2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
53 #define CREATE_TRACE_POINTS
56 #include <asm/debugreg.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92 struct kvm_x86_ops *kvm_x86_ops;
93 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95 static bool ignore_msrs = 0;
96 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98 unsigned int min_timer_period_us = 500;
99 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101 bool kvm_has_tsc_control;
102 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
103 u32 kvm_max_guest_tsc_khz;
104 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
107 static u32 tsc_tolerance_ppm = 250;
108 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110 static bool backwards_tsc_observed = false;
112 #define KVM_NR_SHARED_MSRS 16
114 struct kvm_shared_msrs_global {
116 u32 msrs[KVM_NR_SHARED_MSRS];
119 struct kvm_shared_msrs {
120 struct user_return_notifier urn;
122 struct kvm_shared_msr_values {
125 } values[KVM_NR_SHARED_MSRS];
128 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
129 static struct kvm_shared_msrs __percpu *shared_msrs;
131 struct kvm_stats_debugfs_item debugfs_entries[] = {
132 { "pf_fixed", VCPU_STAT(pf_fixed) },
133 { "pf_guest", VCPU_STAT(pf_guest) },
134 { "tlb_flush", VCPU_STAT(tlb_flush) },
135 { "invlpg", VCPU_STAT(invlpg) },
136 { "exits", VCPU_STAT(exits) },
137 { "io_exits", VCPU_STAT(io_exits) },
138 { "mmio_exits", VCPU_STAT(mmio_exits) },
139 { "signal_exits", VCPU_STAT(signal_exits) },
140 { "irq_window", VCPU_STAT(irq_window_exits) },
141 { "nmi_window", VCPU_STAT(nmi_window_exits) },
142 { "halt_exits", VCPU_STAT(halt_exits) },
143 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
144 { "hypercalls", VCPU_STAT(hypercalls) },
145 { "request_irq", VCPU_STAT(request_irq_exits) },
146 { "irq_exits", VCPU_STAT(irq_exits) },
147 { "host_state_reload", VCPU_STAT(host_state_reload) },
148 { "efer_reload", VCPU_STAT(efer_reload) },
149 { "fpu_reload", VCPU_STAT(fpu_reload) },
150 { "insn_emulation", VCPU_STAT(insn_emulation) },
151 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
152 { "irq_injections", VCPU_STAT(irq_injections) },
153 { "nmi_injections", VCPU_STAT(nmi_injections) },
154 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
155 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
156 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
157 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
158 { "mmu_flooded", VM_STAT(mmu_flooded) },
159 { "mmu_recycled", VM_STAT(mmu_recycled) },
160 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
161 { "mmu_unsync", VM_STAT(mmu_unsync) },
162 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
163 { "largepages", VM_STAT(lpages) },
167 u64 __read_mostly host_xcr0;
169 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
171 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
174 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
175 vcpu->arch.apf.gfns[i] = ~0;
178 static void kvm_on_user_return(struct user_return_notifier *urn)
181 struct kvm_shared_msrs *locals
182 = container_of(urn, struct kvm_shared_msrs, urn);
183 struct kvm_shared_msr_values *values;
185 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
186 values = &locals->values[slot];
187 if (values->host != values->curr) {
188 wrmsrl(shared_msrs_global.msrs[slot], values->host);
189 values->curr = values->host;
192 locals->registered = false;
193 user_return_notifier_unregister(urn);
196 static void shared_msr_update(unsigned slot, u32 msr)
199 unsigned int cpu = smp_processor_id();
200 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
202 /* only read, and nobody should modify it at this time,
203 * so don't need lock */
204 if (slot >= shared_msrs_global.nr) {
205 printk(KERN_ERR "kvm: invalid MSR slot!");
208 rdmsrl_safe(msr, &value);
209 smsr->values[slot].host = value;
210 smsr->values[slot].curr = value;
213 void kvm_define_shared_msr(unsigned slot, u32 msr)
215 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
216 if (slot >= shared_msrs_global.nr)
217 shared_msrs_global.nr = slot + 1;
218 shared_msrs_global.msrs[slot] = msr;
219 /* we need ensured the shared_msr_global have been updated */
222 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
224 static void kvm_shared_msr_cpu_online(void)
228 for (i = 0; i < shared_msrs_global.nr; ++i)
229 shared_msr_update(i, shared_msrs_global.msrs[i]);
232 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
234 unsigned int cpu = smp_processor_id();
235 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
237 if (((value ^ smsr->values[slot].curr) & mask) == 0)
239 smsr->values[slot].curr = value;
240 wrmsrl(shared_msrs_global.msrs[slot], value);
241 if (!smsr->registered) {
242 smsr->urn.on_user_return = kvm_on_user_return;
243 user_return_notifier_register(&smsr->urn);
244 smsr->registered = true;
247 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
249 static void drop_user_return_notifiers(void *ignore)
251 unsigned int cpu = smp_processor_id();
252 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
254 if (smsr->registered)
255 kvm_on_user_return(&smsr->urn);
258 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
260 return vcpu->arch.apic_base;
262 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
264 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
266 u64 old_state = vcpu->arch.apic_base &
267 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
268 u64 new_state = msr_info->data &
269 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
270 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
271 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
273 if (!msr_info->host_initiated &&
274 ((msr_info->data & reserved_bits) != 0 ||
275 new_state == X2APIC_ENABLE ||
276 (new_state == MSR_IA32_APICBASE_ENABLE &&
277 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
278 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
282 kvm_lapic_set_base(vcpu, msr_info->data);
285 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
287 asmlinkage __visible void kvm_spurious_fault(void)
289 /* Fault while not rebooting. We want the trace. */
292 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
294 #define EXCPT_BENIGN 0
295 #define EXCPT_CONTRIBUTORY 1
298 static int exception_class(int vector)
308 return EXCPT_CONTRIBUTORY;
315 #define EXCPT_FAULT 0
317 #define EXCPT_ABORT 2
318 #define EXCPT_INTERRUPT 3
320 static int exception_type(int vector)
324 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
325 return EXCPT_INTERRUPT;
329 /* #DB is trap, as instruction watchpoints are handled elsewhere */
330 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
333 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
336 /* Reserved exceptions will result in fault */
340 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
341 unsigned nr, bool has_error, u32 error_code,
347 kvm_make_request(KVM_REQ_EVENT, vcpu);
349 if (!vcpu->arch.exception.pending) {
351 vcpu->arch.exception.pending = true;
352 vcpu->arch.exception.has_error_code = has_error;
353 vcpu->arch.exception.nr = nr;
354 vcpu->arch.exception.error_code = error_code;
355 vcpu->arch.exception.reinject = reinject;
359 /* to check exception */
360 prev_nr = vcpu->arch.exception.nr;
361 if (prev_nr == DF_VECTOR) {
362 /* triple fault -> shutdown */
363 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
366 class1 = exception_class(prev_nr);
367 class2 = exception_class(nr);
368 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
369 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
370 /* generate double fault per SDM Table 5-5 */
371 vcpu->arch.exception.pending = true;
372 vcpu->arch.exception.has_error_code = true;
373 vcpu->arch.exception.nr = DF_VECTOR;
374 vcpu->arch.exception.error_code = 0;
376 /* replace previous exception with a new one in a hope
377 that instruction re-execution will regenerate lost
382 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
384 kvm_multiple_exception(vcpu, nr, false, 0, false);
386 EXPORT_SYMBOL_GPL(kvm_queue_exception);
388 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
390 kvm_multiple_exception(vcpu, nr, false, 0, true);
392 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
394 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
397 kvm_inject_gp(vcpu, 0);
399 kvm_x86_ops->skip_emulated_instruction(vcpu);
401 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
403 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
405 ++vcpu->stat.pf_guest;
406 vcpu->arch.cr2 = fault->address;
407 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
409 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
411 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
413 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
414 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
416 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
419 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
421 atomic_inc(&vcpu->arch.nmi_queued);
422 kvm_make_request(KVM_REQ_NMI, vcpu);
424 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
426 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
428 kvm_multiple_exception(vcpu, nr, true, error_code, false);
430 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
432 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
434 kvm_multiple_exception(vcpu, nr, true, error_code, true);
436 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
439 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
440 * a #GP and return false.
442 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
444 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
446 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
449 EXPORT_SYMBOL_GPL(kvm_require_cpl);
452 * This function will be used to read from the physical memory of the currently
453 * running guest. The difference to kvm_read_guest_page is that this function
454 * can read from guest physical or from the guest's guest physical memory.
456 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
457 gfn_t ngfn, void *data, int offset, int len,
463 ngpa = gfn_to_gpa(ngfn);
464 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
465 if (real_gfn == UNMAPPED_GVA)
468 real_gfn = gpa_to_gfn(real_gfn);
470 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
472 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
474 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
475 void *data, int offset, int len, u32 access)
477 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
478 data, offset, len, access);
482 * Load the pae pdptrs. Return true is they are all valid.
484 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
486 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
487 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
490 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
492 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
493 offset * sizeof(u64), sizeof(pdpte),
494 PFERR_USER_MASK|PFERR_WRITE_MASK);
499 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
500 if (is_present_gpte(pdpte[i]) &&
501 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
508 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
509 __set_bit(VCPU_EXREG_PDPTR,
510 (unsigned long *)&vcpu->arch.regs_avail);
511 __set_bit(VCPU_EXREG_PDPTR,
512 (unsigned long *)&vcpu->arch.regs_dirty);
517 EXPORT_SYMBOL_GPL(load_pdptrs);
519 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
521 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
527 if (is_long_mode(vcpu) || !is_pae(vcpu))
530 if (!test_bit(VCPU_EXREG_PDPTR,
531 (unsigned long *)&vcpu->arch.regs_avail))
534 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
535 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
536 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
537 PFERR_USER_MASK | PFERR_WRITE_MASK);
540 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
546 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
548 unsigned long old_cr0 = kvm_read_cr0(vcpu);
549 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
550 X86_CR0_CD | X86_CR0_NW;
555 if (cr0 & 0xffffffff00000000UL)
559 cr0 &= ~CR0_RESERVED_BITS;
561 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
564 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
567 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
569 if ((vcpu->arch.efer & EFER_LME)) {
574 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
579 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
584 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
587 kvm_x86_ops->set_cr0(vcpu, cr0);
589 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
590 kvm_clear_async_pf_completion_queue(vcpu);
591 kvm_async_pf_hash_reset(vcpu);
594 if ((cr0 ^ old_cr0) & update_bits)
595 kvm_mmu_reset_context(vcpu);
598 EXPORT_SYMBOL_GPL(kvm_set_cr0);
600 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
602 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
604 EXPORT_SYMBOL_GPL(kvm_lmsw);
606 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
608 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
609 !vcpu->guest_xcr0_loaded) {
610 /* kvm_set_xcr() also depends on this */
611 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
612 vcpu->guest_xcr0_loaded = 1;
616 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
618 if (vcpu->guest_xcr0_loaded) {
619 if (vcpu->arch.xcr0 != host_xcr0)
620 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
621 vcpu->guest_xcr0_loaded = 0;
625 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
628 u64 old_xcr0 = vcpu->arch.xcr0;
631 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
632 if (index != XCR_XFEATURE_ENABLED_MASK)
634 if (!(xcr0 & XSTATE_FP))
636 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
640 * Do not allow the guest to set bits that we do not support
641 * saving. However, xcr0 bit 0 is always set, even if the
642 * emulated CPU does not support XSAVE (see fx_init).
644 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
645 if (xcr0 & ~valid_bits)
648 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
651 kvm_put_guest_xcr0(vcpu);
652 vcpu->arch.xcr0 = xcr0;
654 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
655 kvm_update_cpuid(vcpu);
659 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
661 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
662 __kvm_set_xcr(vcpu, index, xcr)) {
663 kvm_inject_gp(vcpu, 0);
668 EXPORT_SYMBOL_GPL(kvm_set_xcr);
670 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
672 unsigned long old_cr4 = kvm_read_cr4(vcpu);
673 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
674 X86_CR4_PAE | X86_CR4_SMEP;
675 if (cr4 & CR4_RESERVED_BITS)
678 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
681 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
684 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
687 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
690 if (is_long_mode(vcpu)) {
691 if (!(cr4 & X86_CR4_PAE))
693 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
694 && ((cr4 ^ old_cr4) & pdptr_bits)
695 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
699 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
700 if (!guest_cpuid_has_pcid(vcpu))
703 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
704 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
708 if (kvm_x86_ops->set_cr4(vcpu, cr4))
711 if (((cr4 ^ old_cr4) & pdptr_bits) ||
712 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
713 kvm_mmu_reset_context(vcpu);
715 if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
716 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
718 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
719 kvm_update_cpuid(vcpu);
723 EXPORT_SYMBOL_GPL(kvm_set_cr4);
725 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
727 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
728 kvm_mmu_sync_roots(vcpu);
729 kvm_mmu_flush_tlb(vcpu);
733 if (is_long_mode(vcpu)) {
734 if (cr3 & CR3_L_MODE_RESERVED_BITS)
736 } else if (is_pae(vcpu) && is_paging(vcpu) &&
737 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
740 vcpu->arch.cr3 = cr3;
741 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
742 kvm_mmu_new_cr3(vcpu);
745 EXPORT_SYMBOL_GPL(kvm_set_cr3);
747 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
749 if (cr8 & CR8_RESERVED_BITS)
751 if (irqchip_in_kernel(vcpu->kvm))
752 kvm_lapic_set_tpr(vcpu, cr8);
754 vcpu->arch.cr8 = cr8;
757 EXPORT_SYMBOL_GPL(kvm_set_cr8);
759 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
761 if (irqchip_in_kernel(vcpu->kvm))
762 return kvm_lapic_get_cr8(vcpu);
764 return vcpu->arch.cr8;
766 EXPORT_SYMBOL_GPL(kvm_get_cr8);
768 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
770 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
771 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
774 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
778 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
779 dr7 = vcpu->arch.guest_debug_dr7;
781 dr7 = vcpu->arch.dr7;
782 kvm_x86_ops->set_dr7(vcpu, dr7);
783 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
784 if (dr7 & DR7_BP_EN_MASK)
785 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
788 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
790 u64 fixed = DR6_FIXED_1;
792 if (!guest_cpuid_has_rtm(vcpu))
797 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
801 vcpu->arch.db[dr] = val;
802 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
803 vcpu->arch.eff_db[dr] = val;
806 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
810 if (val & 0xffffffff00000000ULL)
812 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
813 kvm_update_dr6(vcpu);
816 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
820 if (val & 0xffffffff00000000ULL)
822 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
823 kvm_update_dr7(vcpu);
830 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
834 res = __kvm_set_dr(vcpu, dr, val);
836 kvm_queue_exception(vcpu, UD_VECTOR);
838 kvm_inject_gp(vcpu, 0);
842 EXPORT_SYMBOL_GPL(kvm_set_dr);
844 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
848 *val = vcpu->arch.db[dr];
851 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
855 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
856 *val = vcpu->arch.dr6;
858 *val = kvm_x86_ops->get_dr6(vcpu);
861 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
865 *val = vcpu->arch.dr7;
872 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
874 if (_kvm_get_dr(vcpu, dr, val)) {
875 kvm_queue_exception(vcpu, UD_VECTOR);
880 EXPORT_SYMBOL_GPL(kvm_get_dr);
882 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
884 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
888 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
891 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
892 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
895 EXPORT_SYMBOL_GPL(kvm_rdpmc);
898 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
899 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
901 * This list is modified at module load time to reflect the
902 * capabilities of the host cpu. This capabilities test skips MSRs that are
903 * kvm-specific. Those are put in the beginning of the list.
906 #define KVM_SAVE_MSRS_BEGIN 12
907 static u32 msrs_to_save[] = {
908 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
909 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
910 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
911 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
912 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
914 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
917 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
919 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
920 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
923 static unsigned num_msrs_to_save;
925 static const u32 emulated_msrs[] = {
927 MSR_IA32_TSCDEADLINE,
928 MSR_IA32_MISC_ENABLE,
933 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
935 if (efer & efer_reserved_bits)
938 if (efer & EFER_FFXSR) {
939 struct kvm_cpuid_entry2 *feat;
941 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
942 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
946 if (efer & EFER_SVME) {
947 struct kvm_cpuid_entry2 *feat;
949 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
950 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
956 EXPORT_SYMBOL_GPL(kvm_valid_efer);
958 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
960 u64 old_efer = vcpu->arch.efer;
962 if (!kvm_valid_efer(vcpu, efer))
966 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
970 efer |= vcpu->arch.efer & EFER_LMA;
972 kvm_x86_ops->set_efer(vcpu, efer);
974 /* Update reserved bits */
975 if ((efer ^ old_efer) & EFER_NX)
976 kvm_mmu_reset_context(vcpu);
981 void kvm_enable_efer_bits(u64 mask)
983 efer_reserved_bits &= ~mask;
985 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
989 * Writes msr value into into the appropriate "register".
990 * Returns 0 on success, non-0 otherwise.
991 * Assumes vcpu_load() was already called.
993 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
995 return kvm_x86_ops->set_msr(vcpu, msr);
999 * Adapt set_msr() to msr_io()'s calling convention
1001 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1003 struct msr_data msr;
1007 msr.host_initiated = true;
1008 return kvm_set_msr(vcpu, &msr);
1011 #ifdef CONFIG_X86_64
1012 struct pvclock_gtod_data {
1015 struct { /* extract of a clocksource struct */
1027 static struct pvclock_gtod_data pvclock_gtod_data;
1029 static void update_pvclock_gtod(struct timekeeper *tk)
1031 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1034 boot_ns = ktime_to_ns(ktime_add(tk->tkr.base_mono, tk->offs_boot));
1036 write_seqcount_begin(&vdata->seq);
1038 /* copy pvclock gtod data */
1039 vdata->clock.vclock_mode = tk->tkr.clock->archdata.vclock_mode;
1040 vdata->clock.cycle_last = tk->tkr.cycle_last;
1041 vdata->clock.mask = tk->tkr.mask;
1042 vdata->clock.mult = tk->tkr.mult;
1043 vdata->clock.shift = tk->tkr.shift;
1045 vdata->boot_ns = boot_ns;
1046 vdata->nsec_base = tk->tkr.xtime_nsec;
1048 write_seqcount_end(&vdata->seq);
1053 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1057 struct pvclock_wall_clock wc;
1058 struct timespec boot;
1063 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1068 ++version; /* first time write, random junk */
1072 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1075 * The guest calculates current wall clock time by adding
1076 * system time (updated by kvm_guest_time_update below) to the
1077 * wall clock specified here. guest system time equals host
1078 * system time for us, thus we must fill in host boot time here.
