculate device features
5423 * @dev: the device to check
5425 * Recalculate dev->features set and send notifications if it
5426 * has changed. Should be called after driver or hardware dependent
5427 * conditions might have changed that influence the features.
5429 void netdev_update_features(struct net_device *dev)
5431 if (__netdev_update_features(dev))
5432 netdev_features_change(dev);
5434 EXPORT_SYMBOL(netdev_update_features);
5437 * netdev_change_features - recalculate device features
5438 * @dev: the device to check
5440 * Recalculate dev->features set and send notifications even
5441 * if they have not changed. Should be called instead of
5442 * netdev_update_features() if also dev->vlan_features might
5443 * have changed to allow the changes to be propagated to stacked
5446 void netdev_change_features(struct net_device *dev)
5448 __netdev_update_features(dev);
5449 netdev_features_change(dev);
5451 EXPORT_SYMBOL(netdev_change_features);
5454 * netif_stacked_transfer_operstate - transfer operstate
5455 * @rootdev: the root or lower level device to transfer state from
5456 * @dev: the device to transfer operstate to
5458 * Transfer operational state from root to device. This is normally
5459 * called when a stacking relationship exists between the root
5460 * device and the device(a leaf device).
5462 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5463 struct net_device *dev)
5465 if (rootdev->operstate == IF_OPER_DORMANT)
5466 netif_dormant_on(dev);
5468 netif_dormant_off(dev);
5470 if (netif_carrier_ok(rootdev)) {
5471 if (!netif_carrier_ok(dev))
5472 netif_carrier_on(dev);
5474 if (netif_carrier_ok(dev))
5475 netif_carrier_off(dev);
5478 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5481 static int netif_alloc_rx_queues(struct net_device *dev)
5483 unsigned int i, count = dev->num_rx_queues;
5484 struct netdev_rx_queue *rx;
5488 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5490 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5495 for (i = 0; i < count; i++)
5501 static void netdev_init_one_queue(struct net_device *dev,
5502 struct netdev_queue *queue, void *_unused)
5504 /* Initialize queue lock */
5505 spin_lock_init(&queue->_xmit_lock);
5506 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5507 queue->xmit_lock_owner = -1;
5508 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5511 dql_init(&queue->dql, HZ);
5515 static int netif_alloc_netdev_queues(struct net_device *dev)
5517 unsigned int count = dev->num_tx_queues;
5518 struct netdev_queue *tx;
5522 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5524 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5529 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5530 spin_lock_init(&dev->tx_global_lock);
5536 * register_netdevice - register a network device
5537 * @dev: device to register
5539 * Take a completed network device structure and add it to the kernel
5540 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5541 * chain. 0 is returned on success. A negative errno code is returned
5542 * on a failure to set up the device, or if the name is a duplicate.
5544 * Callers must hold the rtnl semaphore. You may want
5545 * register_netdev() instead of this.
5548 * The locking appears insufficient to guarantee two parallel registers
5549 * will not get the same name.
5552 int register_netdevice(struct net_device *dev)
5555 struct net *net = dev_net(dev);
5557 BUG_ON(dev_boot_phase);
5562 /* When net_device's are persistent, this will be fatal. */
5563 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5566 spin_lock_init(&dev->addr_list_lock);
5567 netdev_set_addr_lockdep_class(dev);
5571 ret = dev_get_valid_name(dev, dev->name);
5575 /* Init, if this function is available */
5576 if (dev->netdev_ops->ndo_init) {
5577 ret = dev->netdev_ops->ndo_init(dev);
5585 dev->ifindex = dev_new_index(net);
5586 if (dev->iflink == -1)
5587 dev->iflink = dev->ifindex;
5589 /* Transfer changeable features to wanted_features and enable
5590 * software offloads (GSO and GRO).
