]> Git Repo - linux.git/blob - drivers/net/ethernet/freescale/fec_ptp.c
net: fec: Reload PTP registers after link-state change
[linux.git] / drivers / net / ethernet / freescale / fec_ptp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Fast Ethernet Controller (ENET) PTP driver for MX6x.
4  *
5  * Copyright (C) 2012 Freescale Semiconductor, Inc.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/ptrace.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/spinlock.h>
24 #include <linux/workqueue.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/clk.h>
29 #include <linux/platform_device.h>
30 #include <linux/phy.h>
31 #include <linux/fec.h>
32 #include <linux/of.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_net.h>
35
36 #include "fec.h"
37
38 /* FEC 1588 register bits */
39 #define FEC_T_CTRL_SLAVE                0x00002000
40 #define FEC_T_CTRL_CAPTURE              0x00000800
41 #define FEC_T_CTRL_RESTART              0x00000200
42 #define FEC_T_CTRL_PERIOD_RST           0x00000030
43 #define FEC_T_CTRL_PERIOD_EN            0x00000010
44 #define FEC_T_CTRL_ENABLE               0x00000001
45
46 #define FEC_T_INC_MASK                  0x0000007f
47 #define FEC_T_INC_OFFSET                0
48 #define FEC_T_INC_CORR_MASK             0x00007f00
49 #define FEC_T_INC_CORR_OFFSET           8
50
51 #define FEC_T_CTRL_PINPER               0x00000080
52 #define FEC_T_TF0_MASK                  0x00000001
53 #define FEC_T_TF0_OFFSET                0
54 #define FEC_T_TF1_MASK                  0x00000002
55 #define FEC_T_TF1_OFFSET                1
56 #define FEC_T_TF2_MASK                  0x00000004
57 #define FEC_T_TF2_OFFSET                2
58 #define FEC_T_TF3_MASK                  0x00000008
59 #define FEC_T_TF3_OFFSET                3
60 #define FEC_T_TDRE_MASK                 0x00000001
61 #define FEC_T_TDRE_OFFSET               0
62 #define FEC_T_TMODE_MASK                0x0000003C
63 #define FEC_T_TMODE_OFFSET              2
64 #define FEC_T_TIE_MASK                  0x00000040
65 #define FEC_T_TIE_OFFSET                6
66 #define FEC_T_TF_MASK                   0x00000080
67 #define FEC_T_TF_OFFSET                 7
68
69 #define FEC_ATIME_CTRL          0x400
70 #define FEC_ATIME               0x404
71 #define FEC_ATIME_EVT_OFFSET    0x408
72 #define FEC_ATIME_EVT_PERIOD    0x40c
73 #define FEC_ATIME_CORR          0x410
74 #define FEC_ATIME_INC           0x414
75 #define FEC_TS_TIMESTAMP        0x418
76
77 #define FEC_TGSR                0x604
78 #define FEC_TCSR(n)             (0x608 + n * 0x08)
79 #define FEC_TCCR(n)             (0x60C + n * 0x08)
80 #define MAX_TIMER_CHANNEL       3
81 #define FEC_TMODE_TOGGLE        0x05
82 #define FEC_HIGH_PULSE          0x0F
83
84 #define FEC_CC_MULT     (1 << 31)
85 #define FEC_COUNTER_PERIOD      (1 << 31)
86 #define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC
87 #define FEC_CHANNLE_0           0
88 #define DEFAULT_PPS_CHANNEL     FEC_CHANNLE_0
89
90 #define FEC_PTP_MAX_NSEC_PERIOD         4000000000ULL
91 #define FEC_PTP_MAX_NSEC_COUNTER        0x80000000ULL
92
93 /**
94  * fec_ptp_read - read raw cycle counter (to be used by time counter)
95  * @cc: the cyclecounter structure
96  *
97  * this function reads the cyclecounter registers and is called by the
98  * cyclecounter structure used to construct a ns counter from the
99  * arbitrary fixed point registers
100  */
101 static u64 fec_ptp_read(const struct cyclecounter *cc)
102 {
103         struct fec_enet_private *fep =
104                 container_of(cc, struct fec_enet_private, cc);
105         u32 tempval;
106
107         tempval = readl(fep->hwp + FEC_ATIME_CTRL);
108         tempval |= FEC_T_CTRL_CAPTURE;
109         writel(tempval, fep->hwp + FEC_ATIME_CTRL);
110
111         if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
112                 udelay(1);
113
114         return readl(fep->hwp + FEC_ATIME);
115 }
116
117 /**
118  * fec_ptp_enable_pps
119  * @fep: the fec_enet_private structure handle
120  * @enable: enable the channel pps output
121  *
122  * This function enble the PPS ouput on the timer channel.
