2 * random.c -- A strong random number generator
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
46 * (now, with legal B.S. out of the way.....)
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
101 * Exported interfaces ---- output
102 * ===============================
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
107 * void get_random_bytes(void *buf, int nbytes);
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
125 * Exported interfaces ---- input
126 * ==============================
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
131 * void add_device_randomness(const void *buf, unsigned int size);
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
134 * void add_interrupt_randomness(int irq, int irq_flags);
135 * void add_disk_randomness(struct gendisk *disk);
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
162 * Ensuring unpredictability at system startup
163 * ============================================
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/workqueue.h>
263 #include <linux/irq.h>
264 #include <linux/ratelimit.h>
265 #include <linux/syscalls.h>
266 #include <linux/completion.h>
267 #include <linux/uuid.h>
268 #include <crypto/chacha20.h>
270 #include <asm/processor.h>
271 #include <linux/uaccess.h>
273 #include <asm/irq_regs.h>
276 #define CREATE_TRACE_POINTS
277 #include <trace/events/random.h>
279 /* #define ADD_INTERRUPT_BENCH */
282 * Configuration information
284 #define INPUT_POOL_SHIFT 12
285 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
286 #define OUTPUT_POOL_SHIFT 10
287 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
288 #define SEC_XFER_SIZE 512
289 #define EXTRACT_SIZE 10
292 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
295 * To allow fractional bits to be tracked, the entropy_count field is
296 * denominated in units of 1/8th bits.
298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299 * credit_entropy_bits() needs to be 64 bits wide.
301 #define ENTROPY_SHIFT 3
302 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
305 * The minimum number of bits of entropy before we wake up a read on
306 * /dev/random. Should be enough to do a significant reseed.
308 static int random_read_wakeup_bits = 64;
311 * If the entropy count falls under this number of bits, then we
312 * should wake up processes which are selecting or polling on write
313 * access to /dev/random.
315 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
318 * Originally, we used a primitive polynomial of degree .poolwords
319 * over GF(2). The taps for various sizes are defined below. They
320 * were chosen to be evenly spaced except for the last tap, which is 1
321 * to get the twisting happening as fast as possible.
323 * For the purposes of better mixing, we use the CRC-32 polynomial as
324 * well to make a (modified) twisted Generalized Feedback Shift
325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
326 * generators. ACM Transactions on Modeling and Computer Simulation
327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
328 * GFSR generators II. ACM Transactions on Modeling and Computer
329 * Simulation 4:254-266)
331 * Thanks to Colin Plumb for suggesting this.
333 * The mixing operation is much less sensitive than the output hash,
334 * where we use SHA-1. All that we want of mixing operation is that
335 * it be a good non-cryptographic hash; i.e. it not produce collisions
336 * when fed "random" data of the sort we expect to see. As long as
337 * the pool state differs for different inputs, we have preserved the
338 * input entropy and done a good job. The fact that an intelligent
339 * attacker can construct inputs that will produce controlled
340 * alterations to the pool's state is not important because we don't
341 * consider such inputs to contribute any randomness. The only
342 * property we need with respect to them is that the attacker can't
343 * increase his/her knowledge of the pool's state. Since all
344 * additions are reversible (knowing the final state and the input,
345 * you can reconstruct the initial state), if an attacker has any
346 * uncertainty about the initial state, he/she can only shuffle that
347 * uncertainty about, but never cause any collisions (which would
348 * decrease the uncertainty).
350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351 * Videau in their paper, "The Linux Pseudorandom Number Generator
352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
353 * paper, they point out that we are not using a true Twisted GFSR,
354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355 * is, with only three taps, instead of the six that we are using).
356 * As a result, the resulting polynomial is neither primitive nor
357 * irreducible, and hence does not have a maximal period over
358 * GF(2**32). They suggest a slight change to the generator
359 * polynomial which improves the resulting TGFSR polynomial to be
360 * irreducible, which we have made here.
362 static struct poolinfo {
363 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
365 int tap1, tap2, tap3, tap4, tap5;
366 } poolinfo_table[] = {
367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 { S(128), 104, 76, 51, 25, 1 },
370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 { S(32), 26, 19, 14, 7, 1 },
374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
375 { S(2048), 1638, 1231, 819, 411, 1 },
377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
378 { S(1024), 817, 615, 412, 204, 1 },
380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
381 { S(1024), 819, 616, 410, 207, 2 },
383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
384 { S(512), 411, 308, 208, 104, 1 },
386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
387 { S(512), 409, 307, 206, 102, 2 },
388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
389 { S(512), 409, 309, 205, 103, 2 },
391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
392 { S(256), 205, 155, 101, 52, 1 },
394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
395 { S(128), 103, 78, 51, 27, 2 },
397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
398 { S(64), 52, 39, 26, 14, 1 },
403 * Static global variables
405 static DECLARE_WAIT_QUEUE_HEAD(random_wait);
406 static struct fasync_struct *fasync;
408 static DEFINE_SPINLOCK(random_ready_list_lock);
409 static LIST_HEAD(random_ready_list);
413 unsigned long init_time;
417 struct crng_state primary_crng = {
418 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
422 * crng_init = 0 --> Uninitialized
424 * 2 --> Initialized from input_pool
426 * crng_init is protected by primary_crng->lock, and only increases
427 * its value (from 0->1->2).
429 static int crng_init = 0;
430 #define crng_ready() (likely(crng_init > 1))
431 static int crng_init_cnt = 0;
432 static unsigned long crng_global_init_time = 0;
433 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
434 static void _extract_crng(struct crng_state *crng,
435 __u32 out[CHACHA20_BLOCK_WORDS]);
436 static void _crng_backtrack_protect(struct crng_state *crng,
437 __u32 tmp[CHACHA20_BLOCK_WORDS], int used);
438 static void process_random_ready_list(void);
439 static void _get_random_bytes(void *buf, int nbytes);
441 static struct ratelimit_state unseeded_warning =
442 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
443 static struct ratelimit_state urandom_warning =
444 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
446 static int ratelimit_disable __read_mostly;
448 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
449 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
451 /**********************************************************************
453 * OS independent entropy store. Here are the functions which handle
454 * storing entropy in an entropy pool.
