2 * Copyright 2009 Jerome Glisse.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
51 #include <drm/amdgpu_drm.h>
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
64 MODULE_IMPORT_NS(DMA_BUF);
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70 struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76 uint64_t size_in_page)
78 return ttm_range_man_init(&adev->mman.bdev, type,
83 * amdgpu_evict_flags - Compute placement flags
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
88 * Fill in placement data when ttm_bo_evict() is called
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
98 .mem_type = TTM_PL_SYSTEM,
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
108 /* Object isn't an AMDGPU object so ignore */
109 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 placement->placement = &placements;
111 placement->num_placement = 1;
115 abo = ttm_to_amdgpu_bo(bo);
116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 placement->num_placement = 0;
121 switch (bo->resource->mem_type) {
125 case AMDGPU_PL_DOORBELL:
126 placement->num_placement = 0;
130 if (!adev->mman.buffer_funcs_enabled) {
131 /* Move to system memory */
132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 amdgpu_bo_in_cpu_visible_vram(abo)) {
138 /* Try evicting to the CPU inaccessible part of VRAM
139 * first, but only set GTT as busy placement, so this
140 * BO will be evicted to GTT rather than causing other
141 * BOs to be evicted from VRAM
143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 AMDGPU_GEM_DOMAIN_GTT |
145 AMDGPU_GEM_DOMAIN_CPU);
146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 abo->placements[0].lpfn = 0;
148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
150 /* Move to GTT memory */
151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 AMDGPU_GEM_DOMAIN_CPU);
156 case AMDGPU_PL_PREEMPT:
158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
161 *placement = abo->placement;
165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
166 * @bo: buffer object to map
167 * @mem: memory object to map
168 * @mm_cur: range to map
169 * @window: which GART window to use
170 * @ring: DMA ring to use for the copy
171 * @tmz: if we should setup a TMZ enabled mapping
172 * @size: in number of bytes to map, out number of bytes mapped
173 * @addr: resulting address inside the MC address space
175 * Setup one of the GART windows to access a specific piece of memory or return
176 * the physical address for local memory.
178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 struct ttm_resource *mem,
180 struct amdgpu_res_cursor *mm_cur,
181 unsigned int window, struct amdgpu_ring *ring,
182 bool tmz, uint64_t *size, uint64_t *addr)
184 struct amdgpu_device *adev = ring->adev;
185 unsigned int offset, num_pages, num_dw, num_bytes;
186 uint64_t src_addr, dst_addr;
187 struct amdgpu_job *job;
193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
199 /* Map only what can't be accessed directly */
200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208 * If start begins at an offset inside the page, then adjust the size
209 * and addr accordingly
211 offset = mm_cur->start & ~PAGE_MASK;
213 num_pages = PFN_UP(*size + offset);
214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
218 *addr = adev->gmc.gart_start;
219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 AMDGPU_GPU_PAGE_SIZE;
223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 AMDGPU_FENCE_OWNER_UNDEFINED,
228 num_dw * 4 + num_bytes,
229 AMDGPU_IB_POOL_DELAYED, &job);
233 src_addr = num_dw * 4;
234 src_addr += job->ibs[0].gpu_addr;
236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 dst_addr, num_bytes, false);
241 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 WARN_ON(job->ibs[0].length_dw > num_dw);
244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
246 flags |= AMDGPU_PTE_TMZ;
248 cpu_addr = &job->ibs[0].ptr[num_dw];
250 if (mem->mem_type == TTM_PL_TT) {
251 dma_addr_t *dma_addr;
253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
256 dma_addr_t dma_address;
258 dma_address = mm_cur->start;
259 dma_address += adev->vm_manager.vram_base_offset;
261 for (i = 0; i < num_pages; ++i) {
262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
264 dma_address += PAGE_SIZE;
268 dma_fence_put(amdgpu_job_submit(job));
273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274 * @adev: amdgpu device
275 * @src: buffer/address where to read from
276 * @dst: buffer/address where to write to
277 * @size: number of bytes to copy
278 * @tmz: if a secure copy should be used
279 * @resv: resv object to sync to
280 * @f: Returns the last fence if multiple jobs are submitted.
282 * The function copies @size bytes from {src->mem + src->offset} to
283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284 * move and different for a BO to BO copy.
287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 const struct amdgpu_copy_mem *src,
289 const struct amdgpu_copy_mem *dst,
290 uint64_t size, bool tmz,
291 struct dma_resv *resv,
292 struct dma_fence **f)
294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 struct amdgpu_res_cursor src_mm, dst_mm;
296 struct dma_fence *fence = NULL;
299 if (!adev->mman.buffer_funcs_enabled) {
300 DRM_ERROR("Trying to move memory with ring turned off.\n");
304 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
305 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
307 mutex_lock(&adev->mman.gtt_window_lock);
308 while (src_mm.remaining) {
309 uint64_t from, to, cur_size;
310 struct dma_fence *next;
312 /* Never copy more than 256MiB at once to avoid a timeout */
313 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
315 /* Map src to window 0 and dst to window 1. */
316 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
317 0, ring, tmz, &cur_size, &from);
321 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
322 1, ring, tmz, &cur_size, &to);
326 r = amdgpu_copy_buffer(ring, from, to, cur_size,
327 resv, &next, false, true, tmz);
331 dma_fence_put(fence);
334 amdgpu_res_next(&src_mm, cur_size);
335 amdgpu_res_next(&dst_mm, cur_size);
338 mutex_unlock(&adev->mman.gtt_window_lock);
340 *f = dma_fence_get(fence);
341 dma_fence_put(fence);
346 * amdgpu_move_blit - Copy an entire buffer to another buffer
348 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
349 * help move buffers to and from VRAM.