123  */
124 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
125 {
126         unsigned long flags;
127         u32 val, tempval;
128         struct timespec64 ts;
129         u64 ns;
130
131         spin_lock_irqsave(&fep->tmreg_lock, flags);
132
133         if (fep->pps_enable == enable) {
134                 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
135                 return 0;
136         }
137
138         if (enable) {
139                 /* clear capture or output compare interrupt status if have.
140                  */
141                 writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
142
143                 /* It is recommended to double check the TMODE field in the
144                  * TCSR register to be cleared before the first compare counter
145                  * is written into TCCR register. Just add a double check.
146                  */
147                 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
148                 do {
149                         val &= ~(FEC_T_TMODE_MASK);
150                         writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
151                         val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
152                 } while (val & FEC_T_TMODE_MASK);
153
154                 /* Dummy read counter to update the counter */
155                 timecounter_read(&fep->tc);
156                 /* We want to find the first compare event in the next
157                  * second point. So we need to know what the ptp time
158                  * is now and how many nanoseconds is ahead to get next second.
159                  * The remaining nanosecond ahead before the next second would be
160                  * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
161                  * to current timer would be next second.
162                  */
163                 tempval = fec_ptp_read(&fep->cc);
164                 /* Convert the ptp local counter to 1588 timestamp */
165                 ns = timecounter_cyc2time(&fep->tc, tempval);
166                 ts = ns_to_timespec64(ns);
167
168                 /* The tempval is  less than 3 seconds, and  so val is less than
169                  * 4 seconds. No overflow for 32bit calculation.
170                  */
171                 val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
172
173                 /* Need to consider the situation that the current time is
174                  * very close to the second point, which means NSEC_PER_SEC
175                  * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
176                  * is still running when we calculate the first compare event, it is
177                  * possible that the remaining nanoseonds run out before the compare
178                  * counter is calculated and written into TCCR register. To avoid
179                  * this possibility, we will set the compare event to be the next
180                  * of next second. The current setting is 31-bit timer and wrap
181                  * around over 2 seconds. So it is okay to set the next of next
182                  * seond for the timer.
183                  */
184                 val += NSEC_PER_SEC;
185
186                 /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
187                  * ptp counter, which maybe cause 32-bit wrap. Since the
188                  * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
189                  * We can ensure the wrap will not cause issue. If the offset
190                  * is bigger than fep->cc.mask would be a error.
191                  */
192                 val &= fep->cc.mask;
193                 writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
194
195                 /* Calculate the second the compare event timestamp */
196                 fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
197
198                 /* * Enable compare event when overflow */
199                 val = readl(fep->hwp + FEC_ATIME_CTRL);
200                 val |= FEC_T_CTRL_PINPER;
201                 writel(val, fep->hwp + FEC_ATIME_CTRL);
202
203                 /* Compare channel setting. */
204                 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
205                 val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
206                 val &= ~(1 << FEC_T_TDRE_OFFSET);
207                 val &= ~(FEC_T_TMODE_MASK);
208                 val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
209                 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
210
211                 /* Write the second compare event timestamp and calculate
212                  * the third timestamp. Refer the TCCR register detail in the spec.
213                  */
214                 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
215                 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
216         } else {
217                 writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
218         }
219
220         fep->pps_enable = enable;
221         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
222
223         return 0;
224 }
225
226 static int fec_ptp_pps_perout(struct fec_enet_private *fep)
227 {
228         u32 compare_val, ptp_hc, temp_val;
229         u64 curr_time;
230         unsigned long flags;
231
232         spin_lock_irqsave(&fep->tmreg_lock, flags);
233
234         /* Update time counter */
235         timecounter_read(&fep->tc);
236
237         /* Get the current ptp hardware time counter */
238         ptp_hc = fec_ptp_read(&fep->cc);
239
240         /* Convert the ptp local counter to 1588 timestamp */
241         curr_time = timecounter_cyc2time(&fep->tc, ptp_hc);
242
243         /* If the pps start time less than current time add 100ms, just return.