456 **********************************************************************/
458 struct entropy_store;
459 struct entropy_store {
460 /* read-only data: */
461 const struct poolinfo *poolinfo;
464 struct entropy_store *pull;
465 struct work_struct push_work;
467 /* read-write data: */
468 unsigned long last_pulled;
470 unsigned short add_ptr;
471 unsigned short input_rotate;
474 unsigned int initialized:1;
475 unsigned int last_data_init:1;
476 __u8 last_data[EXTRACT_SIZE];
479 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
480 size_t nbytes, int min, int rsvd);
481 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
482 size_t nbytes, int fips);
484 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
485 static void push_to_pool(struct work_struct *work);
486 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
487 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
489 static struct entropy_store input_pool = {
490 .poolinfo = &poolinfo_table[0],
492 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
493 .pool = input_pool_data
496 static struct entropy_store blocking_pool = {
497 .poolinfo = &poolinfo_table[1],
500 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
501 .pool = blocking_pool_data,
502 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
506 static __u32 const twist_table[8] = {
507 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
508 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
511 * This function adds bytes into the entropy "pool". It does not
512 * update the entropy estimate. The caller should call
513 * credit_entropy_bits if this is appropriate.
515 * The pool is stirred with a primitive polynomial of the appropriate
516 * degree, and then twisted. We twist by three bits at a time because
517 * it's cheap to do so and helps slightly in the expected case where
518 * the entropy is concentrated in the low-order bits.
520 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
523 unsigned long i, tap1, tap2, tap3, tap4, tap5;
525 int wordmask = r->poolinfo->poolwords - 1;
526 const char *bytes = in;
529 tap1 = r->poolinfo->tap1;
530 tap2 = r->poolinfo->tap2;
531 tap3 = r->poolinfo->tap3;
532 tap4 = r->poolinfo->tap4;
533 tap5 = r->poolinfo->tap5;
535 input_rotate = r->input_rotate;
538 /* mix one byte at a time to simplify size handling and churn faster */
540 w = rol32(*bytes++, input_rotate);
541 i = (i - 1) & wordmask;
543 /* XOR in the various taps */
545 w ^= r->pool[(i + tap1) & wordmask];
546 w ^= r->pool[(i + tap2) & wordmask];
547 w ^= r->pool[(i + tap3) & wordmask];
548 w ^= r->pool[(i + tap4) & wordmask];
549 w ^= r->pool[(i + tap5) & wordmask];
551 /* Mix the result back in with a twist */
552 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
555 * Normally, we add 7 bits of rotation to the pool.
556 * At the beginning of the pool, add an extra 7 bits
557 * rotation, so that successive passes spread the
558 * input bits across the pool evenly.
560 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
563 r->input_rotate = input_rotate;
567 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
570 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
571 _mix_pool_bytes(r, in, nbytes);
574 static void mix_pool_bytes(struct entropy_store *r, const void *in,
579 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
580 spin_lock_irqsave(&r->lock, flags);
581 _mix_pool_bytes(r, in, nbytes);
582 spin_unlock_irqrestore(&r->lock, flags);
588 unsigned short reg_idx;
593 * This is a fast mixing routine used by the interrupt randomness
594 * collector. It's hardcoded for an 128 bit pool and assumes that any
595 * locks that might be needed are taken by the caller.
597 static void fast_mix(struct fast_pool *f)
599 __u32 a = f->pool[0], b = f->pool[1];
600 __u32 c = f->pool[2], d = f->pool[3];
603 b = rol32(b, 6); d = rol32(d, 27);
607 b = rol32(b, 16); d = rol32(d, 14);
611 b = rol32(b, 6); d = rol32(d, 27);
615 b = rol32(b, 16); d = rol32(d, 14);
618 f->pool[0] = a; f->pool[1] = b;
619 f->pool[2] = c; f->pool[3] = d;
623 static void process_random_ready_list(void)
626 struct random_ready_callback *rdy, *tmp;
628 spin_lock_irqsave(&random_ready_list_lock, flags);
629 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
630 struct module *owner = rdy->owner;
632 list_del_init(&rdy->list);
636 spin_unlock_irqrestore(&random_ready_list_lock, flags);
640 * Credit (or debit) the entropy store with n bits of entropy.
641 * Use credit_entropy_bits_safe() if the value comes from userspace
642 * or otherwise should be checked for extreme values.
644 static void credit_entropy_bits(struct entropy_store *r, int nbits)
646 int entropy_count, orig;
647 const int pool_size = r->poolinfo->poolfracbits;
648 int nfrac = nbits << ENTROPY_SHIFT;
654 entropy_count = orig = READ_ONCE(r->entropy_count);
657 entropy_count += nfrac;
660 * Credit: we have to account for the possibility of
661 * overwriting already present entropy. Even in the
662 * ideal case of pure Shannon entropy, new contributions
663 * approach the full value asymptotically:
665 * entropy <- entropy + (pool_size - entropy) *
666 * (1 - exp(-add_entropy/pool_size))
668 * For add_entropy <= pool_size/2 then
669 * (1 - exp(-add_entropy/pool_size)) >=
670 * (add_entropy/pool_size)*0.7869...
671 * so we can approximate the exponential with
672 * 3/4*add_entropy/pool_size and still be on the
673 * safe side by adding at most pool_size/2 at a time.
675 * The use of pool_size-2 in the while statement is to
676 * prevent rounding artifacts from making the loop
677 * arbitrarily long; this limits the loop to log2(pool_size)*2
678 * turns no matter how large nbits is.
681 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
682 /* The +2 corresponds to the /4 in the denominator */
685 unsigned int anfrac = min(pnfrac, pool_size/2);
687 ((pool_size - entropy_count)*anfrac*3) >> s;
689 entropy_count += add;
691 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
694 if (unlikely(entropy_count < 0)) {
695 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
696 r->name, entropy_count);
699 } else if (entropy_count > pool_size)
700 entropy_count = pool_size;
701 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
704 r->entropy_total += nbits;
705 if (!r->initialized && r->entropy_total > 128) {
707 r->entropy_total = 0;
710 trace_credit_entropy_bits(r->name, nbits,
711 entropy_count >> ENTROPY_SHIFT,
712 r->entropy_total, _RET_IP_);
714 if (r == &input_pool) {
715 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
717 if (crng_init < 2 && entropy_bits >= 128) {
718 crng_reseed(&primary_crng, r);
719 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
722 /* should we wake readers? */
723 if (entropy_bits >= random_read_wakeup_bits &&
724 wq_has_sleeper(&random_wait)) {
725 wake_up_interruptible_poll(&random_wait, POLLIN);
726 kill_fasync(&fasync, SIGIO, POLL_IN);
728 /* If the input pool is getting full, send some
729 * entropy to the blocking pool until it is 75% full.