351 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
353 struct ttm_resource *new_mem,
354 struct ttm_resource *old_mem)
356 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
357 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
358 struct amdgpu_copy_mem src, dst;
359 struct dma_fence *fence = NULL;
369 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
371 amdgpu_bo_encrypted(abo),
372 bo->base.resv, &fence);
376 /* clear the space being freed */
377 if (old_mem->mem_type == TTM_PL_VRAM &&
378 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
379 struct dma_fence *wipe_fence = NULL;
381 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
385 } else if (wipe_fence) {
386 dma_fence_put(fence);
391 /* Always block for VM page tables before committing the new location */
392 if (bo->type == ttm_bo_type_kernel)
393 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
395 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
396 dma_fence_put(fence);
401 dma_fence_wait(fence, false);
402 dma_fence_put(fence);
407 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
409 * Called by amdgpu_bo_move()
411 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
412 struct ttm_resource *mem)
414 u64 mem_size = (u64)mem->size;
415 struct amdgpu_res_cursor cursor;
418 if (mem->mem_type == TTM_PL_SYSTEM ||
419 mem->mem_type == TTM_PL_TT)
421 if (mem->mem_type != TTM_PL_VRAM)
424 amdgpu_res_first(mem, 0, mem_size, &cursor);
425 end = cursor.start + cursor.size;
426 while (cursor.remaining) {
427 amdgpu_res_next(&cursor, cursor.size);
429 if (!cursor.remaining)
432 /* ttm_resource_ioremap only supports contiguous memory */
433 if (end != cursor.start)
436 end = cursor.start + cursor.size;
439 return end <= adev->gmc.visible_vram_size;
443 * amdgpu_bo_move - Move a buffer object to a new memory location
445 * Called by ttm_bo_handle_move_mem()
447 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
448 struct ttm_operation_ctx *ctx,
449 struct ttm_resource *new_mem,
450 struct ttm_place *hop)
452 struct amdgpu_device *adev;
453 struct amdgpu_bo *abo;
454 struct ttm_resource *old_mem = bo->resource;
457 if (new_mem->mem_type == TTM_PL_TT ||
458 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
459 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
464 abo = ttm_to_amdgpu_bo(bo);
465 adev = amdgpu_ttm_adev(bo->bdev);
467 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
469 ttm_bo_move_null(bo, new_mem);
472 if (old_mem->mem_type == TTM_PL_SYSTEM &&
473 (new_mem->mem_type == TTM_PL_TT ||
474 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
475 ttm_bo_move_null(bo, new_mem);
478 if ((old_mem->mem_type == TTM_PL_TT ||
479 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
480 new_mem->mem_type == TTM_PL_SYSTEM) {
481 r = ttm_bo_wait_ctx(bo, ctx);
485 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
486 ttm_resource_free(bo, &bo->resource);
487 ttm_bo_assign_mem(bo, new_mem);
491 if (old_mem->mem_type == AMDGPU_PL_GDS ||
492 old_mem->mem_type == AMDGPU_PL_GWS ||
493 old_mem->mem_type == AMDGPU_PL_OA ||
494 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
495 new_mem->mem_type == AMDGPU_PL_GDS ||
496 new_mem->mem_type == AMDGPU_PL_GWS ||
497 new_mem->mem_type == AMDGPU_PL_OA ||
498 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
499 /* Nothing to save here */
500 ttm_bo_move_null(bo, new_mem);
504 if (bo->type == ttm_bo_type_device &&
505 new_mem->mem_type == TTM_PL_VRAM &&
506 old_mem->mem_type != TTM_PL_VRAM) {
507 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
508 * accesses the BO after it's moved.
510 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
513 if (adev->mman.buffer_funcs_enabled) {
514 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
515 new_mem->mem_type == TTM_PL_VRAM) ||
516 (old_mem->mem_type == TTM_PL_VRAM &&
517 new_mem->mem_type == TTM_PL_SYSTEM))) {
520 hop->mem_type = TTM_PL_TT;
521 hop->flags = TTM_PL_FLAG_TEMPORARY;
525 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
531 /* Check that all memory is CPU accessible */
532 if (!amdgpu_mem_visible(adev, old_mem) ||
533 !amdgpu_mem_visible(adev, new_mem)) {
534 pr_err("Move buffer fallback to memcpy unavailable\n");
538 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
543 trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
545 /* update statistics */
546 atomic64_add(bo->base.size, &adev->num_bytes_moved);
547 amdgpu_bo_move_notify(bo, evict);
552 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
554 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
556 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
557 struct ttm_resource *mem)
559 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
560 size_t bus_size = (size_t)mem->size;
562 switch (mem->mem_type) {
567 case AMDGPU_PL_PREEMPT:
570 mem->bus.offset = mem->start << PAGE_SHIFT;
571 /* check if it's visible */
572 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
575 if (adev->mman.aper_base_kaddr &&
576 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
577 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
580 mem->bus.offset += adev->gmc.aper_base;
581 mem->bus.is_iomem = true;
583 case AMDGPU_PL_DOORBELL:
584 mem->bus.offset = mem->start << PAGE_SHIFT;
585 mem->bus.offset += adev->doorbell.base;
586 mem->bus.is_iomem = true;
587 mem->bus.caching = ttm_uncached;
595 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
596 unsigned long page_offset)
598 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
599 struct amdgpu_res_cursor cursor;
601 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
604 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
605 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
607 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
611 * amdgpu_ttm_domain_start - Returns GPU start address
612 * @adev: amdgpu device object
613 * @type: type of the memory
616 * GPU start address of a memory domain
619 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
623 return adev->gmc.gart_start;
625 return adev->gmc.vram_start;
632 * TTM backend functions.
