1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
68 /* This context's GFP mask */
71 /* Allocation order */
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
84 struct mem_cgroup *target_mem_cgroup;
86 /* Scan (total_size >> priority) pages at once */
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
93 unsigned int may_writepage:1;
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
109 unsigned int hibernation_mode:1;
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field) \
124 if ((_page)->lru.prev != _base) { \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field) \
138 if ((_page)->lru.prev != _base) { \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
150 * From 0 .. 100. Higher means more swappy.
152 int vm_swappiness = 60;
154 * The total number of pages which are beyond the high watermark within all
157 unsigned long vm_total_pages;
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
163 static bool global_reclaim(struct scan_control *sc)
165 return !sc->target_mem_cgroup;
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
181 static bool sane_reclaim(struct scan_control *sc)
183 struct mem_cgroup *memcg = sc->target_mem_cgroup;
187 #ifdef CONFIG_CGROUP_WRITEBACK
188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
194 static bool global_reclaim(struct scan_control *sc)
199 static bool sane_reclaim(struct scan_control *sc)
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
210 unsigned long zone_reclaimable_pages(struct zone *zone)
214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 if (get_nr_swap_pages() > 0)
217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
224 * lruvec_lru_size - Returns the number of pages on the given LRU list.
225 * @lruvec: lru vector
227 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
229 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
231 unsigned long lru_size;
234 if (!mem_cgroup_disabled())
235 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
237 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
239 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
240 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
243 if (!managed_zone(zone))
246 if (!mem_cgroup_disabled())
247 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
249 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
250 NR_ZONE_LRU_BASE + lru);
251 lru_size -= min(size, lru_size);
259 * Add a shrinker callback to be called from the vm.
261 int register_shrinker(struct shrinker *shrinker)
263 size_t size = sizeof(*shrinker->nr_deferred);
265 if (shrinker->flags & SHRINKER_NUMA_AWARE)
268 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
269 if (!shrinker->nr_deferred)
272 down_write(&shrinker_rwsem);
273 list_add_tail(&shrinker->list, &shrinker_list);
274 up_write(&shrinker_rwsem);
277 EXPORT_SYMBOL(register_shrinker);
282 void unregister_shrinker(struct shrinker *shrinker)
284 if (!shrinker->nr_deferred)
286 down_write(&shrinker_rwsem);
287 list_del(&shrinker->list);
288 up_write(&shrinker_rwsem);
289 kfree(shrinker->nr_deferred);
290 shrinker->nr_deferred = NULL;
292 EXPORT_SYMBOL(unregister_shrinker);
294 #define SHRINK_BATCH 128
296 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
297 struct shrinker *shrinker, int priority)
299 unsigned long freed = 0;
300 unsigned long long delta;
305 int nid = shrinkctl->nid;
306 long batch_size = shrinker->batch ? shrinker->batch
308 long scanned = 0, next_deferred;
310 freeable = shrinker->count_objects(shrinker, shrinkctl);
315 * copy the current shrinker scan count into a local variable
316 * and zero it so that other concurrent shrinker invocations
317 * don't also do this scanning work.
319 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
322 delta = freeable >> priority;
324 do_div(delta, shrinker->seeks);
326 if (total_scan < 0) {
327 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
328 shrinker->scan_objects, total_scan);
329 total_scan = freeable;
332 next_deferred = total_scan;
335 * We need to avoid excessive windup on filesystem shrinkers
336 * due to large numbers of GFP_NOFS allocations causing the
337 * shrinkers to return -1 all the time. This results in a large
338 * nr being built up so when a shrink that can do some work
339 * comes along it empties the entire cache due to nr >>>
340 * freeable. This is bad for sustaining a working set in
343 * Hence only allow the shrinker to scan the entire cache when
344 * a large delta change is calculated directly.