731 if (entropy_bits > random_write_wakeup_bits &&
733 r->entropy_total >= 2*random_read_wakeup_bits) {
734 struct entropy_store *other = &blocking_pool;
736 if (other->entropy_count <=
737 3 * other->poolinfo->poolfracbits / 4) {
738 schedule_work(&other->push_work);
739 r->entropy_total = 0;
745 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
747 const int nbits_max = r->poolinfo->poolwords * 32;
752 /* Cap the value to avoid overflows */
753 nbits = min(nbits, nbits_max);
755 credit_entropy_bits(r, nbits);
759 /*********************************************************************
761 * CRNG using CHACHA20
763 *********************************************************************/
765 #define CRNG_RESEED_INTERVAL (300*HZ)
767 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
771 * Hack to deal with crazy userspace progams when they are all trying
772 * to access /dev/urandom in parallel. The programs are almost
773 * certainly doing something terribly wrong, but we'll work around
774 * their brain damage.
776 static struct crng_state **crng_node_pool __read_mostly;
779 static void invalidate_batched_entropy(void);
781 static void crng_initialize(struct crng_state *crng)
786 memcpy(&crng->state[0], "expand 32-byte k", 16);
787 if (crng == &primary_crng)
788 _extract_entropy(&input_pool, &crng->state[4],
789 sizeof(__u32) * 12, 0);
791 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
792 for (i = 4; i < 16; i++) {
793 if (!arch_get_random_seed_long(&rv) &&
794 !arch_get_random_long(&rv))
795 rv = random_get_entropy();
796 crng->state[i] ^= rv;
798 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
802 static void do_numa_crng_init(struct work_struct *work)
805 struct crng_state *crng;
806 struct crng_state **pool;
808 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
809 for_each_online_node(i) {
810 crng = kmalloc_node(sizeof(struct crng_state),
811 GFP_KERNEL | __GFP_NOFAIL, i);
812 spin_lock_init(&crng->lock);
813 crng_initialize(crng);
817 if (cmpxchg(&crng_node_pool, NULL, pool)) {
824 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
826 static void numa_crng_init(void)
828 schedule_work(&numa_crng_init_work);
831 static void numa_crng_init(void) {}
835 * crng_fast_load() can be called by code in the interrupt service
836 * path. So we can't afford to dilly-dally.
838 static int crng_fast_load(const char *cp, size_t len)
843 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
845 if (crng_init != 0) {
846 spin_unlock_irqrestore(&primary_crng.lock, flags);
849 p = (unsigned char *) &primary_crng.state[4];
850 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
851 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
852 cp++; crng_init_cnt++; len--;
854 spin_unlock_irqrestore(&primary_crng.lock, flags);
855 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
856 invalidate_batched_entropy();
858 wake_up_interruptible(&crng_init_wait);
859 pr_notice("random: fast init done\n");
865 * crng_slow_load() is called by add_device_randomness, which has two
866 * attributes. (1) We can't trust the buffer passed to it is
867 * guaranteed to be unpredictable (so it might not have any entropy at
868 * all), and (2) it doesn't have the performance constraints of
871 * So we do something more comprehensive which is guaranteed to touch
872 * all of the primary_crng's state, and which uses a LFSR with a
873 * period of 255 as part of the mixing algorithm. Finally, we do
874 * *not* advance crng_init_cnt since buffer we may get may be something
875 * like a fixed DMI table (for example), which might very well be
876 * unique to the machine, but is otherwise unvarying.
878 static int crng_slow_load(const char *cp, size_t len)
881 static unsigned char lfsr = 1;
883 unsigned i, max = CHACHA20_KEY_SIZE;
884 const char * src_buf = cp;
885 char * dest_buf = (char *) &primary_crng.state[4];
887 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
889 if (crng_init != 0) {
890 spin_unlock_irqrestore(&primary_crng.lock, flags);
896 for (i = 0; i < max ; i++) {
901 tmp = dest_buf[i % CHACHA20_KEY_SIZE];
902 dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
903 lfsr += (tmp << 3) | (tmp >> 5);
905 spin_unlock_irqrestore(&primary_crng.lock, flags);
909 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
914 __u32 block[CHACHA20_BLOCK_WORDS];
919 num = extract_entropy(r, &buf, 32, 16, 0);
923 _extract_crng(&primary_crng, buf.block);
924 _crng_backtrack_protect(&primary_crng, buf.block,
927 spin_lock_irqsave(&crng->lock, flags);
928 for (i = 0; i < 8; i++) {
930 if (!arch_get_random_seed_long(&rv) &&
931 !arch_get_random_long(&rv))
932 rv = random_get_entropy();
933 crng->state[i+4] ^= buf.key[i] ^ rv;
935 memzero_explicit(&buf, sizeof(buf));
936 crng->init_time = jiffies;
937 spin_unlock_irqrestore(&crng->lock, flags);
938 if (crng == &primary_crng && crng_init < 2) {
939 invalidate_batched_entropy();
942 process_random_ready_list();
943 wake_up_interruptible(&crng_init_wait);
944 pr_notice("random: crng init done\n");
945 if (unseeded_warning.missed) {
946 pr_notice("random: %d get_random_xx warning(s) missed "
947 "due to ratelimiting\n",
948 unseeded_warning.missed);
949 unseeded_warning.missed = 0;
951 if (urandom_warning.missed) {
952 pr_notice("random: %d urandom warning(s) missed "
953 "due to ratelimiting\n",
954 urandom_warning.missed);
955 urandom_warning.missed = 0;
960 static void _extract_crng(struct crng_state *crng,
961 __u32 out[CHACHA20_BLOCK_WORDS])
963 unsigned long v, flags;
966 (time_after(crng_global_init_time, crng->init_time) ||
967 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
968 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
969 spin_lock_irqsave(&crng->lock, flags);
970 if (arch_get_random_long(&v))
971 crng->state[14] ^= v;
972 chacha20_block(&crng->state[0], out);
973 if (crng->state[12] == 0)
975 spin_unlock_irqrestore(&crng->lock, flags);
978 static void extract_crng(__u32 out[CHACHA20_BLOCK_WORDS])
980 struct crng_state *crng = NULL;
984 crng = crng_node_pool[numa_node_id()];
987 crng = &primary_crng;
988 _extract_crng(crng, out);
992 * Use the leftover bytes from the CRNG block output (if there is
993 * enough) to mutate the CRNG key to provide backtracking protection.
