2 * acpi_power.c - ACPI Bus Power Management ($Revision: 39 $)
7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or (at
12 * your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27 * ACPI power-managed devices may be controlled in two ways:
28 * 1. via "Device Specific (D-State) Control"
29 * 2. via "Power Resource Control".
30 * This module is used to manage devices relying on Power Resource Control.
32 * An ACPI "power resource object" describes a software controllable power
33 * plane, clock plane, or other resource used by a power managed device.
34 * A device may rely on multiple power resources, and a power resource
35 * may be shared by multiple devices.
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/sysfs.h>
45 #include <acpi/acpi_bus.h>
46 #include <acpi/acpi_drivers.h>
50 #define PREFIX "ACPI: "
52 #define _COMPONENT ACPI_POWER_COMPONENT
53 ACPI_MODULE_NAME("power");
54 #define ACPI_POWER_CLASS "power_resource"
55 #define ACPI_POWER_DEVICE_NAME "Power Resource"
56 #define ACPI_POWER_FILE_INFO "info"
57 #define ACPI_POWER_FILE_STATUS "state"
58 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00
59 #define ACPI_POWER_RESOURCE_STATE_ON 0x01
60 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
62 struct acpi_power_resource {
63 struct acpi_device device;
64 struct list_head list_node;
68 unsigned int ref_count;
70 struct mutex resource_lock;
73 struct acpi_power_resource_entry {
74 struct list_head node;
75 struct acpi_power_resource *resource;
78 static LIST_HEAD(acpi_power_resource_list);
79 static DEFINE_MUTEX(power_resource_list_lock);
81 /* --------------------------------------------------------------------------
82 Power Resource Management
83 -------------------------------------------------------------------------- */
86 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
88 return container_of(device, struct acpi_power_resource, device);
91 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
93 struct acpi_device *device;
95 if (acpi_bus_get_device(handle, &device))
98 return to_power_resource(device);
101 static int acpi_power_resources_list_add(acpi_handle handle,
102 struct list_head *list)
104 struct acpi_power_resource *resource = acpi_power_get_context(handle);
105 struct acpi_power_resource_entry *entry;
107 if (!resource || !list)
110 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
114 entry->resource = resource;
115 if (!list_empty(list)) {
116 struct acpi_power_resource_entry *e;
118 list_for_each_entry(e, list, node)
119 if (e->resource->order > resource->order) {
120 list_add_tail(&entry->node, &e->node);
124 list_add_tail(&entry->node, list);
128 void acpi_power_resources_list_free(struct list_head *list)
130 struct acpi_power_resource_entry *entry, *e;
132 list_for_each_entry_safe(entry, e, list, node) {
133 list_del(&entry->node);
138 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
139 struct list_head *list)
144 for (i = start; i < package->package.count; i++) {
145 union acpi_object *element = &package->package.elements[i];
148 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
152 rhandle = element->reference.handle;
157 err = acpi_add_power_resource(rhandle);
161 err = acpi_power_resources_list_add(rhandle, list);
166 acpi_power_resources_list_free(list);
171 static int acpi_power_get_state(acpi_handle handle, int *state)
173 acpi_status status = AE_OK;
174 unsigned long long sta = 0;
176 struct acpi_buffer buffer = { sizeof(node_name), node_name };
179 if (!handle || !state)
182 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
183 if (ACPI_FAILURE(status))
186 *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
187 ACPI_POWER_RESOURCE_STATE_OFF;
189 acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
191 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
193 *state ? "on" : "off"));
198 static int acpi_power_get_list_state(struct list_head *list, int *state)
200 struct acpi_power_resource_entry *entry;
206 /* The state of the list is 'on' IFF all resources are 'on'. */
207 list_for_each_entry(entry, list, node) {
208 struct acpi_power_resource *resource = entry->resource;
209 acpi_handle handle = resource->device.handle;
212 mutex_lock(&resource->resource_lock);
213 result = acpi_power_get_state(handle, &cur_state);
214 mutex_unlock(&resource->resource_lock);
218 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
222 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
223 cur_state ? "on" : "off"));
229 static int __acpi_power_on(struct acpi_power_resource *resource)
231 acpi_status status = AE_OK;
233 status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
234 if (ACPI_FAILURE(status))
237 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
243 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