1082 if (kvm->arch.kvmclock_offset) {
1083 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1084 boot = timespec_sub(boot, ts);
1086 wc.sec = boot.tv_sec;
1087 wc.nsec = boot.tv_nsec;
1088 wc.version = version;
1090 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1093 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1096 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1098 uint32_t quotient, remainder;
1100 /* Don't try to replace with do_div(), this one calculates
1101 * "(dividend << 32) / divisor" */
1103 : "=a" (quotient), "=d" (remainder)
1104 : "0" (0), "1" (dividend), "r" (divisor) );
1108 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1109 s8 *pshift, u32 *pmultiplier)
1116 tps64 = base_khz * 1000LL;
1117 scaled64 = scaled_khz * 1000LL;
1118 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1123 tps32 = (uint32_t)tps64;
1124 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1125 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1133 *pmultiplier = div_frac(scaled64, tps32);
1135 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1136 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1139 static inline u64 get_kernel_ns(void)
1141 return ktime_get_boot_ns();
1144 #ifdef CONFIG_X86_64
1145 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1148 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1149 unsigned long max_tsc_khz;
1151 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1153 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1154 vcpu->arch.virtual_tsc_shift);
1157 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1159 u64 v = (u64)khz * (1000000 + ppm);
1164 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1166 u32 thresh_lo, thresh_hi;
1167 int use_scaling = 0;
1169 /* tsc_khz can be zero if TSC calibration fails */
1170 if (this_tsc_khz == 0)
1173 /* Compute a scale to convert nanoseconds in TSC cycles */
1174 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1175 &vcpu->arch.virtual_tsc_shift,
1176 &vcpu->arch.virtual_tsc_mult);
1177 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1180 * Compute the variation in TSC rate which is acceptable
1181 * within the range of tolerance and decide if the
1182 * rate being applied is within that bounds of the hardware
1183 * rate. If so, no scaling or compensation need be done.
1185 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1186 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1187 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1188 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1191 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1194 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1196 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1197 vcpu->arch.virtual_tsc_mult,
1198 vcpu->arch.virtual_tsc_shift);
1199 tsc += vcpu->arch.this_tsc_write;
1203 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1205 #ifdef CONFIG_X86_64
1207 bool do_request = false;
1208 struct kvm_arch *ka = &vcpu->kvm->arch;
1209 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1211 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1212 atomic_read(&vcpu->kvm->online_vcpus));
1214 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1215 if (!ka->use_master_clock)
1218 if (!vcpus_matched && ka->use_master_clock)
1222 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1224 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1225 atomic_read(&vcpu->kvm->online_vcpus),
1226 ka->use_master_clock, gtod->clock.vclock_mode);
1230 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1232 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1233 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1236 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1238 struct kvm *kvm = vcpu->kvm;
1239 u64 offset, ns, elapsed;
1240 unsigned long flags;
1243 bool already_matched;
1244 u64 data = msr->data;
1246 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1247 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1248 ns = get_kernel_ns();
1249 elapsed = ns - kvm->arch.last_tsc_nsec;
1251 if (vcpu->arch.virtual_tsc_khz) {
1254 /* n.b - signed multiplication and division required */
1255 usdiff = data - kvm->arch.last_tsc_write;
1256 #ifdef CONFIG_X86_64
1257 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1259 /* do_div() only does unsigned */
1260 asm("1: idivl %[divisor]\n"
1261 "2: xor %%edx, %%edx\n"
1262 " movl $0, %[faulted]\n"
1264 ".section .fixup,\"ax\"\n"
1265 "4: movl $1, %[faulted]\n"
1269 _ASM_EXTABLE(1b, 4b)
1271 : "=A"(usdiff), [faulted] "=r" (faulted)
1272 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1275 do_div(elapsed, 1000);
1280 /* idivl overflow => difference is larger than USEC_PER_SEC */
1282 usdiff = USEC_PER_SEC;
1284 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1287 * Special case: TSC write with a small delta (1 second) of virtual
1288 * cycle time against real time is interpreted as an attempt to
1289 * synchronize the CPU.
1291 * For a reliable TSC, we can match TSC offsets, and for an unstable
1292 * TSC, we add elapsed time in this computation. We could let the
1293 * compensation code attempt to catch up if we fall behind, but
1294 * it's better to try to match offsets from the beginning.
1296 if (usdiff < USEC_PER_SEC &&
1297 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1298 if (!check_tsc_unstable()) {
1299 offset = kvm->arch.cur_tsc_offset;
1300 pr_debug("kvm: matched tsc offset for %llu\n", data);
1302 u64 delta = nsec_to_cycles(vcpu, elapsed);
1304 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1305 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1308 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1311 * We split periods of matched TSC writes into generations.
1312 * For each generation, we track the original measured
1313 * nanosecond time, offset, and write, so if TSCs are in
1314 * sync, we can match exact offset, and if not, we can match
1315 * exact software computation in compute_guest_tsc()
1317 * These values are tracked in kvm->arch.cur_xxx variables.
1319 kvm->arch.cur_tsc_generation++;
1320 kvm->arch.cur_tsc_nsec = ns;
1321 kvm->arch.cur_tsc_write = data;
1322 kvm->arch.cur_tsc_offset = offset;
1324 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1325 kvm->arch.cur_tsc_generation, data);
1329 * We also track th most recent recorded KHZ, write and time to
1330 * allow the matching interval to be extended at each write.
1332 kvm->arch.last_tsc_nsec = ns;
1333 kvm->arch.last_tsc_write = data;
1334 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1336 vcpu->arch.last_guest_tsc = data;
1338 /* Keep track of which generation this VCPU has synchronized to */
1339 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1340 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1341 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1343 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1344 update_ia32_tsc_adjust_msr(vcpu, offset);
1345 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1346 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1348 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1350 kvm->arch.nr_vcpus_matched_tsc = 0;
1351 } else if (!already_matched) {
1352 kvm->arch.nr_vcpus_matched_tsc++;
1355 kvm_track_tsc_matching(vcpu);
1356 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1359 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1361 #ifdef CONFIG_X86_64
1363 static cycle_t read_tsc(void)
1369 * Empirically, a fence (of type that depends on the CPU)
1370 * before rdtsc is enough to ensure that rdtsc is ordered
1371 * with respect to loads. The various CPU manuals are unclear
1372 * as to whether rdtsc can be reordered with later loads,
1373 * but no one has ever seen it happen.
1376 ret = (cycle_t)vget_cycles();
1378 last = pvclock_gtod_data.clock.cycle_last;
1380 if (likely(ret >= last))
1384 * GCC likes to generate cmov here, but this branch is extremely
1385 * predictable (it's just a funciton of time and the likely is
1386 * very likely) and there's a data dependence, so force GCC
1387 * to generate a branch instead. I don't barrier() because
1388 * we don't actually need a barrier, and if this function
1389 * ever gets inlined it will generate worse code.
1395 static inline u64 vgettsc(cycle_t *cycle_now)
1398 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1400 *cycle_now = read_tsc();
1402 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1403 return v * gtod->clock.mult;
1406 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1408 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1414 seq = read_seqcount_begin(>od->seq);
1415 mode = gtod->clock.vclock_mode;
1416 ns = gtod->nsec_base;
1417 ns += vgettsc(cycle_now);
1418 ns >>= gtod->clock.shift;
1419 ns += gtod->boot_ns;
1420 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1426 /* returns true if host is using tsc clocksource */
1427 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1429 /* checked again under seqlock below */
1430 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1433 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1439 * Assuming a stable TSC across physical CPUS, and a stable TSC
1440 * across virtual CPUs, the following condition is possible.
1441 * Each numbered line represents an event visible to both
1442 * CPUs at the next numbered event.
1444 * "timespecX" represents host monotonic time. "tscX" represents
1447 * VCPU0 on CPU0 | VCPU1 on CPU1
1449 * 1. read timespec0,tsc0
1450 * 2. | timespec1 = timespec0 + N
1452 * 3. transition to guest | transition to guest
1453 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1454 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1455 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1457 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1460 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1462 * - 0 < N - M => M < N
1464 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1465 * always the case (the difference between two distinct xtime instances
1466 * might be smaller then the difference between corresponding TSC reads,
1467 * when updating guest vcpus pvclock areas).
1469 * To avoid that problem, do not allow visibility of distinct
1470 * system_timestamp/tsc_timestamp values simultaneously: use a master
1471 * copy of host monotonic time values. Update that master copy
1474 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1478 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1480 #ifdef CONFIG_X86_64
1481 struct kvm_arch *ka = &kvm->arch;
1483 bool host_tsc_clocksource, vcpus_matched;
1485 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1486 atomic_read(&kvm->online_vcpus));
1489 * If the host uses TSC clock, then passthrough TSC as stable
1492 host_tsc_clocksource = kvm_get_time_and_clockread(
1493 &ka->master_kernel_ns,
1494 &ka->master_cycle_now);
1496 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1497 && !backwards_tsc_observed;
1499 if (ka->use_master_clock)
1500 atomic_set(&kvm_guest_has_master_clock, 1);
1502 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1503 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1508 static void kvm_gen_update_masterclock(struct kvm *kvm)
1510 #ifdef CONFIG_X86_64
1512 struct kvm_vcpu *vcpu;
1513 struct kvm_arch *ka = &kvm->arch;
1515 spin_lock(&ka->pvclock_gtod_sync_lock);
1516 kvm_make_mclock_inprogress_request(kvm);
1517 /* no guest entries from this point */
1518 pvclock_update_vm_gtod_copy(kvm);
1520 kvm_for_each_vcpu(i, vcpu, kvm)
1521 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1523 /* guest entries allowed */
1524 kvm_for_each_vcpu(i, vcpu, kvm)
1525 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1527 spin_unlock(&ka->pvclock_gtod_sync_lock);
1531 static int kvm_guest_time_update(struct kvm_vcpu *v)
1533 unsigned long flags, this_tsc_khz;
1534 struct kvm_vcpu_arch *vcpu = &v->arch;
1535 struct kvm_arch *ka = &v->kvm->arch;
1537 u64 tsc_timestamp, host_tsc;
1538 struct pvclock_vcpu_time_info guest_hv_clock;
1540 bool use_master_clock;
1546 * If the host uses TSC clock, then passthrough TSC as stable
1549 spin_lock(&ka->pvclock_gtod_sync_lock);
1550 use_master_clock = ka->use_master_clock;
1551 if (use_master_clock) {
1552 host_tsc = ka->master_cycle_now;
1553 kernel_ns = ka->master_kernel_ns;
1555 spin_unlock(&ka->pvclock_gtod_sync_lock);
1557 /* Keep irq disabled to prevent changes to the clock */
1558 local_irq_save(flags);
1559 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1560 if (unlikely(this_tsc_khz == 0)) {
1561 local_irq_restore(flags);
1562 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1565 if (!use_master_clock) {
1566 host_tsc = native_read_tsc();
1567 kernel_ns = get_kernel_ns();
1570 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1573 * We may have to catch up the TSC to match elapsed wall clock
1574 * time for two reasons, even if kvmclock is used.
1575 * 1) CPU could have been running below the maximum TSC rate
1576 * 2) Broken TSC compensation resets the base at each VCPU
1577 * entry to avoid unknown leaps of TSC even when running
1578 * again on the same CPU. This may cause apparent elapsed
1579 * time to disappear, and the guest to stand still or run
1582 if (vcpu->tsc_catchup) {
1583 u64 tsc = compute_guest_tsc(v, kernel_ns);
1584 if (tsc > tsc_timestamp) {
1585 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1586 tsc_timestamp = tsc;
1590 local_irq_restore(flags);
1592 if (!vcpu->pv_time_enabled)
1595 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1596 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1597 &vcpu->hv_clock.tsc_shift,
1598 &vcpu->hv_clock.tsc_to_system_mul);
1599 vcpu->hw_tsc_khz = this_tsc_khz;
1602 /* With all the info we got, fill in the values */
1603 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1604 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1605 vcpu->last_guest_tsc = tsc_timestamp;
1608 * The interface expects us to write an even number signaling that the
1609 * update is finished. Since the guest won't see the intermediate
1610 * state, we just increase by 2 at the end.
1612 vcpu->hv_clock.version += 2;
1614 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1615 &guest_hv_clock, sizeof(guest_hv_clock))))
1618 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1619 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1621 if (vcpu->pvclock_set_guest_stopped_request) {
1622 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1623 vcpu->pvclock_set_guest_stopped_request = false;
1626 /* If the host uses TSC clocksource, then it is stable */
1627 if (use_master_clock)
1628 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1630 vcpu->hv_clock.flags = pvclock_flags;
1632 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1634 sizeof(vcpu->hv_clock));
1639 * kvmclock updates which are isolated to a given vcpu, such as
1640 * vcpu->cpu migration, should not allow system_timestamp from
1641 * the rest of the vcpus to remain static. Otherwise ntp frequency
1642 * correction applies to one vcpu's system_timestamp but not
1645 * So in those cases, request a kvmclock update for all vcpus.
1646 * We need to rate-limit these requests though, as they can
1647 * considerably slow guests that have a large number of vcpus.
1648 * The time for a remote vcpu to update its kvmclock is bound
1649 * by the delay we use to rate-limit the updates.
1652 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1654 static void kvmclock_update_fn(struct work_struct *work)
1657 struct delayed_work *dwork = to_delayed_work(work);
1658 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1659 kvmclock_update_work);
1660 struct kvm *kvm = container_of(ka, struct kvm, arch);
1661 struct kvm_vcpu *vcpu;
1663 kvm_for_each_vcpu(i, vcpu, kvm) {
1664 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1665 kvm_vcpu_kick(vcpu);
1669 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1671 struct kvm *kvm = v->kvm;
1673 set_bit(KVM_REQ_CLOCK_UPDATE, &v->requests);
1674 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1675 KVMCLOCK_UPDATE_DELAY);
1678 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1680 static void kvmclock_sync_fn(struct work_struct *work)
1682 struct delayed_work *dwork = to_delayed_work(work);
1683 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1684 kvmclock_sync_work);
1685 struct kvm *kvm = container_of(ka, struct kvm, arch);
1687 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1688 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1689 KVMCLOCK_SYNC_PERIOD);
1692 static bool msr_mtrr_valid(unsigned msr)
1695 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1696 case MSR_MTRRfix64K_00000:
1697 case MSR_MTRRfix16K_80000:
1698 case MSR_MTRRfix16K_A0000:
1699 case MSR_MTRRfix4K_C0000:
1700 case MSR_MTRRfix4K_C8000:
1701 case MSR_MTRRfix4K_D0000:
1702 case MSR_MTRRfix4K_D8000:
1703 case MSR_MTRRfix4K_E0000:
1704 case MSR_MTRRfix4K_E8000:
1705 case MSR_MTRRfix4K_F0000:
1706 case MSR_MTRRfix4K_F8000:
1707 case MSR_MTRRdefType:
1708 case MSR_IA32_CR_PAT:
1716 static bool valid_pat_type(unsigned t)
1718 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1721 static bool valid_mtrr_type(unsigned t)
1723 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1726 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1731 if (!msr_mtrr_valid(msr))
1734 if (msr == MSR_IA32_CR_PAT) {
1735 for (i = 0; i < 8; i++)
1736 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1739 } else if (msr == MSR_MTRRdefType) {
1742 return valid_mtrr_type(data & 0xff);
1743 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1744 for (i = 0; i < 8 ; i++)
1745 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1750 /* variable MTRRs */
1751 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1753 for (i = 63; i > boot_cpu_data.x86_phys_bits; i--)
1754 mask |= (1ULL << i);
1755 if ((msr & 1) == 0) {
1757 if (!valid_mtrr_type(data & 0xff))
1764 kvm_inject_gp(vcpu, 0);
1771 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1773 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1775 if (!mtrr_valid(vcpu, msr, data))
1778 if (msr == MSR_MTRRdefType) {
1779 vcpu->arch.mtrr_state.def_type = data;
1780 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1781 } else if (msr == MSR_MTRRfix64K_00000)
1783 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1784 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1785 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1786 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1787 else if (msr == MSR_IA32_CR_PAT)
1788 vcpu->arch.pat = data;
1789 else { /* Variable MTRRs */
1790 int idx, is_mtrr_mask;
1793 idx = (msr - 0x200) / 2;
1794 is_mtrr_mask = msr - 0x200 - 2 * idx;
1797 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1800 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1804 kvm_mmu_reset_context(vcpu);
1808 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1810 u64 mcg_cap = vcpu->arch.mcg_cap;
1811 unsigned bank_num = mcg_cap & 0xff;
1814 case MSR_IA32_MCG_STATUS:
1815 vcpu->arch.mcg_status = data;
1817 case MSR_IA32_MCG_CTL:
1818 if (!(mcg_cap & MCG_CTL_P))
1820 if (data != 0 && data != ~(u64)0)
1822 vcpu->arch.mcg_ctl = data;
1825 if (msr >= MSR_IA32_MC0_CTL &&
1826 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1827 u32 offset = msr - MSR_IA32_MC0_CTL;
1828 /* only 0 or all 1s can be written to IA32_MCi_CTL
1829 * some Linux kernels though clear bit 10 in bank 4 to
1830 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1831 * this to avoid an uncatched #GP in the guest
1833 if ((offset & 0x3) == 0 &&
1834 data != 0 && (data | (1 << 10)) != ~(u64)0)
1836 vcpu->arch.mce_banks[offset] = data;
1844 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1846 struct kvm *kvm = vcpu->kvm;
1847 int lm = is_long_mode(vcpu);
1848 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1849 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1850 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1851 : kvm->arch.xen_hvm_config.blob_size_32;
1852 u32 page_num = data & ~PAGE_MASK;
1853 u64 page_addr = data & PAGE_MASK;
1858 if (page_num >= blob_size)
1861 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1866 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1875 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1877 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1880 static bool kvm_hv_msr_partition_wide(u32 msr)
1884 case HV_X64_MSR_GUEST_OS_ID:
1885 case HV_X64_MSR_HYPERCALL:
1886 case HV_X64_MSR_REFERENCE_TSC:
1887 case HV_X64_MSR_TIME_REF_COUNT:
1895 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1897 struct kvm *kvm = vcpu->kvm;
1900 case HV_X64_MSR_GUEST_OS_ID:
1901 kvm->arch.hv_guest_os_id = data;
1902 /* setting guest os id to zero disables hypercall page */
1903 if (!kvm->arch.hv_guest_os_id)
1904 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1906 case HV_X64_MSR_HYPERCALL: {
1911 /* if guest os id is not set hypercall should remain disabled */
1912 if (!kvm->arch.hv_guest_os_id)
1914 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1915 kvm->arch.hv_hypercall = data;
1918 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1919 addr = gfn_to_hva(kvm, gfn);
1920 if (kvm_is_error_hva(addr))
1922 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1923 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1924 if (__copy_to_user((void __user *)addr, instructions, 4))
1926 kvm->arch.hv_hypercall = data;
1927 mark_page_dirty(kvm, gfn);
1930 case HV_X64_MSR_REFERENCE_TSC: {
1932 HV_REFERENCE_TSC_PAGE tsc_ref;
1933 memset(&tsc_ref, 0, sizeof(tsc_ref));
1934 kvm->arch.hv_tsc_page = data;
1935 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1937 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1938 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1939 &tsc_ref, sizeof(tsc_ref)))
1941 mark_page_dirty(kvm, gfn);
1945 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1946 "data 0x%llx\n", msr, data);
1952 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1955 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1959 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1960 vcpu->arch.hv_vapic = data;
1961 if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1965 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1966 addr = gfn_to_hva(vcpu->kvm, gfn);
1967 if (kvm_is_error_hva(addr))
1969 if (__clear_user((void __user *)addr, PAGE_SIZE))
1971 vcpu->arch.hv_vapic = data;
1972 mark_page_dirty(vcpu->kvm, gfn);
1973 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
1977 case HV_X64_MSR_EOI:
1978 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1979 case HV_X64_MSR_ICR:
1980 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1981 case HV_X64_MSR_TPR:
1982 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1984 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1985 "data 0x%llx\n", msr, data);
1992 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1994 gpa_t gpa = data & ~0x3f;
1996 /* Bits 2:5 are reserved, Should be zero */
2000 vcpu->arch.apf.msr_val = data;
2002 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2003 kvm_clear_async_pf_completion_queue(vcpu);
2004 kvm_async_pf_hash_reset(vcpu);
2008 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2012 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2013 kvm_async_pf_wakeup_all(vcpu);
2017 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2019 vcpu->arch.pv_time_enabled = false;
2022 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2026 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2029 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2030 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2031 vcpu->arch.st.accum_steal = delta;
2034 static void record_steal_time(struct kvm_vcpu *vcpu)
2036 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2039 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2040 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2043 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2044 vcpu->arch.st.steal.version += 2;
2045 vcpu->arch.st.accum_steal = 0;
2047 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2048 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2051 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2054 u32 msr = msr_info->index;
2055 u64 data = msr_info->data;
2058 case MSR_AMD64_NB_CFG:
2059 case MSR_IA32_UCODE_REV:
2060 case MSR_IA32_UCODE_WRITE:
2061 case MSR_VM_HSAVE_PA:
2062 case MSR_AMD64_PATCH_LOADER:
2063 case MSR_AMD64_BU_CFG2:
2067 return set_efer(vcpu, data);
2069 data &= ~(u64)0x40; /* ignore flush filter disable */
2070 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2071 data &= ~(u64)0x8; /* ignore TLB cache disable */
2072 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2074 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2079 case MSR_FAM10H_MMIO_CONF_BASE:
2081 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2086 case MSR_IA32_DEBUGCTLMSR:
2088 /* We support the non-activated case already */
2090 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2091 /* Values other than LBR and BTF are vendor-specific,
2092 thus reserved and should throw a #GP */
2095 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2098 case 0x200 ... 0x2ff:
2099 return set_msr_mtrr(vcpu, msr, data);
2100 case MSR_IA32_APICBASE:
2101 return kvm_set_apic_base(vcpu, msr_info);
2102 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2103 return kvm_x2apic_msr_write(vcpu, msr, data);
2104 case MSR_IA32_TSCDEADLINE:
2105 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2107 case MSR_IA32_TSC_ADJUST:
2108 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2109 if (!msr_info->host_initiated) {
2110 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2111 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2113 vcpu->arch.ia32_tsc_adjust_msr = data;
2116 case MSR_IA32_MISC_ENABLE:
2117 vcpu->arch.ia32_misc_enable_msr = data;
2119 case MSR_KVM_WALL_CLOCK_NEW:
2120 case MSR_KVM_WALL_CLOCK:
2121 vcpu->kvm->arch.wall_clock = data;
2122 kvm_write_wall_clock(vcpu->kvm, data);
2124 case MSR_KVM_SYSTEM_TIME_NEW:
2125 case MSR_KVM_SYSTEM_TIME: {
2127 kvmclock_reset(vcpu);
2129 vcpu->arch.time = data;
2130 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2132 /* we verify if the enable bit is set... */
2136 gpa_offset = data & ~(PAGE_MASK | 1);
2138 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2139 &vcpu->arch.pv_time, data & ~1ULL,
2140 sizeof(struct pvclock_vcpu_time_info)))
2141 vcpu->arch.pv_time_enabled = false;
2143 vcpu->arch.pv_time_enabled = true;
2147 case MSR_KVM_ASYNC_PF_EN:
2148 if (kvm_pv_enable_async_pf(vcpu, data))
2151 case MSR_KVM_STEAL_TIME:
2153 if (unlikely(!sched_info_on()))
2156 if (data & KVM_STEAL_RESERVED_MASK)
2159 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2160 data & KVM_STEAL_VALID_BITS,
2161 sizeof(struct kvm_steal_time)))
2164 vcpu->arch.st.msr_val = data;
2166 if (!(data & KVM_MSR_ENABLED))
2169 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2172 accumulate_steal_time(vcpu);
2175 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2178 case MSR_KVM_PV_EOI_EN:
2179 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2183 case MSR_IA32_MCG_CTL:
2184 case MSR_IA32_MCG_STATUS:
2185 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2186 return set_msr_mce(vcpu, msr, data);
2188 /* Performance counters are not protected by a CPUID bit,
2189 * so we should check all of them in the generic path for the sake of
2190 * cross vendor migration.
