1 // SPDX-License-Identifier: GPL-2.0
3 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
5 * Copyright (C) 2012 Freescale Semiconductor, Inc.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/ptrace.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/spinlock.h>
24 #include <linux/workqueue.h>
25 #include <linux/bitops.h>
27 #include <linux/irq.h>
28 #include <linux/clk.h>
29 #include <linux/platform_device.h>
30 #include <linux/phy.h>
31 #include <linux/fec.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_net.h>
38 /* FEC 1588 register bits */
39 #define FEC_T_CTRL_SLAVE 0x00002000
40 #define FEC_T_CTRL_CAPTURE 0x00000800
41 #define FEC_T_CTRL_RESTART 0x00000200
42 #define FEC_T_CTRL_PERIOD_RST 0x00000030
43 #define FEC_T_CTRL_PERIOD_EN 0x00000010
44 #define FEC_T_CTRL_ENABLE 0x00000001
46 #define FEC_T_INC_MASK 0x0000007f
47 #define FEC_T_INC_OFFSET 0
48 #define FEC_T_INC_CORR_MASK 0x00007f00
49 #define FEC_T_INC_CORR_OFFSET 8
51 #define FEC_T_CTRL_PINPER 0x00000080
52 #define FEC_T_TF0_MASK 0x00000001
53 #define FEC_T_TF0_OFFSET 0
54 #define FEC_T_TF1_MASK 0x00000002
55 #define FEC_T_TF1_OFFSET 1
56 #define FEC_T_TF2_MASK 0x00000004
57 #define FEC_T_TF2_OFFSET 2
58 #define FEC_T_TF3_MASK 0x00000008
59 #define FEC_T_TF3_OFFSET 3
60 #define FEC_T_TDRE_MASK 0x00000001
61 #define FEC_T_TDRE_OFFSET 0
62 #define FEC_T_TMODE_MASK 0x0000003C
63 #define FEC_T_TMODE_OFFSET 2
64 #define FEC_T_TIE_MASK 0x00000040
65 #define FEC_T_TIE_OFFSET 6
66 #define FEC_T_TF_MASK 0x00000080
67 #define FEC_T_TF_OFFSET 7
69 #define FEC_ATIME_CTRL 0x400
70 #define FEC_ATIME 0x404
71 #define FEC_ATIME_EVT_OFFSET 0x408
72 #define FEC_ATIME_EVT_PERIOD 0x40c
73 #define FEC_ATIME_CORR 0x410
74 #define FEC_ATIME_INC 0x414
75 #define FEC_TS_TIMESTAMP 0x418
77 #define FEC_TGSR 0x604
78 #define FEC_TCSR(n) (0x608 + n * 0x08)
79 #define FEC_TCCR(n) (0x60C + n * 0x08)
80 #define MAX_TIMER_CHANNEL 3
81 #define FEC_TMODE_TOGGLE 0x05
82 #define FEC_HIGH_PULSE 0x0F
84 #define FEC_CC_MULT (1 << 31)
85 #define FEC_COUNTER_PERIOD (1 << 31)
86 #define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC
87 #define FEC_CHANNLE_0 0
88 #define DEFAULT_PPS_CHANNEL FEC_CHANNLE_0
90 #define FEC_PTP_MAX_NSEC_PERIOD 4000000000ULL
91 #define FEC_PTP_MAX_NSEC_COUNTER 0x80000000ULL
94 * fec_ptp_read - read raw cycle counter (to be used by time counter)
95 * @cc: the cyclecounter structure
97 * this function reads the cyclecounter registers and is called by the
98 * cyclecounter structure used to construct a ns counter from the
99 * arbitrary fixed point registers
101 static u64 fec_ptp_read(const struct cyclecounter *cc)
103 struct fec_enet_private *fep =
104 container_of(cc, struct fec_enet_private, cc);
107 tempval = readl(fep->hwp + FEC_ATIME_CTRL);
108 tempval |= FEC_T_CTRL_CAPTURE;
109 writel(tempval, fep->hwp + FEC_ATIME_CTRL);
111 if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
114 return readl(fep->hwp + FEC_ATIME);
119 * @fep: the fec_enet_private structure handle
120 * @enable: enable the channel pps output
122 * This function enble the PPS ouput on the timer channel.