244          * Because the software might not able to set the comparison time into
245          * the FEC_TCCR register in time and missed the start time.
246          */
247         if (fep->perout_stime < curr_time + 100 * NSEC_PER_MSEC) {
248                 dev_err(&fep->pdev->dev, "Current time is too close to the start time!\n");
249                 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
250                 return -1;
251         }
252
253         compare_val = fep->perout_stime - curr_time + ptp_hc;
254         compare_val &= fep->cc.mask;
255
256         writel(compare_val, fep->hwp + FEC_TCCR(fep->pps_channel));
257         fep->next_counter = (compare_val + fep->reload_period) & fep->cc.mask;
258
259         /* Enable compare event when overflow */
260         temp_val = readl(fep->hwp + FEC_ATIME_CTRL);
261         temp_val |= FEC_T_CTRL_PINPER;
262         writel(temp_val, fep->hwp + FEC_ATIME_CTRL);
263
264         /* Compare channel setting. */
265         temp_val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
266         temp_val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
267         temp_val &= ~(1 << FEC_T_TDRE_OFFSET);
268         temp_val &= ~(FEC_T_TMODE_MASK);
269         temp_val |= (FEC_TMODE_TOGGLE << FEC_T_TMODE_OFFSET);
270         writel(temp_val, fep->hwp + FEC_TCSR(fep->pps_channel));
271
272         /* Write the second compare event timestamp and calculate
273          * the third timestamp. Refer the TCCR register detail in the spec.
274          */
275         writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
276         fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
277         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
278
279         return 0;
280 }
281
282 static enum hrtimer_restart fec_ptp_pps_perout_handler(struct hrtimer *timer)
283 {
284         struct fec_enet_private *fep = container_of(timer,
285                                         struct fec_enet_private, perout_timer);
286
287         fec_ptp_pps_perout(fep);
288
289         return HRTIMER_NORESTART;
290 }
291
292 /**
293  * fec_ptp_start_cyclecounter - create the cycle counter from hw
294  * @ndev: network device
295  *
296  * this function initializes the timecounter and cyclecounter
297  * structures for use in generated a ns counter from the arbitrary
298  * fixed point cycles registers in the hardware.
299  */
300 void fec_ptp_start_cyclecounter(struct net_device *ndev)
301 {
302         struct fec_enet_private *fep = netdev_priv(ndev);
303         unsigned long flags;
304         int inc;
305
306         inc = 1000000000 / fep->cycle_speed;
307
308         /* grab the ptp lock */
309         spin_lock_irqsave(&fep->tmreg_lock, flags);
310
311         /* 1ns counter */
312         writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
313
314         /* use 31-bit timer counter */
315         writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
316
317         writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
318                 fep->hwp + FEC_ATIME_CTRL);
319
320         memset(&fep->cc, 0, sizeof(fep->cc));
321         fep->cc.read = fec_ptp_read;
322         fep->cc.mask = CLOCKSOURCE_MASK(31);
323         fep->cc.shift = 31;
324         fep->cc.mult = FEC_CC_MULT;
325
326         /* reset the ns time counter */
327         timecounter_init(&fep->tc, &fep->cc, 0);
328
329         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
330 }
331
332 /**
333  * fec_ptp_adjfine - adjust ptp cycle frequency
334  * @ptp: the ptp clock structure
335  * @scaled_ppm: scaled parts per million adjustment from base
336  *
337  * Adjust the frequency of the ptp cycle counter by the
338  * indicated amount from the base frequency.
339  *
340  * Scaled parts per million is ppm with a 16-bit binary fractional field.
341  *
342  * Because ENET hardware frequency adjust is complex,
343  * using software method to do that.
344  */
345 static int fec_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
346 {
347         s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
348         unsigned long flags;
349         int neg_adj = 0;
350         u32 i, tmp;
351         u32 corr_inc, corr_period;
352         u32 corr_ns;
353         u64 lhs, rhs;
354
355         struct fec_enet_private *fep =
356             container_of(ptp, struct fec_enet_private, ptp_caps);
357
358         if (ppb == 0)
359                 return 0;
360
361         if (ppb < 0) {
362                 ppb = -ppb;
363                 neg_adj = 1;
364         }
365
366         /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
367          * Try to find the corr_inc  between 1 to fep->ptp_inc to
368          * meet adjustment requirement.