2191 * Writing a zero into the event select MSRs disables them,
2192 * which we perfectly emulate ;-). Any other value should be at least
2193 * reported, some guests depend on them.
2195 case MSR_K7_EVNTSEL0:
2196 case MSR_K7_EVNTSEL1:
2197 case MSR_K7_EVNTSEL2:
2198 case MSR_K7_EVNTSEL3:
2200 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2201 "0x%x data 0x%llx\n", msr, data);
2203 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2204 * so we ignore writes to make it happy.
2206 case MSR_K7_PERFCTR0:
2207 case MSR_K7_PERFCTR1:
2208 case MSR_K7_PERFCTR2:
2209 case MSR_K7_PERFCTR3:
2210 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2211 "0x%x data 0x%llx\n", msr, data);
2213 case MSR_P6_PERFCTR0:
2214 case MSR_P6_PERFCTR1:
2216 case MSR_P6_EVNTSEL0:
2217 case MSR_P6_EVNTSEL1:
2218 if (kvm_pmu_msr(vcpu, msr))
2219 return kvm_pmu_set_msr(vcpu, msr_info);
2221 if (pr || data != 0)
2222 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2223 "0x%x data 0x%llx\n", msr, data);
2225 case MSR_K7_CLK_CTL:
2227 * Ignore all writes to this no longer documented MSR.
2228 * Writes are only relevant for old K7 processors,
2229 * all pre-dating SVM, but a recommended workaround from
2230 * AMD for these chips. It is possible to specify the
2231 * affected processor models on the command line, hence
2232 * the need to ignore the workaround.
2235 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2236 if (kvm_hv_msr_partition_wide(msr)) {
2238 mutex_lock(&vcpu->kvm->lock);
2239 r = set_msr_hyperv_pw(vcpu, msr, data);
2240 mutex_unlock(&vcpu->kvm->lock);
2243 return set_msr_hyperv(vcpu, msr, data);
2245 case MSR_IA32_BBL_CR_CTL3:
2246 /* Drop writes to this legacy MSR -- see rdmsr
2247 * counterpart for further detail.
2249 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2251 case MSR_AMD64_OSVW_ID_LENGTH:
2252 if (!guest_cpuid_has_osvw(vcpu))
2254 vcpu->arch.osvw.length = data;
2256 case MSR_AMD64_OSVW_STATUS:
2257 if (!guest_cpuid_has_osvw(vcpu))
2259 vcpu->arch.osvw.status = data;
2262 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2263 return xen_hvm_config(vcpu, data);
2264 if (kvm_pmu_msr(vcpu, msr))
2265 return kvm_pmu_set_msr(vcpu, msr_info);
2267 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2271 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2278 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2282 * Reads an msr value (of 'msr_index') into 'pdata'.
2283 * Returns 0 on success, non-0 otherwise.
2284 * Assumes vcpu_load() was already called.
2286 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2288 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2291 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2293 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2295 if (!msr_mtrr_valid(msr))
2298 if (msr == MSR_MTRRdefType)
2299 *pdata = vcpu->arch.mtrr_state.def_type +
2300 (vcpu->arch.mtrr_state.enabled << 10);
2301 else if (msr == MSR_MTRRfix64K_00000)
2303 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2304 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2305 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2306 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2307 else if (msr == MSR_IA32_CR_PAT)
2308 *pdata = vcpu->arch.pat;
2309 else { /* Variable MTRRs */
2310 int idx, is_mtrr_mask;
2313 idx = (msr - 0x200) / 2;
2314 is_mtrr_mask = msr - 0x200 - 2 * idx;
2317 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2320 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2327 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2330 u64 mcg_cap = vcpu->arch.mcg_cap;
2331 unsigned bank_num = mcg_cap & 0xff;
2334 case MSR_IA32_P5_MC_ADDR:
2335 case MSR_IA32_P5_MC_TYPE:
2338 case MSR_IA32_MCG_CAP:
2339 data = vcpu->arch.mcg_cap;
2341 case MSR_IA32_MCG_CTL:
2342 if (!(mcg_cap & MCG_CTL_P))
2344 data = vcpu->arch.mcg_ctl;
2346 case MSR_IA32_MCG_STATUS:
2347 data = vcpu->arch.mcg_status;
2350 if (msr >= MSR_IA32_MC0_CTL &&
2351 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2352 u32 offset = msr - MSR_IA32_MC0_CTL;
2353 data = vcpu->arch.mce_banks[offset];
2362 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2365 struct kvm *kvm = vcpu->kvm;
2368 case HV_X64_MSR_GUEST_OS_ID:
2369 data = kvm->arch.hv_guest_os_id;
2371 case HV_X64_MSR_HYPERCALL:
2372 data = kvm->arch.hv_hypercall;
2374 case HV_X64_MSR_TIME_REF_COUNT: {
2376 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2379 case HV_X64_MSR_REFERENCE_TSC:
2380 data = kvm->arch.hv_tsc_page;
2383 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2391 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2396 case HV_X64_MSR_VP_INDEX: {
2399 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2407 case HV_X64_MSR_EOI:
2408 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2409 case HV_X64_MSR_ICR:
2410 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2411 case HV_X64_MSR_TPR:
2412 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2413 case HV_X64_MSR_APIC_ASSIST_PAGE:
2414 data = vcpu->arch.hv_vapic;
2417 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2424 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2429 case MSR_IA32_PLATFORM_ID:
2430 case MSR_IA32_EBL_CR_POWERON:
2431 case MSR_IA32_DEBUGCTLMSR:
2432 case MSR_IA32_LASTBRANCHFROMIP:
2433 case MSR_IA32_LASTBRANCHTOIP:
2434 case MSR_IA32_LASTINTFROMIP:
2435 case MSR_IA32_LASTINTTOIP:
2438 case MSR_VM_HSAVE_PA:
2439 case MSR_K7_EVNTSEL0:
2440 case MSR_K7_EVNTSEL1:
2441 case MSR_K7_EVNTSEL2:
2442 case MSR_K7_EVNTSEL3:
2443 case MSR_K7_PERFCTR0:
2444 case MSR_K7_PERFCTR1:
2445 case MSR_K7_PERFCTR2:
2446 case MSR_K7_PERFCTR3:
2447 case MSR_K8_INT_PENDING_MSG:
2448 case MSR_AMD64_NB_CFG:
2449 case MSR_FAM10H_MMIO_CONF_BASE:
2450 case MSR_AMD64_BU_CFG2:
2453 case MSR_P6_PERFCTR0:
2454 case MSR_P6_PERFCTR1:
2455 case MSR_P6_EVNTSEL0:
2456 case MSR_P6_EVNTSEL1:
2457 if (kvm_pmu_msr(vcpu, msr))
2458 return kvm_pmu_get_msr(vcpu, msr, pdata);
2461 case MSR_IA32_UCODE_REV:
2462 data = 0x100000000ULL;
2465 data = 0x500 | KVM_NR_VAR_MTRR;
2467 case 0x200 ... 0x2ff:
2468 return get_msr_mtrr(vcpu, msr, pdata);
2469 case 0xcd: /* fsb frequency */
2473 * MSR_EBC_FREQUENCY_ID
2474 * Conservative value valid for even the basic CPU models.
2475 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2476 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2477 * and 266MHz for model 3, or 4. Set Core Clock
2478 * Frequency to System Bus Frequency Ratio to 1 (bits
2479 * 31:24) even though these are only valid for CPU
2480 * models > 2, however guests may end up dividing or
2481 * multiplying by zero otherwise.
2483 case MSR_EBC_FREQUENCY_ID:
2486 case MSR_IA32_APICBASE:
2487 data = kvm_get_apic_base(vcpu);
2489 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2490 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2492 case MSR_IA32_TSCDEADLINE:
2493 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2495 case MSR_IA32_TSC_ADJUST:
2496 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2498 case MSR_IA32_MISC_ENABLE:
2499 data = vcpu->arch.ia32_misc_enable_msr;
2501 case MSR_IA32_PERF_STATUS:
2502 /* TSC increment by tick */
2504 /* CPU multiplier */
2505 data |= (((uint64_t)4ULL) << 40);
2508 data = vcpu->arch.efer;
2510 case MSR_KVM_WALL_CLOCK:
2511 case MSR_KVM_WALL_CLOCK_NEW:
2512 data = vcpu->kvm->arch.wall_clock;
2514 case MSR_KVM_SYSTEM_TIME:
2515 case MSR_KVM_SYSTEM_TIME_NEW:
2516 data = vcpu->arch.time;
2518 case MSR_KVM_ASYNC_PF_EN:
2519 data = vcpu->arch.apf.msr_val;
2521 case MSR_KVM_STEAL_TIME:
2522 data = vcpu->arch.st.msr_val;
2524 case MSR_KVM_PV_EOI_EN:
2525 data = vcpu->arch.pv_eoi.msr_val;
2527 case MSR_IA32_P5_MC_ADDR:
2528 case MSR_IA32_P5_MC_TYPE:
2529 case MSR_IA32_MCG_CAP:
2530 case MSR_IA32_MCG_CTL:
2531 case MSR_IA32_MCG_STATUS:
2532 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2533 return get_msr_mce(vcpu, msr, pdata);
2534 case MSR_K7_CLK_CTL:
2536 * Provide expected ramp-up count for K7. All other
2537 * are set to zero, indicating minimum divisors for
2540 * This prevents guest kernels on AMD host with CPU
2541 * type 6, model 8 and higher from exploding due to
2542 * the rdmsr failing.
2546 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2547 if (kvm_hv_msr_partition_wide(msr)) {
2549 mutex_lock(&vcpu->kvm->lock);
2550 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2551 mutex_unlock(&vcpu->kvm->lock);
2554 return get_msr_hyperv(vcpu, msr, pdata);
2556 case MSR_IA32_BBL_CR_CTL3:
2557 /* This legacy MSR exists but isn't fully documented in current
2558 * silicon. It is however accessed by winxp in very narrow
2559 * scenarios where it sets bit #19, itself documented as
2560 * a "reserved" bit. Best effort attempt to source coherent
2561 * read data here should the balance of the register be
2562 * interpreted by the guest:
2564 * L2 cache control register 3: 64GB range, 256KB size,
2565 * enabled, latency 0x1, configured
2569 case MSR_AMD64_OSVW_ID_LENGTH:
2570 if (!guest_cpuid_has_osvw(vcpu))
2572 data = vcpu->arch.osvw.length;
2574 case MSR_AMD64_OSVW_STATUS:
2575 if (!guest_cpuid_has_osvw(vcpu))
2577 data = vcpu->arch.osvw.status;
2580 if (kvm_pmu_msr(vcpu, msr))
2581 return kvm_pmu_get_msr(vcpu, msr, pdata);
2583 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2586 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2594 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2597 * Read or write a bunch of msrs. All parameters are kernel addresses.
2599 * @return number of msrs set successfully.
2601 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2602 struct kvm_msr_entry *entries,
2603 int (*do_msr)(struct kvm_vcpu *vcpu,
2604 unsigned index, u64 *data))
2608 idx = srcu_read_lock(&vcpu->kvm->srcu);
2609 for (i = 0; i < msrs->nmsrs; ++i)
2610 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2612 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2618 * Read or write a bunch of msrs. Parameters are user addresses.
2620 * @return number of msrs set successfully.