124 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
128 struct timespec64 ts;
131 spin_lock_irqsave(&fep->tmreg_lock, flags);
133 if (fep->pps_enable == enable) {
134 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
139 /* clear capture or output compare interrupt status if have.
141 writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
143 /* It is recommended to double check the TMODE field in the
144 * TCSR register to be cleared before the first compare counter
145 * is written into TCCR register. Just add a double check.
147 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
149 val &= ~(FEC_T_TMODE_MASK);
150 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
151 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
152 } while (val & FEC_T_TMODE_MASK);
154 /* Dummy read counter to update the counter */
155 timecounter_read(&fep->tc);
156 /* We want to find the first compare event in the next
157 * second point. So we need to know what the ptp time
158 * is now and how many nanoseconds is ahead to get next second.
159 * The remaining nanosecond ahead before the next second would be
160 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
161 * to current timer would be next second.
163 tempval = fec_ptp_read(&fep->cc);
164 /* Convert the ptp local counter to 1588 timestamp */
165 ns = timecounter_cyc2time(&fep->tc, tempval);
166 ts = ns_to_timespec64(ns);
168 /* The tempval is less than 3 seconds, and so val is less than
169 * 4 seconds. No overflow for 32bit calculation.
171 val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
173 /* Need to consider the situation that the current time is
174 * very close to the second point, which means NSEC_PER_SEC
175 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
176 * is still running when we calculate the first compare event, it is
177 * possible that the remaining nanoseonds run out before the compare
178 * counter is calculated and written into TCCR register. To avoid
179 * this possibility, we will set the compare event to be the next
180 * of next second. The current setting is 31-bit timer and wrap
181 * around over 2 seconds. So it is okay to set the next of next
182 * seond for the timer.
186 /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
187 * ptp counter, which maybe cause 32-bit wrap. Since the
188 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
189 * We can ensure the wrap will not cause issue. If the offset
190 * is bigger than fep->cc.mask would be a error.
193 writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
195 /* Calculate the second the compare event timestamp */
196 fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
198 /* * Enable compare event when overflow */
199 val = readl(fep->hwp + FEC_ATIME_CTRL);
200 val |= FEC_T_CTRL_PINPER;
201 writel(val, fep->hwp + FEC_ATIME_CTRL);
203 /* Compare channel setting. */
204 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
205 val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
206 val &= ~(1 << FEC_T_TDRE_OFFSET);
207 val &= ~(FEC_T_TMODE_MASK);
208 val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
209 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
211 /* Write the second compare event timestamp and calculate
212 * the third timestamp. Refer the TCCR register detail in the spec.
214 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
215 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
217 writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
220 fep->pps_enable = enable;
221 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
226 static int fec_ptp_pps_perout(struct fec_enet_private *fep)
228 u32 compare_val, ptp_hc, temp_val;
232 spin_lock_irqsave(&fep->tmreg_lock, flags);
234 /* Update time counter */
235 timecounter_read(&fep->tc);
237 /* Get the current ptp hardware time counter */
238 ptp_hc = fec_ptp_read(&fep->cc);
240 /* Convert the ptp local counter to 1588 timestamp */
241 curr_time = timecounter_cyc2time(&fep->tc, ptp_hc);
243 /* If the pps start time less than current time add 100ms, just return.
244 * Because the software might not able to set the comparison time into
245 * the FEC_TCCR register in time and missed the start time.