995 static void _crng_backtrack_protect(struct crng_state *crng,
996 __u32 tmp[CHACHA20_BLOCK_WORDS], int used)
1002 used = round_up(used, sizeof(__u32));
1003 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
1007 spin_lock_irqsave(&crng->lock, flags);
1008 s = &tmp[used / sizeof(__u32)];
1009 d = &crng->state[4];
1010 for (i=0; i < 8; i++)
1012 spin_unlock_irqrestore(&crng->lock, flags);
1015 static void crng_backtrack_protect(__u32 tmp[CHACHA20_BLOCK_WORDS], int used)
1017 struct crng_state *crng = NULL;
1021 crng = crng_node_pool[numa_node_id()];
1024 crng = &primary_crng;
1025 _crng_backtrack_protect(crng, tmp, used);
1028 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1030 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
1031 __u32 tmp[CHACHA20_BLOCK_WORDS];
1032 int large_request = (nbytes > 256);
1035 if (large_request && need_resched()) {
1036 if (signal_pending(current)) {
1045 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
1046 if (copy_to_user(buf, tmp, i)) {
1055 crng_backtrack_protect(tmp, i);
1057 /* Wipe data just written to memory */
1058 memzero_explicit(tmp, sizeof(tmp));
1064 /*********************************************************************
1066 * Entropy input management
1068 *********************************************************************/
1070 /* There is one of these per entropy source */
1071 struct timer_rand_state {
1073 long last_delta, last_delta2;
1076 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1079 * Add device- or boot-specific data to the input pool to help
1082 * None of this adds any entropy; it is meant to avoid the problem of
1083 * the entropy pool having similar initial state across largely
1084 * identical devices.
1086 void add_device_randomness(const void *buf, unsigned int size)
1088 unsigned long time = random_get_entropy() ^ jiffies;
1089 unsigned long flags;
1091 if (!crng_ready() && size)
1092 crng_slow_load(buf, size);
1094 trace_add_device_randomness(size, _RET_IP_);
1095 spin_lock_irqsave(&input_pool.lock, flags);
1096 _mix_pool_bytes(&input_pool, buf, size);
1097 _mix_pool_bytes(&input_pool, &time, sizeof(time));
1098 spin_unlock_irqrestore(&input_pool.lock, flags);
1100 EXPORT_SYMBOL(add_device_randomness);
1102 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1105 * This function adds entropy to the entropy "pool" by using timing
1106 * delays. It uses the timer_rand_state structure to make an estimate
1107 * of how many bits of entropy this call has added to the pool.
1109 * The number "num" is also added to the pool - it should somehow describe
1110 * the type of event which just happened. This is currently 0-255 for
1111 * keyboard scan codes, and 256 upwards for interrupts.
1114 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1116 struct entropy_store *r;
1122 long delta, delta2, delta3;
1126 sample.jiffies = jiffies;
1127 sample.cycles = random_get_entropy();
1130 mix_pool_bytes(r, &sample, sizeof(sample));
1133 * Calculate number of bits of randomness we probably added.
1134 * We take into account the first, second and third-order deltas
1135 * in order to make our estimate.
1137 delta = sample.jiffies - state->last_time;
1138 state->last_time = sample.jiffies;
1140 delta2 = delta - state->last_delta;
1141 state->last_delta = delta;
1143 delta3 = delta2 - state->last_delta2;
1144 state->last_delta2 = delta2;
1158 * delta is now minimum absolute delta.
1159 * Round down by 1 bit on general principles,
1160 * and limit entropy entimate to 12 bits.
1162 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1167 void add_input_randomness(unsigned int type, unsigned int code,
1170 static unsigned char last_value;
1172 /* ignore autorepeat and the like */
1173 if (value == last_value)
1177 add_timer_randomness(&input_timer_state,
1178 (type << 4) ^ code ^ (code >> 4) ^ value);
1179 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1181 EXPORT_SYMBOL_GPL(add_input_randomness);
1183 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1185 #ifdef ADD_INTERRUPT_BENCH
1186 static unsigned long avg_cycles, avg_deviation;
1188 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1189 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1191 static void add_interrupt_bench(cycles_t start)
1193 long delta = random_get_entropy() - start;
1195 /* Use a weighted moving average */
1196 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1197 avg_cycles += delta;
1198 /* And average deviation */
1199 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1200 avg_deviation += delta;
1203 #define add_interrupt_bench(x)
1206 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1208 __u32 *ptr = (__u32 *) regs;
1213 idx = READ_ONCE(f->reg_idx);
1214 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1217 WRITE_ONCE(f->reg_idx, idx);
1221 void add_interrupt_randomness(int irq, int irq_flags)
1223 struct entropy_store *r;
1224 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1225 struct pt_regs *regs = get_irq_regs();
1226 unsigned long now = jiffies;
1227 cycles_t cycles = random_get_entropy();
1228 __u32 c_high, j_high;
1234 cycles = get_reg(fast_pool, regs);
1235 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1236 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1237 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1238 fast_pool->pool[1] ^= now ^ c_high;
1239 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1240 fast_pool->pool[2] ^= ip;
1241 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1242 get_reg(fast_pool, regs);
1244 fast_mix(fast_pool);
1245 add_interrupt_bench(cycles);
1247 if (unlikely(crng_init == 0)) {
1248 if ((fast_pool->count >= 64) &&
1249 crng_fast_load((char *) fast_pool->pool,
1250 sizeof(fast_pool->pool))) {
1251 fast_pool->count = 0;
1252 fast_pool->last = now;
1257 if ((fast_pool->count < 64) &&
1258 !time_after(now, fast_pool->last + HZ))
1262 if (!spin_trylock(&r->lock))
1265 fast_pool->last = now;
1266 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1269 * If we have architectural seed generator, produce a seed and
1270 * add it to the pool. For the sake of paranoia don't let the
1271 * architectural seed generator dominate the input from the
1274 if (arch_get_random_seed_long(&seed)) {
1275 __mix_pool_bytes(r, &seed, sizeof(seed));
1278 spin_unlock(&r->lock);
1280 fast_pool->count = 0;
1282 /* award one bit for the contents of the fast pool */
1283 credit_entropy_bits(r, credit + 1);
1285 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1288 void add_disk_randomness(struct gendisk *disk)
1290 if (!disk || !disk->random)
1292 /* first major is 1, so we get >= 0x200 here */
1293 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1294 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1296 EXPORT_SYMBOL_GPL(add_disk_randomness);
1299 /*********************************************************************
1301 * Entropy extraction routines
1303 *********************************************************************/
1306 * This utility inline function is responsible for transferring entropy
1307 * from the primary pool to the secondary extraction pool. We make
1308 * sure we pull enough for a 'catastrophic reseed'.