5592 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5593 dev->features |= NETIF_F_SOFT_FEATURES;
5594 dev->wanted_features = dev->features & dev->hw_features;
5596 /* Turn on no cache copy if HW is doing checksum */
5597 if (!(dev->flags & IFF_LOOPBACK)) {
5598 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5599 if (dev->features & NETIF_F_ALL_CSUM) {
5600 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5601 dev->features |= NETIF_F_NOCACHE_COPY;
5605 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5607 dev->vlan_features |= NETIF_F_HIGHDMA;
5609 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5610 ret = notifier_to_errno(ret);
5614 ret = netdev_register_kobject(dev);
5617 dev->reg_state = NETREG_REGISTERED;
5619 __netdev_update_features(dev);
5622 * Default initial state at registry is that the
5623 * device is present.
5626 set_bit(__LINK_STATE_PRESENT, &dev->state);
5628 dev_init_scheduler(dev);
5630 list_netdevice(dev);
5631 add_device_randomness(dev->dev_addr, dev->addr_len);
5633 /* Notify protocols, that a new device appeared. */
5634 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5635 ret = notifier_to_errno(ret);
5637 rollback_registered(dev);
5638 dev->reg_state = NETREG_UNREGISTERED;
5641 * Prevent userspace races by waiting until the network
5642 * device is fully setup before sending notifications.
5644 if (!dev->rtnl_link_ops ||
5645 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5646 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5652 if (dev->netdev_ops->ndo_uninit)
5653 dev->netdev_ops->ndo_uninit(dev);
5656 EXPORT_SYMBOL(register_netdevice);
5659 * init_dummy_netdev - init a dummy network device for NAPI
5660 * @dev: device to init
5662 * This takes a network device structure and initialize the minimum
5663 * amount of fields so it can be used to schedule NAPI polls without
5664 * registering a full blown interface. This is to be used by drivers
5665 * that need to tie several hardware interfaces to a single NAPI
5666 * poll scheduler due to HW limitations.
5668 int init_dummy_netdev(struct net_device *dev)
5670 /* Clear everything. Note we don't initialize spinlocks
5671 * are they aren't supposed to be taken by any of the
5672 * NAPI code and this dummy netdev is supposed to be
5673 * only ever used for NAPI polls
5675 memset(dev, 0, sizeof(struct net_device));
5677 /* make sure we BUG if trying to hit standard
5678 * register/unregister code path
5680 dev->reg_state = NETREG_DUMMY;
5682 /* NAPI wants this */
5683 INIT_LIST_HEAD(&dev->napi_list);
5685 /* a dummy interface is started by default */
5686 set_bit(__LINK_STATE_PRESENT, &dev->state);
5687 set_bit(__LINK_STATE_START, &dev->state);
5689 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5690 * because users of this 'device' dont need to change
5696 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5700 * register_netdev - register a network device
5701 * @dev: device to register
5703 * Take a completed network device structure and add it to the kernel
5704 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5705 * chain. 0 is returned on success. A negative errno code is returned
5706 * on a failure to set up the device, or if the name is a duplicate.
5708 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5709 * and expands the device name if you passed a format string to
5712 int register_netdev(struct net_device *dev)
5717 err = register_netdevice(dev);
5721 EXPORT_SYMBOL(register_netdev);
5723 int netdev_refcnt_read(const struct net_device *dev)
5727 for_each_possible_cpu(i)
5728 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5731 EXPORT_SYMBOL(netdev_refcnt_read);
5734 * netdev_wait_allrefs - wait until all references are gone.
5736 * This is called when unregistering network devices.
5738 * Any protocol or device that holds a reference should register
5739 * for netdevice notification, and cleanup and put back the
5740 * reference if they receive an UNREGISTER event.