247 if (fep->perout_stime < curr_time + 100 * NSEC_PER_MSEC) {
248 dev_err(&fep->pdev->dev, "Current time is too close to the start time!\n");
249 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
253 compare_val = fep->perout_stime - curr_time + ptp_hc;
254 compare_val &= fep->cc.mask;
256 writel(compare_val, fep->hwp + FEC_TCCR(fep->pps_channel));
257 fep->next_counter = (compare_val + fep->reload_period) & fep->cc.mask;
259 /* Enable compare event when overflow */
260 temp_val = readl(fep->hwp + FEC_ATIME_CTRL);
261 temp_val |= FEC_T_CTRL_PINPER;
262 writel(temp_val, fep->hwp + FEC_ATIME_CTRL);
264 /* Compare channel setting. */
265 temp_val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
266 temp_val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
267 temp_val &= ~(1 << FEC_T_TDRE_OFFSET);
268 temp_val &= ~(FEC_T_TMODE_MASK);
269 temp_val |= (FEC_TMODE_TOGGLE << FEC_T_TMODE_OFFSET);
270 writel(temp_val, fep->hwp + FEC_TCSR(fep->pps_channel));
272 /* Write the second compare event timestamp and calculate
273 * the third timestamp. Refer the TCCR register detail in the spec.
275 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
276 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
277 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
282 static enum hrtimer_restart fec_ptp_pps_perout_handler(struct hrtimer *timer)
284 struct fec_enet_private *fep = container_of(timer,
285 struct fec_enet_private, perout_timer);
287 fec_ptp_pps_perout(fep);
289 return HRTIMER_NORESTART;
293 * fec_ptp_start_cyclecounter - create the cycle counter from hw
294 * @ndev: network device
296 * this function initializes the timecounter and cyclecounter
297 * structures for use in generated a ns counter from the arbitrary
298 * fixed point cycles registers in the hardware.
300 void fec_ptp_start_cyclecounter(struct net_device *ndev)
302 struct fec_enet_private *fep = netdev_priv(ndev);
306 inc = 1000000000 / fep->cycle_speed;
308 /* grab the ptp lock */
309 spin_lock_irqsave(&fep->tmreg_lock, flags);
312 writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
314 /* use 31-bit timer counter */
315 writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
317 writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
318 fep->hwp + FEC_ATIME_CTRL);
320 memset(&fep->cc, 0, sizeof(fep->cc));
321 fep->cc.read = fec_ptp_read;
322 fep->cc.mask = CLOCKSOURCE_MASK(31);
324 fep->cc.mult = FEC_CC_MULT;
326 /* reset the ns time counter */
327 timecounter_init(&fep->tc, &fep->cc, 0);
329 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
333 * fec_ptp_adjfine - adjust ptp cycle frequency
334 * @ptp: the ptp clock structure
335 * @scaled_ppm: scaled parts per million adjustment from base
337 * Adjust the frequency of the ptp cycle counter by the
338 * indicated amount from the base frequency.
340 * Scaled parts per million is ppm with a 16-bit binary fractional field.
342 * Because ENET hardware frequency adjust is complex,
343 * using software method to do that.
345 static int fec_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
347 s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
351 u32 corr_inc, corr_period;
355 struct fec_enet_private *fep =
356 container_of(ptp, struct fec_enet_private, ptp_caps);
366 /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
367 * Try to find the corr_inc between 1 to fep->ptp_inc to
368 * meet adjustment requirement.
371 rhs = (u64)ppb * (u64)fep->ptp_inc;
372 for (i = 1; i <= fep->ptp_inc; i++) {
375 corr_period = div_u64(lhs, rhs);
380 /* Not found? Set it to high value - double speed
381 * correct in every clock step.
383 if (i > fep->ptp_inc) {
384 corr_inc = fep->ptp_inc;
389 corr_ns = fep->ptp_inc - corr_inc;
391 corr_ns = fep->ptp_inc + corr_inc;
393 spin_lock_irqsave(&fep->tmreg_lock, flags);
395 tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
396 tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
397 writel(tmp, fep->hwp + FEC_ATIME_INC);
398 corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
399 writel(corr_period, fep->hwp + FEC_ATIME_CORR);
400 /* dummy read to update the timer. */
401 timecounter_read(&fep->tc);
403 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
410 * @ptp: the ptp clock structure
411 * @delta: offset to adjust the cycle counter by
413 * adjust the timer by resetting the timecounter structure.