346 if (delta < freeable / 4)
347 total_scan = min(total_scan, freeable / 2);
350 * Avoid risking looping forever due to too large nr value:
351 * never try to free more than twice the estimate number of
354 if (total_scan > freeable * 2)
355 total_scan = freeable * 2;
357 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
358 freeable, delta, total_scan, priority);
361 * Normally, we should not scan less than batch_size objects in one
362 * pass to avoid too frequent shrinker calls, but if the slab has less
363 * than batch_size objects in total and we are really tight on memory,
364 * we will try to reclaim all available objects, otherwise we can end
365 * up failing allocations although there are plenty of reclaimable
366 * objects spread over several slabs with usage less than the
369 * We detect the "tight on memory" situations by looking at the total
370 * number of objects we want to scan (total_scan). If it is greater
371 * than the total number of objects on slab (freeable), we must be
372 * scanning at high prio and therefore should try to reclaim as much as
375 while (total_scan >= batch_size ||
376 total_scan >= freeable) {
378 unsigned long nr_to_scan = min(batch_size, total_scan);
380 shrinkctl->nr_to_scan = nr_to_scan;
381 shrinkctl->nr_scanned = nr_to_scan;
382 ret = shrinker->scan_objects(shrinker, shrinkctl);
383 if (ret == SHRINK_STOP)
387 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
388 total_scan -= shrinkctl->nr_scanned;
389 scanned += shrinkctl->nr_scanned;
394 if (next_deferred >= scanned)
395 next_deferred -= scanned;
399 * move the unused scan count back into the shrinker in a
400 * manner that handles concurrent updates. If we exhausted the
401 * scan, there is no need to do an update.
403 if (next_deferred > 0)
404 new_nr = atomic_long_add_return(next_deferred,
405 &shrinker->nr_deferred[nid]);
407 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
409 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
414 * shrink_slab - shrink slab caches
415 * @gfp_mask: allocation context
416 * @nid: node whose slab caches to target
417 * @memcg: memory cgroup whose slab caches to target
418 * @priority: the reclaim priority
420 * Call the shrink functions to age shrinkable caches.
422 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
423 * unaware shrinkers will receive a node id of 0 instead.
425 * @memcg specifies the memory cgroup to target. If it is not NULL,
426 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
427 * objects from the memory cgroup specified. Otherwise, only unaware
428 * shrinkers are called.
430 * @priority is sc->priority, we take the number of objects and >> by priority
431 * in order to get the scan target.
433 * Returns the number of reclaimed slab objects.
435 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
436 struct mem_cgroup *memcg,
439 struct shrinker *shrinker;
440 unsigned long freed = 0;
442 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
445 if (!down_read_trylock(&shrinker_rwsem))
448 list_for_each_entry(shrinker, &shrinker_list, list) {
449 struct shrink_control sc = {
450 .gfp_mask = gfp_mask,
456 * If kernel memory accounting is disabled, we ignore
457 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
458 * passing NULL for memcg.
460 if (memcg_kmem_enabled() &&
461 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
464 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
467 freed += do_shrink_slab(&sc, shrinker, priority);
469 * Bail out if someone want to register a new shrinker to
470 * prevent the regsitration from being stalled for long periods
471 * by parallel ongoing shrinking.
473 if (rwsem_is_contended(&shrinker_rwsem)) {
479 up_read(&shrinker_rwsem);
485 void drop_slab_node(int nid)
490 struct mem_cgroup *memcg = NULL;
494 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
495 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
496 } while (freed > 10);
503 for_each_online_node(nid)
507 static inline int is_page_cache_freeable(struct page *page)
510 * A freeable page cache page is referenced only by the caller
511 * that isolated the page, the page cache radix tree and
512 * optional buffer heads at page->private.
514 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
516 return page_count(page) - page_has_private(page) == 1 + radix_pins;
519 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
521 if (current->flags & PF_SWAPWRITE)
523 if (!inode_write_congested(inode))
525 if (inode_to_bdi(inode) == current->backing_dev_info)
531 * We detected a synchronous write error writing a page out. Probably
532 * -ENOSPC. We need to propagate that into the address_space for a subsequent
533 * fsync(), msync() or close().
535 * The tricky part is that after writepage we cannot touch the mapping: nothing
536 * prevents it from being freed up. But we have a ref on the page and once
537 * that page is locked, the mapping is pinned.