634 struct amdgpu_ttm_tt {
636 struct drm_gem_object *gobj;
639 struct task_struct *usertask;
645 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
647 #ifdef CONFIG_DRM_AMDGPU_USERPTR
649 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
650 * memory and start HMM tracking CPU page table update
652 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
653 * once afterwards to stop HMM tracking
655 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
656 struct hmm_range **range)
658 struct ttm_tt *ttm = bo->tbo.ttm;
659 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
660 unsigned long start = gtt->userptr;
661 struct vm_area_struct *vma;
662 struct mm_struct *mm;
666 /* Make sure get_user_pages_done() can cleanup gracefully */
669 mm = bo->notifier.mm;
671 DRM_DEBUG_DRIVER("BO is not registered?\n");
675 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
679 vma = vma_lookup(mm, start);
680 if (unlikely(!vma)) {
684 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
690 readonly = amdgpu_ttm_tt_is_readonly(ttm);
691 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
692 readonly, NULL, pages, range);
694 mmap_read_unlock(mm);
696 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
703 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
705 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
706 struct hmm_range *range)
708 struct amdgpu_ttm_tt *gtt = (void *)ttm;
710 if (gtt && gtt->userptr && range)
711 amdgpu_hmm_range_get_pages_done(range);
715 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
716 * Check if the pages backing this ttm range have been invalidated
718 * Returns: true if pages are still valid
720 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
721 struct hmm_range *range)
723 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
725 if (!gtt || !gtt->userptr || !range)
728 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
729 gtt->userptr, ttm->num_pages);
731 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
733 return !amdgpu_hmm_range_get_pages_done(range);
738 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
740 * Called by amdgpu_cs_list_validate(). This creates the page list
741 * that backs user memory and will ultimately be mapped into the device
744 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
748 for (i = 0; i < ttm->num_pages; ++i)
749 ttm->pages[i] = pages ? pages[i] : NULL;
753 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
755 * Called by amdgpu_ttm_backend_bind()
757 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
760 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
761 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
762 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
763 enum dma_data_direction direction = write ?
764 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
767 /* Allocate an SG array and squash pages into it */
768 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
769 (u64)ttm->num_pages << PAGE_SHIFT,
774 /* Map SG to device */
775 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
779 /* convert SG to linear array of pages and dma addresses */
780 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
792 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
794 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
797 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
798 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
799 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
800 enum dma_data_direction direction = write ?
801 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
803 /* double check that we don't free the table twice */
804 if (!ttm->sg || !ttm->sg->sgl)
807 /* unmap the pages mapped to the device */
808 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
809 sg_free_table(ttm->sg);
813 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
814 * MQDn+CtrlStackn where n is the number of XCCs per partition.
815 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
816 * and uses memory type default, UC. The rest of pages_per_xcc are
817 * Ctrl stack and modify their memory type to NC.
819 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
820 struct ttm_tt *ttm, uint64_t flags)
822 struct amdgpu_ttm_tt *gtt = (void *)ttm;
823 uint64_t total_pages = ttm->num_pages;
824 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
825 uint64_t page_idx, pages_per_xcc;
827 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
828 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
830 pages_per_xcc = total_pages;
831 do_div(pages_per_xcc, num_xcc);
833 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
834 /* MQD page: use default flags */
835 amdgpu_gart_bind(adev,
836 gtt->offset + (page_idx << PAGE_SHIFT),
837 1, >t->ttm.dma_address[page_idx], flags);
839 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
840 * the second page of the BO onward.
842 amdgpu_gart_bind(adev,
843 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
845 >t->ttm.dma_address[page_idx + 1],
850 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
851 struct ttm_buffer_object *tbo,
854 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
855 struct ttm_tt *ttm = tbo->ttm;
856 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
858 if (amdgpu_bo_encrypted(abo))
859 flags |= AMDGPU_PTE_TMZ;
861 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
862 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
864 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
865 gtt->ttm.dma_address, flags);
870 * amdgpu_ttm_backend_bind - Bind GTT memory
872 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
873 * This handles binding GTT memory to the device address space.
875 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
877 struct ttm_resource *bo_mem)
879 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
880 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
891 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
893 DRM_ERROR("failed to pin userptr\n");
896 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
898 struct dma_buf_attachment *attach;
899 struct sg_table *sgt;
901 attach = gtt->gobj->import_attach;
902 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
909 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
913 if (!ttm->num_pages) {
914 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
915 ttm->num_pages, bo_mem, ttm);
918 if (bo_mem->mem_type != TTM_PL_TT ||
919 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
920 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
924 /* compute PTE flags relevant to this BO memory */
925 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
927 /* bind pages into GART page tables */
928 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
929 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
930 gtt->ttm.dma_address, flags);
936 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
937 * through AGP or GART aperture.
939 * If bo is accessible through AGP aperture, then use AGP aperture
940 * to access bo; otherwise allocate logical space in GART aperture
941 * and map bo to GART aperture.
943 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
945 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
946 struct ttm_operation_ctx ctx = { false, false };
947 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
948 struct ttm_placement placement;
949 struct ttm_place placements;
950 struct ttm_resource *tmp;
951 uint64_t addr, flags;
954 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
957 addr = amdgpu_gmc_agp_addr(bo);
958 if (addr != AMDGPU_BO_INVALID_OFFSET)
961 /* allocate GART space */
962 placement.num_placement = 1;
963 placement.placement = &placements;
965 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
966 placements.mem_type = TTM_PL_TT;
967 placements.flags = bo->resource->placement;
969 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
973 /* compute PTE flags for this buffer object */
974 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
977 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
978 amdgpu_ttm_gart_bind(adev, bo, flags);
979 amdgpu_gart_invalidate_tlb(adev);
980 ttm_resource_free(bo, &bo->resource);
981 ttm_bo_assign_mem(bo, tmp);
987 * amdgpu_ttm_recover_gart - Rebind GTT pages
989 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
990 * rebind GTT pages during a GPU reset.