415 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
417 struct fec_enet_private *fep =
418 container_of(ptp, struct fec_enet_private, ptp_caps);
421 spin_lock_irqsave(&fep->tmreg_lock, flags);
422 timecounter_adjtime(&fep->tc, delta);
423 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
430 * @ptp: the ptp clock structure
431 * @ts: timespec structure to hold the current time value
433 * read the timecounter and return the correct value on ns,
434 * after converting it into a struct timespec.
436 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
438 struct fec_enet_private *fep =
439 container_of(ptp, struct fec_enet_private, ptp_caps);
443 mutex_lock(&fep->ptp_clk_mutex);
444 /* Check the ptp clock */
445 if (!fep->ptp_clk_on) {
446 mutex_unlock(&fep->ptp_clk_mutex);
449 spin_lock_irqsave(&fep->tmreg_lock, flags);
450 ns = timecounter_read(&fep->tc);
451 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
452 mutex_unlock(&fep->ptp_clk_mutex);
454 *ts = ns_to_timespec64(ns);
461 * @ptp: the ptp clock structure
462 * @ts: the timespec containing the new time for the cycle counter
464 * reset the timecounter to use a new base value instead of the kernel
467 static int fec_ptp_settime(struct ptp_clock_info *ptp,
468 const struct timespec64 *ts)
470 struct fec_enet_private *fep =
471 container_of(ptp, struct fec_enet_private, ptp_caps);
477 mutex_lock(&fep->ptp_clk_mutex);
478 /* Check the ptp clock */
479 if (!fep->ptp_clk_on) {
480 mutex_unlock(&fep->ptp_clk_mutex);
484 ns = timespec64_to_ns(ts);
485 /* Get the timer value based on timestamp.
486 * Update the counter with the masked value.
488 counter = ns & fep->cc.mask;
490 spin_lock_irqsave(&fep->tmreg_lock, flags);
491 writel(counter, fep->hwp + FEC_ATIME);
492 timecounter_init(&fep->tc, &fep->cc, ns);
493 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
494 mutex_unlock(&fep->ptp_clk_mutex);
498 static int fec_ptp_pps_disable(struct fec_enet_private *fep, uint channel)
502 spin_lock_irqsave(&fep->tmreg_lock, flags);
503 writel(0, fep->hwp + FEC_TCSR(channel));
504 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
511 * @ptp: the ptp clock structure
512 * @rq: the requested feature to change
513 * @on: whether to enable or disable the feature
516 static int fec_ptp_enable(struct ptp_clock_info *ptp,
517 struct ptp_clock_request *rq, int on)
519 struct fec_enet_private *fep =
520 container_of(ptp, struct fec_enet_private, ptp_caps);
522 struct timespec64 start_time, period;
523 u64 curr_time, delta, period_ns;
527 if (rq->type == PTP_CLK_REQ_PPS) {
528 fep->pps_channel = DEFAULT_PPS_CHANNEL;
529 fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
531 ret = fec_ptp_enable_pps(fep, on);
534 } else if (rq->type == PTP_CLK_REQ_PEROUT) {
535 /* Reject requests with unsupported flags */
536 if (rq->perout.flags)
539 if (rq->perout.index != DEFAULT_PPS_CHANNEL)
542 fep->pps_channel = DEFAULT_PPS_CHANNEL;
543 period.tv_sec = rq->perout.period.sec;
544 period.tv_nsec = rq->perout.period.nsec;
545 period_ns = timespec64_to_ns(&period);
547 /* FEC PTP timer only has 31 bits, so if the period exceed
548 * 4s is not supported.