5741 * We can get stuck here if buggy protocols don't correctly
5744 static void netdev_wait_allrefs(struct net_device *dev)
5746 unsigned long rebroadcast_time, warning_time;
5749 linkwatch_forget_dev(dev);
5751 rebroadcast_time = warning_time = jiffies;
5752 refcnt = netdev_refcnt_read(dev);
5754 while (refcnt != 0) {
5755 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5758 /* Rebroadcast unregister notification */
5759 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5760 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5761 * should have already handle it the first time */
5763 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5765 /* We must not have linkwatch events
5766 * pending on unregister. If this
5767 * happens, we simply run the queue
5768 * unscheduled, resulting in a noop
5771 linkwatch_run_queue();
5776 rebroadcast_time = jiffies;
5781 refcnt = netdev_refcnt_read(dev);
5783 if (time_after(jiffies, warning_time + 10 * HZ)) {
5784 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5786 warning_time = jiffies;
5795 * register_netdevice(x1);
5796 * register_netdevice(x2);
5798 * unregister_netdevice(y1);
5799 * unregister_netdevice(y2);
5805 * We are invoked by rtnl_unlock().
5806 * This allows us to deal with problems:
5807 * 1) We can delete sysfs objects which invoke hotplug
5808 * without deadlocking with linkwatch via keventd.
5809 * 2) Since we run with the RTNL semaphore not held, we can sleep
5810 * safely in order to wait for the netdev refcnt to drop to zero.
5812 * We must not return until all unregister events added during
5813 * the interval the lock was held have been completed.
5815 void netdev_run_todo(void)
5817 struct list_head list;
5819 /* Snapshot list, allow later requests */
5820 list_replace_init(&net_todo_list, &list);
5824 /* Wait for rcu callbacks to finish before attempting to drain
5825 * the device list. This usually avoids a 250ms wait.
5827 if (!list_empty(&list))
5830 while (!list_empty(&list)) {
5831 struct net_device *dev
5832 = list_first_entry(&list, struct net_device, todo_list);
5833 list_del(&dev->todo_list);
5835 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5836 pr_err("network todo '%s' but state %d\n",
5837 dev->name, dev->reg_state);
5842 dev->reg_state = NETREG_UNREGISTERED;
5844 on_each_cpu(flush_backlog, dev, 1);
5846 netdev_wait_allrefs(dev);
5849 BUG_ON(netdev_refcnt_read(dev));
5850 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5851 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5852 WARN_ON(dev->dn_ptr);
5854 if (dev->destructor)
5855 dev->destructor(dev);
5857 /* Free network device */
5858 kobject_put(&dev->dev.kobj);
5862 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5863 * fields in the same order, with only the type differing.
5865 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5866 const struct net_device_stats *netdev_stats)
5868 #if BITS_PER_LONG == 64
5869 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5870 memcpy(stats64, netdev_stats, sizeof(*stats64));
5872 size_t i, n = sizeof(*stats64) / sizeof(u64);
5873 const unsigned long *src = (const unsigned long *)netdev_stats;
5874 u64 *dst = (u64 *)stats64;
5876 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5877 sizeof(*stats64) / sizeof(u64));
5878 for (i = 0; i < n; i++)
5882 EXPORT_SYMBOL(netdev_stats_to_stats64);
5885 * dev_get_stats - get network device statistics
5886 * @dev: device to get statistics from
5887 * @storage: place to store stats
5889 * Get network statistics from device. Return @storage.
5890 * The device driver may provide its own method by setting
5891 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5892 * otherwise the internal statistics structure is used.
5894 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5895 struct rtnl_link_stats64 *storage)
5897 const struct net_device_ops *ops = dev->netdev_ops;
5899 if (ops->ndo_get_stats64) {
5900 memset(storage, 0, sizeof(*storage));
5901 ops->ndo_get_stats64(dev, storage);
5902 } else if (ops->ndo_get_stats) {
5903 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5905 netdev_stats_to_stats64(storage, &dev->stats);
5907 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5910 EXPORT_SYMBOL(dev_get_stats);
5912 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5914 struct netdev_queue *queue = dev_ingress_queue(dev);
5916 #ifdef CONFIG_NET_CLS_ACT
5919 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5922 netdev_init_one_queue(dev, queue, NULL);
5923 queue->qdisc = &noop_qdisc;
5924 queue->qdisc_sleeping = &noop_qdisc;
5925 rcu_assign_pointer(dev->ingress_queue, queue);
5931 * alloc_netdev_mqs - allocate network device
5932 * @sizeof_priv: size of private data to allocate space for
5933 * @name: device name format string
5934 * @setup: callback to initialize device
5935 * @txqs: the number of TX subqueues to allocate
5936 * @rxqs: the number of RX subqueues to allocate
5938 * Allocates a struct net_device with private data area for driver use
5939 * and performs basic initialization. Also allocates subquue structs
5940 * for each queue on the device.