992 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
994 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1000 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1001 amdgpu_ttm_gart_bind(adev, tbo, flags);
1005 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1007 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1010 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1013 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1014 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1016 /* if the pages have userptr pinning then clear that first */
1018 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1019 } else if (ttm->sg && gtt->gobj->import_attach) {
1020 struct dma_buf_attachment *attach;
1022 attach = gtt->gobj->import_attach;
1023 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1030 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1033 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1034 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1038 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1041 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1044 put_task_struct(gtt->usertask);
1046 ttm_tt_fini(>t->ttm);
1051 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1053 * @bo: The buffer object to create a GTT ttm_tt object around
1054 * @page_flags: Page flags to be added to the ttm_tt object
1056 * Called by ttm_tt_create().
1058 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1059 uint32_t page_flags)
1061 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1062 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1063 struct amdgpu_ttm_tt *gtt;
1064 enum ttm_caching caching;
1066 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1070 gtt->gobj = &bo->base;
1071 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1072 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1074 gtt->pool_id = abo->xcp_id;
1076 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1077 caching = ttm_write_combined;
1079 caching = ttm_cached;
1081 /* allocate space for the uninitialized page entries */
1082 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1090 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1092 * Map the pages of a ttm_tt object to an address space visible
1093 * to the underlying device.
1095 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1097 struct ttm_operation_ctx *ctx)
1099 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1100 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1101 struct ttm_pool *pool;
1105 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1107 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1113 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1116 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1117 pool = &adev->mman.ttm_pools[gtt->pool_id];
1119 pool = &adev->mman.bdev.pool;
1120 ret = ttm_pool_alloc(pool, ttm, ctx);
1124 for (i = 0; i < ttm->num_pages; ++i)
1125 ttm->pages[i]->mapping = bdev->dev_mapping;
1131 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1133 * Unmaps pages of a ttm_tt object from the device address space and
1134 * unpopulates the page array backing it.
1136 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1139 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1140 struct amdgpu_device *adev;
1141 struct ttm_pool *pool;
1144 amdgpu_ttm_backend_unbind(bdev, ttm);
1147 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1153 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1156 for (i = 0; i < ttm->num_pages; ++i)
1157 ttm->pages[i]->mapping = NULL;
1159 adev = amdgpu_ttm_adev(bdev);
1161 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1162 pool = &adev->mman.ttm_pools[gtt->pool_id];
1164 pool = &adev->mman.bdev.pool;
1166 return ttm_pool_free(pool, ttm);
1170 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1173 * @tbo: The ttm_buffer_object that contains the userptr
1174 * @user_addr: The returned value
1176 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1177 uint64_t *user_addr)
1179 struct amdgpu_ttm_tt *gtt;
1184 gtt = (void *)tbo->ttm;
1185 *user_addr = gtt->userptr;
1190 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1193 * @bo: The ttm_buffer_object to bind this userptr to
1194 * @addr: The address in the current tasks VM space to use
1195 * @flags: Requirements of userptr object.
1197 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1198 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1199 * initialize GPU VM for a KFD process.
1201 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1202 uint64_t addr, uint32_t flags)
1204 struct amdgpu_ttm_tt *gtt;
1207 /* TODO: We want a separate TTM object type for userptrs */
1208 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1209 if (bo->ttm == NULL)
1213 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1214 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1216 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1217 gtt->userptr = addr;
1218 gtt->userflags = flags;
1221 put_task_struct(gtt->usertask);
1222 gtt->usertask = current->group_leader;
1223 get_task_struct(gtt->usertask);
1229 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1231 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1233 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1238 if (gtt->usertask == NULL)
1241 return gtt->usertask->mm;
1245 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1246 * address range for the current task.
1249 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1250 unsigned long end, unsigned long *userptr)
1252 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1255 if (gtt == NULL || !gtt->userptr)
1258 /* Return false if no part of the ttm_tt object lies within
1261 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1262 if (gtt->userptr > end || gtt->userptr + size <= start)
1266 *userptr = gtt->userptr;
1271 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1273 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1275 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1277 if (gtt == NULL || !gtt->userptr)
1284 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1286 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1288 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1293 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1297 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1299 * @ttm: The ttm_tt object to compute the flags for
1300 * @mem: The memory registry backing this ttm_tt object
1302 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1304 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1308 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1309 flags |= AMDGPU_PTE_VALID;
1311 if (mem && (mem->mem_type == TTM_PL_TT ||
1312 mem->mem_type == AMDGPU_PL_DOORBELL ||
1313 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1314 flags |= AMDGPU_PTE_SYSTEM;
1316 if (ttm->caching == ttm_cached)
1317 flags |= AMDGPU_PTE_SNOOPED;
1320 if (mem && mem->mem_type == TTM_PL_VRAM &&
1321 mem->bus.caching == ttm_cached)
1322 flags |= AMDGPU_PTE_SNOOPED;
1328 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1330 * @adev: amdgpu_device pointer
1331 * @ttm: The ttm_tt object to compute the flags for
1332 * @mem: The memory registry backing this ttm_tt object
1334 * Figure out the flags to use for a VM PTE (Page Table Entry).
1336 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1337 struct ttm_resource *mem)
1339 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1341 flags |= adev->gart.gart_pte_flags;
1342 flags |= AMDGPU_PTE_READABLE;
1344 if (!amdgpu_ttm_tt_is_readonly(ttm))
1345 flags |= AMDGPU_PTE_WRITEABLE;
1351 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1354 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1355 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1356 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1357 * used to clean out a memory space.