1310 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1311 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1314 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1315 r->entropy_count > r->poolinfo->poolfracbits)
1318 _xfer_secondary_pool(r, nbytes);
1321 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1323 __u32 tmp[OUTPUT_POOL_WORDS];
1327 /* pull at least as much as a wakeup */
1328 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1329 /* but never more than the buffer size */
1330 bytes = min_t(int, bytes, sizeof(tmp));
1332 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1333 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1334 bytes = extract_entropy(r->pull, tmp, bytes,
1335 random_read_wakeup_bits / 8, 0);
1336 mix_pool_bytes(r, tmp, bytes);
1337 credit_entropy_bits(r, bytes*8);
1341 * Used as a workqueue function so that when the input pool is getting
1342 * full, we can "spill over" some entropy to the output pools. That
1343 * way the output pools can store some of the excess entropy instead
1344 * of letting it go to waste.
1346 static void push_to_pool(struct work_struct *work)
1348 struct entropy_store *r = container_of(work, struct entropy_store,
1351 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1352 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1353 r->pull->entropy_count >> ENTROPY_SHIFT);
1357 * This function decides how many bytes to actually take from the
1358 * given pool, and also debits the entropy count accordingly.
1360 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1363 int entropy_count, orig, have_bytes;
1364 size_t ibytes, nfrac;
1366 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1368 /* Can we pull enough? */
1370 entropy_count = orig = READ_ONCE(r->entropy_count);
1372 /* never pull more than available */
1373 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1375 if ((have_bytes -= reserved) < 0)
1377 ibytes = min_t(size_t, ibytes, have_bytes);
1381 if (unlikely(entropy_count < 0)) {
1382 pr_warn("random: negative entropy count: pool %s count %d\n",
1383 r->name, entropy_count);
1387 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1388 if ((size_t) entropy_count > nfrac)
1389 entropy_count -= nfrac;
1393 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1396 trace_debit_entropy(r->name, 8 * ibytes);
1398 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1399 wake_up_interruptible_poll(&random_wait, POLLOUT);
1400 kill_fasync(&fasync, SIGIO, POLL_OUT);
1407 * This function does the actual extraction for extract_entropy and
1408 * extract_entropy_user.
1410 * Note: we assume that .poolwords is a multiple of 16 words.
1412 static void extract_buf(struct entropy_store *r, __u8 *out)
1417 unsigned long l[LONGS(20)];
1419 __u32 workspace[SHA_WORKSPACE_WORDS];
1420 unsigned long flags;
1423 * If we have an architectural hardware random number
1424 * generator, use it for SHA's initial vector
1427 for (i = 0; i < LONGS(20); i++) {
1429 if (!arch_get_random_long(&v))
1434 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1435 spin_lock_irqsave(&r->lock, flags);
1436 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1437 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1440 * We mix the hash back into the pool to prevent backtracking
1441 * attacks (where the attacker knows the state of the pool
1442 * plus the current outputs, and attempts to find previous
1443 * ouputs), unless the hash function can be inverted. By
1444 * mixing at least a SHA1 worth of hash data back, we make
1445 * brute-forcing the feedback as hard as brute-forcing the
1448 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1449 spin_unlock_irqrestore(&r->lock, flags);
1451 memzero_explicit(workspace, sizeof(workspace));
1454 * In case the hash function has some recognizable output
1455 * pattern, we fold it in half. Thus, we always feed back
1456 * twice as much data as we output.
1458 hash.w[0] ^= hash.w[3];
1459 hash.w[1] ^= hash.w[4];
1460 hash.w[2] ^= rol32(hash.w[2], 16);
1462 memcpy(out, &hash, EXTRACT_SIZE);
1463 memzero_explicit(&hash, sizeof(hash));
1466 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1467 size_t nbytes, int fips)
1470 __u8 tmp[EXTRACT_SIZE];
1471 unsigned long flags;
1474 extract_buf(r, tmp);
1477 spin_lock_irqsave(&r->lock, flags);
1478 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1479 panic("Hardware RNG duplicated output!\n");
1480 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1481 spin_unlock_irqrestore(&r->lock, flags);
1483 i = min_t(int, nbytes, EXTRACT_SIZE);
1484 memcpy(buf, tmp, i);
1490 /* Wipe data just returned from memory */
1491 memzero_explicit(tmp, sizeof(tmp));
1497 * This function extracts randomness from the "entropy pool", and
1498 * returns it in a buffer.
1500 * The min parameter specifies the minimum amount we can pull before
1501 * failing to avoid races that defeat catastrophic reseeding while the
1502 * reserved parameter indicates how much entropy we must leave in the
1503 * pool after each pull to avoid starving other readers.
1505 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1506 size_t nbytes, int min, int reserved)
1508 __u8 tmp[EXTRACT_SIZE];
1509 unsigned long flags;
1511 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1513 spin_lock_irqsave(&r->lock, flags);
1514 if (!r->last_data_init) {
1515 r->last_data_init = 1;
1516 spin_unlock_irqrestore(&r->lock, flags);
1517 trace_extract_entropy(r->name, EXTRACT_SIZE,
1518 ENTROPY_BITS(r), _RET_IP_);
1519 xfer_secondary_pool(r, EXTRACT_SIZE);
1520 extract_buf(r, tmp);
1521 spin_lock_irqsave(&r->lock, flags);
1522 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1524 spin_unlock_irqrestore(&r->lock, flags);
1527 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1528 xfer_secondary_pool(r, nbytes);
1529 nbytes = account(r, nbytes, min, reserved);
1531 return _extract_entropy(r, buf, nbytes, fips_enabled);
1535 * This function extracts randomness from the "entropy pool", and
1536 * returns it in a userspace buffer.