369          */
370         lhs = NSEC_PER_SEC;
371         rhs = (u64)ppb * (u64)fep->ptp_inc;
372         for (i = 1; i <= fep->ptp_inc; i++) {
373                 if (lhs >= rhs) {
374                         corr_inc = i;
375                         corr_period = div_u64(lhs, rhs);
376                         break;
377                 }
378                 lhs += NSEC_PER_SEC;
379         }
380         /* Not found? Set it to high value - double speed
381          * correct in every clock step.
382          */
383         if (i > fep->ptp_inc) {
384                 corr_inc = fep->ptp_inc;
385                 corr_period = 1;
386         }
387
388         if (neg_adj)
389                 corr_ns = fep->ptp_inc - corr_inc;
390         else
391                 corr_ns = fep->ptp_inc + corr_inc;
392
393         spin_lock_irqsave(&fep->tmreg_lock, flags);
394
395         tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
396         tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
397         writel(tmp, fep->hwp + FEC_ATIME_INC);
398         corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
399         writel(corr_period, fep->hwp + FEC_ATIME_CORR);
400         /* dummy read to update the timer. */
401         timecounter_read(&fep->tc);
402
403         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
404
405         return 0;
406 }
407
408 /**
409  * fec_ptp_adjtime
410  * @ptp: the ptp clock structure
411  * @delta: offset to adjust the cycle counter by
412  *
413  * adjust the timer by resetting the timecounter structure.
414  */
415 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
416 {
417         struct fec_enet_private *fep =
418             container_of(ptp, struct fec_enet_private, ptp_caps);
419         unsigned long flags;
420
421         spin_lock_irqsave(&fep->tmreg_lock, flags);
422         timecounter_adjtime(&fep->tc, delta);
423         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
424
425         return 0;
426 }
427
428 /**
429  * fec_ptp_gettime
430  * @ptp: the ptp clock structure
431  * @ts: timespec structure to hold the current time value
432  *
433  * read the timecounter and return the correct value on ns,
434  * after converting it into a struct timespec.
435  */
436 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
437 {
438         struct fec_enet_private *fep =
439             container_of(ptp, struct fec_enet_private, ptp_caps);
440         u64 ns;
441         unsigned long flags;
442
443         mutex_lock(&fep->ptp_clk_mutex);
444         /* Check the ptp clock */
445         if (!fep->ptp_clk_on) {
446                 mutex_unlock(&fep->ptp_clk_mutex);
447                 return -EINVAL;
448         }
449         spin_lock_irqsave(&fep->tmreg_lock, flags);
450         ns = timecounter_read(&fep->tc);
451         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
452         mutex_unlock(&fep->ptp_clk_mutex);
453
454         *ts = ns_to_timespec64(ns);
455
456         return 0;
457 }
458
459 /**
460  * fec_ptp_settime
461  * @ptp: the ptp clock structure
462  * @ts: the timespec containing the new time for the cycle counter
463  *
464  * reset the timecounter to use a new base value instead of the kernel
465  * wall timer value.
466  */
467 static int fec_ptp_settime(struct ptp_clock_info *ptp,
468                            const struct timespec64 *ts)
469 {
470         struct fec_enet_private *fep =
471             container_of(ptp, struct fec_enet_private, ptp_caps);
472
473         u64 ns;
474         unsigned long flags;
475         u32 counter;
476
477         mutex_lock(&fep->ptp_clk_mutex);
478         /* Check the ptp clock */
479         if (!fep->ptp_clk_on) {
480                 mutex_unlock(&fep->ptp_clk_mutex);
481                 return -EINVAL;
482         }
483
484         ns = timespec64_to_ns(ts);
485         /* Get the timer value based on timestamp.
486          * Update the counter with the masked value.