247 if (resource->ref_count++) {
248 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
249 "Power resource [%s] already on\n",
252 result = __acpi_power_on(resource);
254 resource->ref_count--;
259 static int acpi_power_on(struct acpi_power_resource *resource)
263 mutex_lock(&resource->resource_lock);
264 result = acpi_power_on_unlocked(resource);
265 mutex_unlock(&resource->resource_lock);
269 static int __acpi_power_off(struct acpi_power_resource *resource)
273 status = acpi_evaluate_object(resource->device.handle, "_OFF",
275 if (ACPI_FAILURE(status))
278 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n",
283 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
287 if (!resource->ref_count) {
288 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
289 "Power resource [%s] already off\n",
294 if (--resource->ref_count) {
295 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
296 "Power resource [%s] still in use\n",
299 result = __acpi_power_off(resource);
301 resource->ref_count++;
306 static int acpi_power_off(struct acpi_power_resource *resource)
310 mutex_lock(&resource->resource_lock);
311 result = acpi_power_off_unlocked(resource);
312 mutex_unlock(&resource->resource_lock);
316 static int acpi_power_off_list(struct list_head *list)
318 struct acpi_power_resource_entry *entry;
321 list_for_each_entry_reverse(entry, list, node) {
322 result = acpi_power_off(entry->resource);
329 list_for_each_entry_continue(entry, list, node)
330 acpi_power_on(entry->resource);
335 static int acpi_power_on_list(struct list_head *list)
337 struct acpi_power_resource_entry *entry;
340 list_for_each_entry(entry, list, node) {
341 result = acpi_power_on(entry->resource);
348 list_for_each_entry_continue_reverse(entry, list, node)
349 acpi_power_off(entry->resource);
354 static struct attribute *attrs[] = {
358 static struct attribute_group attr_groups[] = {
360 .name = "power_resources_D0",
364 .name = "power_resources_D1",
368 .name = "power_resources_D2",
371 [ACPI_STATE_D3_HOT] = {
372 .name = "power_resources_D3hot",
377 static struct attribute_group wakeup_attr_group = {
378 .name = "power_resources_wakeup",
382 static void acpi_power_hide_list(struct acpi_device *adev,
383 struct list_head *resources,
384 struct attribute_group *attr_group)
386 struct acpi_power_resource_entry *entry;
388 if (list_empty(resources))
391 list_for_each_entry_reverse(entry, resources, node) {
392 struct acpi_device *res_dev = &entry->resource->device;
394 sysfs_remove_link_from_group(&adev->dev.kobj,
396 dev_name(&res_dev->dev));
398 sysfs_remove_group(&adev->dev.kobj, attr_group);
401 static void acpi_power_expose_list(struct acpi_device *adev,
402 struct list_head *resources,
403 struct attribute_group *attr_group)
405 struct acpi_power_resource_entry *entry;
408 if (list_empty(resources))
411 ret = sysfs_create_group(&adev->dev.kobj, attr_group);
415 list_for_each_entry(entry, resources, node) {
416 struct acpi_device *res_dev = &entry->resource->device;
418 ret = sysfs_add_link_to_group(&adev->dev.kobj,
421 dev_name(&res_dev->dev));
423 acpi_power_hide_list(adev, resources, attr_group);
429 static void acpi_power_expose_hide(struct acpi_device *adev,
430 struct list_head *resources,
431 struct attribute_group *attr_group,
435 acpi_power_expose_list(adev, resources, attr_group);
437 acpi_power_hide_list(adev, resources, attr_group);
440 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
444 if (adev->wakeup.flags.valid)
445 acpi_power_expose_hide(adev, &adev->wakeup.resources,
446 &wakeup_attr_group, add);
448 if (!adev->power.flags.power_resources)
451 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
452 acpi_power_expose_hide(adev,
453 &adev->power.states[state].resources,
454 &attr_groups[state], add);
457 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
459 struct acpi_power_resource_entry *entry;
460 int system_level = 5;
462 list_for_each_entry(entry, list, node) {
463 struct acpi_power_resource *resource = entry->resource;
464 acpi_handle handle = resource->device.handle;
468 mutex_lock(&resource->resource_lock);
470 result = acpi_power_get_state(handle, &state);
472 mutex_unlock(&resource->resource_lock);
475 if (state == ACPI_POWER_RESOURCE_STATE_ON) {
476 resource->ref_count++;
477 resource->wakeup_enabled = true;
479 if (system_level > resource->system_level)
480 system_level = resource->system_level;
482 mutex_unlock(&resource->resource_lock);
484 *system_level_p = system_level;
488 /* --------------------------------------------------------------------------
489 Device Power Management
490 -------------------------------------------------------------------------- */
493 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
494 * ACPI 3.0) _PSW (Power State Wake)
495 * @dev: Device to handle.