550 if (period_ns > FEC_PTP_MAX_NSEC_PERIOD) {
551 dev_err(&fep->pdev->dev, "The period must equal to or less than 4s!\n");
555 fep->reload_period = div_u64(period_ns, 2);
556 if (on && fep->reload_period) {
557 /* Convert 1588 timestamp to ns*/
558 start_time.tv_sec = rq->perout.start.sec;
559 start_time.tv_nsec = rq->perout.start.nsec;
560 fep->perout_stime = timespec64_to_ns(&start_time);
562 mutex_lock(&fep->ptp_clk_mutex);
563 if (!fep->ptp_clk_on) {
564 dev_err(&fep->pdev->dev, "Error: PTP clock is closed!\n");
565 mutex_unlock(&fep->ptp_clk_mutex);
568 spin_lock_irqsave(&fep->tmreg_lock, flags);
569 /* Read current timestamp */
570 curr_time = timecounter_read(&fep->tc);
571 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
572 mutex_unlock(&fep->ptp_clk_mutex);
574 /* Calculate time difference */
575 delta = fep->perout_stime - curr_time;
577 if (fep->perout_stime <= curr_time) {
578 dev_err(&fep->pdev->dev, "Start time must larger than current time!\n");
582 /* Because the timer counter of FEC only has 31-bits, correspondingly,
583 * the time comparison register FEC_TCCR also only low 31 bits can be
584 * set. If the start time of pps signal exceeds current time more than
585 * 0x80000000 ns, a software timer is used and the timer expires about
586 * 1 second before the start time to be able to set FEC_TCCR.
588 if (delta > FEC_PTP_MAX_NSEC_COUNTER) {
589 timeout = ns_to_ktime(delta - NSEC_PER_SEC);
590 hrtimer_start(&fep->perout_timer, timeout, HRTIMER_MODE_REL);
592 return fec_ptp_pps_perout(fep);
595 fec_ptp_pps_disable(fep, fep->pps_channel);
604 int fec_ptp_set(struct net_device *ndev, struct kernel_hwtstamp_config *config,
605 struct netlink_ext_ack *extack)
607 struct fec_enet_private *fep = netdev_priv(ndev);
609 switch (config->tx_type) {
610 case HWTSTAMP_TX_OFF:
620 switch (config->rx_filter) {
621 case HWTSTAMP_FILTER_NONE:
627 config->rx_filter = HWTSTAMP_FILTER_ALL;
634 void fec_ptp_get(struct net_device *ndev, struct kernel_hwtstamp_config *config)
636 struct fec_enet_private *fep = netdev_priv(ndev);
639 config->tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
640 config->rx_filter = (fep->hwts_rx_en ?
641 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
645 * fec_time_keep - call timecounter_read every second to avoid timer overrun
646 * because ENET just support 32bit counter, will timeout in 4s
648 static void fec_time_keep(struct work_struct *work)
650 struct delayed_work *dwork = to_delayed_work(work);
651 struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
654 mutex_lock(&fep->ptp_clk_mutex);
655 if (fep->ptp_clk_on) {
656 spin_lock_irqsave(&fep->tmreg_lock, flags);
657 timecounter_read(&fep->tc);
658 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
660 mutex_unlock(&fep->ptp_clk_mutex);
662 schedule_delayed_work(&fep->time_keep, HZ);
665 /* This function checks the pps event and reloads the timer compare counter. */
666 static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
668 struct net_device *ndev = dev_id;
669 struct fec_enet_private *fep = netdev_priv(ndev);
671 u8 channel = fep->pps_channel;
672 struct ptp_clock_event event;
674 val = readl(fep->hwp + FEC_TCSR(channel));
675 if (val & FEC_T_TF_MASK) {
676 /* Write the next next compare(not the next according the spec)
677 * value to the register
679 writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
681 writel(val, fep->hwp + FEC_TCSR(channel));
682 } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
684 /* Update the counter; */
685 fep->next_counter = (fep->next_counter + fep->reload_period) &
688 event.type = PTP_CLOCK_PPS;
689 ptp_clock_event(fep->ptp_clock, &event);
698 * @pdev: The FEC network adapter
699 * @irq_idx: the interrupt index
701 * This function performs the required steps for enabling ptp
702 * support. If ptp support has already been loaded it simply calls the
703 * cyclecounter init routine and exits.