1359 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1360 const struct ttm_place *place)
1362 struct dma_resv_iter resv_cursor;
1363 struct dma_fence *f;
1365 if (!amdgpu_bo_is_amdgpu_bo(bo))
1366 return ttm_bo_eviction_valuable(bo, place);
1369 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1372 if (bo->type == ttm_bo_type_kernel &&
1373 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1376 /* If bo is a KFD BO, check if the bo belongs to the current process.
1377 * If true, then return false as any KFD process needs all its BOs to
1378 * be resident to run successfully
1380 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1381 DMA_RESV_USAGE_BOOKKEEP, f) {
1382 if (amdkfd_fence_check_mm(f, current->mm))
1386 /* Preemptible BOs don't own system resources managed by the
1387 * driver (pages, VRAM, GART space). They point to resources
1388 * owned by someone else (e.g. pageable memory in user mode
1389 * or a DMABuf). They are used in a preemptible context so we
1390 * can guarantee no deadlocks and good QoS in case of MMU
1391 * notifiers or DMABuf move notifiers from the resource owner.
1393 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1396 if (bo->resource->mem_type == TTM_PL_TT &&
1397 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1400 return ttm_bo_eviction_valuable(bo, place);
1403 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1404 void *buf, size_t size, bool write)
1407 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1408 uint64_t bytes = 4 - (pos & 0x3);
1409 uint32_t shift = (pos & 0x3) * 8;
1410 uint32_t mask = 0xffffffff << shift;
1414 mask &= 0xffffffff >> (bytes - size) * 8;
1418 if (mask != 0xffffffff) {
1419 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1422 value |= (*(uint32_t *)buf << shift) & mask;
1423 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1425 value = (value & mask) >> shift;
1426 memcpy(buf, &value, bytes);
1429 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1438 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1439 unsigned long offset, void *buf,
1442 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1443 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1444 struct amdgpu_res_cursor src_mm;
1445 struct amdgpu_job *job;
1446 struct dma_fence *fence;
1447 uint64_t src_addr, dst_addr;
1448 unsigned int num_dw;
1451 if (len != PAGE_SIZE)
1454 if (!adev->mman.sdma_access_ptr)
1457 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1461 memcpy(adev->mman.sdma_access_ptr, buf, len);
1463 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1464 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1465 AMDGPU_FENCE_OWNER_UNDEFINED,
1466 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1471 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1472 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1474 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1476 swap(src_addr, dst_addr);
1478 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1481 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1482 WARN_ON(job->ibs[0].length_dw > num_dw);
1484 fence = amdgpu_job_submit(job);
1486 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1488 dma_fence_put(fence);
1491 memcpy(buf, adev->mman.sdma_access_ptr, len);
1498 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1500 * @bo: The buffer object to read/write
1501 * @offset: Offset into buffer object
1502 * @buf: Secondary buffer to write/read from
1503 * @len: Length in bytes of access
1504 * @write: true if writing
1506 * This is used to access VRAM that backs a buffer object via MMIO
1507 * access for debugging purposes.
1509 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1510 unsigned long offset, void *buf, int len,
1513 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1514 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1515 struct amdgpu_res_cursor cursor;
1518 if (bo->resource->mem_type != TTM_PL_VRAM)
1521 if (amdgpu_device_has_timeouts_enabled(adev) &&
1522 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1525 amdgpu_res_first(bo->resource, offset, len, &cursor);
1526 while (cursor.remaining) {
1527 size_t count, size = cursor.size;
1528 loff_t pos = cursor.start;
1530 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1533 /* using MM to access rest vram and handle un-aligned address */
1536 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1541 amdgpu_res_next(&cursor, cursor.size);
1548 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1550 amdgpu_bo_move_notify(bo, false);
1553 static struct ttm_device_funcs amdgpu_bo_driver = {
1554 .ttm_tt_create = &amdgpu_ttm_tt_create,
1555 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1556 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1557 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1558 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1559 .evict_flags = &amdgpu_evict_flags,
1560 .move = &amdgpu_bo_move,
1561 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1562 .release_notify = &amdgpu_bo_release_notify,
1563 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1564 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1565 .access_memory = &amdgpu_ttm_access_memory,
1569 * Firmware Reservation functions
1572 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1574 * @adev: amdgpu_device pointer
1576 * free fw reserved vram if it has been reserved.
1578 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1580 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1581 NULL, &adev->mman.fw_vram_usage_va);
1585 * Driver Reservation functions
1588 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1590 * @adev: amdgpu_device pointer
1592 * free drv reserved vram if it has been reserved.
1594 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1596 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1598 &adev->mman.drv_vram_usage_va);
1602 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1604 * @adev: amdgpu_device pointer
1606 * create bo vram reservation from fw.
1608 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1610 uint64_t vram_size = adev->gmc.visible_vram_size;
1612 adev->mman.fw_vram_usage_va = NULL;
1613 adev->mman.fw_vram_usage_reserved_bo = NULL;
1615 if (adev->mman.fw_vram_usage_size == 0 ||
1616 adev->mman.fw_vram_usage_size > vram_size)
1619 return amdgpu_bo_create_kernel_at(adev,
1620 adev->mman.fw_vram_usage_start_offset,
1621 adev->mman.fw_vram_usage_size,
1622 &adev->mman.fw_vram_usage_reserved_bo,
1623 &adev->mman.fw_vram_usage_va);
1627 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1629 * @adev: amdgpu_device pointer
1631 * create bo vram reservation from drv.