2622 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2623 int (*do_msr)(struct kvm_vcpu *vcpu,
2624 unsigned index, u64 *data),
2627 struct kvm_msrs msrs;
2628 struct kvm_msr_entry *entries;
2633 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2637 if (msrs.nmsrs >= MAX_IO_MSRS)
2640 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2641 entries = memdup_user(user_msrs->entries, size);
2642 if (IS_ERR(entries)) {
2643 r = PTR_ERR(entries);
2647 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2652 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2663 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2668 case KVM_CAP_IRQCHIP:
2670 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2671 case KVM_CAP_SET_TSS_ADDR:
2672 case KVM_CAP_EXT_CPUID:
2673 case KVM_CAP_EXT_EMUL_CPUID:
2674 case KVM_CAP_CLOCKSOURCE:
2676 case KVM_CAP_NOP_IO_DELAY:
2677 case KVM_CAP_MP_STATE:
2678 case KVM_CAP_SYNC_MMU:
2679 case KVM_CAP_USER_NMI:
2680 case KVM_CAP_REINJECT_CONTROL:
2681 case KVM_CAP_IRQ_INJECT_STATUS:
2683 case KVM_CAP_IOEVENTFD:
2684 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2686 case KVM_CAP_PIT_STATE2:
2687 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2688 case KVM_CAP_XEN_HVM:
2689 case KVM_CAP_ADJUST_CLOCK:
2690 case KVM_CAP_VCPU_EVENTS:
2691 case KVM_CAP_HYPERV:
2692 case KVM_CAP_HYPERV_VAPIC:
2693 case KVM_CAP_HYPERV_SPIN:
2694 case KVM_CAP_PCI_SEGMENT:
2695 case KVM_CAP_DEBUGREGS:
2696 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2698 case KVM_CAP_ASYNC_PF:
2699 case KVM_CAP_GET_TSC_KHZ:
2700 case KVM_CAP_KVMCLOCK_CTRL:
2701 case KVM_CAP_READONLY_MEM:
2702 case KVM_CAP_HYPERV_TIME:
2703 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2704 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2705 case KVM_CAP_ASSIGN_DEV_IRQ:
2706 case KVM_CAP_PCI_2_3:
2710 case KVM_CAP_COALESCED_MMIO:
2711 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2714 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2716 case KVM_CAP_NR_VCPUS:
2717 r = KVM_SOFT_MAX_VCPUS;
2719 case KVM_CAP_MAX_VCPUS:
2722 case KVM_CAP_NR_MEMSLOTS:
2723 r = KVM_USER_MEM_SLOTS;
2725 case KVM_CAP_PV_MMU: /* obsolete */
2728 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2730 r = iommu_present(&pci_bus_type);
2734 r = KVM_MAX_MCE_BANKS;
2739 case KVM_CAP_TSC_CONTROL:
2740 r = kvm_has_tsc_control;
2742 case KVM_CAP_TSC_DEADLINE_TIMER:
2743 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2753 long kvm_arch_dev_ioctl(struct file *filp,
2754 unsigned int ioctl, unsigned long arg)
2756 void __user *argp = (void __user *)arg;
2760 case KVM_GET_MSR_INDEX_LIST: {
2761 struct kvm_msr_list __user *user_msr_list = argp;
2762 struct kvm_msr_list msr_list;
2766 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2769 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2770 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2773 if (n < msr_list.nmsrs)
2776 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2777 num_msrs_to_save * sizeof(u32)))
2779 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2781 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2786 case KVM_GET_SUPPORTED_CPUID:
2787 case KVM_GET_EMULATED_CPUID: {
2788 struct kvm_cpuid2 __user *cpuid_arg = argp;
2789 struct kvm_cpuid2 cpuid;
2792 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2795 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2801 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2806 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2809 mce_cap = KVM_MCE_CAP_SUPPORTED;
2811 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2823 static void wbinvd_ipi(void *garbage)
2828 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2830 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2833 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2835 /* Address WBINVD may be executed by guest */
2836 if (need_emulate_wbinvd(vcpu)) {
2837 if (kvm_x86_ops->has_wbinvd_exit())
2838 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2839 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2840 smp_call_function_single(vcpu->cpu,
2841 wbinvd_ipi, NULL, 1);
2844 kvm_x86_ops->vcpu_load(vcpu, cpu);
2846 /* Apply any externally detected TSC adjustments (due to suspend) */
2847 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2848 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2849 vcpu->arch.tsc_offset_adjustment = 0;
2850 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2853 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2854 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2855 native_read_tsc() - vcpu->arch.last_host_tsc;
2857 mark_tsc_unstable("KVM discovered backwards TSC");
2858 if (check_tsc_unstable()) {
2859 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2860 vcpu->arch.last_guest_tsc);
2861 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2862 vcpu->arch.tsc_catchup = 1;
2865 * On a host with synchronized TSC, there is no need to update
2866 * kvmclock on vcpu->cpu migration
2868 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2869 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2870 if (vcpu->cpu != cpu)
2871 kvm_migrate_timers(vcpu);
2875 accumulate_steal_time(vcpu);
2876 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2879 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2881 kvm_x86_ops->vcpu_put(vcpu);
2882 kvm_put_guest_fpu(vcpu);
2883 vcpu->arch.last_host_tsc = native_read_tsc();
2886 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2887 struct kvm_lapic_state *s)
2889 kvm_x86_ops->sync_pir_to_irr(vcpu);
2890 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2895 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2896 struct kvm_lapic_state *s)
2898 kvm_apic_post_state_restore(vcpu, s);
2899 update_cr8_intercept(vcpu);
2904 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2905 struct kvm_interrupt *irq)
2907 if (irq->irq >= KVM_NR_INTERRUPTS)
2909 if (irqchip_in_kernel(vcpu->kvm))
2912 kvm_queue_interrupt(vcpu, irq->irq, false);
2913 kvm_make_request(KVM_REQ_EVENT, vcpu);
2918 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2920 kvm_inject_nmi(vcpu);
2925 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2926 struct kvm_tpr_access_ctl *tac)
2930 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2934 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2938 unsigned bank_num = mcg_cap & 0xff, bank;
2941 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2943 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2946 vcpu->arch.mcg_cap = mcg_cap;
2947 /* Init IA32_MCG_CTL to all 1s */
2948 if (mcg_cap & MCG_CTL_P)
2949 vcpu->arch.mcg_ctl = ~(u64)0;
2950 /* Init IA32_MCi_CTL to all 1s */
2951 for (bank = 0; bank < bank_num; bank++)
2952 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2957 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2958 struct kvm_x86_mce *mce)
2960 u64 mcg_cap = vcpu->arch.mcg_cap;
2961 unsigned bank_num = mcg_cap & 0xff;
2962 u64 *banks = vcpu->arch.mce_banks;
2964 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2967 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2968 * reporting is disabled
2970 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2971 vcpu->arch.mcg_ctl != ~(u64)0)
2973 banks += 4 * mce->bank;
2975 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2976 * reporting is disabled for the bank
2978 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2980 if (mce->status & MCI_STATUS_UC) {
2981 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2982 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2983 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2986 if (banks[1] & MCI_STATUS_VAL)
2987 mce->status |= MCI_STATUS_OVER;
2988 banks[2] = mce->addr;
2989 banks[3] = mce->misc;
2990 vcpu->arch.mcg_status = mce->mcg_status;
2991 banks[1] = mce->status;
2992 kvm_queue_exception(vcpu, MC_VECTOR);
2993 } else if (!(banks[1] & MCI_STATUS_VAL)
2994 || !(banks[1] & MCI_STATUS_UC)) {
2995 if (banks[1] & MCI_STATUS_VAL)
2996 mce->status |= MCI_STATUS_OVER;
2997 banks[2] = mce->addr;
2998 banks[3] = mce->misc;
2999 banks[1] = mce->status;
3001 banks[1] |= MCI_STATUS_OVER;
3005 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3006 struct kvm_vcpu_events *events)
3009 events->exception.injected =
3010 vcpu->arch.exception.pending &&
3011 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3012 events->exception.nr = vcpu->arch.exception.nr;
3013 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3014 events->exception.pad = 0;
3015 events->exception.error_code = vcpu->arch.exception.error_code;
3017 events->interrupt.injected =
3018 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3019 events->interrupt.nr = vcpu->arch.interrupt.nr;
3020 events->interrupt.soft = 0;
3021 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3023 events->nmi.injected = vcpu->arch.nmi_injected;
3024 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3025 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3026 events->nmi.pad = 0;
3028 events->sipi_vector = 0; /* never valid when reporting to user space */
3030 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3031 | KVM_VCPUEVENT_VALID_SHADOW);
3032 memset(&events->reserved, 0, sizeof(events->reserved));
3035 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3036 struct kvm_vcpu_events *events)
3038 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3039 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3040 | KVM_VCPUEVENT_VALID_SHADOW))
3044 vcpu->arch.exception.pending = events->exception.injected;
3045 vcpu->arch.exception.nr = events->exception.nr;
3046 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3047 vcpu->arch.exception.error_code = events->exception.error_code;
3049 vcpu->arch.interrupt.pending = events->interrupt.injected;
3050 vcpu->arch.interrupt.nr = events->interrupt.nr;
3051 vcpu->arch.interrupt.soft = events->interrupt.soft;
3052 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3053 kvm_x86_ops->set_interrupt_shadow(vcpu,
3054 events->interrupt.shadow);
3056 vcpu->arch.nmi_injected = events->nmi.injected;
3057 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3058 vcpu->arch.nmi_pending = events->nmi.pending;
3059 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3061 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3062 kvm_vcpu_has_lapic(vcpu))
3063 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3065 kvm_make_request(KVM_REQ_EVENT, vcpu);
3070 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3071 struct kvm_debugregs *dbgregs)
3075 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3076 _kvm_get_dr(vcpu, 6, &val);
3078 dbgregs->dr7 = vcpu->arch.dr7;
3080 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3083 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3084 struct kvm_debugregs *dbgregs)
3089 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3090 vcpu->arch.dr6 = dbgregs->dr6;
3091 kvm_update_dr6(vcpu);
3092 vcpu->arch.dr7 = dbgregs->dr7;
3093 kvm_update_dr7(vcpu);
3098 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3099 struct kvm_xsave *guest_xsave)
3101 if (cpu_has_xsave) {
3102 memcpy(guest_xsave->region,
3103 &vcpu->arch.guest_fpu.state->xsave,
3104 vcpu->arch.guest_xstate_size);
3105 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3106 vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3108 memcpy(guest_xsave->region,
3109 &vcpu->arch.guest_fpu.state->fxsave,
3110 sizeof(struct i387_fxsave_struct));
3111 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3116 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3117 struct kvm_xsave *guest_xsave)
3120 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3122 if (cpu_has_xsave) {
3124 * Here we allow setting states that are not present in
3125 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3126 * with old userspace.
3128 if (xstate_bv & ~kvm_supported_xcr0())
3130 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3131 guest_xsave->region, vcpu->arch.guest_xstate_size);
3133 if (xstate_bv & ~XSTATE_FPSSE)
3135 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3136 guest_xsave->region, sizeof(struct i387_fxsave_struct));
3141 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3142 struct kvm_xcrs *guest_xcrs)
3144 if (!cpu_has_xsave) {
3145 guest_xcrs->nr_xcrs = 0;
3149 guest_xcrs->nr_xcrs = 1;
3150 guest_xcrs->flags = 0;
3151 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3152 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3155 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3156 struct kvm_xcrs *guest_xcrs)
3163 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3166 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3167 /* Only support XCR0 currently */
3168 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3169 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3170 guest_xcrs->xcrs[i].value);
3179 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3180 * stopped by the hypervisor. This function will be called from the host only.
3181 * EINVAL is returned when the host attempts to set the flag for a guest that
3182 * does not support pv clocks.
3184 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3186 if (!vcpu->arch.pv_time_enabled)
3188 vcpu->arch.pvclock_set_guest_stopped_request = true;
3189 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3193 long kvm_arch_vcpu_ioctl(struct file *filp,
3194 unsigned int ioctl, unsigned long arg)
3196 struct kvm_vcpu *vcpu = filp->private_data;
3197 void __user *argp = (void __user *)arg;
3200 struct kvm_lapic_state *lapic;
3201 struct kvm_xsave *xsave;
3202 struct kvm_xcrs *xcrs;
3208 case KVM_GET_LAPIC: {
3210 if (!vcpu->arch.apic)
3212 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3217 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3221 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3226 case KVM_SET_LAPIC: {
3228 if (!vcpu->arch.apic)
3230 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3231 if (IS_ERR(u.lapic))
3232 return PTR_ERR(u.lapic);
3234 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3237 case KVM_INTERRUPT: {
3238 struct kvm_interrupt irq;
3241 if (copy_from_user(&irq, argp, sizeof irq))
3243 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3247 r = kvm_vcpu_ioctl_nmi(vcpu);
3250 case KVM_SET_CPUID: {
3251 struct kvm_cpuid __user *cpuid_arg = argp;
3252 struct kvm_cpuid cpuid;
3255 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3257 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3260 case KVM_SET_CPUID2: {
3261 struct kvm_cpuid2 __user *cpuid_arg = argp;
3262 struct kvm_cpuid2 cpuid;
3265 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3267 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3268 cpuid_arg->entries);
3271 case KVM_GET_CPUID2: {
3272 struct kvm_cpuid2 __user *cpuid_arg = argp;
3273 struct kvm_cpuid2 cpuid;
3276 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3278 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3279 cpuid_arg->entries);
3283 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3289 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3292 r = msr_io(vcpu, argp, do_set_msr, 0);
3294 case KVM_TPR_ACCESS_REPORTING: {
3295 struct kvm_tpr_access_ctl tac;
3298 if (copy_from_user(&tac, argp, sizeof tac))
3300 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3304 if (copy_to_user(argp, &tac, sizeof tac))
3309 case KVM_SET_VAPIC_ADDR: {
3310 struct kvm_vapic_addr va;
3313 if (!irqchip_in_kernel(vcpu->kvm))
3316 if (copy_from_user(&va, argp, sizeof va))
3318 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3321 case KVM_X86_SETUP_MCE: {
3325 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3327 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3330 case KVM_X86_SET_MCE: {
3331 struct kvm_x86_mce mce;
3334 if (copy_from_user(&mce, argp, sizeof mce))
3336 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3339 case KVM_GET_VCPU_EVENTS: {
3340 struct kvm_vcpu_events events;
3342 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3345 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3350 case KVM_SET_VCPU_EVENTS: {
3351 struct kvm_vcpu_events events;
3354 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3357 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3360 case KVM_GET_DEBUGREGS: {
3361 struct kvm_debugregs dbgregs;
3363 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3366 if (copy_to_user(argp, &dbgregs,
3367 sizeof(struct kvm_debugregs)))
3372 case KVM_SET_DEBUGREGS: {
3373 struct kvm_debugregs dbgregs;
3376 if (copy_from_user(&dbgregs, argp,
3377 sizeof(struct kvm_debugregs)))
3380 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3383 case KVM_GET_XSAVE: {
3384 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3389 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3392 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3397 case KVM_SET_XSAVE: {
3398 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3399 if (IS_ERR(u.xsave))
3400 return PTR_ERR(u.xsave);
3402 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3405 case KVM_GET_XCRS: {
3406 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3411 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3414 if (copy_to_user(argp, u.xcrs,
3415 sizeof(struct kvm_xcrs)))
3420 case KVM_SET_XCRS: {
3421 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3423 return PTR_ERR(u.xcrs);
3425 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3428 case KVM_SET_TSC_KHZ: {
3432 user_tsc_khz = (u32)arg;
3434 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3437 if (user_tsc_khz == 0)
3438 user_tsc_khz = tsc_khz;
3440 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3445 case KVM_GET_TSC_KHZ: {
3446 r = vcpu->arch.virtual_tsc_khz;
3449 case KVM_KVMCLOCK_CTRL: {
3450 r = kvm_set_guest_paused(vcpu);
3461 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3463 return VM_FAULT_SIGBUS;
3466 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3470 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3472 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3476 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3479 kvm->arch.ept_identity_map_addr = ident_addr;
3483 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3484 u32 kvm_nr_mmu_pages)
3486 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3489 mutex_lock(&kvm->slots_lock);
3491 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3492 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3494 mutex_unlock(&kvm->slots_lock);
3498 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3500 return kvm->arch.n_max_mmu_pages;
3503 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3508 switch (chip->chip_id) {
3509 case KVM_IRQCHIP_PIC_MASTER:
3510 memcpy(&chip->chip.pic,
3511 &pic_irqchip(kvm)->pics[0],
3512 sizeof(struct kvm_pic_state));
3514 case KVM_IRQCHIP_PIC_SLAVE:
3515 memcpy(&chip->chip.pic,
3516 &pic_irqchip(kvm)->pics[1],
3517 sizeof(struct kvm_pic_state));
3519 case KVM_IRQCHIP_IOAPIC:
3520 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3529 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3534 switch (chip->chip_id) {
3535 case KVM_IRQCHIP_PIC_MASTER:
3536 spin_lock(&pic_irqchip(kvm)->lock);
3537 memcpy(&pic_irqchip(kvm)->pics[0],
3539 sizeof(struct kvm_pic_state));
3540 spin_unlock(&pic_irqchip(kvm)->lock);
3542 case KVM_IRQCHIP_PIC_SLAVE:
3543 spin_lock(&pic_irqchip(kvm)->lock);
3544 memcpy(&pic_irqchip(kvm)->pics[1],
3546 sizeof(struct kvm_pic_state));
3547 spin_unlock(&pic_irqchip(kvm)->lock);
3549 case KVM_IRQCHIP_IOAPIC:
3550 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3556 kvm_pic_update_irq(pic_irqchip(kvm));
3560 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3564 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3565 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3566 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3570 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3574 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3575 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3576 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3577 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3581 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3585 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3586 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3587 sizeof(ps->channels));
3588 ps->flags = kvm->arch.vpit->pit_state.flags;
3589 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3590 memset(&ps->reserved, 0, sizeof(ps->reserved));
3594 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3596 int r = 0, start = 0;
3597 u32 prev_legacy, cur_legacy;
3598 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3599 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3600 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3601 if (!prev_legacy && cur_legacy)
3603 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3604 sizeof(kvm->arch.vpit->pit_state.channels));
3605 kvm->arch.vpit->pit_state.flags = ps->flags;
3606 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3607 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3611 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3612 struct kvm_reinject_control *control)
3614 if (!kvm->arch.vpit)
3616 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3617 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3618 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3623 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3624 * @kvm: kvm instance
3625 * @log: slot id and address to which we copy the log
3627 * We need to keep it in mind that VCPU threads can write to the bitmap
3628 * concurrently. So, to avoid losing data, we keep the following order for
3631 * 1. Take a snapshot of the bit and clear it if needed.
3632 * 2. Write protect the corresponding page.
3633 * 3. Flush TLB's if needed.
3634 * 4. Copy the snapshot to the userspace.
3636 * Between 2 and 3, the guest may write to the page using the remaining TLB
3637 * entry. This is not a problem because the page will be reported dirty at
3638 * step 4 using the snapshot taken before and step 3 ensures that successive
3639 * writes will be logged for the next call.
3641 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3644 struct kvm_memory_slot *memslot;
3646 unsigned long *dirty_bitmap;
3647 unsigned long *dirty_bitmap_buffer;
3648 bool is_dirty = false;
3650 mutex_lock(&kvm->slots_lock);
3653 if (log->slot >= KVM_USER_MEM_SLOTS)
3656 memslot = id_to_memslot(kvm->memslots, log->slot);
3658 dirty_bitmap = memslot->dirty_bitmap;
3663 n = kvm_dirty_bitmap_bytes(memslot);
3665 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3666 memset(dirty_bitmap_buffer, 0, n);
3668 spin_lock(&kvm->mmu_lock);
3670 for (i = 0; i < n / sizeof(long); i++) {
3674 if (!dirty_bitmap[i])
3679 mask = xchg(&dirty_bitmap[i], 0);
3680 dirty_bitmap_buffer[i] = mask;
3682 offset = i * BITS_PER_LONG;
3683 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3686 spin_unlock(&kvm->mmu_lock);
3688 /* See the comments in kvm_mmu_slot_remove_write_access(). */
3689 lockdep_assert_held(&kvm->slots_lock);
3692 * All the TLBs can be flushed out of mmu lock, see the comments in
3693 * kvm_mmu_slot_remove_write_access().
3696 kvm_flush_remote_tlbs(kvm);
3699 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3704 mutex_unlock(&kvm->slots_lock);
3708 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3711 if (!irqchip_in_kernel(kvm))
3714 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3715 irq_event->irq, irq_event->level,
3720 long kvm_arch_vm_ioctl(struct file *filp,
3721 unsigned int ioctl, unsigned long arg)
3723 struct kvm *kvm = filp->private_data;
3724 void __user *argp = (void __user *)arg;
3727 * This union makes it completely explicit to gcc-3.x
3728 * that these two variables' stack usage should be
3729 * combined, not added together.