496 * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
497 * @sleep_state: Target sleep state of the system.
498 * @dev_state: Target power state of the device.
500 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
501 * State Wake) for the device, if present. On failure reset the device's
502 * wakeup.flags.valid flag.
505 * 0 if either _DSW or _PSW has been successfully executed
506 * 0 if neither _DSW nor _PSW has been found
507 * -ENODEV if the execution of either _DSW or _PSW has failed
509 int acpi_device_sleep_wake(struct acpi_device *dev,
510 int enable, int sleep_state, int dev_state)
512 union acpi_object in_arg[3];
513 struct acpi_object_list arg_list = { 3, in_arg };
514 acpi_status status = AE_OK;
517 * Try to execute _DSW first.
519 * Three agruments are needed for the _DSW object:
520 * Argument 0: enable/disable the wake capabilities
521 * Argument 1: target system state
522 * Argument 2: target device state
523 * When _DSW object is called to disable the wake capabilities, maybe
524 * the first argument is filled. The values of the other two agruments
527 in_arg[0].type = ACPI_TYPE_INTEGER;
528 in_arg[0].integer.value = enable;
529 in_arg[1].type = ACPI_TYPE_INTEGER;
530 in_arg[1].integer.value = sleep_state;
531 in_arg[2].type = ACPI_TYPE_INTEGER;
532 in_arg[2].integer.value = dev_state;
533 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
534 if (ACPI_SUCCESS(status)) {
536 } else if (status != AE_NOT_FOUND) {
537 printk(KERN_ERR PREFIX "_DSW execution failed\n");
538 dev->wakeup.flags.valid = 0;
543 status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
544 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
545 printk(KERN_ERR PREFIX "_PSW execution failed\n");
546 dev->wakeup.flags.valid = 0;
554 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
555 * 1. Power on the power resources required for the wakeup device
556 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
557 * State Wake) for the device, if present
559 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
561 struct acpi_power_resource_entry *entry;
564 if (!dev || !dev->wakeup.flags.valid)
567 mutex_lock(&acpi_device_lock);
569 if (dev->wakeup.prepare_count++)
572 list_for_each_entry(entry, &dev->wakeup.resources, node) {
573 struct acpi_power_resource *resource = entry->resource;
575 mutex_lock(&resource->resource_lock);
577 if (!resource->wakeup_enabled) {
578 err = acpi_power_on_unlocked(resource);
580 resource->wakeup_enabled = true;
583 mutex_unlock(&resource->resource_lock);
587 "Cannot turn wakeup power resources on\n");
588 dev->wakeup.flags.valid = 0;
593 * Passing 3 as the third argument below means the device may be
594 * put into arbitrary power state afterward.
596 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
598 dev->wakeup.prepare_count = 0;
601 mutex_unlock(&acpi_device_lock);
606 * Shutdown a wakeup device, counterpart of above method
607 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
608 * State Wake) for the device, if present
609 * 2. Shutdown down the power resources
611 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
613 struct acpi_power_resource_entry *entry;
616 if (!dev || !dev->wakeup.flags.valid)
619 mutex_lock(&acpi_device_lock);
621 if (--dev->wakeup.prepare_count > 0)
625 * Executing the code below even if prepare_count is already zero when
626 * the function is called may be useful, for example for initialisation.
628 if (dev->wakeup.prepare_count < 0)
629 dev->wakeup.prepare_count = 0;
631 err = acpi_device_sleep_wake(dev, 0, 0, 0);
635 list_for_each_entry(entry, &dev->wakeup.resources, node) {
636 struct acpi_power_resource *resource = entry->resource;
638 mutex_lock(&resource->resource_lock);
640 if (resource->wakeup_enabled) {
641 err = acpi_power_off_unlocked(resource);
643 resource->wakeup_enabled = false;
646 mutex_unlock(&resource->resource_lock);
650 "Cannot turn wakeup power resources off\n");
651 dev->wakeup.flags.valid = 0;
657 mutex_unlock(&acpi_device_lock);
661 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
667 if (!device || !state)
671 * We know a device's inferred power state when all the resources
672 * required for a given D-state are 'on'.