487          */
488         counter = ns & fep->cc.mask;
489
490         spin_lock_irqsave(&fep->tmreg_lock, flags);
491         writel(counter, fep->hwp + FEC_ATIME);
492         timecounter_init(&fep->tc, &fep->cc, ns);
493         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
494         mutex_unlock(&fep->ptp_clk_mutex);
495         return 0;
496 }
497
498 static int fec_ptp_pps_disable(struct fec_enet_private *fep, uint channel)
499 {
500         unsigned long flags;
501
502         spin_lock_irqsave(&fep->tmreg_lock, flags);
503         writel(0, fep->hwp + FEC_TCSR(channel));
504         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
505
506         return 0;
507 }
508
509 /**
510  * fec_ptp_enable
511  * @ptp: the ptp clock structure
512  * @rq: the requested feature to change
513  * @on: whether to enable or disable the feature
514  *
515  */
516 static int fec_ptp_enable(struct ptp_clock_info *ptp,
517                           struct ptp_clock_request *rq, int on)
518 {
519         struct fec_enet_private *fep =
520             container_of(ptp, struct fec_enet_private, ptp_caps);
521         ktime_t timeout;
522         struct timespec64 start_time, period;
523         u64 curr_time, delta, period_ns;
524         unsigned long flags;
525         int ret = 0;
526
527         if (rq->type == PTP_CLK_REQ_PPS) {
528                 fep->pps_channel = DEFAULT_PPS_CHANNEL;
529                 fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
530
531                 ret = fec_ptp_enable_pps(fep, on);
532
533                 return ret;
534         } else if (rq->type == PTP_CLK_REQ_PEROUT) {
535                 /* Reject requests with unsupported flags */
536                 if (rq->perout.flags)
537                         return -EOPNOTSUPP;
538
539                 if (rq->perout.index != DEFAULT_PPS_CHANNEL)
540                         return -EOPNOTSUPP;
541
542                 fep->pps_channel = DEFAULT_PPS_CHANNEL;
543                 period.tv_sec = rq->perout.period.sec;
544                 period.tv_nsec = rq->perout.period.nsec;
545                 period_ns = timespec64_to_ns(&period);
546
547                 /* FEC PTP timer only has 31 bits, so if the period exceed
548                  * 4s is not supported.
549                  */
550                 if (period_ns > FEC_PTP_MAX_NSEC_PERIOD) {
551                         dev_err(&fep->pdev->dev, "The period must equal to or less than 4s!\n");
552                         return -EOPNOTSUPP;
553                 }
554
555                 fep->reload_period = div_u64(period_ns, 2);
556                 if (on && fep->reload_period) {
557                         /* Convert 1588 timestamp to ns*/
558                         start_time.tv_sec = rq->perout.start.sec;
559                         start_time.tv_nsec = rq->perout.start.nsec;
560                         fep->perout_stime = timespec64_to_ns(&start_time);
561
562                         mutex_lock(&fep->ptp_clk_mutex);
563                         if (!fep->ptp_clk_on) {
564                                 dev_err(&fep->pdev->dev, "Error: PTP clock is closed!\n");
565                                 mutex_unlock(&fep->ptp_clk_mutex);
566                                 return -EOPNOTSUPP;
567                         }
568                         spin_lock_irqsave(&fep->tmreg_lock, flags);
569                         /* Read current timestamp */
570                         curr_time = timecounter_read(&fep->tc);
571                         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
572                         mutex_unlock(&fep->ptp_clk_mutex);
573
574                         /* Calculate time difference */
575                         delta = fep->perout_stime - curr_time;
576
577                         if (fep->perout_stime <= curr_time) {
578                                 dev_err(&fep->pdev->dev, "Start time must larger than current time!\n");
579                                 return -EINVAL;
580                         }
581
582                         /* Because the timer counter of FEC only has 31-bits, correspondingly,
583                          * the time comparison register FEC_TCCR also only low 31 bits can be
584                          * set. If the start time of pps signal exceeds current time more than
585                          * 0x80000000 ns, a software timer is used and the timer expires about
586                          * 1 second before the start time to be able to set FEC_TCCR.