3732 struct kvm_pit_state ps;
3733 struct kvm_pit_state2 ps2;
3734 struct kvm_pit_config pit_config;
3738 case KVM_SET_TSS_ADDR:
3739 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3741 case KVM_SET_IDENTITY_MAP_ADDR: {
3745 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3747 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3750 case KVM_SET_NR_MMU_PAGES:
3751 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3753 case KVM_GET_NR_MMU_PAGES:
3754 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3756 case KVM_CREATE_IRQCHIP: {
3757 struct kvm_pic *vpic;
3759 mutex_lock(&kvm->lock);
3762 goto create_irqchip_unlock;
3764 if (atomic_read(&kvm->online_vcpus))
3765 goto create_irqchip_unlock;
3767 vpic = kvm_create_pic(kvm);
3769 r = kvm_ioapic_init(kvm);
3771 mutex_lock(&kvm->slots_lock);
3772 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3774 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3776 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3778 mutex_unlock(&kvm->slots_lock);
3780 goto create_irqchip_unlock;
3783 goto create_irqchip_unlock;
3785 kvm->arch.vpic = vpic;
3787 r = kvm_setup_default_irq_routing(kvm);
3789 mutex_lock(&kvm->slots_lock);
3790 mutex_lock(&kvm->irq_lock);
3791 kvm_ioapic_destroy(kvm);
3792 kvm_destroy_pic(kvm);
3793 mutex_unlock(&kvm->irq_lock);
3794 mutex_unlock(&kvm->slots_lock);
3796 create_irqchip_unlock:
3797 mutex_unlock(&kvm->lock);
3800 case KVM_CREATE_PIT:
3801 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3803 case KVM_CREATE_PIT2:
3805 if (copy_from_user(&u.pit_config, argp,
3806 sizeof(struct kvm_pit_config)))
3809 mutex_lock(&kvm->slots_lock);
3812 goto create_pit_unlock;
3814 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3818 mutex_unlock(&kvm->slots_lock);
3820 case KVM_GET_IRQCHIP: {
3821 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3822 struct kvm_irqchip *chip;
3824 chip = memdup_user(argp, sizeof(*chip));
3831 if (!irqchip_in_kernel(kvm))
3832 goto get_irqchip_out;
3833 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3835 goto get_irqchip_out;
3837 if (copy_to_user(argp, chip, sizeof *chip))
3838 goto get_irqchip_out;
3844 case KVM_SET_IRQCHIP: {
3845 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3846 struct kvm_irqchip *chip;
3848 chip = memdup_user(argp, sizeof(*chip));
3855 if (!irqchip_in_kernel(kvm))
3856 goto set_irqchip_out;
3857 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3859 goto set_irqchip_out;
3867 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3870 if (!kvm->arch.vpit)
3872 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3876 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3883 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3886 if (!kvm->arch.vpit)
3888 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3891 case KVM_GET_PIT2: {
3893 if (!kvm->arch.vpit)
3895 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3899 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3904 case KVM_SET_PIT2: {
3906 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3909 if (!kvm->arch.vpit)
3911 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3914 case KVM_REINJECT_CONTROL: {
3915 struct kvm_reinject_control control;
3917 if (copy_from_user(&control, argp, sizeof(control)))
3919 r = kvm_vm_ioctl_reinject(kvm, &control);
3922 case KVM_XEN_HVM_CONFIG: {
3924 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3925 sizeof(struct kvm_xen_hvm_config)))
3928 if (kvm->arch.xen_hvm_config.flags)
3933 case KVM_SET_CLOCK: {
3934 struct kvm_clock_data user_ns;
3939 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3947 local_irq_disable();
3948 now_ns = get_kernel_ns();
3949 delta = user_ns.clock - now_ns;
3951 kvm->arch.kvmclock_offset = delta;
3952 kvm_gen_update_masterclock(kvm);
3955 case KVM_GET_CLOCK: {
3956 struct kvm_clock_data user_ns;
3959 local_irq_disable();
3960 now_ns = get_kernel_ns();
3961 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3964 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3967 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3980 static void kvm_init_msr_list(void)
3985 /* skip the first msrs in the list. KVM-specific */
3986 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3987 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3991 * Even MSRs that are valid in the host may not be exposed
3992 * to the guests in some cases. We could work around this
3993 * in VMX with the generic MSR save/load machinery, but it
3994 * is not really worthwhile since it will really only
3995 * happen with nested virtualization.
3997 switch (msrs_to_save[i]) {
3998 case MSR_IA32_BNDCFGS:
3999 if (!kvm_x86_ops->mpx_supported())
4007 msrs_to_save[j] = msrs_to_save[i];
4010 num_msrs_to_save = j;
4013 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4021 if (!(vcpu->arch.apic &&
4022 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
4023 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4034 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4041 if (!(vcpu->arch.apic &&
4042 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
4043 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4045 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4055 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4056 struct kvm_segment *var, int seg)
4058 kvm_x86_ops->set_segment(vcpu, var, seg);
4061 void kvm_get_segment(struct kvm_vcpu *vcpu,
4062 struct kvm_segment *var, int seg)
4064 kvm_x86_ops->get_segment(vcpu, var, seg);
4067 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
4070 struct x86_exception exception;
4072 BUG_ON(!mmu_is_nested(vcpu));
4074 /* NPT walks are always user-walks */
4075 access |= PFERR_USER_MASK;
4076 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
4081 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4082 struct x86_exception *exception)
4084 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4085 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4088 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4089 struct x86_exception *exception)
4091 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4092 access |= PFERR_FETCH_MASK;
4093 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4096 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4097 struct x86_exception *exception)
4099 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4100 access |= PFERR_WRITE_MASK;
4101 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4104 /* uses this to access any guest's mapped memory without checking CPL */
4105 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4106 struct x86_exception *exception)
4108 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4111 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4112 struct kvm_vcpu *vcpu, u32 access,
4113 struct x86_exception *exception)
4116 int r = X86EMUL_CONTINUE;
4119 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4121 unsigned offset = addr & (PAGE_SIZE-1);
4122 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4125 if (gpa == UNMAPPED_GVA)
4126 return X86EMUL_PROPAGATE_FAULT;
4127 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4130 r = X86EMUL_IO_NEEDED;
4142 /* used for instruction fetching */
4143 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4144 gva_t addr, void *val, unsigned int bytes,
4145 struct x86_exception *exception)
4147 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4148 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4152 /* Inline kvm_read_guest_virt_helper for speed. */
4153 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4155 if (unlikely(gpa == UNMAPPED_GVA))
4156 return X86EMUL_PROPAGATE_FAULT;
4158 offset = addr & (PAGE_SIZE-1);
4159 if (WARN_ON(offset + bytes > PAGE_SIZE))
4160 bytes = (unsigned)PAGE_SIZE - offset;
4161 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4163 if (unlikely(ret < 0))
4164 return X86EMUL_IO_NEEDED;
4166 return X86EMUL_CONTINUE;
4169 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4170 gva_t addr, void *val, unsigned int bytes,
4171 struct x86_exception *exception)
4173 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4174 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4176 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4179 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4181 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4182 gva_t addr, void *val, unsigned int bytes,
4183 struct x86_exception *exception)
4185 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4186 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4189 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4190 gva_t addr, void *val,
4192 struct x86_exception *exception)
4194 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4196 int r = X86EMUL_CONTINUE;
4199 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4202 unsigned offset = addr & (PAGE_SIZE-1);
4203 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4206 if (gpa == UNMAPPED_GVA)
4207 return X86EMUL_PROPAGATE_FAULT;
4208 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4210 r = X86EMUL_IO_NEEDED;
4221 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4223 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4224 gpa_t *gpa, struct x86_exception *exception,
4227 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4228 | (write ? PFERR_WRITE_MASK : 0);
4230 if (vcpu_match_mmio_gva(vcpu, gva)
4231 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4232 vcpu->arch.access, access)) {
4233 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4234 (gva & (PAGE_SIZE - 1));
4235 trace_vcpu_match_mmio(gva, *gpa, write, false);
4239 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4241 if (*gpa == UNMAPPED_GVA)
4244 /* For APIC access vmexit */
4245 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4248 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4249 trace_vcpu_match_mmio(gva, *gpa, write, true);
4256 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4257 const void *val, int bytes)
4261 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4264 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4268 struct read_write_emulator_ops {
4269 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4271 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4272 void *val, int bytes);
4273 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4274 int bytes, void *val);
4275 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4276 void *val, int bytes);
4280 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4282 if (vcpu->mmio_read_completed) {
4283 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4284 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4285 vcpu->mmio_read_completed = 0;
4292 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4293 void *val, int bytes)
4295 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4298 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4299 void *val, int bytes)
4301 return emulator_write_phys(vcpu, gpa, val, bytes);
4304 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4306 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4307 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4310 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4311 void *val, int bytes)
4313 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4314 return X86EMUL_IO_NEEDED;
4317 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4318 void *val, int bytes)
4320 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4322 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4323 return X86EMUL_CONTINUE;
4326 static const struct read_write_emulator_ops read_emultor = {
4327 .read_write_prepare = read_prepare,
4328 .read_write_emulate = read_emulate,
4329 .read_write_mmio = vcpu_mmio_read,
4330 .read_write_exit_mmio = read_exit_mmio,
4333 static const struct read_write_emulator_ops write_emultor = {
4334 .read_write_emulate = write_emulate,
4335 .read_write_mmio = write_mmio,
4336 .read_write_exit_mmio = write_exit_mmio,
4340 static int emulator_read_write_onepage(unsigned long addr, void *val,
4342 struct x86_exception *exception,
4343 struct kvm_vcpu *vcpu,
4344 const struct read_write_emulator_ops *ops)
4348 bool write = ops->write;
4349 struct kvm_mmio_fragment *frag;
4351 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4354 return X86EMUL_PROPAGATE_FAULT;
4356 /* For APIC access vmexit */
4360 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4361 return X86EMUL_CONTINUE;
4365 * Is this MMIO handled locally?
4367 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4368 if (handled == bytes)
4369 return X86EMUL_CONTINUE;
4375 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4376 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4380 return X86EMUL_CONTINUE;
4383 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4384 void *val, unsigned int bytes,
4385 struct x86_exception *exception,
4386 const struct read_write_emulator_ops *ops)
4388 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4392 if (ops->read_write_prepare &&
4393 ops->read_write_prepare(vcpu, val, bytes))
4394 return X86EMUL_CONTINUE;
4396 vcpu->mmio_nr_fragments = 0;
4398 /* Crossing a page boundary? */
4399 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4402 now = -addr & ~PAGE_MASK;
4403 rc = emulator_read_write_onepage(addr, val, now, exception,
4406 if (rc != X86EMUL_CONTINUE)
4413 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4415 if (rc != X86EMUL_CONTINUE)
4418 if (!vcpu->mmio_nr_fragments)
4421 gpa = vcpu->mmio_fragments[0].gpa;
4423 vcpu->mmio_needed = 1;
4424 vcpu->mmio_cur_fragment = 0;
4426 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4427 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4428 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4429 vcpu->run->mmio.phys_addr = gpa;
4431 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4434 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4438 struct x86_exception *exception)
4440 return emulator_read_write(ctxt, addr, val, bytes,
4441 exception, &read_emultor);
4444 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4448 struct x86_exception *exception)
4450 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4451 exception, &write_emultor);
4454 #define CMPXCHG_TYPE(t, ptr, old, new) \
4455 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4457 #ifdef CONFIG_X86_64
4458 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4460 # define CMPXCHG64(ptr, old, new) \
4461 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4464 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4469 struct x86_exception *exception)
4471 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4477 /* guests cmpxchg8b have to be emulated atomically */
4478 if (bytes > 8 || (bytes & (bytes - 1)))
4481 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4483 if (gpa == UNMAPPED_GVA ||
4484 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4487 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4490 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4491 if (is_error_page(page))
4494 kaddr = kmap_atomic(page);
4495 kaddr += offset_in_page(gpa);
4498 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4501 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4504 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4507 exchanged = CMPXCHG64(kaddr, old, new);
4512 kunmap_atomic(kaddr);
4513 kvm_release_page_dirty(page);
4516 return X86EMUL_CMPXCHG_FAILED;
4518 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4519 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4521 return X86EMUL_CONTINUE;
4524 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4526 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4529 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4531 /* TODO: String I/O for in kernel device */
4534 if (vcpu->arch.pio.in)
4535 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4536 vcpu->arch.pio.size, pd);
4538 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4539 vcpu->arch.pio.port, vcpu->arch.pio.size,
4544 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4545 unsigned short port, void *val,
4546 unsigned int count, bool in)
4548 vcpu->arch.pio.port = port;
4549 vcpu->arch.pio.in = in;
4550 vcpu->arch.pio.count = count;
4551 vcpu->arch.pio.size = size;
4553 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4554 vcpu->arch.pio.count = 0;
4558 vcpu->run->exit_reason = KVM_EXIT_IO;
4559 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4560 vcpu->run->io.size = size;
4561 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4562 vcpu->run->io.count = count;
4563 vcpu->run->io.port = port;
4568 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4569 int size, unsigned short port, void *val,
4572 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4575 if (vcpu->arch.pio.count)
4578 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4581 memcpy(val, vcpu->arch.pio_data, size * count);
4582 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4583 vcpu->arch.pio.count = 0;
4590 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4591 int size, unsigned short port,
4592 const void *val, unsigned int count)
4594 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4596 memcpy(vcpu->arch.pio_data, val, size * count);
4597 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4598 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4601 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4603 return kvm_x86_ops->get_segment_base(vcpu, seg);
4606 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4608 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4611 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4613 if (!need_emulate_wbinvd(vcpu))
4614 return X86EMUL_CONTINUE;
4616 if (kvm_x86_ops->has_wbinvd_exit()) {
4617 int cpu = get_cpu();
4619 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4620 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4621 wbinvd_ipi, NULL, 1);
4623 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4626 return X86EMUL_CONTINUE;
4628 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4630 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4632 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4635 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4637 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4640 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4643 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4646 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4648 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4651 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4653 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4654 unsigned long value;
4658 value = kvm_read_cr0(vcpu);
4661 value = vcpu->arch.cr2;
4664 value = kvm_read_cr3(vcpu);
4667 value = kvm_read_cr4(vcpu);
4670 value = kvm_get_cr8(vcpu);
4673 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4680 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4682 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4687 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4690 vcpu->arch.cr2 = val;
4693 res = kvm_set_cr3(vcpu, val);
4696 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4699 res = kvm_set_cr8(vcpu, val);
4702 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4709 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4711 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4714 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4716 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4719 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4721 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4724 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4726 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4729 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4731 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4734 static unsigned long emulator_get_cached_segment_base(
4735 struct x86_emulate_ctxt *ctxt, int seg)
4737 return get_segment_base(emul_to_vcpu(ctxt), seg);
4740 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4741 struct desc_struct *desc, u32 *base3,
4744 struct kvm_segment var;
4746 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4747 *selector = var.selector;
4750 memset(desc, 0, sizeof(*desc));
4756 set_desc_limit(desc, var.limit);
4757 set_desc_base(desc, (unsigned long)var.base);
4758 #ifdef CONFIG_X86_64
4760 *base3 = var.base >> 32;
4762 desc->type = var.type;
4764 desc->dpl = var.dpl;
4765 desc->p = var.present;
4766 desc->avl = var.avl;
4774 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4775 struct desc_struct *desc, u32 base3,
4778 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4779 struct kvm_segment var;
4781 var.selector = selector;
4782 var.base = get_desc_base(desc);
4783 #ifdef CONFIG_X86_64
4784 var.base |= ((u64)base3) << 32;
4786 var.limit = get_desc_limit(desc);
4788 var.limit = (var.limit << 12) | 0xfff;
4789 var.type = desc->type;
4790 var.dpl = desc->dpl;
4795 var.avl = desc->avl;
4796 var.present = desc->p;
4797 var.unusable = !var.present;
4800 kvm_set_segment(vcpu, &var, seg);
4804 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4805 u32 msr_index, u64 *pdata)
4807 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4810 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4811 u32 msr_index, u64 data)
4813 struct msr_data msr;
4816 msr.index = msr_index;
4817 msr.host_initiated = false;
4818 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4821 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4824 return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4827 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4828 u32 pmc, u64 *pdata)
4830 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4833 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4835 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4838 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4841 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4843 * CR0.TS may reference the host fpu state, not the guest fpu state,
4844 * so it may be clear at this point.
4849 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4854 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4855 struct x86_instruction_info *info,
4856 enum x86_intercept_stage stage)
4858 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4861 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4862 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4864 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4867 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4869 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4872 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4874 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4877 static const struct x86_emulate_ops emulate_ops = {
4878 .read_gpr = emulator_read_gpr,
4879 .write_gpr = emulator_write_gpr,
4880 .read_std = kvm_read_guest_virt_system,
4881 .write_std = kvm_write_guest_virt_system,
4882 .fetch = kvm_fetch_guest_virt,
4883 .read_emulated = emulator_read_emulated,
4884 .write_emulated = emulator_write_emulated,
4885 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4886 .invlpg = emulator_invlpg,
4887 .pio_in_emulated = emulator_pio_in_emulated,
4888 .pio_out_emulated = emulator_pio_out_emulated,
4889 .get_segment = emulator_get_segment,
4890 .set_segment = emulator_set_segment,
4891 .get_cached_segment_base = emulator_get_cached_segment_base,
4892 .get_gdt = emulator_get_gdt,
4893 .get_idt = emulator_get_idt,
4894 .set_gdt = emulator_set_gdt,
4895 .set_idt = emulator_set_idt,
4896 .get_cr = emulator_get_cr,
4897 .set_cr = emulator_set_cr,
4898 .cpl = emulator_get_cpl,
4899 .get_dr = emulator_get_dr,
4900 .set_dr = emulator_set_dr,
4901 .set_msr = emulator_set_msr,
4902 .get_msr = emulator_get_msr,
4903 .check_pmc = emulator_check_pmc,
4904 .read_pmc = emulator_read_pmc,
4905 .halt = emulator_halt,
4906 .wbinvd = emulator_wbinvd,
4907 .fix_hypercall = emulator_fix_hypercall,
4908 .get_fpu = emulator_get_fpu,
4909 .put_fpu = emulator_put_fpu,
4910 .intercept = emulator_intercept,
4911 .get_cpuid = emulator_get_cpuid,
4914 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4916 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
4918 * an sti; sti; sequence only disable interrupts for the first
4919 * instruction. So, if the last instruction, be it emulated or
4920 * not, left the system with the INT_STI flag enabled, it
4921 * means that the last instruction is an sti. We should not
4922 * leave the flag on in this case. The same goes for mov ss
4924 if (int_shadow & mask)
4926 if (unlikely(int_shadow || mask)) {
4927 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4929 kvm_make_request(KVM_REQ_EVENT, vcpu);
4933 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4935 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4936 if (ctxt->exception.vector == PF_VECTOR)
4937 kvm_propagate_fault(vcpu, &ctxt->exception);
4938 else if (ctxt->exception.error_code_valid)
4939 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4940 ctxt->exception.error_code);
4942 kvm_queue_exception(vcpu, ctxt->exception.vector);
4945 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4947 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4950 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4952 ctxt->eflags = kvm_get_rflags(vcpu);
4953 ctxt->eip = kvm_rip_read(vcpu);
4954 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4955 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4956 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
4957 cs_db ? X86EMUL_MODE_PROT32 :
4958 X86EMUL_MODE_PROT16;
4959 ctxt->guest_mode = is_guest_mode(vcpu);
4961 init_decode_cache(ctxt);
4962 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4965 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4967 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4970 init_emulate_ctxt(vcpu);
4974 ctxt->_eip = ctxt->eip + inc_eip;
4975 ret = emulate_int_real(ctxt, irq);
4977 if (ret != X86EMUL_CONTINUE)
4978 return EMULATE_FAIL;
4980 ctxt->eip = ctxt->_eip;
4981 kvm_rip_write(vcpu, ctxt->eip);
4982 kvm_set_rflags(vcpu, ctxt->eflags);
4984 if (irq == NMI_VECTOR)
4985 vcpu->arch.nmi_pending = 0;
4987 vcpu->arch.interrupt.pending = false;
4989 return EMULATE_DONE;
4991 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4993 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4995 int r = EMULATE_DONE;
4997 ++vcpu->stat.insn_emulation_fail;
4998 trace_kvm_emulate_insn_failed(vcpu);
4999 if (!is_guest_mode(vcpu)) {
5000 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5001 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5002 vcpu->run->internal.ndata = 0;
5005 kvm_queue_exception(vcpu, UD_VECTOR);
5010 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5011 bool write_fault_to_shadow_pgtable,
5017 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5020 if (!vcpu->arch.mmu.direct_map) {
5022 * Write permission should be allowed since only
5023 * write access need to be emulated.