1633 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1635 u64 vram_size = adev->gmc.visible_vram_size;
1637 adev->mman.drv_vram_usage_va = NULL;
1638 adev->mman.drv_vram_usage_reserved_bo = NULL;
1640 if (adev->mman.drv_vram_usage_size == 0 ||
1641 adev->mman.drv_vram_usage_size > vram_size)
1644 return amdgpu_bo_create_kernel_at(adev,
1645 adev->mman.drv_vram_usage_start_offset,
1646 adev->mman.drv_vram_usage_size,
1647 &adev->mman.drv_vram_usage_reserved_bo,
1648 &adev->mman.drv_vram_usage_va);
1652 * Memoy training reservation functions
1656 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1658 * @adev: amdgpu_device pointer
1660 * free memory training reserved vram if it has been reserved.
1662 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1664 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1666 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1667 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1673 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1674 uint32_t reserve_size)
1676 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1678 memset(ctx, 0, sizeof(*ctx));
1680 ctx->c2p_train_data_offset =
1681 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1682 ctx->p2c_train_data_offset =
1683 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1684 ctx->train_data_size =
1685 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1687 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1688 ctx->train_data_size,
1689 ctx->p2c_train_data_offset,
1690 ctx->c2p_train_data_offset);
1694 * reserve TMR memory at the top of VRAM which holds
1695 * IP Discovery data and is protected by PSP.
1697 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1699 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1700 bool mem_train_support = false;
1701 uint32_t reserve_size = 0;
1704 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1705 if (amdgpu_atomfirmware_mem_training_supported(adev))
1706 mem_train_support = true;
1708 DRM_DEBUG("memory training does not support!\n");
1712 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1713 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1715 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1716 * discovery data and G6 memory training data respectively
1720 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1723 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1724 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1725 else if (!reserve_size)
1726 reserve_size = DISCOVERY_TMR_OFFSET;
1728 if (mem_train_support) {
1729 /* reserve vram for mem train according to TMR location */
1730 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1731 ret = amdgpu_bo_create_kernel_at(adev,
1732 ctx->c2p_train_data_offset,
1733 ctx->train_data_size,
1737 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1738 amdgpu_ttm_training_reserve_vram_fini(adev);
1741 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1744 if (!adev->gmc.is_app_apu) {
1745 ret = amdgpu_bo_create_kernel_at(
1746 adev, adev->gmc.real_vram_size - reserve_size,
1747 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1749 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1750 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1755 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1761 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1765 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1768 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1769 sizeof(*adev->mman.ttm_pools),
1771 if (!adev->mman.ttm_pools)
1774 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1775 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1776 adev->gmc.mem_partitions[i].numa.node,
1782 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1786 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1789 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1790 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1792 kfree(adev->mman.ttm_pools);
1793 adev->mman.ttm_pools = NULL;
1797 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1798 * gtt/vram related fields.
1800 * This initializes all of the memory space pools that the TTM layer
1801 * will need such as the GTT space (system memory mapped to the device),
1802 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1803 * can be mapped per VMID.
1805 int amdgpu_ttm_init(struct amdgpu_device *adev)
1810 mutex_init(&adev->mman.gtt_window_lock);
1812 /* No others user of address space so set it to 0 */
1813 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1814 adev_to_drm(adev)->anon_inode->i_mapping,
1815 adev_to_drm(adev)->vma_offset_manager,
1817 dma_addressing_limited(adev->dev));
1819 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1823 r = amdgpu_ttm_pools_init(adev);
1825 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1828 adev->mman.initialized = true;
1830 /* Initialize VRAM pool with all of VRAM divided into pages */
1831 r = amdgpu_vram_mgr_init(adev);
1833 DRM_ERROR("Failed initializing VRAM heap.\n");
1837 /* Change the size here instead of the init above so only lpfn is affected */
1838 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1841 if (adev->gmc.xgmi.connected_to_cpu)
1842 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1843 adev->gmc.visible_vram_size);
1845 else if (adev->gmc.is_app_apu)
1847 "No need to ioremap when real vram size is 0\n");
1850 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1851 adev->gmc.visible_vram_size);
1855 *The reserved vram for firmware must be pinned to the specified
1856 *place on the VRAM, so reserve it early.
1858 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1863 *The reserved vram for driver must be pinned to the specified
1864 *place on the VRAM, so reserve it early.
1866 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1871 * only NAVI10 and onwards ASIC support for IP discovery.
1872 * If IP discovery enabled, a block of memory should be
1873 * reserved for IP discovey.
1875 if (adev->mman.discovery_bin) {
1876 r = amdgpu_ttm_reserve_tmr(adev);
1881 /* allocate memory as required for VGA
1882 * This is used for VGA emulation and pre-OS scanout buffers to
1883 * avoid display artifacts while transitioning between pre-OS
1886 if (!adev->gmc.is_app_apu) {
1887 r = amdgpu_bo_create_kernel_at(adev, 0,
1888 adev->mman.stolen_vga_size,
1889 &adev->mman.stolen_vga_memory,
1894 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1895 adev->mman.stolen_extended_size,
1896 &adev->mman.stolen_extended_memory,
1902 r = amdgpu_bo_create_kernel_at(adev,
1903 adev->mman.stolen_reserved_offset,
1904 adev->mman.stolen_reserved_size,
1905 &adev->mman.stolen_reserved_memory,
1910 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1913 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1914 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1916 /* Compute GTT size, either based on TTM limit
1917 * or whatever the user passed on module init.