5942 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5943 void (*setup)(struct net_device *),
5944 unsigned int txqs, unsigned int rxqs)
5946 struct net_device *dev;
5948 struct net_device *p;
5950 BUG_ON(strlen(name) >= sizeof(dev->name));
5953 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5959 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5964 alloc_size = sizeof(struct net_device);
5966 /* ensure 32-byte alignment of private area */
5967 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5968 alloc_size += sizeof_priv;
5970 /* ensure 32-byte alignment of whole construct */
5971 alloc_size += NETDEV_ALIGN - 1;
5973 p = kzalloc(alloc_size, GFP_KERNEL);
5975 pr_err("alloc_netdev: Unable to allocate device\n");
5979 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5980 dev->padded = (char *)dev - (char *)p;
5982 dev->pcpu_refcnt = alloc_percpu(int);
5983 if (!dev->pcpu_refcnt)
5986 if (dev_addr_init(dev))
5992 dev_net_set(dev, &init_net);
5994 dev->gso_max_size = GSO_MAX_SIZE;
5995 dev->gso_max_segs = GSO_MAX_SEGS;
5997 INIT_LIST_HEAD(&dev->napi_list);
5998 INIT_LIST_HEAD(&dev->unreg_list);
5999 INIT_LIST_HEAD(&dev->link_watch_list);
6000 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6003 dev->num_tx_queues = txqs;
6004 dev->real_num_tx_queues = txqs;
6005 if (netif_alloc_netdev_queues(dev))
6009 dev->num_rx_queues = rxqs;
6010 dev->real_num_rx_queues = rxqs;
6011 if (netif_alloc_rx_queues(dev))
6015 strcpy(dev->name, name);
6016 dev->group = INIT_NETDEV_GROUP;
6024 free_percpu(dev->pcpu_refcnt);
6034 EXPORT_SYMBOL(alloc_netdev_mqs);
6037 * free_netdev - free network device
6040 * This function does the last stage of destroying an allocated device
6041 * interface. The reference to the device object is released.
6042 * If this is the last reference then it will be freed.
6044 void free_netdev(struct net_device *dev)
6046 struct napi_struct *p, *n;
6048 release_net(dev_net(dev));
6055 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6057 /* Flush device addresses */
6058 dev_addr_flush(dev);
6060 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6063 free_percpu(dev->pcpu_refcnt);
6064 dev->pcpu_refcnt = NULL;
6066 /* Compatibility with error handling in drivers */
6067 if (dev->reg_state == NETREG_UNINITIALIZED) {
6068 kfree((char *)dev - dev->padded);
6072 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6073 dev->reg_state = NETREG_RELEASED;
6075 /* will free via device release */
6076 put_device(&dev->dev);
6078 EXPORT_SYMBOL(free_netdev);
6081 * synchronize_net - Synchronize with packet receive processing
6083 * Wait for packets currently being received to be done.
6084 * Does not block later packets from starting.
6086 void synchronize_net(void)
6089 if (rtnl_is_locked())
6090 synchronize_rcu_expedited();
6094 EXPORT_SYMBOL(synchronize_net);
6097 * unregister_netdevice_queue - remove device from the kernel
6101 * This function shuts down a device interface and removes it
6102 * from the kernel tables.
6103 * If head not NULL, device is queued to be unregistered later.
6105 * Callers must hold the rtnl semaphore. You may want
6106 * unregister_netdev() instead of this.