1538 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1542 __u8 tmp[EXTRACT_SIZE];
1543 int large_request = (nbytes > 256);
1545 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1546 xfer_secondary_pool(r, nbytes);
1547 nbytes = account(r, nbytes, 0, 0);
1550 if (large_request && need_resched()) {
1551 if (signal_pending(current)) {
1559 extract_buf(r, tmp);
1560 i = min_t(int, nbytes, EXTRACT_SIZE);
1561 if (copy_to_user(buf, tmp, i)) {
1571 /* Wipe data just returned from memory */
1572 memzero_explicit(tmp, sizeof(tmp));
1577 #define warn_unseeded_randomness(previous) \
1578 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1580 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1583 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1584 const bool print_once = false;
1586 static bool print_once __read_mostly;
1591 (previous && (caller == READ_ONCE(*previous))))
1593 WRITE_ONCE(*previous, caller);
1594 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1597 if (__ratelimit(&unseeded_warning))
1598 pr_notice("random: %s called from %pS with crng_init=%d\n",
1599 func_name, caller, crng_init);
1603 * This function is the exported kernel interface. It returns some
1604 * number of good random numbers, suitable for key generation, seeding
1605 * TCP sequence numbers, etc. It does not rely on the hardware random
1606 * number generator. For random bytes direct from the hardware RNG
1607 * (when available), use get_random_bytes_arch(). In order to ensure
1608 * that the randomness provided by this function is okay, the function
1609 * wait_for_random_bytes() should be called and return 0 at least once
1610 * at any point prior.
1612 static void _get_random_bytes(void *buf, int nbytes)
1614 __u32 tmp[CHACHA20_BLOCK_WORDS];
1616 trace_get_random_bytes(nbytes, _RET_IP_);
1618 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1620 buf += CHACHA20_BLOCK_SIZE;
1621 nbytes -= CHACHA20_BLOCK_SIZE;
1626 memcpy(buf, tmp, nbytes);
1627 crng_backtrack_protect(tmp, nbytes);
1629 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1630 memzero_explicit(tmp, sizeof(tmp));
1633 void get_random_bytes(void *buf, int nbytes)
1635 static void *previous;
1637 warn_unseeded_randomness(&previous);
1638 _get_random_bytes(buf, nbytes);
1640 EXPORT_SYMBOL(get_random_bytes);
1643 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1644 * cryptographically secure random numbers. This applies to: the /dev/urandom
1645 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1646 * family of functions. Using any of these functions without first calling
1647 * this function forfeits the guarantee of security.
1649 * Returns: 0 if the urandom pool has been seeded.
1650 * -ERESTARTSYS if the function was interrupted by a signal.
1652 int wait_for_random_bytes(void)
1654 if (likely(crng_ready()))
1656 return wait_event_interruptible(crng_init_wait, crng_ready());
1658 EXPORT_SYMBOL(wait_for_random_bytes);
1661 * Add a callback function that will be invoked when the nonblocking
1662 * pool is initialised.
1664 * returns: 0 if callback is successfully added
1665 * -EALREADY if pool is already initialised (callback not called)
1666 * -ENOENT if module for callback is not alive
1668 int add_random_ready_callback(struct random_ready_callback *rdy)
1670 struct module *owner;
1671 unsigned long flags;
1672 int err = -EALREADY;
1678 if (!try_module_get(owner))
1681 spin_lock_irqsave(&random_ready_list_lock, flags);
1687 list_add(&rdy->list, &random_ready_list);
1691 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1697 EXPORT_SYMBOL(add_random_ready_callback);
1700 * Delete a previously registered readiness callback function.
1702 void del_random_ready_callback(struct random_ready_callback *rdy)
1704 unsigned long flags;
1705 struct module *owner = NULL;
1707 spin_lock_irqsave(&random_ready_list_lock, flags);
1708 if (!list_empty(&rdy->list)) {
1709 list_del_init(&rdy->list);
1712 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1716 EXPORT_SYMBOL(del_random_ready_callback);
1719 * This function will use the architecture-specific hardware random
1720 * number generator if it is available. The arch-specific hw RNG will
1721 * almost certainly be faster than what we can do in software, but it
1722 * is impossible to verify that it is implemented securely (as
1723 * opposed, to, say, the AES encryption of a sequence number using a
1724 * key known by the NSA). So it's useful if we need the speed, but
1725 * only if we're willing to trust the hardware manufacturer not to
1726 * have put in a back door.
1728 void get_random_bytes_arch(void *buf, int nbytes)
1732 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1735 int chunk = min(nbytes, (int)sizeof(unsigned long));
1737 if (!arch_get_random_long(&v))
1740 memcpy(p, &v, chunk);
1746 get_random_bytes(p, nbytes);
1748 EXPORT_SYMBOL(get_random_bytes_arch);
1752 * init_std_data - initialize pool with system data
1754 * @r: pool to initialize
1756 * This function clears the pool's entropy count and mixes some system
1757 * data into the pool to prepare it for use. The pool is not cleared
1758 * as that can only decrease the entropy in the pool.