1919 if (amdgpu_gtt_size == -1)
1920 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1922 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1924 /* Initialize GTT memory pool */
1925 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1927 DRM_ERROR("Failed initializing GTT heap.\n");
1930 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1931 (unsigned int)(gtt_size / (1024 * 1024)));
1933 /* Initiailize doorbell pool on PCI BAR */
1934 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1936 DRM_ERROR("Failed initializing doorbell heap.\n");
1940 /* Create a boorbell page for kernel usages */
1941 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1943 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1947 /* Initialize preemptible memory pool */
1948 r = amdgpu_preempt_mgr_init(adev);
1950 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1954 /* Initialize various on-chip memory pools */
1955 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1957 DRM_ERROR("Failed initializing GDS heap.\n");
1961 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1963 DRM_ERROR("Failed initializing gws heap.\n");
1967 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1969 DRM_ERROR("Failed initializing oa heap.\n");
1972 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1973 AMDGPU_GEM_DOMAIN_GTT,
1974 &adev->mman.sdma_access_bo, NULL,
1975 &adev->mman.sdma_access_ptr))
1976 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1982 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1984 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1988 if (!adev->mman.initialized)
1991 amdgpu_ttm_pools_fini(adev);
1993 amdgpu_ttm_training_reserve_vram_fini(adev);
1994 /* return the stolen vga memory back to VRAM */
1995 if (!adev->gmc.is_app_apu) {
1996 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1997 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1998 /* return the FW reserved memory back to VRAM */
1999 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2001 if (adev->mman.stolen_reserved_size)
2002 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2005 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2006 &adev->mman.sdma_access_ptr);
2007 amdgpu_ttm_fw_reserve_vram_fini(adev);
2008 amdgpu_ttm_drv_reserve_vram_fini(adev);
2010 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2012 if (adev->mman.aper_base_kaddr)
2013 iounmap(adev->mman.aper_base_kaddr);
2014 adev->mman.aper_base_kaddr = NULL;
2019 amdgpu_vram_mgr_fini(adev);
2020 amdgpu_gtt_mgr_fini(adev);
2021 amdgpu_preempt_mgr_fini(adev);
2022 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2023 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2024 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2025 ttm_device_fini(&adev->mman.bdev);
2026 adev->mman.initialized = false;
2027 DRM_INFO("amdgpu: ttm finalized\n");
2031 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2033 * @adev: amdgpu_device pointer
2034 * @enable: true when we can use buffer functions.
2036 * Enable/disable use of buffer functions during suspend/resume. This should
2037 * only be called at bootup or when userspace isn't running.
2039 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2041 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2045 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2046 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2050 struct amdgpu_ring *ring;
2051 struct drm_gpu_scheduler *sched;
2053 ring = adev->mman.buffer_funcs_ring;
2054 sched = &ring->sched;
2055 r = drm_sched_entity_init(&adev->mman.high_pr,
2056 DRM_SCHED_PRIORITY_KERNEL, &sched,
2059 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2064 r = drm_sched_entity_init(&adev->mman.low_pr,
2065 DRM_SCHED_PRIORITY_NORMAL, &sched,
2068 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2070 goto error_free_entity;
2073 drm_sched_entity_destroy(&adev->mman.high_pr);
2074 drm_sched_entity_destroy(&adev->mman.low_pr);
2075 dma_fence_put(man->move);
2079 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2081 size = adev->gmc.real_vram_size;
2083 size = adev->gmc.visible_vram_size;
2085 adev->mman.buffer_funcs_enabled = enable;
2090 drm_sched_entity_destroy(&adev->mman.high_pr);
2093 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2095 unsigned int num_dw,
2096 struct dma_resv *resv,
2097 bool vm_needs_flush,
2098 struct amdgpu_job **job,
2101 enum amdgpu_ib_pool_type pool = direct_submit ?
2102 AMDGPU_IB_POOL_DIRECT :
2103 AMDGPU_IB_POOL_DELAYED;
2105 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2106 &adev->mman.high_pr;
2107 r = amdgpu_job_alloc_with_ib(adev, entity,
2108 AMDGPU_FENCE_OWNER_UNDEFINED,
2109 num_dw * 4, pool, job);
2113 if (vm_needs_flush) {
2114 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2117 (*job)->vm_needs_flush = true;
2122 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2123 DMA_RESV_USAGE_BOOKKEEP);
2126 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2127 uint64_t dst_offset, uint32_t byte_count,
2128 struct dma_resv *resv,
2129 struct dma_fence **fence, bool direct_submit,
2130 bool vm_needs_flush, bool tmz)
2132 struct amdgpu_device *adev = ring->adev;
2133 unsigned int num_loops, num_dw;
2134 struct amdgpu_job *job;
2139 if (!direct_submit && !ring->sched.ready) {
2140 DRM_ERROR("Trying to move memory with ring turned off.\n");
2144 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2145 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2146 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2147 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2148 resv, vm_needs_flush, &job, false);
2152 for (i = 0; i < num_loops; i++) {
2153 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2155 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2156 dst_offset, cur_size_in_bytes, tmz);
2158 src_offset += cur_size_in_bytes;
2159 dst_offset += cur_size_in_bytes;
2160 byte_count -= cur_size_in_bytes;
2163 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2164 WARN_ON(job->ibs[0].length_dw > num_dw);
2166 r = amdgpu_job_submit_direct(job, ring, fence);
2168 *fence = amdgpu_job_submit(job);
2175 amdgpu_job_free(job);
2176 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2180 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2181 uint64_t dst_addr, uint32_t byte_count,
2182 struct dma_resv *resv,
2183 struct dma_fence **fence,
2184 bool vm_needs_flush, bool delayed)
2186 struct amdgpu_device *adev = ring->adev;
2187 unsigned int num_loops, num_dw;
2188 struct amdgpu_job *job;
2193 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2194 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2195 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2196 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2201 for (i = 0; i < num_loops; i++) {
2202 uint32_t cur_size = min(byte_count, max_bytes);
2204 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2207 dst_addr += cur_size;
2208 byte_count -= cur_size;
2211 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2212 WARN_ON(job->ibs[0].length_dw > num_dw);
2213 *fence = amdgpu_job_submit(job);
2217 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2219 struct dma_resv *resv,
2220 struct dma_fence **f,
2223 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2224 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2225 struct dma_fence *fence = NULL;
2226 struct amdgpu_res_cursor dst;
2229 if (!adev->mman.buffer_funcs_enabled) {
2230 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2234 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2236 mutex_lock(&adev->mman.gtt_window_lock);
2237 while (dst.remaining) {
2238 struct dma_fence *next;
2239 uint64_t cur_size, to;
2241 /* Never fill more than 256MiB at once to avoid timeouts */
2242 cur_size = min(dst.size, 256ULL << 20);
2244 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2245 1, ring, false, &cur_size, &to);
2249 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2250 &next, true, delayed);
2254 dma_fence_put(fence);
2257 amdgpu_res_next(&dst, cur_size);
2260 mutex_unlock(&adev->mman.gtt_window_lock);
2262 *f = dma_fence_get(fence);
2263 dma_fence_put(fence);
2268 * amdgpu_ttm_evict_resources - evict memory buffers
2269 * @adev: amdgpu device object
2270 * @mem_type: evicted BO's memory type
2272 * Evicts all @mem_type buffers on the lru list of the memory type.