6109 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6114 list_move_tail(&dev->unreg_list, head);
6116 rollback_registered(dev);
6117 /* Finish processing unregister after unlock */
6121 EXPORT_SYMBOL(unregister_netdevice_queue);
6124 * unregister_netdevice_many - unregister many devices
6125 * @head: list of devices
6127 void unregister_netdevice_many(struct list_head *head)
6129 struct net_device *dev;
6131 if (!list_empty(head)) {
6132 rollback_registered_many(head);
6133 list_for_each_entry(dev, head, unreg_list)
6137 EXPORT_SYMBOL(unregister_netdevice_many);
6140 * unregister_netdev - remove device from the kernel
6143 * This function shuts down a device interface and removes it
6144 * from the kernel tables.
6146 * This is just a wrapper for unregister_netdevice that takes
6147 * the rtnl semaphore. In general you want to use this and not
6148 * unregister_netdevice.
6150 void unregister_netdev(struct net_device *dev)
6153 unregister_netdevice(dev);
6156 EXPORT_SYMBOL(unregister_netdev);
6159 * dev_change_net_namespace - move device to different nethost namespace
6161 * @net: network namespace
6162 * @pat: If not NULL name pattern to try if the current device name
6163 * is already taken in the destination network namespace.
6165 * This function shuts down a device interface and moves it
6166 * to a new network namespace. On success 0 is returned, on
6167 * a failure a netagive errno code is returned.
6169 * Callers must hold the rtnl semaphore.
6172 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6178 /* Don't allow namespace local devices to be moved. */
6180 if (dev->features & NETIF_F_NETNS_LOCAL)
6183 /* Ensure the device has been registrered */
6185 if (dev->reg_state != NETREG_REGISTERED)
6188 /* Get out if there is nothing todo */
6190 if (net_eq(dev_net(dev), net))
6193 /* Pick the destination device name, and ensure
6194 * we can use it in the destination network namespace.
6197 if (__dev_get_by_name(net, dev->name)) {
6198 /* We get here if we can't use the current device name */
6201 if (dev_get_valid_name(dev, pat) < 0)
6206 * And now a mini version of register_netdevice unregister_netdevice.
6209 /* If device is running close it first. */
6212 /* And unlink it from device chain */
6214 unlist_netdevice(dev);
6218 /* Shutdown queueing discipline. */
6221 /* Notify protocols, that we are about to destroy
6222 this device. They should clean all the things.
6224 Note that dev->reg_state stays at NETREG_REGISTERED.
6225 This is wanted because this way 8021q and macvlan know
6226 the device is just moving and can keep their slaves up.
6228 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6229 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6230 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6233 * Flush the unicast and multicast chains
6238 /* Actually switch the network namespace */
6239 dev_net_set(dev, net);
6241 /* If there is an ifindex conflict assign a new one */
6242 if (__dev_get_by_index(net, dev->ifindex)) {
6243 int iflink = (dev->iflink == dev->ifindex);
6244 dev->ifindex = dev_new_index(net);
6246 dev->iflink = dev->ifindex;
6249 /* Fixup kobjects */
6250 err = device_rename(&dev->dev, dev->name);
6253 /* Add the device back in the hashes */
6254 list_netdevice(dev);
6256 /* Notify protocols, that a new device appeared. */
6257 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6260 * Prevent userspace races by waiting until the network
6261 * device is fully setup before sending notifications.