5025 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5028 * If the mapping is invalid in guest, let cpu retry
5029 * it to generate fault.
5031 if (gpa == UNMAPPED_GVA)
5036 * Do not retry the unhandleable instruction if it faults on the
5037 * readonly host memory, otherwise it will goto a infinite loop:
5038 * retry instruction -> write #PF -> emulation fail -> retry
5039 * instruction -> ...
5041 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5044 * If the instruction failed on the error pfn, it can not be fixed,
5045 * report the error to userspace.
5047 if (is_error_noslot_pfn(pfn))
5050 kvm_release_pfn_clean(pfn);
5052 /* The instructions are well-emulated on direct mmu. */
5053 if (vcpu->arch.mmu.direct_map) {
5054 unsigned int indirect_shadow_pages;
5056 spin_lock(&vcpu->kvm->mmu_lock);
5057 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5058 spin_unlock(&vcpu->kvm->mmu_lock);
5060 if (indirect_shadow_pages)
5061 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5067 * if emulation was due to access to shadowed page table
5068 * and it failed try to unshadow page and re-enter the
5069 * guest to let CPU execute the instruction.
5071 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5074 * If the access faults on its page table, it can not
5075 * be fixed by unprotecting shadow page and it should
5076 * be reported to userspace.
5078 return !write_fault_to_shadow_pgtable;
5081 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5082 unsigned long cr2, int emulation_type)
5084 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5085 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5087 last_retry_eip = vcpu->arch.last_retry_eip;
5088 last_retry_addr = vcpu->arch.last_retry_addr;
5091 * If the emulation is caused by #PF and it is non-page_table
5092 * writing instruction, it means the VM-EXIT is caused by shadow
5093 * page protected, we can zap the shadow page and retry this
5094 * instruction directly.
5096 * Note: if the guest uses a non-page-table modifying instruction
5097 * on the PDE that points to the instruction, then we will unmap
5098 * the instruction and go to an infinite loop. So, we cache the
5099 * last retried eip and the last fault address, if we meet the eip
5100 * and the address again, we can break out of the potential infinite
5103 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5105 if (!(emulation_type & EMULTYPE_RETRY))
5108 if (x86_page_table_writing_insn(ctxt))
5111 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5114 vcpu->arch.last_retry_eip = ctxt->eip;
5115 vcpu->arch.last_retry_addr = cr2;
5117 if (!vcpu->arch.mmu.direct_map)
5118 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5120 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5125 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5126 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5128 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5137 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5138 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5143 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5145 struct kvm_run *kvm_run = vcpu->run;
5148 * rflags is the old, "raw" value of the flags. The new value has
5149 * not been saved yet.
5151 * This is correct even for TF set by the guest, because "the
5152 * processor will not generate this exception after the instruction
5153 * that sets the TF flag".
5155 if (unlikely(rflags & X86_EFLAGS_TF)) {
5156 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5157 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5159 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5160 kvm_run->debug.arch.exception = DB_VECTOR;
5161 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5162 *r = EMULATE_USER_EXIT;
5164 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5166 * "Certain debug exceptions may clear bit 0-3. The
5167 * remaining contents of the DR6 register are never
5168 * cleared by the processor".
5170 vcpu->arch.dr6 &= ~15;
5171 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5172 kvm_queue_exception(vcpu, DB_VECTOR);
5177 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5179 struct kvm_run *kvm_run = vcpu->run;
5180 unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5183 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5184 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5185 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5186 vcpu->arch.guest_debug_dr7,
5190 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5191 kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5192 get_segment_base(vcpu, VCPU_SREG_CS);
5194 kvm_run->debug.arch.exception = DB_VECTOR;
5195 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5196 *r = EMULATE_USER_EXIT;
5201 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5202 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5203 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5208 vcpu->arch.dr6 &= ~15;
5209 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5210 kvm_queue_exception(vcpu, DB_VECTOR);
5219 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5226 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5227 bool writeback = true;
5228 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5231 * Clear write_fault_to_shadow_pgtable here to ensure it is
5234 vcpu->arch.write_fault_to_shadow_pgtable = false;
5235 kvm_clear_exception_queue(vcpu);
5237 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5238 init_emulate_ctxt(vcpu);
5241 * We will reenter on the same instruction since
5242 * we do not set complete_userspace_io. This does not
5243 * handle watchpoints yet, those would be handled in
5246 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5249 ctxt->interruptibility = 0;
5250 ctxt->have_exception = false;
5251 ctxt->perm_ok = false;
5253 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5255 r = x86_decode_insn(ctxt, insn, insn_len);
5257 trace_kvm_emulate_insn_start(vcpu);
5258 ++vcpu->stat.insn_emulation;
5259 if (r != EMULATION_OK) {
5260 if (emulation_type & EMULTYPE_TRAP_UD)
5261 return EMULATE_FAIL;
5262 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5264 return EMULATE_DONE;
5265 if (emulation_type & EMULTYPE_SKIP)
5266 return EMULATE_FAIL;
5267 return handle_emulation_failure(vcpu);
5271 if (emulation_type & EMULTYPE_SKIP) {
5272 kvm_rip_write(vcpu, ctxt->_eip);
5273 if (ctxt->eflags & X86_EFLAGS_RF)
5274 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5275 return EMULATE_DONE;
5278 if (retry_instruction(ctxt, cr2, emulation_type))
5279 return EMULATE_DONE;
5281 /* this is needed for vmware backdoor interface to work since it
5282 changes registers values during IO operation */
5283 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5284 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5285 emulator_invalidate_register_cache(ctxt);
5289 r = x86_emulate_insn(ctxt);
5291 if (r == EMULATION_INTERCEPTED)
5292 return EMULATE_DONE;
5294 if (r == EMULATION_FAILED) {
5295 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5297 return EMULATE_DONE;
5299 return handle_emulation_failure(vcpu);
5302 if (ctxt->have_exception) {
5303 inject_emulated_exception(vcpu);
5305 } else if (vcpu->arch.pio.count) {
5306 if (!vcpu->arch.pio.in) {
5307 /* FIXME: return into emulator if single-stepping. */
5308 vcpu->arch.pio.count = 0;
5311 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5313 r = EMULATE_USER_EXIT;
5314 } else if (vcpu->mmio_needed) {
5315 if (!vcpu->mmio_is_write)
5317 r = EMULATE_USER_EXIT;
5318 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5319 } else if (r == EMULATION_RESTART)
5325 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5326 toggle_interruptibility(vcpu, ctxt->interruptibility);
5327 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5328 kvm_rip_write(vcpu, ctxt->eip);
5329 if (r == EMULATE_DONE)
5330 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5331 __kvm_set_rflags(vcpu, ctxt->eflags);
5334 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5335 * do nothing, and it will be requested again as soon as
5336 * the shadow expires. But we still need to check here,
5337 * because POPF has no interrupt shadow.
5339 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5340 kvm_make_request(KVM_REQ_EVENT, vcpu);
5342 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5346 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5348 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5350 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5351 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5352 size, port, &val, 1);
5353 /* do not return to emulator after return from userspace */
5354 vcpu->arch.pio.count = 0;
5357 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5359 static void tsc_bad(void *info)
5361 __this_cpu_write(cpu_tsc_khz, 0);
5364 static void tsc_khz_changed(void *data)
5366 struct cpufreq_freqs *freq = data;
5367 unsigned long khz = 0;
5371 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5372 khz = cpufreq_quick_get(raw_smp_processor_id());
5375 __this_cpu_write(cpu_tsc_khz, khz);
5378 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5381 struct cpufreq_freqs *freq = data;
5383 struct kvm_vcpu *vcpu;
5384 int i, send_ipi = 0;
5387 * We allow guests to temporarily run on slowing clocks,
5388 * provided we notify them after, or to run on accelerating
5389 * clocks, provided we notify them before. Thus time never
5392 * However, we have a problem. We can't atomically update
5393 * the frequency of a given CPU from this function; it is
5394 * merely a notifier, which can be called from any CPU.
5395 * Changing the TSC frequency at arbitrary points in time
5396 * requires a recomputation of local variables related to
5397 * the TSC for each VCPU. We must flag these local variables
5398 * to be updated and be sure the update takes place with the
5399 * new frequency before any guests proceed.
5401 * Unfortunately, the combination of hotplug CPU and frequency
5402 * change creates an intractable locking scenario; the order
5403 * of when these callouts happen is undefined with respect to
5404 * CPU hotplug, and they can race with each other. As such,
5405 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5406 * undefined; you can actually have a CPU frequency change take
5407 * place in between the computation of X and the setting of the
5408 * variable. To protect against this problem, all updates of
5409 * the per_cpu tsc_khz variable are done in an interrupt
5410 * protected IPI, and all callers wishing to update the value
5411 * must wait for a synchronous IPI to complete (which is trivial
5412 * if the caller is on the CPU already). This establishes the
5413 * necessary total order on variable updates.
5415 * Note that because a guest time update may take place
5416 * anytime after the setting of the VCPU's request bit, the
5417 * correct TSC value must be set before the request. However,
5418 * to ensure the update actually makes it to any guest which
5419 * starts running in hardware virtualization between the set
5420 * and the acquisition of the spinlock, we must also ping the
5421 * CPU after setting the request bit.
5425 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5427 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5430 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5432 spin_lock(&kvm_lock);
5433 list_for_each_entry(kvm, &vm_list, vm_list) {
5434 kvm_for_each_vcpu(i, vcpu, kvm) {
5435 if (vcpu->cpu != freq->cpu)
5437 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5438 if (vcpu->cpu != smp_processor_id())
5442 spin_unlock(&kvm_lock);
5444 if (freq->old < freq->new && send_ipi) {
5446 * We upscale the frequency. Must make the guest
5447 * doesn't see old kvmclock values while running with
5448 * the new frequency, otherwise we risk the guest sees
5449 * time go backwards.
5451 * In case we update the frequency for another cpu
5452 * (which might be in guest context) send an interrupt
5453 * to kick the cpu out of guest context. Next time
5454 * guest context is entered kvmclock will be updated,
5455 * so the guest will not see stale values.
5457 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5462 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5463 .notifier_call = kvmclock_cpufreq_notifier
5466 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5467 unsigned long action, void *hcpu)
5469 unsigned int cpu = (unsigned long)hcpu;
5473 case CPU_DOWN_FAILED:
5474 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5476 case CPU_DOWN_PREPARE:
5477 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5483 static struct notifier_block kvmclock_cpu_notifier_block = {
5484 .notifier_call = kvmclock_cpu_notifier,
5485 .priority = -INT_MAX
5488 static void kvm_timer_init(void)
5492 max_tsc_khz = tsc_khz;
5494 cpu_notifier_register_begin();
5495 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5496 #ifdef CONFIG_CPU_FREQ
5497 struct cpufreq_policy policy;
5498 memset(&policy, 0, sizeof(policy));
5500 cpufreq_get_policy(&policy, cpu);
5501 if (policy.cpuinfo.max_freq)
5502 max_tsc_khz = policy.cpuinfo.max_freq;
5505 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5506 CPUFREQ_TRANSITION_NOTIFIER);
5508 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5509 for_each_online_cpu(cpu)
5510 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5512 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5513 cpu_notifier_register_done();
5517 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5519 int kvm_is_in_guest(void)
5521 return __this_cpu_read(current_vcpu) != NULL;
5524 static int kvm_is_user_mode(void)
5528 if (__this_cpu_read(current_vcpu))
5529 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5531 return user_mode != 0;
5534 static unsigned long kvm_get_guest_ip(void)
5536 unsigned long ip = 0;
5538 if (__this_cpu_read(current_vcpu))
5539 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5544 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5545 .is_in_guest = kvm_is_in_guest,
5546 .is_user_mode = kvm_is_user_mode,
5547 .get_guest_ip = kvm_get_guest_ip,
5550 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5552 __this_cpu_write(current_vcpu, vcpu);
5554 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5556 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5558 __this_cpu_write(current_vcpu, NULL);
5560 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5562 static void kvm_set_mmio_spte_mask(void)
5565 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5568 * Set the reserved bits and the present bit of an paging-structure
5569 * entry to generate page fault with PFER.RSV = 1.
5571 /* Mask the reserved physical address bits. */
5572 mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5574 /* Bit 62 is always reserved for 32bit host. */
5575 mask |= 0x3ull << 62;
5577 /* Set the present bit. */
5580 #ifdef CONFIG_X86_64
5582 * If reserved bit is not supported, clear the present bit to disable
5585 if (maxphyaddr == 52)
5589 kvm_mmu_set_mmio_spte_mask(mask);
5592 #ifdef CONFIG_X86_64
5593 static void pvclock_gtod_update_fn(struct work_struct *work)
5597 struct kvm_vcpu *vcpu;
5600 spin_lock(&kvm_lock);
5601 list_for_each_entry(kvm, &vm_list, vm_list)
5602 kvm_for_each_vcpu(i, vcpu, kvm)
5603 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5604 atomic_set(&kvm_guest_has_master_clock, 0);
5605 spin_unlock(&kvm_lock);
5608 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5611 * Notification about pvclock gtod data update.
5613 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5616 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5617 struct timekeeper *tk = priv;
5619 update_pvclock_gtod(tk);
5621 /* disable master clock if host does not trust, or does not
5622 * use, TSC clocksource
5624 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5625 atomic_read(&kvm_guest_has_master_clock) != 0)
5626 queue_work(system_long_wq, &pvclock_gtod_work);
5631 static struct notifier_block pvclock_gtod_notifier = {
5632 .notifier_call = pvclock_gtod_notify,
5636 int kvm_arch_init(void *opaque)
5639 struct kvm_x86_ops *ops = opaque;
5642 printk(KERN_ERR "kvm: already loaded the other module\n");
5647 if (!ops->cpu_has_kvm_support()) {
5648 printk(KERN_ERR "kvm: no hardware support\n");
5652 if (ops->disabled_by_bios()) {
5653 printk(KERN_ERR "kvm: disabled by bios\n");
5659 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5661 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5665 r = kvm_mmu_module_init();
5667 goto out_free_percpu;
5669 kvm_set_mmio_spte_mask();
5672 kvm_init_msr_list();
5674 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5675 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5679 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5682 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5685 #ifdef CONFIG_X86_64
5686 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5692 free_percpu(shared_msrs);
5697 void kvm_arch_exit(void)
5699 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5701 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5702 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5703 CPUFREQ_TRANSITION_NOTIFIER);
5704 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5705 #ifdef CONFIG_X86_64
5706 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5709 kvm_mmu_module_exit();
5710 free_percpu(shared_msrs);
5713 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5715 ++vcpu->stat.halt_exits;
5716 if (irqchip_in_kernel(vcpu->kvm)) {
5717 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5720 vcpu->run->exit_reason = KVM_EXIT_HLT;
5724 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5726 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5728 u64 param, ingpa, outgpa, ret;
5729 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5730 bool fast, longmode;
5733 * hypercall generates UD from non zero cpl and real mode
5736 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5737 kvm_queue_exception(vcpu, UD_VECTOR);
5741 longmode = is_64_bit_mode(vcpu);
5744 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5745 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5746 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5747 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5748 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5749 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5751 #ifdef CONFIG_X86_64
5753 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5754 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5755 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5759 code = param & 0xffff;
5760 fast = (param >> 16) & 0x1;
5761 rep_cnt = (param >> 32) & 0xfff;
5762 rep_idx = (param >> 48) & 0xfff;
5764 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5767 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5768 kvm_vcpu_on_spin(vcpu);
5771 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5775 ret = res | (((u64)rep_done & 0xfff) << 32);
5777 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5779 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5780 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5787 * kvm_pv_kick_cpu_op: Kick a vcpu.
5789 * @apicid - apicid of vcpu to be kicked.
5791 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5793 struct kvm_lapic_irq lapic_irq;
5795 lapic_irq.shorthand = 0;
5796 lapic_irq.dest_mode = 0;
5797 lapic_irq.dest_id = apicid;
5799 lapic_irq.delivery_mode = APIC_DM_REMRD;
5800 kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5803 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5805 unsigned long nr, a0, a1, a2, a3, ret;
5806 int op_64_bit, r = 1;
5808 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5809 return kvm_hv_hypercall(vcpu);
5811 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5812 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5813 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5814 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5815 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5817 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5819 op_64_bit = is_64_bit_mode(vcpu);
5828 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5834 case KVM_HC_VAPIC_POLL_IRQ:
5837 case KVM_HC_KICK_CPU:
5838 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5848 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5849 ++vcpu->stat.hypercalls;
5852 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5854 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5856 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5857 char instruction[3];
5858 unsigned long rip = kvm_rip_read(vcpu);
5860 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5862 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5866 * Check if userspace requested an interrupt window, and that the
5867 * interrupt window is open.
5869 * No need to exit to userspace if we already have an interrupt queued.