1760 static void init_std_data(struct entropy_store *r)
1763 ktime_t now = ktime_get_real();
1766 r->last_pulled = jiffies;
1767 mix_pool_bytes(r, &now, sizeof(now));
1768 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1769 if (!arch_get_random_seed_long(&rv) &&
1770 !arch_get_random_long(&rv))
1771 rv = random_get_entropy();
1772 mix_pool_bytes(r, &rv, sizeof(rv));
1774 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1778 * Note that setup_arch() may call add_device_randomness()
1779 * long before we get here. This allows seeding of the pools
1780 * with some platform dependent data very early in the boot
1781 * process. But it limits our options here. We must use
1782 * statically allocated structures that already have all
1783 * initializations complete at compile time. We should also
1784 * take care not to overwrite the precious per platform data
1787 static int rand_initialize(void)
1789 init_std_data(&input_pool);
1790 init_std_data(&blocking_pool);
1791 crng_initialize(&primary_crng);
1792 crng_global_init_time = jiffies;
1793 if (ratelimit_disable) {
1794 urandom_warning.interval = 0;
1795 unseeded_warning.interval = 0;
1799 early_initcall(rand_initialize);
1802 void rand_initialize_disk(struct gendisk *disk)
1804 struct timer_rand_state *state;
1807 * If kzalloc returns null, we just won't use that entropy
1810 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1812 state->last_time = INITIAL_JIFFIES;
1813 disk->random = state;
1819 _random_read(int nonblock, char __user *buf, size_t nbytes)
1826 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1828 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1831 trace_random_read(n*8, (nbytes-n)*8,
1832 ENTROPY_BITS(&blocking_pool),
1833 ENTROPY_BITS(&input_pool));
1837 /* Pool is (near) empty. Maybe wait and retry. */
1841 wait_event_interruptible(random_wait,
1842 ENTROPY_BITS(&input_pool) >=
1843 random_read_wakeup_bits);
1844 if (signal_pending(current))
1845 return -ERESTARTSYS;
1850 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1852 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1856 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1858 unsigned long flags;
1859 static int maxwarn = 10;
1862 if (!crng_ready() && maxwarn > 0) {
1864 if (__ratelimit(&urandom_warning))
1865 printk(KERN_NOTICE "random: %s: uninitialized "
1866 "urandom read (%zd bytes read)\n",
1867 current->comm, nbytes);
1868 spin_lock_irqsave(&primary_crng.lock, flags);
1870 spin_unlock_irqrestore(&primary_crng.lock, flags);
1872 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1873 ret = extract_crng_user(buf, nbytes);
1874 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1878 static struct wait_queue_head *
1879 random_get_poll_head(struct file *file, __poll_t events)
1881 return &random_wait;
1885 random_poll_mask(struct file *file, __poll_t events)
1889 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1890 mask |= EPOLLIN | EPOLLRDNORM;
1891 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1892 mask |= EPOLLOUT | EPOLLWRNORM;
1897 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1901 const char __user *p = buffer;
1904 bytes = min(count, sizeof(buf));
1905 if (copy_from_user(&buf, p, bytes))
1911 mix_pool_bytes(r, buf, bytes);
1918 static ssize_t random_write(struct file *file, const char __user *buffer,
1919 size_t count, loff_t *ppos)
1923 ret = write_pool(&input_pool, buffer, count);
1927 return (ssize_t)count;
1930 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1932 int size, ent_count;
1933 int __user *p = (int __user *)arg;
1938 /* inherently racy, no point locking */
1939 ent_count = ENTROPY_BITS(&input_pool);
1940 if (put_user(ent_count, p))
1943 case RNDADDTOENTCNT:
1944 if (!capable(CAP_SYS_ADMIN))
1946 if (get_user(ent_count, p))
1948 return credit_entropy_bits_safe(&input_pool, ent_count);
1950 if (!capable(CAP_SYS_ADMIN))
1952 if (get_user(ent_count, p++))
1956 if (get_user(size, p++))
1958 retval = write_pool(&input_pool, (const char __user *)p,
1962 return credit_entropy_bits_safe(&input_pool, ent_count);
1966 * Clear the entropy pool counters. We no longer clear
1967 * the entropy pool, as that's silly.
1969 if (!capable(CAP_SYS_ADMIN))
1971 input_pool.entropy_count = 0;
1972 blocking_pool.entropy_count = 0;
1975 if (!capable(CAP_SYS_ADMIN))
1979 crng_reseed(&primary_crng, NULL);
1980 crng_global_init_time = jiffies - 1;
1987 static int random_fasync(int fd, struct file *filp, int on)
1989 return fasync_helper(fd, filp, on, &fasync);
1992 const struct file_operations random_fops = {
1993 .read = random_read,
1994 .write = random_write,
1995 .get_poll_head = random_get_poll_head,
1996 .poll_mask = random_poll_mask,
1997 .unlocked_ioctl = random_ioctl,
1998 .fasync = random_fasync,
1999 .llseek = noop_llseek,
2002 const struct file_operations urandom_fops = {
2003 .read = urandom_read,
2004 .write = random_write,
2005 .unlocked_ioctl = random_ioctl,
2006 .fasync = random_fasync,
2007 .llseek = noop_llseek,
2010 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2011 unsigned int, flags)
2015 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2018 if (count > INT_MAX)
2021 if (flags & GRND_RANDOM)
2022 return _random_read(flags & GRND_NONBLOCK, buf, count);
2024 if (!crng_ready()) {
2025 if (flags & GRND_NONBLOCK)
2027 ret = wait_for_random_bytes();
2031 return urandom_read(NULL, buf, count, NULL);
2034 /********************************************************************
2038 ********************************************************************/
2040 #ifdef CONFIG_SYSCTL
2042 #include <linux/sysctl.h>
2044 static int min_read_thresh = 8, min_write_thresh;
2045 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2046 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2047 static int random_min_urandom_seed = 60;
2048 static char sysctl_bootid[16];
2051 * This function is used to return both the bootid UUID, and random
2052 * UUID. The difference is in whether table->data is NULL; if it is,
2053 * then a new UUID is generated and returned to the user.
2055 * If the user accesses this via the proc interface, the UUID will be
2056 * returned as an ASCII string in the standard UUID format; if via the
2057 * sysctl system call, as 16 bytes of binary data.