6263 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6270 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6272 static int dev_cpu_callback(struct notifier_block *nfb,
6273 unsigned long action,
6276 struct sk_buff **list_skb;
6277 struct sk_buff *skb;
6278 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6279 struct softnet_data *sd, *oldsd;
6281 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6284 local_irq_disable();
6285 cpu = smp_processor_id();
6286 sd = &per_cpu(softnet_data, cpu);
6287 oldsd = &per_cpu(softnet_data, oldcpu);
6289 /* Find end of our completion_queue. */
6290 list_skb = &sd->completion_queue;
6292 list_skb = &(*list_skb)->next;
6293 /* Append completion queue from offline CPU. */
6294 *list_skb = oldsd->completion_queue;
6295 oldsd->completion_queue = NULL;
6297 /* Append output queue from offline CPU. */
6298 if (oldsd->output_queue) {
6299 *sd->output_queue_tailp = oldsd->output_queue;
6300 sd->output_queue_tailp = oldsd->output_queue_tailp;
6301 oldsd->output_queue = NULL;
6302 oldsd->output_queue_tailp = &oldsd->output_queue;
6304 /* Append NAPI poll list from offline CPU. */
6305 if (!list_empty(&oldsd->poll_list)) {
6306 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6307 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6310 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6313 /* Process offline CPU's input_pkt_queue */
6314 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6316 input_queue_head_incr(oldsd);
6318 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6320 input_queue_head_incr(oldsd);
6328 * netdev_increment_features - increment feature set by one
6329 * @all: current feature set
6330 * @one: new feature set
6331 * @mask: mask feature set
6333 * Computes a new feature set after adding a device with feature set
6334 * @one to the master device with current feature set @all. Will not
6335 * enable anything that is off in @mask. Returns the new feature set.
6337 netdev_features_t netdev_increment_features(netdev_features_t all,
6338 netdev_features_t one, netdev_features_t mask)
6340 if (mask & NETIF_F_GEN_CSUM)
6341 mask |= NETIF_F_ALL_CSUM;
6342 mask |= NETIF_F_VLAN_CHALLENGED;
6344 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6345 all &= one | ~NETIF_F_ALL_FOR_ALL;
6347 /* If one device supports hw checksumming, set for all. */
6348 if (all & NETIF_F_GEN_CSUM)
6349 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6353 EXPORT_SYMBOL(netdev_increment_features);
6355 static struct hlist_head *netdev_create_hash(void)
6358 struct hlist_head *hash;
6360 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6362 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6363 INIT_HLIST_HEAD(&hash[i]);
6368 /* Initialize per network namespace state */
6369 static int __net_init netdev_init(struct net *net)
6371 if (net != &init_net)
6372 INIT_LIST_HEAD(&net->dev_base_head);
6374 net->dev_name_head = netdev_create_hash();
6375 if (net->dev_name_head == NULL)
6378 net->dev_index_head = netdev_create_hash();
6379 if (net->dev_index_head == NULL)
6385 kfree(net->dev_name_head);
6391 * netdev_drivername - network driver for the device
6392 * @dev: network device
6394 * Determine network driver for device.
6396 const char *netdev_drivername(const struct net_device *dev)
6398 const struct device_driver *driver;
6399 const struct device *parent;
6400 const char *empty = "";
6402 parent = dev->dev.parent;
6406 driver = parent->driver;
6407 if (driver && driver->name)
6408 return driver->name;
6412 int __netdev_printk(const char *level, const struct net_device *dev,
6413 struct va_format *vaf)
6417 if (dev && dev->dev.parent)
6418 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6419 netdev_name(dev), vaf);
6421 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6423 r = printk("%s(NULL net_device): %pV", level, vaf);
6427 EXPORT_SYMBOL(__netdev_printk);
6429 int netdev_printk(const char *level, const struct net_device *dev,
6430 const char *format, ...)