5871 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5873 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5874 vcpu->run->request_interrupt_window &&
5875 kvm_arch_interrupt_allowed(vcpu));
5878 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5880 struct kvm_run *kvm_run = vcpu->run;
5882 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5883 kvm_run->cr8 = kvm_get_cr8(vcpu);
5884 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5885 if (irqchip_in_kernel(vcpu->kvm))
5886 kvm_run->ready_for_interrupt_injection = 1;
5888 kvm_run->ready_for_interrupt_injection =
5889 kvm_arch_interrupt_allowed(vcpu) &&
5890 !kvm_cpu_has_interrupt(vcpu) &&
5891 !kvm_event_needs_reinjection(vcpu);
5894 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5898 if (!kvm_x86_ops->update_cr8_intercept)
5901 if (!vcpu->arch.apic)
5904 if (!vcpu->arch.apic->vapic_addr)
5905 max_irr = kvm_lapic_find_highest_irr(vcpu);
5912 tpr = kvm_lapic_get_cr8(vcpu);
5914 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5917 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5921 /* try to reinject previous events if any */
5922 if (vcpu->arch.exception.pending) {
5923 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5924 vcpu->arch.exception.has_error_code,
5925 vcpu->arch.exception.error_code);
5927 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5928 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5931 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5932 vcpu->arch.exception.has_error_code,
5933 vcpu->arch.exception.error_code,
5934 vcpu->arch.exception.reinject);
5938 if (vcpu->arch.nmi_injected) {
5939 kvm_x86_ops->set_nmi(vcpu);
5943 if (vcpu->arch.interrupt.pending) {
5944 kvm_x86_ops->set_irq(vcpu);
5948 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5949 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5954 /* try to inject new event if pending */
5955 if (vcpu->arch.nmi_pending) {
5956 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5957 --vcpu->arch.nmi_pending;
5958 vcpu->arch.nmi_injected = true;
5959 kvm_x86_ops->set_nmi(vcpu);
5961 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5963 * Because interrupts can be injected asynchronously, we are
5964 * calling check_nested_events again here to avoid a race condition.
5965 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
5966 * proposal and current concerns. Perhaps we should be setting
5967 * KVM_REQ_EVENT only on certain events and not unconditionally?
5969 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5970 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5974 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5975 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5977 kvm_x86_ops->set_irq(vcpu);
5983 static void process_nmi(struct kvm_vcpu *vcpu)
5988 * x86 is limited to one NMI running, and one NMI pending after it.
5989 * If an NMI is already in progress, limit further NMIs to just one.
5990 * Otherwise, allow two (and we'll inject the first one immediately).
5992 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5995 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5996 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5997 kvm_make_request(KVM_REQ_EVENT, vcpu);
6000 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6002 u64 eoi_exit_bitmap[4];
6005 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6008 memset(eoi_exit_bitmap, 0, 32);
6011 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6012 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6013 kvm_apic_update_tmr(vcpu, tmr);
6017 * Returns 1 to let __vcpu_run() continue the guest execution loop without
6018 * exiting to the userspace. Otherwise, the value will be returned to the
6021 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6024 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6025 vcpu->run->request_interrupt_window;
6026 bool req_immediate_exit = false;
6028 if (vcpu->requests) {
6029 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6030 kvm_mmu_unload(vcpu);
6031 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6032 __kvm_migrate_timers(vcpu);
6033 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6034 kvm_gen_update_masterclock(vcpu->kvm);
6035 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6036 kvm_gen_kvmclock_update(vcpu);
6037 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6038 r = kvm_guest_time_update(vcpu);
6042 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6043 kvm_mmu_sync_roots(vcpu);
6044 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6045 kvm_x86_ops->tlb_flush(vcpu);
6046 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6047 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6051 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6052 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6056 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6057 vcpu->fpu_active = 0;
6058 kvm_x86_ops->fpu_deactivate(vcpu);
6060 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6061 /* Page is swapped out. Do synthetic halt */
6062 vcpu->arch.apf.halted = true;
6066 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6067 record_steal_time(vcpu);
6068 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6070 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6071 kvm_handle_pmu_event(vcpu);
6072 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6073 kvm_deliver_pmi(vcpu);
6074 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6075 vcpu_scan_ioapic(vcpu);
6078 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6079 kvm_apic_accept_events(vcpu);
6080 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6085 if (inject_pending_event(vcpu, req_int_win) != 0)
6086 req_immediate_exit = true;
6087 /* enable NMI/IRQ window open exits if needed */
6088 else if (vcpu->arch.nmi_pending)
6089 kvm_x86_ops->enable_nmi_window(vcpu);
6090 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6091 kvm_x86_ops->enable_irq_window(vcpu);
6093 if (kvm_lapic_enabled(vcpu)) {
6095 * Update architecture specific hints for APIC
6096 * virtual interrupt delivery.
6098 if (kvm_x86_ops->hwapic_irr_update)
6099 kvm_x86_ops->hwapic_irr_update(vcpu,
6100 kvm_lapic_find_highest_irr(vcpu));
6101 update_cr8_intercept(vcpu);
6102 kvm_lapic_sync_to_vapic(vcpu);
6106 r = kvm_mmu_reload(vcpu);
6108 goto cancel_injection;
6113 kvm_x86_ops->prepare_guest_switch(vcpu);
6114 if (vcpu->fpu_active)
6115 kvm_load_guest_fpu(vcpu);
6116 kvm_load_guest_xcr0(vcpu);
6118 vcpu->mode = IN_GUEST_MODE;
6120 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6122 /* We should set ->mode before check ->requests,
6123 * see the comment in make_all_cpus_request.
6125 smp_mb__after_srcu_read_unlock();
6127 local_irq_disable();
6129 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6130 || need_resched() || signal_pending(current)) {
6131 vcpu->mode = OUTSIDE_GUEST_MODE;
6135 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6137 goto cancel_injection;
6140 if (req_immediate_exit)
6141 smp_send_reschedule(vcpu->cpu);
6145 if (unlikely(vcpu->arch.switch_db_regs)) {
6147 set_debugreg(vcpu->arch.eff_db[0], 0);
6148 set_debugreg(vcpu->arch.eff_db[1], 1);
6149 set_debugreg(vcpu->arch.eff_db[2], 2);
6150 set_debugreg(vcpu->arch.eff_db[3], 3);
6151 set_debugreg(vcpu->arch.dr6, 6);
6154 trace_kvm_entry(vcpu->vcpu_id);
6155 kvm_x86_ops->run(vcpu);
6158 * Do this here before restoring debug registers on the host. And
6159 * since we do this before handling the vmexit, a DR access vmexit
6160 * can (a) read the correct value of the debug registers, (b) set
6161 * KVM_DEBUGREG_WONT_EXIT again.
6163 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6166 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6167 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6168 for (i = 0; i < KVM_NR_DB_REGS; i++)
6169 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6173 * If the guest has used debug registers, at least dr7
6174 * will be disabled while returning to the host.
6175 * If we don't have active breakpoints in the host, we don't
6176 * care about the messed up debug address registers. But if
6177 * we have some of them active, restore the old state.
6179 if (hw_breakpoint_active())
6180 hw_breakpoint_restore();
6182 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6185 vcpu->mode = OUTSIDE_GUEST_MODE;
6188 /* Interrupt is enabled by handle_external_intr() */
6189 kvm_x86_ops->handle_external_intr(vcpu);
6194 * We must have an instruction between local_irq_enable() and
6195 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6196 * the interrupt shadow. The stat.exits increment will do nicely.
6197 * But we need to prevent reordering, hence this barrier():
6205 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6208 * Profile KVM exit RIPs:
6210 if (unlikely(prof_on == KVM_PROFILING)) {
6211 unsigned long rip = kvm_rip_read(vcpu);
6212 profile_hit(KVM_PROFILING, (void *)rip);
6215 if (unlikely(vcpu->arch.tsc_always_catchup))
6216 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6218 if (vcpu->arch.apic_attention)
6219 kvm_lapic_sync_from_vapic(vcpu);
6221 r = kvm_x86_ops->handle_exit(vcpu);
6225 kvm_x86_ops->cancel_injection(vcpu);
6226 if (unlikely(vcpu->arch.apic_attention))
6227 kvm_lapic_sync_from_vapic(vcpu);
6233 static int __vcpu_run(struct kvm_vcpu *vcpu)
6236 struct kvm *kvm = vcpu->kvm;
6238 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6242 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6243 !vcpu->arch.apf.halted)
6244 r = vcpu_enter_guest(vcpu);
6246 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6247 kvm_vcpu_block(vcpu);
6248 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6249 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6250 kvm_apic_accept_events(vcpu);
6251 switch(vcpu->arch.mp_state) {
6252 case KVM_MP_STATE_HALTED:
6253 vcpu->arch.pv.pv_unhalted = false;
6254 vcpu->arch.mp_state =
6255 KVM_MP_STATE_RUNNABLE;
6256 case KVM_MP_STATE_RUNNABLE:
6257 vcpu->arch.apf.halted = false;
6259 case KVM_MP_STATE_INIT_RECEIVED:
6271 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6272 if (kvm_cpu_has_pending_timer(vcpu))
6273 kvm_inject_pending_timer_irqs(vcpu);
6275 if (dm_request_for_irq_injection(vcpu)) {
6277 vcpu->run->exit_reason = KVM_EXIT_INTR;
6278 ++vcpu->stat.request_irq_exits;
6281 kvm_check_async_pf_completion(vcpu);
6283 if (signal_pending(current)) {
6285 vcpu->run->exit_reason = KVM_EXIT_INTR;
6286 ++vcpu->stat.signal_exits;
6288 if (need_resched()) {
6289 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6291 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6295 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6300 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6303 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6304 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6305 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6306 if (r != EMULATE_DONE)
6311 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6313 BUG_ON(!vcpu->arch.pio.count);
6315 return complete_emulated_io(vcpu);
6319 * Implements the following, as a state machine:
6323 * for each mmio piece in the fragment
6331 * for each mmio piece in the fragment
6336 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6338 struct kvm_run *run = vcpu->run;
6339 struct kvm_mmio_fragment *frag;
6342 BUG_ON(!vcpu->mmio_needed);
6344 /* Complete previous fragment */
6345 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6346 len = min(8u, frag->len);
6347 if (!vcpu->mmio_is_write)
6348 memcpy(frag->data, run->mmio.data, len);
6350 if (frag->len <= 8) {
6351 /* Switch to the next fragment. */
6353 vcpu->mmio_cur_fragment++;
6355 /* Go forward to the next mmio piece. */
6361 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6362 vcpu->mmio_needed = 0;
6364 /* FIXME: return into emulator if single-stepping. */
6365 if (vcpu->mmio_is_write)
6367 vcpu->mmio_read_completed = 1;
6368 return complete_emulated_io(vcpu);
6371 run->exit_reason = KVM_EXIT_MMIO;
6372 run->mmio.phys_addr = frag->gpa;
6373 if (vcpu->mmio_is_write)
6374 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6375 run->mmio.len = min(8u, frag->len);
6376 run->mmio.is_write = vcpu->mmio_is_write;
6377 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6382 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6387 if (!tsk_used_math(current) && init_fpu(current))
6390 if (vcpu->sigset_active)
6391 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6393 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6394 kvm_vcpu_block(vcpu);
6395 kvm_apic_accept_events(vcpu);
6396 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6401 /* re-sync apic's tpr */
6402 if (!irqchip_in_kernel(vcpu->kvm)) {
6403 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6409 if (unlikely(vcpu->arch.complete_userspace_io)) {
6410 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6411 vcpu->arch.complete_userspace_io = NULL;
6416 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6418 r = __vcpu_run(vcpu);
6421 post_kvm_run_save(vcpu);
6422 if (vcpu->sigset_active)
6423 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6428 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6430 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6432 * We are here if userspace calls get_regs() in the middle of
6433 * instruction emulation. Registers state needs to be copied
6434 * back from emulation context to vcpu. Userspace shouldn't do
6435 * that usually, but some bad designed PV devices (vmware
6436 * backdoor interface) need this to work
6438 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6439 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6441 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6442 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6443 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6444 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6445 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6446 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6447 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6448 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6449 #ifdef CONFIG_X86_64
6450 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6451 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6452 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6453 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6454 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6455 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6456 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6457 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6460 regs->rip = kvm_rip_read(vcpu);
6461 regs->rflags = kvm_get_rflags(vcpu);
6466 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6468 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6469 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6471 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6472 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6473 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6474 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6475 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6476 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6477 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6478 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6479 #ifdef CONFIG_X86_64
6480 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6481 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6482 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6483 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6484 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6485 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6486 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6487 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6490 kvm_rip_write(vcpu, regs->rip);
6491 kvm_set_rflags(vcpu, regs->rflags);
6493 vcpu->arch.exception.pending = false;
6495 kvm_make_request(KVM_REQ_EVENT, vcpu);
6500 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6502 struct kvm_segment cs;
6504 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6508 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6510 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6511 struct kvm_sregs *sregs)
6515 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6516 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6517 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6518 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6519 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6520 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6522 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6523 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6525 kvm_x86_ops->get_idt(vcpu, &dt);
6526 sregs->idt.limit = dt.size;
6527 sregs->idt.base = dt.address;
6528 kvm_x86_ops->get_gdt(vcpu, &dt);
6529 sregs->gdt.limit = dt.size;
6530 sregs->gdt.base = dt.address;
6532 sregs->cr0 = kvm_read_cr0(vcpu);
6533 sregs->cr2 = vcpu->arch.cr2;
6534 sregs->cr3 = kvm_read_cr3(vcpu);
6535 sregs->cr4 = kvm_read_cr4(vcpu);
6536 sregs->cr8 = kvm_get_cr8(vcpu);
6537 sregs->efer = vcpu->arch.efer;
6538 sregs->apic_base = kvm_get_apic_base(vcpu);
6540 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6542 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6543 set_bit(vcpu->arch.interrupt.nr,
6544 (unsigned long *)sregs->interrupt_bitmap);
6549 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6550 struct kvm_mp_state *mp_state)
6552 kvm_apic_accept_events(vcpu);
6553 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6554 vcpu->arch.pv.pv_unhalted)
6555 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6557 mp_state->mp_state = vcpu->arch.mp_state;
6562 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6563 struct kvm_mp_state *mp_state)
6565 if (!kvm_vcpu_has_lapic(vcpu) &&
6566 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6569 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6570 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6571 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6573 vcpu->arch.mp_state = mp_state->mp_state;
6574 kvm_make_request(KVM_REQ_EVENT, vcpu);
6578 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6579 int reason, bool has_error_code, u32 error_code)
6581 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6584 init_emulate_ctxt(vcpu);
6586 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6587 has_error_code, error_code);
6590 return EMULATE_FAIL;
6592 kvm_rip_write(vcpu, ctxt->eip);
6593 kvm_set_rflags(vcpu, ctxt->eflags);
6594 kvm_make_request(KVM_REQ_EVENT, vcpu);
6595 return EMULATE_DONE;
6597 EXPORT_SYMBOL_GPL(kvm_task_switch);
6599 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6600 struct kvm_sregs *sregs)
6602 struct msr_data apic_base_msr;
6603 int mmu_reset_needed = 0;
6604 int pending_vec, max_bits, idx;
6607 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6610 dt.size = sregs->idt.limit;
6611 dt.address = sregs->idt.base;
6612 kvm_x86_ops->set_idt(vcpu, &dt);
6613 dt.size = sregs->gdt.limit;
6614 dt.address = sregs->gdt.base;
6615 kvm_x86_ops->set_gdt(vcpu, &dt);
6617 vcpu->arch.cr2 = sregs->cr2;
6618 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6619 vcpu->arch.cr3 = sregs->cr3;
6620 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6622 kvm_set_cr8(vcpu, sregs->cr8);
6624 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6625 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6626 apic_base_msr.data = sregs->apic_base;
6627 apic_base_msr.host_initiated = true;
6628 kvm_set_apic_base(vcpu, &apic_base_msr);
6630 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6631 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6632 vcpu->arch.cr0 = sregs->cr0;
6634 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6635 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6636 if (sregs->cr4 & X86_CR4_OSXSAVE)
6637 kvm_update_cpuid(vcpu);
6639 idx = srcu_read_lock(&vcpu->kvm->srcu);
6640 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6641 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6642 mmu_reset_needed = 1;
6644 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6646 if (mmu_reset_needed)
6647 kvm_mmu_reset_context(vcpu);
6649 max_bits = KVM_NR_INTERRUPTS;
6650 pending_vec = find_first_bit(
6651 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6652 if (pending_vec < max_bits) {
6653 kvm_queue_interrupt(vcpu, pending_vec, false);
6654 pr_debug("Set back pending irq %d\n", pending_vec);
6657 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6658 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6659 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6660 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6661 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6662 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6664 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6665 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6667 update_cr8_intercept(vcpu);
6669 /* Older userspace won't unhalt the vcpu on reset. */
6670 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6671 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6673 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6675 kvm_make_request(KVM_REQ_EVENT, vcpu);
6680 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6681 struct kvm_guest_debug *dbg)
6683 unsigned long rflags;
6686 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6688 if (vcpu->arch.exception.pending)
6690 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6691 kvm_queue_exception(vcpu, DB_VECTOR);
6693 kvm_queue_exception(vcpu, BP_VECTOR);
6697 * Read rflags as long as potentially injected trace flags are still
6700 rflags = kvm_get_rflags(vcpu);
6702 vcpu->guest_debug = dbg->control;
6703 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6704 vcpu->guest_debug = 0;
6706 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6707 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6708 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6709 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6711 for (i = 0; i < KVM_NR_DB_REGS; i++)
6712 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6714 kvm_update_dr7(vcpu);
6716 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6717 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6718 get_segment_base(vcpu, VCPU_SREG_CS);
6721 * Trigger an rflags update that will inject or remove the trace
6724 kvm_set_rflags(vcpu, rflags);
6726 kvm_x86_ops->update_db_bp_intercept(vcpu);
6736 * Translate a guest virtual address to a guest physical address.
6738 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6739 struct kvm_translation *tr)
6741 unsigned long vaddr = tr->linear_address;
6745 idx = srcu_read_lock(&vcpu->kvm->srcu);
6746 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6747 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6748 tr->physical_address = gpa;
6749 tr->valid = gpa != UNMAPPED_GVA;
6756 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6758 struct i387_fxsave_struct *fxsave =
6759 &vcpu->arch.guest_fpu.state->fxsave;
6761 memcpy(fpu->fpr, fxsave->st_space, 128);
6762 fpu->fcw = fxsave->cwd;
6763 fpu->fsw = fxsave->swd;
6764 fpu->ftwx = fxsave->twd;
6765 fpu->last_opcode = fxsave->fop;
6766 fpu->last_ip = fxsave->rip;
6767 fpu->last_dp = fxsave->rdp;
6768 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6773 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6775 struct i387_fxsave_struct *fxsave =
6776 &vcpu->arch.guest_fpu.state->fxsave;
6778 memcpy(fxsave->st_space, fpu->fpr, 128);
6779 fxsave->cwd = fpu->fcw;
6780 fxsave->swd = fpu->fsw;
6781 fxsave->twd = fpu->ftwx;
6782 fxsave->fop = fpu->last_opcode;
6783 fxsave->rip = fpu->last_ip;
6784 fxsave->rdp = fpu->last_dp;
6785 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6790 int fx_init(struct kvm_vcpu *vcpu)
6794 err = fpu_alloc(&vcpu->arch.guest_fpu);
6798 fpu_finit(&vcpu->arch.guest_fpu);
6801 * Ensure guest xcr0 is valid for loading
6803 vcpu->arch.xcr0 = XSTATE_FP;
6805 vcpu->arch.cr0 |= X86_CR0_ET;
6809 EXPORT_SYMBOL_GPL(fx_init);
6811 static void fx_free(struct kvm_vcpu *vcpu)
6813 fpu_free(&vcpu->arch.guest_fpu);
6816 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6818 if (vcpu->guest_fpu_loaded)
6822 * Restore all possible states in the guest,
6823 * and assume host would use all available bits.