587                          */
588                         if (delta > FEC_PTP_MAX_NSEC_COUNTER) {
589                                 timeout = ns_to_ktime(delta - NSEC_PER_SEC);
590                                 hrtimer_start(&fep->perout_timer, timeout, HRTIMER_MODE_REL);
591                         } else {
592                                 return fec_ptp_pps_perout(fep);
593                         }
594                 } else {
595                         fec_ptp_pps_disable(fep, fep->pps_channel);
596                 }
597
598                 return 0;
599         } else {
600                 return -EOPNOTSUPP;
601         }
602 }
603
604 int fec_ptp_set(struct net_device *ndev, struct kernel_hwtstamp_config *config,
605                 struct netlink_ext_ack *extack)
606 {
607         struct fec_enet_private *fep = netdev_priv(ndev);
608
609         switch (config->tx_type) {
610         case HWTSTAMP_TX_OFF:
611                 fep->hwts_tx_en = 0;
612                 break;
613         case HWTSTAMP_TX_ON:
614                 fep->hwts_tx_en = 1;
615                 break;
616         default:
617                 return -ERANGE;
618         }
619
620         switch (config->rx_filter) {
621         case HWTSTAMP_FILTER_NONE:
622                 fep->hwts_rx_en = 0;
623                 break;
624
625         default:
626                 fep->hwts_rx_en = 1;
627                 config->rx_filter = HWTSTAMP_FILTER_ALL;
628                 break;
629         }
630
631         return 0;
632 }
633
634 void fec_ptp_get(struct net_device *ndev, struct kernel_hwtstamp_config *config)
635 {
636         struct fec_enet_private *fep = netdev_priv(ndev);
637
638         config->flags = 0;
639         config->tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
640         config->rx_filter = (fep->hwts_rx_en ?
641                              HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
642 }
643
644 /*
645  * fec_time_keep - call timecounter_read every second to avoid timer overrun
646  *                 because ENET just support 32bit counter, will timeout in 4s
647  */
648 static void fec_time_keep(struct work_struct *work)
649 {
650         struct delayed_work *dwork = to_delayed_work(work);
651         struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
652         unsigned long flags;
653
654         mutex_lock(&fep->ptp_clk_mutex);
655         if (fep->ptp_clk_on) {
656                 spin_lock_irqsave(&fep->tmreg_lock, flags);
657                 timecounter_read(&fep->tc);
658                 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
659         }
660         mutex_unlock(&fep->ptp_clk_mutex);
661
662         schedule_delayed_work(&fep->time_keep, HZ);
663 }
664
665 /* This function checks the pps event and reloads the timer compare counter. */
666 static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
667 {
668         struct net_device *ndev = dev_id;
669         struct fec_enet_private *fep = netdev_priv(ndev);
670         u32 val;
671         u8 channel = fep->pps_channel;
672         struct ptp_clock_event event;
673
674         val = readl(fep->hwp + FEC_TCSR(channel));
675         if (val & FEC_T_TF_MASK) {
676                 /* Write the next next compare(not the next according the spec)
677                  * value to the register
678                  */
679                 writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
680                 do {
681                         writel(val, fep->hwp + FEC_TCSR(channel));
682                 } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
683
684                 /* Update the counter; */
685                 fep->next_counter = (fep->next_counter + fep->reload_period) &
686                                 fep->cc.mask;
687
688                 event.type = PTP_CLOCK_PPS;
689                 ptp_clock_event(fep->ptp_clock, &event);
690                 return IRQ_HANDLED;
691         }
692
693         return IRQ_NONE;
694 }
695
696 /**
697  * fec_ptp_init
698  * @pdev: The FEC network adapter
699  * @irq_idx: the interrupt index
700  *
701  * This function performs the required steps for enabling ptp
702  * support. If ptp support has already been loaded it simply calls the
703  * cyclecounter init routine and exits.