6432 struct va_format vaf;
6436 va_start(args, format);
6441 r = __netdev_printk(level, dev, &vaf);
6446 EXPORT_SYMBOL(netdev_printk);
6448 #define define_netdev_printk_level(func, level) \
6449 int func(const struct net_device *dev, const char *fmt, ...) \
6452 struct va_format vaf; \
6455 va_start(args, fmt); \
6460 r = __netdev_printk(level, dev, &vaf); \
6465 EXPORT_SYMBOL(func);
6467 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6468 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6469 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6470 define_netdev_printk_level(netdev_err, KERN_ERR);
6471 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6472 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6473 define_netdev_printk_level(netdev_info, KERN_INFO);
6475 static void __net_exit netdev_exit(struct net *net)
6477 kfree(net->dev_name_head);
6478 kfree(net->dev_index_head);
6481 static struct pernet_operations __net_initdata netdev_net_ops = {
6482 .init = netdev_init,
6483 .exit = netdev_exit,
6486 static void __net_exit default_device_exit(struct net *net)
6488 struct net_device *dev, *aux;
6490 * Push all migratable network devices back to the
6491 * initial network namespace
6494 for_each_netdev_safe(net, dev, aux) {
6496 char fb_name[IFNAMSIZ];
6498 /* Ignore unmoveable devices (i.e. loopback) */
6499 if (dev->features & NETIF_F_NETNS_LOCAL)
6502 /* Leave virtual devices for the generic cleanup */
6503 if (dev->rtnl_link_ops)
6506 /* Push remaining network devices to init_net */
6507 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6508 err = dev_change_net_namespace(dev, &init_net, fb_name);
6510 pr_emerg("%s: failed to move %s to init_net: %d\n",
6511 __func__, dev->name, err);
6518 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6520 /* At exit all network devices most be removed from a network
6521 * namespace. Do this in the reverse order of registration.
6522 * Do this across as many network namespaces as possible to
6523 * improve batching efficiency.
6525 struct net_device *dev;
6527 LIST_HEAD(dev_kill_list);
6530 list_for_each_entry(net, net_list, exit_list) {
6531 for_each_netdev_reverse(net, dev) {
6532 if (dev->rtnl_link_ops)
6533 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6535 unregister_netdevice_queue(dev, &dev_kill_list);
6538 unregister_netdevice_many(&dev_kill_list);
6539 list_del(&dev_kill_list);
6543 static struct pernet_operations __net_initdata default_device_ops = {
6544 .exit = default_device_exit,
6545 .exit_batch = default_device_exit_batch,
6549 * Initialize the DEV module. At boot time this walks the device list and
6550 * unhooks any devices that fail to initialise (normally hardware not
6551 * present) and leaves us with a valid list of present and active devices.
6556 * This is called single threaded during boot, so no need
6557 * to take the rtnl semaphore.
6559 static int __init net_dev_init(void)
6561 int i, rc = -ENOMEM;
6563 BUG_ON(!dev_boot_phase);
6565 if (dev_proc_init())
6568 if (netdev_kobject_init())
6571 INIT_LIST_HEAD(&ptype_all);
6572 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6573 INIT_LIST_HEAD(&ptype_base[i]);
6575 if (register_pernet_subsys(&netdev_net_ops))
6579 * Initialise the packet receive queues.
6582 for_each_possible_cpu(i) {
6583 struct softnet_data *sd = &per_cpu(softnet_data, i);
6585 memset(sd, 0, sizeof(*sd));
6586 skb_queue_head_init(&sd->input_pkt_queue);
6587 skb_queue_head_init(&sd->process_queue);
6588 sd->completion_queue = NULL;
6589 INIT_LIST_HEAD(&sd->poll_list);
6590 sd->output_queue = NULL;
6591 sd->output_queue_tailp = &sd->output_queue;
6593 sd->csd.func = rps_trigger_softirq;
6599 sd->backlog.poll = process_backlog;
6600 sd->backlog.weight = weight_p;
6601 sd->backlog.gro_list = NULL;
6602 sd->backlog.gro_count = 0;
6607 /* The loopback device is special if any other network devices
6608 * is present in a network namespace the loopback device must
6609 * be present. Since we now dynamically allocate and free the
6610 * loopback device ensure this invariant is maintained by
6611 * keeping the loopback device as the first device on the
6612 * list of network devices. Ensuring the loopback devices
6613 * is the first device that appears and the last network device
6616 if (register_pernet_device(&loopback_net_ops))
6619 if (register_pernet_device(&default_device_ops))
6622 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6623 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6625 hotcpu_notifier(dev_cpu_callback, 0);
6633 subsys_initcall(net_dev_init);
6635 static int __init initialize_hashrnd(void)
6637 get_random_bytes(&hashrnd, sizeof(hashrnd));
6641 late_initcall_sync(initialize_hashrnd);