539 * We're allowed to run sleeping lock_page() here because we know the caller has
542 static void handle_write_error(struct address_space *mapping,
543 struct page *page, int error)
546 if (page_mapping(page) == mapping)
547 mapping_set_error(mapping, error);
551 /* possible outcome of pageout() */
553 /* failed to write page out, page is locked */
555 /* move page to the active list, page is locked */
557 /* page has been sent to the disk successfully, page is unlocked */
559 /* page is clean and locked */
564 * pageout is called by shrink_page_list() for each dirty page.
565 * Calls ->writepage().
567 static pageout_t pageout(struct page *page, struct address_space *mapping,
568 struct scan_control *sc)
571 * If the page is dirty, only perform writeback if that write
572 * will be non-blocking. To prevent this allocation from being
573 * stalled by pagecache activity. But note that there may be
574 * stalls if we need to run get_block(). We could test
575 * PagePrivate for that.
577 * If this process is currently in __generic_file_write_iter() against
578 * this page's queue, we can perform writeback even if that
581 * If the page is swapcache, write it back even if that would
582 * block, for some throttling. This happens by accident, because
583 * swap_backing_dev_info is bust: it doesn't reflect the
584 * congestion state of the swapdevs. Easy to fix, if needed.
586 if (!is_page_cache_freeable(page))
590 * Some data journaling orphaned pages can have
591 * page->mapping == NULL while being dirty with clean buffers.
593 if (page_has_private(page)) {
594 if (try_to_free_buffers(page)) {
595 ClearPageDirty(page);
596 pr_info("%s: orphaned page\n", __func__);
602 if (mapping->a_ops->writepage == NULL)
603 return PAGE_ACTIVATE;
604 if (!may_write_to_inode(mapping->host, sc))
607 if (clear_page_dirty_for_io(page)) {
609 struct writeback_control wbc = {
610 .sync_mode = WB_SYNC_NONE,
611 .nr_to_write = SWAP_CLUSTER_MAX,
613 .range_end = LLONG_MAX,
617 SetPageReclaim(page);
618 res = mapping->a_ops->writepage(page, &wbc);
620 handle_write_error(mapping, page, res);
621 if (res == AOP_WRITEPAGE_ACTIVATE) {
622 ClearPageReclaim(page);
623 return PAGE_ACTIVATE;
626 if (!PageWriteback(page)) {
627 /* synchronous write or broken a_ops? */
628 ClearPageReclaim(page);
630 trace_mm_vmscan_writepage(page);
631 inc_node_page_state(page, NR_VMSCAN_WRITE);
639 * Same as remove_mapping, but if the page is removed from the mapping, it
640 * gets returned with a refcount of 0.
642 static int __remove_mapping(struct address_space *mapping, struct page *page,
648 BUG_ON(!PageLocked(page));
649 BUG_ON(mapping != page_mapping(page));
651 spin_lock_irqsave(&mapping->tree_lock, flags);
653 * The non racy check for a busy page.
655 * Must be careful with the order of the tests. When someone has
656 * a ref to the page, it may be possible that they dirty it then
657 * drop the reference. So if PageDirty is tested before page_count
658 * here, then the following race may occur:
660 * get_user_pages(&page);
661 * [user mapping goes away]
663 * !PageDirty(page) [good]
664 * SetPageDirty(page);
666 * !page_count(page) [good, discard it]
668 * [oops, our write_to data is lost]
670 * Reversing the order of the tests ensures such a situation cannot
671 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
672 * load is not satisfied before that of page->_refcount.
674 * Note that if SetPageDirty is always performed via set_page_dirty,
675 * and thus under tree_lock, then this ordering is not required.