674 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
675 struct list_head *list = &device->power.states[i].resources;
677 if (list_empty(list))
680 result = acpi_power_get_list_state(list, &list_state);
684 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
690 *state = ACPI_STATE_D3_COLD;
694 int acpi_power_on_resources(struct acpi_device *device, int state)
696 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
699 return acpi_power_on_list(&device->power.states[state].resources);
702 int acpi_power_transition(struct acpi_device *device, int state)
706 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
709 if (device->power.state == state || !device->flags.power_manageable)
712 if ((device->power.state < ACPI_STATE_D0)
713 || (device->power.state > ACPI_STATE_D3_COLD))
716 /* TBD: Resources must be ordered. */
719 * First we reference all power resources required in the target list
720 * (e.g. so the device doesn't lose power while transitioning). Then,
721 * we dereference all power resources used in the current list.
723 if (state < ACPI_STATE_D3_COLD)
724 result = acpi_power_on_list(
725 &device->power.states[state].resources);
727 if (!result && device->power.state < ACPI_STATE_D3_COLD)
729 &device->power.states[device->power.state].resources);
731 /* We shouldn't change the state unless the above operations succeed. */
732 device->power.state = result ? ACPI_STATE_UNKNOWN : state;
737 static void acpi_release_power_resource(struct device *dev)
739 struct acpi_device *device = to_acpi_device(dev);
740 struct acpi_power_resource *resource;
742 resource = container_of(device, struct acpi_power_resource, device);
744 mutex_lock(&power_resource_list_lock);
745 list_del(&resource->list_node);
746 mutex_unlock(&power_resource_list_lock);
748 acpi_free_pnp_ids(&device->pnp);
752 static ssize_t acpi_power_in_use_show(struct device *dev,
753 struct device_attribute *attr,
755 struct acpi_power_resource *resource;
757 resource = to_power_resource(to_acpi_device(dev));
758 return sprintf(buf, "%u\n", !!resource->ref_count);
760 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL);
762 static void acpi_power_sysfs_remove(struct acpi_device *device)
764 device_remove_file(&device->dev, &dev_attr_resource_in_use);
767 int acpi_add_power_resource(acpi_handle handle)
769 struct acpi_power_resource *resource;
770 struct acpi_device *device = NULL;
771 union acpi_object acpi_object;
772 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
774 int state, result = -ENODEV;
776 acpi_bus_get_device(handle, &device);
780 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
784 device = &resource->device;
785 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
787 mutex_init(&resource->resource_lock);
788 INIT_LIST_HEAD(&resource->list_node);
789 resource->name = device->pnp.bus_id;
790 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
791 strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
792 device->power.state = ACPI_STATE_UNKNOWN;
794 /* Evalute the object to get the system level and resource order. */
795 status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
796 if (ACPI_FAILURE(status))
799 resource->system_level = acpi_object.power_resource.system_level;
800 resource->order = acpi_object.power_resource.resource_order;
802 result = acpi_power_get_state(handle, &state);
806 printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
807 acpi_device_bid(device), state ? "on" : "off");
809 device->flags.match_driver = true;
810 result = acpi_device_add(device, acpi_release_power_resource);
814 if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
815 device->remove = acpi_power_sysfs_remove;
817 mutex_lock(&power_resource_list_lock);
818 list_add(&resource->list_node, &acpi_power_resource_list);
819 mutex_unlock(&power_resource_list_lock);
820 acpi_device_add_finalize(device);
824 acpi_release_power_resource(&device->dev);
828 #ifdef CONFIG_ACPI_SLEEP
829 void acpi_resume_power_resources(void)
831 struct acpi_power_resource *resource;
833 mutex_lock(&power_resource_list_lock);
835 list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
838 mutex_lock(&resource->resource_lock);
840 result = acpi_power_get_state(resource->device.handle, &state);
842 mutex_unlock(&resource->resource_lock);
846 if (state == ACPI_POWER_RESOURCE_STATE_OFF
847 && resource->ref_count) {
848 dev_info(&resource->device.dev, "Turning ON\n");
849 __acpi_power_on(resource);
850 } else if (state == ACPI_POWER_RESOURCE_STATE_ON
851 && !resource->ref_count) {
852 dev_info(&resource->device.dev, "Turning OFF\n");
853 __acpi_power_off(resource);
856 mutex_unlock(&resource->resource_lock);
859 mutex_unlock(&power_resource_list_lock);