2059 static int proc_do_uuid(struct ctl_table *table, int write,
2060 void __user *buffer, size_t *lenp, loff_t *ppos)
2062 struct ctl_table fake_table;
2063 unsigned char buf[64], tmp_uuid[16], *uuid;
2068 generate_random_uuid(uuid);
2070 static DEFINE_SPINLOCK(bootid_spinlock);
2072 spin_lock(&bootid_spinlock);
2074 generate_random_uuid(uuid);
2075 spin_unlock(&bootid_spinlock);
2078 sprintf(buf, "%pU", uuid);
2080 fake_table.data = buf;
2081 fake_table.maxlen = sizeof(buf);
2083 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2087 * Return entropy available scaled to integral bits
2089 static int proc_do_entropy(struct ctl_table *table, int write,
2090 void __user *buffer, size_t *lenp, loff_t *ppos)
2092 struct ctl_table fake_table;
2095 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2097 fake_table.data = &entropy_count;
2098 fake_table.maxlen = sizeof(entropy_count);
2100 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2103 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2104 extern struct ctl_table random_table[];
2105 struct ctl_table random_table[] = {
2107 .procname = "poolsize",
2108 .data = &sysctl_poolsize,
2109 .maxlen = sizeof(int),
2111 .proc_handler = proc_dointvec,
2114 .procname = "entropy_avail",
2115 .maxlen = sizeof(int),
2117 .proc_handler = proc_do_entropy,
2118 .data = &input_pool.entropy_count,
2121 .procname = "read_wakeup_threshold",
2122 .data = &random_read_wakeup_bits,
2123 .maxlen = sizeof(int),
2125 .proc_handler = proc_dointvec_minmax,
2126 .extra1 = &min_read_thresh,
2127 .extra2 = &max_read_thresh,
2130 .procname = "write_wakeup_threshold",
2131 .data = &random_write_wakeup_bits,
2132 .maxlen = sizeof(int),
2134 .proc_handler = proc_dointvec_minmax,
2135 .extra1 = &min_write_thresh,
2136 .extra2 = &max_write_thresh,
2139 .procname = "urandom_min_reseed_secs",
2140 .data = &random_min_urandom_seed,
2141 .maxlen = sizeof(int),
2143 .proc_handler = proc_dointvec,
2146 .procname = "boot_id",
2147 .data = &sysctl_bootid,
2150 .proc_handler = proc_do_uuid,
2156 .proc_handler = proc_do_uuid,
2158 #ifdef ADD_INTERRUPT_BENCH
2160 .procname = "add_interrupt_avg_cycles",
2161 .data = &avg_cycles,
2162 .maxlen = sizeof(avg_cycles),
2164 .proc_handler = proc_doulongvec_minmax,
2167 .procname = "add_interrupt_avg_deviation",
2168 .data = &avg_deviation,
2169 .maxlen = sizeof(avg_deviation),
2171 .proc_handler = proc_doulongvec_minmax,
2176 #endif /* CONFIG_SYSCTL */
2178 struct batched_entropy {
2180 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2181 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2183 unsigned int position;
2185 static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
2188 * Get a random word for internal kernel use only. The quality of the random
2189 * number is either as good as RDRAND or as good as /dev/urandom, with the
2190 * goal of being quite fast and not depleting entropy. In order to ensure
2191 * that the randomness provided by this function is okay, the function
2192 * wait_for_random_bytes() should be called and return 0 at least once
2193 * at any point prior.
2195 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2196 u64 get_random_u64(void)
2200 unsigned long flags = 0;
2201 struct batched_entropy *batch;
2202 static void *previous;
2204 #if BITS_PER_LONG == 64
2205 if (arch_get_random_long((unsigned long *)&ret))
2208 if (arch_get_random_long((unsigned long *)&ret) &&
2209 arch_get_random_long((unsigned long *)&ret + 1))
2213 warn_unseeded_randomness(&previous);
2215 use_lock = READ_ONCE(crng_init) < 2;
2216 batch = &get_cpu_var(batched_entropy_u64);
2218 read_lock_irqsave(&batched_entropy_reset_lock, flags);
2219 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2220 extract_crng((__u32 *)batch->entropy_u64);
2221 batch->position = 0;
2223 ret = batch->entropy_u64[batch->position++];
2225 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2226 put_cpu_var(batched_entropy_u64);
2229 EXPORT_SYMBOL(get_random_u64);
2231 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2232 u32 get_random_u32(void)
2236 unsigned long flags = 0;
2237 struct batched_entropy *batch;
2238 static void *previous;
2240 if (arch_get_random_int(&ret))
2243 warn_unseeded_randomness(&previous);
2245 use_lock = READ_ONCE(crng_init) < 2;
2246 batch = &get_cpu_var(batched_entropy_u32);
2248 read_lock_irqsave(&batched_entropy_reset_lock, flags);
2249 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2250 extract_crng(batch->entropy_u32);
2251 batch->position = 0;
2253 ret = batch->entropy_u32[batch->position++];
2255 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2256 put_cpu_var(batched_entropy_u32);
2259 EXPORT_SYMBOL(get_random_u32);
2261 /* It's important to invalidate all potential batched entropy that might
2262 * be stored before the crng is initialized, which we can do lazily by
2263 * simply resetting the counter to zero so that it's re-extracted on the
2265 static void invalidate_batched_entropy(void)
2268 unsigned long flags;
2270 write_lock_irqsave(&batched_entropy_reset_lock, flags);
2271 for_each_possible_cpu (cpu) {
2272 per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2273 per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2275 write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2279 * randomize_page - Generate a random, page aligned address
2280 * @start: The smallest acceptable address the caller will take.
2281 * @range: The size of the area, starting at @start, within which the
2282 * random address must fall.
2284 * If @start + @range would overflow, @range is capped.
2286 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2287 * @start was already page aligned. We now align it regardless.
2289 * Return: A page aligned address within [start, start + range). On error,
2290 * @start is returned.
2293 randomize_page(unsigned long start, unsigned long range)
2295 if (!PAGE_ALIGNED(start)) {
2296 range -= PAGE_ALIGN(start) - start;
2297 start = PAGE_ALIGN(start);
2300 if (start > ULONG_MAX - range)
2301 range = ULONG_MAX - start;
2303 range >>= PAGE_SHIFT;
2308 return start + (get_random_long() % range << PAGE_SHIFT);
2311 /* Interface for in-kernel drivers of true hardware RNGs.
2312 * Those devices may produce endless random bits and will be throttled
2313 * when our pool is full.
2315 void add_hwgenerator_randomness(const char *buffer, size_t count,
2318 struct entropy_store *poolp = &input_pool;
2320 if (unlikely(crng_init == 0)) {
2321 crng_fast_load(buffer, count);
2325 /* Suspend writing if we're above the trickle threshold.
2326 * We'll be woken up again once below random_write_wakeup_thresh,
2327 * or when the calling thread is about to terminate.
2329 wait_event_interruptible(random_wait, kthread_should_stop() ||
2330 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2331 mix_pool_bytes(poolp, buffer, count);
2332 credit_entropy_bits(poolp, entropy);
2334 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);