2275 * 0 for success or a negative error code on failure.
2277 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2279 struct ttm_resource_manager *man;
2287 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2290 DRM_ERROR("Trying to evict invalid memory type\n");
2294 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2297 #if defined(CONFIG_DEBUG_FS)
2299 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2301 struct amdgpu_device *adev = m->private;
2303 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2306 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2309 * amdgpu_ttm_vram_read - Linear read access to VRAM
2311 * Accesses VRAM via MMIO for debugging purposes.
2313 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2314 size_t size, loff_t *pos)
2316 struct amdgpu_device *adev = file_inode(f)->i_private;
2319 if (size & 0x3 || *pos & 0x3)
2322 if (*pos >= adev->gmc.mc_vram_size)
2325 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2327 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2328 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2330 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2331 if (copy_to_user(buf, value, bytes))
2344 * amdgpu_ttm_vram_write - Linear write access to VRAM
2346 * Accesses VRAM via MMIO for debugging purposes.
2348 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2349 size_t size, loff_t *pos)
2351 struct amdgpu_device *adev = file_inode(f)->i_private;
2355 if (size & 0x3 || *pos & 0x3)
2358 if (*pos >= adev->gmc.mc_vram_size)
2364 if (*pos >= adev->gmc.mc_vram_size)
2367 r = get_user(value, (uint32_t *)buf);
2371 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2382 static const struct file_operations amdgpu_ttm_vram_fops = {
2383 .owner = THIS_MODULE,
2384 .read = amdgpu_ttm_vram_read,
2385 .write = amdgpu_ttm_vram_write,
2386 .llseek = default_llseek,
2390 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2392 * This function is used to read memory that has been mapped to the
2393 * GPU and the known addresses are not physical addresses but instead
2394 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2396 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2397 size_t size, loff_t *pos)
2399 struct amdgpu_device *adev = file_inode(f)->i_private;
2400 struct iommu_domain *dom;
2404 /* retrieve the IOMMU domain if any for this device */
2405 dom = iommu_get_domain_for_dev(adev->dev);
2408 phys_addr_t addr = *pos & PAGE_MASK;
2409 loff_t off = *pos & ~PAGE_MASK;
2410 size_t bytes = PAGE_SIZE - off;
2415 bytes = min(bytes, size);
2417 /* Translate the bus address to a physical address. If
2418 * the domain is NULL it means there is no IOMMU active
2419 * and the address translation is the identity
2421 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2423 pfn = addr >> PAGE_SHIFT;
2424 if (!pfn_valid(pfn))
2427 p = pfn_to_page(pfn);
2428 if (p->mapping != adev->mman.bdev.dev_mapping)
2431 ptr = kmap_local_page(p);
2432 r = copy_to_user(buf, ptr + off, bytes);
2446 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2448 * This function is used to write memory that has been mapped to the
2449 * GPU and the known addresses are not physical addresses but instead
2450 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2452 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2453 size_t size, loff_t *pos)
2455 struct amdgpu_device *adev = file_inode(f)->i_private;
2456 struct iommu_domain *dom;
2460 dom = iommu_get_domain_for_dev(adev->dev);
2463 phys_addr_t addr = *pos & PAGE_MASK;
2464 loff_t off = *pos & ~PAGE_MASK;
2465 size_t bytes = PAGE_SIZE - off;
2470 bytes = min(bytes, size);
2472 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2474 pfn = addr >> PAGE_SHIFT;
2475 if (!pfn_valid(pfn))
2478 p = pfn_to_page(pfn);
2479 if (p->mapping != adev->mman.bdev.dev_mapping)
2482 ptr = kmap_local_page(p);
2483 r = copy_from_user(ptr + off, buf, bytes);
2496 static const struct file_operations amdgpu_ttm_iomem_fops = {
2497 .owner = THIS_MODULE,
2498 .read = amdgpu_iomem_read,
2499 .write = amdgpu_iomem_write,
2500 .llseek = default_llseek
2505 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2507 #if defined(CONFIG_DEBUG_FS)
2508 struct drm_minor *minor = adev_to_drm(adev)->primary;
2509 struct dentry *root = minor->debugfs_root;
2511 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2512 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2513 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2514 &amdgpu_ttm_iomem_fops);
2515 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2516 &amdgpu_ttm_page_pool_fops);
2517 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2519 root, "amdgpu_vram_mm");
2520 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2522 root, "amdgpu_gtt_mm");
2523 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2525 root, "amdgpu_gds_mm");
2526 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2528 root, "amdgpu_gws_mm");
2529 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2531 root, "amdgpu_oa_mm");