706 void fec_ptp_init(struct platform_device *pdev, int irq_idx)
708 struct net_device *ndev = platform_get_drvdata(pdev);
709 struct fec_enet_private *fep = netdev_priv(ndev);
713 fep->ptp_caps.owner = THIS_MODULE;
714 strscpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));
716 fep->ptp_caps.max_adj = 250000000;
717 fep->ptp_caps.n_alarm = 0;
718 fep->ptp_caps.n_ext_ts = 0;
719 fep->ptp_caps.n_per_out = 1;
720 fep->ptp_caps.n_pins = 0;
721 fep->ptp_caps.pps = 1;
722 fep->ptp_caps.adjfine = fec_ptp_adjfine;
723 fep->ptp_caps.adjtime = fec_ptp_adjtime;
724 fep->ptp_caps.gettime64 = fec_ptp_gettime;
725 fep->ptp_caps.settime64 = fec_ptp_settime;
726 fep->ptp_caps.enable = fec_ptp_enable;
728 fep->cycle_speed = clk_get_rate(fep->clk_ptp);
729 if (!fep->cycle_speed) {
730 fep->cycle_speed = NSEC_PER_SEC;
731 dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n");
733 fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
735 spin_lock_init(&fep->tmreg_lock);
737 fec_ptp_start_cyclecounter(ndev);
739 INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
741 hrtimer_init(&fep->perout_timer, CLOCK_REALTIME, HRTIMER_MODE_REL);
742 fep->perout_timer.function = fec_ptp_pps_perout_handler;
744 irq = platform_get_irq_byname_optional(pdev, "pps");
746 irq = platform_get_irq_optional(pdev, irq_idx);
747 /* Failure to get an irq is not fatal,
748 * only the PTP_CLOCK_PPS clock events should stop
751 ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
752 0, pdev->name, ndev);
754 dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
758 fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
759 if (IS_ERR(fep->ptp_clock)) {
760 fep->ptp_clock = NULL;
761 dev_err(&pdev->dev, "ptp_clock_register failed\n");
764 schedule_delayed_work(&fep->time_keep, HZ);
767 void fec_ptp_save_state(struct fec_enet_private *fep)
772 spin_lock_irqsave(&fep->tmreg_lock, flags);
774 fep->ptp_saved_state.pps_enable = fep->pps_enable;
776 fep->ptp_saved_state.ns_phc = timecounter_read(&fep->tc);
777 fep->ptp_saved_state.ns_sys = ktime_get_ns();
779 fep->ptp_saved_state.at_corr = readl(fep->hwp + FEC_ATIME_CORR);
780 atime_inc_corr = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_CORR_MASK;
781 fep->ptp_saved_state.at_inc_corr = (u8)(atime_inc_corr >> FEC_T_INC_CORR_OFFSET);
783 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
786 /* Restore PTP functionality after a reset */
787 void fec_ptp_restore_state(struct fec_enet_private *fep)
789 u32 atime_inc = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
794 spin_lock_irqsave(&fep->tmreg_lock, flags);
796 /* Reset turned it off, so adjust our status flag */
799 writel(fep->ptp_saved_state.at_corr, fep->hwp + FEC_ATIME_CORR);
800 atime_inc |= ((u32)fep->ptp_saved_state.at_inc_corr) << FEC_T_INC_CORR_OFFSET;
801 writel(atime_inc, fep->hwp + FEC_ATIME_INC);
803 ns = ktime_get_ns() - fep->ptp_saved_state.ns_sys + fep->ptp_saved_state.ns_phc;
804 counter = ns & fep->cc.mask;
805 writel(counter, fep->hwp + FEC_ATIME);
806 timecounter_init(&fep->tc, &fep->cc, ns);
808 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
810 /* Restart PPS if needed */
811 if (fep->ptp_saved_state.pps_enable) {
813 fec_ptp_enable_pps(fep, 1);
817 void fec_ptp_stop(struct platform_device *pdev)
819 struct net_device *ndev = platform_get_drvdata(pdev);
820 struct fec_enet_private *fep = netdev_priv(ndev);
823 fec_ptp_enable_pps(fep, 0);
825 cancel_delayed_work_sync(&fep->time_keep);
826 hrtimer_cancel(&fep->perout_timer);
828 ptp_clock_unregister(fep->ptp_clock);