677 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
678 refcount = 1 + HPAGE_PMD_NR;
681 if (!page_ref_freeze(page, refcount))
683 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
684 if (unlikely(PageDirty(page))) {
685 page_ref_unfreeze(page, refcount);
689 if (PageSwapCache(page)) {
690 swp_entry_t swap = { .val = page_private(page) };
691 mem_cgroup_swapout(page, swap);
692 __delete_from_swap_cache(page);
693 spin_unlock_irqrestore(&mapping->tree_lock, flags);
694 put_swap_page(page, swap);
696 void (*freepage)(struct page *);
699 freepage = mapping->a_ops->freepage;
701 * Remember a shadow entry for reclaimed file cache in
702 * order to detect refaults, thus thrashing, later on.
704 * But don't store shadows in an address space that is
705 * already exiting. This is not just an optizimation,
706 * inode reclaim needs to empty out the radix tree or
707 * the nodes are lost. Don't plant shadows behind its
710 * We also don't store shadows for DAX mappings because the
711 * only page cache pages found in these are zero pages
712 * covering holes, and because we don't want to mix DAX
713 * exceptional entries and shadow exceptional entries in the
716 if (reclaimed && page_is_file_cache(page) &&
717 !mapping_exiting(mapping) && !dax_mapping(mapping))
718 shadow = workingset_eviction(mapping, page);
719 __delete_from_page_cache(page, shadow);
720 spin_unlock_irqrestore(&mapping->tree_lock, flags);
722 if (freepage != NULL)
729 spin_unlock_irqrestore(&mapping->tree_lock, flags);
734 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
735 * someone else has a ref on the page, abort and return 0. If it was
736 * successfully detached, return 1. Assumes the caller has a single ref on
739 int remove_mapping(struct address_space *mapping, struct page *page)
741 if (__remove_mapping(mapping, page, false)) {
743 * Unfreezing the refcount with 1 rather than 2 effectively
744 * drops the pagecache ref for us without requiring another
747 page_ref_unfreeze(page, 1);
754 * putback_lru_page - put previously isolated page onto appropriate LRU list
755 * @page: page to be put back to appropriate lru list
757 * Add previously isolated @page to appropriate LRU list.
758 * Page may still be unevictable for other reasons.
760 * lru_lock must not be held, interrupts must be enabled.
762 void putback_lru_page(struct page *page)
765 put_page(page); /* drop ref from isolate */
768 enum page_references {
770 PAGEREF_RECLAIM_CLEAN,
775 static enum page_references page_check_references(struct page *page,
776 struct scan_control *sc)
778 int referenced_ptes, referenced_page;
779 unsigned long vm_flags;
781 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
783 referenced_page = TestClearPageReferenced(page);
786 * Mlock lost the isolation race with us. Let try_to_unmap()
787 * move the page to the unevictable list.
789 if (vm_flags & VM_LOCKED)
790 return PAGEREF_RECLAIM;
792 if (referenced_ptes) {
793 if (PageSwapBacked(page))
794 return PAGEREF_ACTIVATE;
796 * All mapped pages start out with page table
797 * references from the instantiating fault, so we need
798 * to look twice if a mapped file page is used more
801 * Mark it and spare it for another trip around the
802 * inactive list. Another page table reference will
803 * lead to its activation.
805 * Note: the mark is set for activated pages as well
806 * so that recently deactivated but used pages are
809 SetPageReferenced(page);
811 if (referenced_page || referenced_ptes > 1)
812 return PAGEREF_ACTIVATE;
815 * Activate file-backed executable pages after first usage.