6824 * Guest xcr0 would be loaded later.
6826 kvm_put_guest_xcr0(vcpu);
6827 vcpu->guest_fpu_loaded = 1;
6828 __kernel_fpu_begin();
6829 fpu_restore_checking(&vcpu->arch.guest_fpu);
6833 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6835 kvm_put_guest_xcr0(vcpu);
6837 if (!vcpu->guest_fpu_loaded)
6840 vcpu->guest_fpu_loaded = 0;
6841 fpu_save_init(&vcpu->arch.guest_fpu);
6843 ++vcpu->stat.fpu_reload;
6844 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6848 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6850 kvmclock_reset(vcpu);
6852 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6854 kvm_x86_ops->vcpu_free(vcpu);
6857 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6860 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6861 printk_once(KERN_WARNING
6862 "kvm: SMP vm created on host with unstable TSC; "
6863 "guest TSC will not be reliable\n");
6864 return kvm_x86_ops->vcpu_create(kvm, id);
6867 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6871 vcpu->arch.mtrr_state.have_fixed = 1;
6872 r = vcpu_load(vcpu);
6875 kvm_vcpu_reset(vcpu);
6876 kvm_mmu_setup(vcpu);
6882 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6885 struct msr_data msr;
6886 struct kvm *kvm = vcpu->kvm;
6888 r = vcpu_load(vcpu);
6892 msr.index = MSR_IA32_TSC;
6893 msr.host_initiated = true;
6894 kvm_write_tsc(vcpu, &msr);
6897 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
6898 KVMCLOCK_SYNC_PERIOD);
6903 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6906 vcpu->arch.apf.msr_val = 0;
6908 r = vcpu_load(vcpu);
6910 kvm_mmu_unload(vcpu);
6914 kvm_x86_ops->vcpu_free(vcpu);
6917 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6919 atomic_set(&vcpu->arch.nmi_queued, 0);
6920 vcpu->arch.nmi_pending = 0;
6921 vcpu->arch.nmi_injected = false;
6922 kvm_clear_interrupt_queue(vcpu);
6923 kvm_clear_exception_queue(vcpu);
6925 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6926 vcpu->arch.dr6 = DR6_INIT;
6927 kvm_update_dr6(vcpu);
6928 vcpu->arch.dr7 = DR7_FIXED_1;
6929 kvm_update_dr7(vcpu);
6931 kvm_make_request(KVM_REQ_EVENT, vcpu);
6932 vcpu->arch.apf.msr_val = 0;
6933 vcpu->arch.st.msr_val = 0;
6935 kvmclock_reset(vcpu);
6937 kvm_clear_async_pf_completion_queue(vcpu);
6938 kvm_async_pf_hash_reset(vcpu);
6939 vcpu->arch.apf.halted = false;
6941 kvm_pmu_reset(vcpu);
6943 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6944 vcpu->arch.regs_avail = ~0;
6945 vcpu->arch.regs_dirty = ~0;
6947 kvm_x86_ops->vcpu_reset(vcpu);
6950 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6952 struct kvm_segment cs;
6954 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6955 cs.selector = vector << 8;
6956 cs.base = vector << 12;
6957 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6958 kvm_rip_write(vcpu, 0);
6961 int kvm_arch_hardware_enable(void *garbage)
6964 struct kvm_vcpu *vcpu;
6969 bool stable, backwards_tsc = false;
6971 kvm_shared_msr_cpu_online();
6972 ret = kvm_x86_ops->hardware_enable(garbage);
6976 local_tsc = native_read_tsc();
6977 stable = !check_tsc_unstable();
6978 list_for_each_entry(kvm, &vm_list, vm_list) {
6979 kvm_for_each_vcpu(i, vcpu, kvm) {
6980 if (!stable && vcpu->cpu == smp_processor_id())
6981 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6982 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6983 backwards_tsc = true;
6984 if (vcpu->arch.last_host_tsc > max_tsc)
6985 max_tsc = vcpu->arch.last_host_tsc;
6991 * Sometimes, even reliable TSCs go backwards. This happens on
6992 * platforms that reset TSC during suspend or hibernate actions, but
6993 * maintain synchronization. We must compensate. Fortunately, we can
6994 * detect that condition here, which happens early in CPU bringup,
6995 * before any KVM threads can be running. Unfortunately, we can't
6996 * bring the TSCs fully up to date with real time, as we aren't yet far
6997 * enough into CPU bringup that we know how much real time has actually
6998 * elapsed; our helper function, get_kernel_ns() will be using boot
6999 * variables that haven't been updated yet.
7001 * So we simply find the maximum observed TSC above, then record the
7002 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7003 * the adjustment will be applied. Note that we accumulate
7004 * adjustments, in case multiple suspend cycles happen before some VCPU
7005 * gets a chance to run again. In the event that no KVM threads get a
7006 * chance to run, we will miss the entire elapsed period, as we'll have
7007 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7008 * loose cycle time. This isn't too big a deal, since the loss will be
7009 * uniform across all VCPUs (not to mention the scenario is extremely
7010 * unlikely). It is possible that a second hibernate recovery happens
7011 * much faster than a first, causing the observed TSC here to be
7012 * smaller; this would require additional padding adjustment, which is
7013 * why we set last_host_tsc to the local tsc observed here.
7015 * N.B. - this code below runs only on platforms with reliable TSC,
7016 * as that is the only way backwards_tsc is set above. Also note
7017 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7018 * have the same delta_cyc adjustment applied if backwards_tsc
7019 * is detected. Note further, this adjustment is only done once,
7020 * as we reset last_host_tsc on all VCPUs to stop this from being
7021 * called multiple times (one for each physical CPU bringup).
7023 * Platforms with unreliable TSCs don't have to deal with this, they
7024 * will be compensated by the logic in vcpu_load, which sets the TSC to
7025 * catchup mode. This will catchup all VCPUs to real time, but cannot
7026 * guarantee that they stay in perfect synchronization.
7028 if (backwards_tsc) {
7029 u64 delta_cyc = max_tsc - local_tsc;
7030 backwards_tsc_observed = true;
7031 list_for_each_entry(kvm, &vm_list, vm_list) {
7032 kvm_for_each_vcpu(i, vcpu, kvm) {
7033 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7034 vcpu->arch.last_host_tsc = local_tsc;
7035 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
7040 * We have to disable TSC offset matching.. if you were
7041 * booting a VM while issuing an S4 host suspend....
7042 * you may have some problem. Solving this issue is
7043 * left as an exercise to the reader.
7045 kvm->arch.last_tsc_nsec = 0;
7046 kvm->arch.last_tsc_write = 0;
7053 void kvm_arch_hardware_disable(void *garbage)
7055 kvm_x86_ops->hardware_disable(garbage);
7056 drop_user_return_notifiers(garbage);
7059 int kvm_arch_hardware_setup(void)
7061 return kvm_x86_ops->hardware_setup();
7064 void kvm_arch_hardware_unsetup(void)
7066 kvm_x86_ops->hardware_unsetup();
7069 void kvm_arch_check_processor_compat(void *rtn)
7071 kvm_x86_ops->check_processor_compatibility(rtn);
7074 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7076 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7079 struct static_key kvm_no_apic_vcpu __read_mostly;
7081 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7087 BUG_ON(vcpu->kvm == NULL);
7090 vcpu->arch.pv.pv_unhalted = false;
7091 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7092 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7093 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7095 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7097 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7102 vcpu->arch.pio_data = page_address(page);
7104 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7106 r = kvm_mmu_create(vcpu);
7108 goto fail_free_pio_data;
7110 if (irqchip_in_kernel(kvm)) {
7111 r = kvm_create_lapic(vcpu);
7113 goto fail_mmu_destroy;
7115 static_key_slow_inc(&kvm_no_apic_vcpu);
7117 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7119 if (!vcpu->arch.mce_banks) {
7121 goto fail_free_lapic;
7123 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7125 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7127 goto fail_free_mce_banks;
7132 goto fail_free_wbinvd_dirty_mask;
7134 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7135 vcpu->arch.pv_time_enabled = false;
7137 vcpu->arch.guest_supported_xcr0 = 0;
7138 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7140 kvm_async_pf_hash_reset(vcpu);
7144 fail_free_wbinvd_dirty_mask:
7145 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7146 fail_free_mce_banks:
7147 kfree(vcpu->arch.mce_banks);
7149 kvm_free_lapic(vcpu);
7151 kvm_mmu_destroy(vcpu);
7153 free_page((unsigned long)vcpu->arch.pio_data);
7158 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7162 kvm_pmu_destroy(vcpu);
7163 kfree(vcpu->arch.mce_banks);
7164 kvm_free_lapic(vcpu);
7165 idx = srcu_read_lock(&vcpu->kvm->srcu);
7166 kvm_mmu_destroy(vcpu);
7167 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7168 free_page((unsigned long)vcpu->arch.pio_data);
7169 if (!irqchip_in_kernel(vcpu->kvm))
7170 static_key_slow_dec(&kvm_no_apic_vcpu);
7173 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7178 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7179 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7180 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7181 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7183 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7184 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7185 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7186 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7187 &kvm->arch.irq_sources_bitmap);
7189 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7190 mutex_init(&kvm->arch.apic_map_lock);
7191 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7193 pvclock_update_vm_gtod_copy(kvm);
7195 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7196 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7201 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7204 r = vcpu_load(vcpu);
7206 kvm_mmu_unload(vcpu);
7210 static void kvm_free_vcpus(struct kvm *kvm)
7213 struct kvm_vcpu *vcpu;
7216 * Unpin any mmu pages first.
7218 kvm_for_each_vcpu(i, vcpu, kvm) {
7219 kvm_clear_async_pf_completion_queue(vcpu);
7220 kvm_unload_vcpu_mmu(vcpu);
7222 kvm_for_each_vcpu(i, vcpu, kvm)
7223 kvm_arch_vcpu_free(vcpu);
7225 mutex_lock(&kvm->lock);
7226 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7227 kvm->vcpus[i] = NULL;
7229 atomic_set(&kvm->online_vcpus, 0);
7230 mutex_unlock(&kvm->lock);
7233 void kvm_arch_sync_events(struct kvm *kvm)
7235 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7236 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7237 kvm_free_all_assigned_devices(kvm);
7241 void kvm_arch_destroy_vm(struct kvm *kvm)
7243 if (current->mm == kvm->mm) {
7245 * Free memory regions allocated on behalf of userspace,
7246 * unless the the memory map has changed due to process exit
7249 struct kvm_userspace_memory_region mem;
7250 memset(&mem, 0, sizeof(mem));
7251 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7252 kvm_set_memory_region(kvm, &mem);
7254 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7255 kvm_set_memory_region(kvm, &mem);
7257 mem.slot = TSS_PRIVATE_MEMSLOT;
7258 kvm_set_memory_region(kvm, &mem);
7260 kvm_iommu_unmap_guest(kvm);
7261 kfree(kvm->arch.vpic);
7262 kfree(kvm->arch.vioapic);
7263 kvm_free_vcpus(kvm);
7264 if (kvm->arch.apic_access_page)
7265 put_page(kvm->arch.apic_access_page);
7266 if (kvm->arch.ept_identity_pagetable)
7267 put_page(kvm->arch.ept_identity_pagetable);
7268 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7271 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7272 struct kvm_memory_slot *dont)
7276 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7277 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7278 kvm_kvfree(free->arch.rmap[i]);
7279 free->arch.rmap[i] = NULL;
7284 if (!dont || free->arch.lpage_info[i - 1] !=
7285 dont->arch.lpage_info[i - 1]) {
7286 kvm_kvfree(free->arch.lpage_info[i - 1]);
7287 free->arch.lpage_info[i - 1] = NULL;
7292 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7293 unsigned long npages)
7297 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7302 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7303 slot->base_gfn, level) + 1;
7305 slot->arch.rmap[i] =
7306 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7307 if (!slot->arch.rmap[i])
7312 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7313 sizeof(*slot->arch.lpage_info[i - 1]));
7314 if (!slot->arch.lpage_info[i - 1])
7317 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7318 slot->arch.lpage_info[i - 1][0].write_count = 1;
7319 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7320 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7321 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7323 * If the gfn and userspace address are not aligned wrt each
7324 * other, or if explicitly asked to, disable large page
7325 * support for this slot
7327 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7328 !kvm_largepages_enabled()) {
7331 for (j = 0; j < lpages; ++j)
7332 slot->arch.lpage_info[i - 1][j].write_count = 1;
7339 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7340 kvm_kvfree(slot->arch.rmap[i]);
7341 slot->arch.rmap[i] = NULL;
7345 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7346 slot->arch.lpage_info[i - 1] = NULL;
7351 void kvm_arch_memslots_updated(struct kvm *kvm)
7354 * memslots->generation has been incremented.
7355 * mmio generation may have reached its maximum value.
7357 kvm_mmu_invalidate_mmio_sptes(kvm);
7360 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7361 struct kvm_memory_slot *memslot,
7362 struct kvm_userspace_memory_region *mem,
7363 enum kvm_mr_change change)
7366 * Only private memory slots need to be mapped here since
7367 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7369 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7370 unsigned long userspace_addr;
7373 * MAP_SHARED to prevent internal slot pages from being moved
7376 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7377 PROT_READ | PROT_WRITE,
7378 MAP_SHARED | MAP_ANONYMOUS, 0);
7380 if (IS_ERR((void *)userspace_addr))
7381 return PTR_ERR((void *)userspace_addr);
7383 memslot->userspace_addr = userspace_addr;
7389 void kvm_arch_commit_memory_region(struct kvm *kvm,
7390 struct kvm_userspace_memory_region *mem,
7391 const struct kvm_memory_slot *old,
7392 enum kvm_mr_change change)
7395 int nr_mmu_pages = 0;
7397 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7400 ret = vm_munmap(old->userspace_addr,
7401 old->npages * PAGE_SIZE);
7404 "kvm_vm_ioctl_set_memory_region: "
7405 "failed to munmap memory\n");
7408 if (!kvm->arch.n_requested_mmu_pages)
7409 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7412 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7414 * Write protect all pages for dirty logging.
7416 * All the sptes including the large sptes which point to this
7417 * slot are set to readonly. We can not create any new large
7418 * spte on this slot until the end of the logging.
7420 * See the comments in fast_page_fault().
7422 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7423 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7426 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7428 kvm_mmu_invalidate_zap_all_pages(kvm);
7431 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7432 struct kvm_memory_slot *slot)
7434 kvm_mmu_invalidate_zap_all_pages(kvm);
7437 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7439 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7440 kvm_x86_ops->check_nested_events(vcpu, false);
7442 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7443 !vcpu->arch.apf.halted)
7444 || !list_empty_careful(&vcpu->async_pf.done)
7445 || kvm_apic_has_events(vcpu)
7446 || vcpu->arch.pv.pv_unhalted
7447 || atomic_read(&vcpu->arch.nmi_queued) ||
7448 (kvm_arch_interrupt_allowed(vcpu) &&
7449 kvm_cpu_has_interrupt(vcpu));
7452 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7454 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7457 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7459 return kvm_x86_ops->interrupt_allowed(vcpu);
7462 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7464 unsigned long current_rip = kvm_rip_read(vcpu) +
7465 get_segment_base(vcpu, VCPU_SREG_CS);
7467 return current_rip == linear_rip;
7469 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7471 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7473 unsigned long rflags;
7475 rflags = kvm_x86_ops->get_rflags(vcpu);
7476 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7477 rflags &= ~X86_EFLAGS_TF;
7480 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7482 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7484 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7485 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7486 rflags |= X86_EFLAGS_TF;
7487 kvm_x86_ops->set_rflags(vcpu, rflags);
7490 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7492 __kvm_set_rflags(vcpu, rflags);
7493 kvm_make_request(KVM_REQ_EVENT, vcpu);
7495 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7497 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7501 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7505 r = kvm_mmu_reload(vcpu);
7509 if (!vcpu->arch.mmu.direct_map &&
7510 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7513 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7516 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7518 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7521 static inline u32 kvm_async_pf_next_probe(u32 key)
7523 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7526 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7528 u32 key = kvm_async_pf_hash_fn(gfn);
7530 while (vcpu->arch.apf.gfns[key] != ~0)
7531 key = kvm_async_pf_next_probe(key);
7533 vcpu->arch.apf.gfns[key] = gfn;
7536 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7539 u32 key = kvm_async_pf_hash_fn(gfn);
7541 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7542 (vcpu->arch.apf.gfns[key] != gfn &&
7543 vcpu->arch.apf.gfns[key] != ~0); i++)
7544 key = kvm_async_pf_next_probe(key);
7549 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7551 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7554 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7558 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7560 vcpu->arch.apf.gfns[i] = ~0;
7562 j = kvm_async_pf_next_probe(j);
7563 if (vcpu->arch.apf.gfns[j] == ~0)
7565 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7567 * k lies cyclically in ]i,j]
7569 * |....j i.k.| or |.k..j i...|
7571 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7572 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7577 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7580 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7584 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7585 struct kvm_async_pf *work)
7587 struct x86_exception fault;
7589 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7590 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7592 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7593 (vcpu->arch.apf.send_user_only &&
7594 kvm_x86_ops->get_cpl(vcpu) == 0))
7595 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7596 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7597 fault.vector = PF_VECTOR;
7598 fault.error_code_valid = true;
7599 fault.error_code = 0;
7600 fault.nested_page_fault = false;
7601 fault.address = work->arch.token;
7602 kvm_inject_page_fault(vcpu, &fault);
7606 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7607 struct kvm_async_pf *work)
7609 struct x86_exception fault;
7611 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7612 if (work->wakeup_all)
7613 work->arch.token = ~0; /* broadcast wakeup */
7615 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7617 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7618 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7619 fault.vector = PF_VECTOR;
7620 fault.error_code_valid = true;
7621 fault.error_code = 0;
7622 fault.nested_page_fault = false;
7623 fault.address = work->arch.token;
7624 kvm_inject_page_fault(vcpu, &fault);
7626 vcpu->arch.apf.halted = false;
7627 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7630 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7632 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7635 return !kvm_event_needs_reinjection(vcpu) &&
7636 kvm_x86_ops->interrupt_allowed(vcpu);
7639 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7641 atomic_inc(&kvm->arch.noncoherent_dma_count);
7643 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7645 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7647 atomic_dec(&kvm->arch.noncoherent_dma_count);
7649 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7651 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7653 return atomic_read(&kvm->arch.noncoherent_dma_count);
7655 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7657 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7658 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7659 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7660 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7661 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7662 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7663 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7664 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7665 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7666 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7667 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7668 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7669 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);