704  */
705
706 void fec_ptp_init(struct platform_device *pdev, int irq_idx)
707 {
708         struct net_device *ndev = platform_get_drvdata(pdev);
709         struct fec_enet_private *fep = netdev_priv(ndev);
710         int irq;
711         int ret;
712
713         fep->ptp_caps.owner = THIS_MODULE;
714         strscpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));
715
716         fep->ptp_caps.max_adj = 250000000;
717         fep->ptp_caps.n_alarm = 0;
718         fep->ptp_caps.n_ext_ts = 0;
719         fep->ptp_caps.n_per_out = 1;
720         fep->ptp_caps.n_pins = 0;
721         fep->ptp_caps.pps = 1;
722         fep->ptp_caps.adjfine = fec_ptp_adjfine;
723         fep->ptp_caps.adjtime = fec_ptp_adjtime;
724         fep->ptp_caps.gettime64 = fec_ptp_gettime;
725         fep->ptp_caps.settime64 = fec_ptp_settime;
726         fep->ptp_caps.enable = fec_ptp_enable;
727
728         fep->cycle_speed = clk_get_rate(fep->clk_ptp);
729         if (!fep->cycle_speed) {
730                 fep->cycle_speed = NSEC_PER_SEC;
731                 dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n");
732         }
733         fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
734
735         spin_lock_init(&fep->tmreg_lock);
736
737         fec_ptp_start_cyclecounter(ndev);
738
739         INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
740
741         hrtimer_init(&fep->perout_timer, CLOCK_REALTIME, HRTIMER_MODE_REL);
742         fep->perout_timer.function = fec_ptp_pps_perout_handler;
743
744         irq = platform_get_irq_byname_optional(pdev, "pps");
745         if (irq < 0)
746                 irq = platform_get_irq_optional(pdev, irq_idx);
747         /* Failure to get an irq is not fatal,
748          * only the PTP_CLOCK_PPS clock events should stop
749          */
750         if (irq >= 0) {
751                 ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
752                                        0, pdev->name, ndev);
753                 if (ret < 0)
754                         dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
755                                  ret);
756         }
757
758         fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
759         if (IS_ERR(fep->ptp_clock)) {
760                 fep->ptp_clock = NULL;
761                 dev_err(&pdev->dev, "ptp_clock_register failed\n");
762         }
763
764         schedule_delayed_work(&fep->time_keep, HZ);
765 }
766
767 void fec_ptp_save_state(struct fec_enet_private *fep)
768 {
769         unsigned long flags;
770         u32 atime_inc_corr;
771
772         spin_lock_irqsave(&fep->tmreg_lock, flags);
773
774         fep->ptp_saved_state.pps_enable = fep->pps_enable;
775
776         fep->ptp_saved_state.ns_phc = timecounter_read(&fep->tc);
777         fep->ptp_saved_state.ns_sys = ktime_get_ns();
778
779         fep->ptp_saved_state.at_corr = readl(fep->hwp + FEC_ATIME_CORR);
780         atime_inc_corr = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_CORR_MASK;
781         fep->ptp_saved_state.at_inc_corr = (u8)(atime_inc_corr >> FEC_T_INC_CORR_OFFSET);
782
783         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
784 }
785
786 /* Restore PTP functionality after a reset */
787 void fec_ptp_restore_state(struct fec_enet_private *fep)
788 {
789         u32 atime_inc = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
790         unsigned long flags;
791         u32 counter;
792         u64 ns;
793
794         spin_lock_irqsave(&fep->tmreg_lock, flags);
795
796         /* Reset turned it off, so adjust our status flag */
797         fep->pps_enable = 0;
798
799         writel(fep->ptp_saved_state.at_corr, fep->hwp + FEC_ATIME_CORR);
800         atime_inc |= ((u32)fep->ptp_saved_state.at_inc_corr) << FEC_T_INC_CORR_OFFSET;
801         writel(atime_inc, fep->hwp + FEC_ATIME_INC);
802
803         ns = ktime_get_ns() - fep->ptp_saved_state.ns_sys + fep->ptp_saved_state.ns_phc;
804         counter = ns & fep->cc.mask;
805         writel(counter, fep->hwp + FEC_ATIME);
806         timecounter_init(&fep->tc, &fep->cc, ns);
807
808         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
809
810         /* Restart PPS if needed */
811         if (fep->ptp_saved_state.pps_enable) {
812                 /* Re-enable PPS */
813                 fec_ptp_enable_pps(fep, 1);
814         }
815 }
816
817 void fec_ptp_stop(struct platform_device *pdev)
818 {
819         struct net_device *ndev = platform_get_drvdata(pdev);
820         struct fec_enet_private *fep = netdev_priv(ndev);
821
822         if (fep->pps_enable)
823                 fec_ptp_enable_pps(fep, 0);
824
825         cancel_delayed_work_sync(&fep->time_keep);
826         hrtimer_cancel(&fep->perout_timer);
827         if (fep->ptp_clock)
828                 ptp_clock_unregister(fep->ptp_clock);
829 }
This page took 0.13106 seconds and 4 git commands to generate.