817 if (vm_flags & VM_EXEC)
818 return PAGEREF_ACTIVATE;
823 /* Reclaim if clean, defer dirty pages to writeback */
824 if (referenced_page && !PageSwapBacked(page))
825 return PAGEREF_RECLAIM_CLEAN;
827 return PAGEREF_RECLAIM;
830 /* Check if a page is dirty or under writeback */
831 static void page_check_dirty_writeback(struct page *page,
832 bool *dirty, bool *writeback)
834 struct address_space *mapping;
837 * Anonymous pages are not handled by flushers and must be written
838 * from reclaim context. Do not stall reclaim based on them
840 if (!page_is_file_cache(page) ||
841 (PageAnon(page) && !PageSwapBacked(page))) {
847 /* By default assume that the page flags are accurate */
848 *dirty = PageDirty(page);
849 *writeback = PageWriteback(page);
851 /* Verify dirty/writeback state if the filesystem supports it */
852 if (!page_has_private(page))
855 mapping = page_mapping(page);
856 if (mapping && mapping->a_ops->is_dirty_writeback)
857 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
860 struct reclaim_stat {
862 unsigned nr_unqueued_dirty;
863 unsigned nr_congested;
864 unsigned nr_writeback;
865 unsigned nr_immediate;
866 unsigned nr_activate;
867 unsigned nr_ref_keep;
868 unsigned nr_unmap_fail;
872 * shrink_page_list() returns the number of reclaimed pages
874 static unsigned long shrink_page_list(struct list_head *page_list,
875 struct pglist_data *pgdat,
876 struct scan_control *sc,
877 enum ttu_flags ttu_flags,
878 struct reclaim_stat *stat,
881 LIST_HEAD(ret_pages);
882 LIST_HEAD(free_pages);
884 unsigned nr_unqueued_dirty = 0;
885 unsigned nr_dirty = 0;
886 unsigned nr_congested = 0;
887 unsigned nr_reclaimed = 0;
888 unsigned nr_writeback = 0;
889 unsigned nr_immediate = 0;
890 unsigned nr_ref_keep = 0;
891 unsigned nr_unmap_fail = 0;
895 while (!list_empty(page_list)) {
896 struct address_space *mapping;
899 enum page_references references = PAGEREF_RECLAIM_CLEAN;
900 bool dirty, writeback;
904 page = lru_to_page(page_list);
905 list_del(&page->lru);
907 if (!trylock_page(page))
910 VM_BUG_ON_PAGE(PageActive(page), page);
914 if (unlikely(!page_evictable(page)))
915 goto activate_locked;
917 if (!sc->may_unmap && page_mapped(page))
920 /* Double the slab pressure for mapped and swapcache pages */
921 if ((page_mapped(page) || PageSwapCache(page)) &&
922 !(PageAnon(page) && !PageSwapBacked(page)))
925 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
926 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
929 * The number of dirty pages determines if a zone is marked
930 * reclaim_congested which affects wait_iff_congested. kswapd
931 * will stall and start writing pages if the tail of the LRU
932 * is all dirty unqueued pages.
934 page_check_dirty_writeback(page, &dirty, &writeback);
935 if (dirty || writeback)
938 if (dirty && !writeback)
942 * Treat this page as congested if the underlying BDI is or if
943 * pages are cycling through the LRU so quickly that the
944 * pages marked for immediate reclaim are making it to the
945 * end of the LRU a second time.
947 mapping = page_mapping(page);
948 if (((dirty || writeback) && mapping &&
949 inode_write_congested(mapping->host)) ||
950 (writeback && PageReclaim(page)))
954 * If a page at the tail of the LRU is under writeback, there
955 * are three cases to consider.
957 * 1) If reclaim is encountering an excessive number of pages
958 * under writeback and this page is both under writeback and
959 * PageReclaim then it indicates that pages are being queued
960 * for IO but are being recycled through the LRU before the
961 * IO can complete. Waiting on the page itself risks an
962 * indefinite stall if it is impossible to writeback the
963 * page due to IO error or disconnected storage so instead
964 * note that the LRU is being scanned too quickly and the
965 * caller can stall after page list has been processed.
967 * 2) Global or new memcg reclaim encounters a page that is
968 * not marked for immediate reclaim, or the caller does not
969 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
970 * not to fs). In this case mark the page for immediate
971 * reclaim and continue scanning.
973 * Require may_enter_fs because we would wait on fs, which
974 * may not have submitted IO yet. And the loop driver might
975 * enter reclaim, and deadlock if it waits on a page for
976 * which it is needed to do the write (loop masks off
977 * __GFP_IO|__GFP_FS for this reason); but more thought
978 * would probably show more reasons.
980 * 3) Legacy memcg encounters a page that is already marked
981 * PageReclaim. memcg does not have any dirty pages
982 * throttling so we could easily OOM just because too many
983 * pages are in writeback and there is nothing else to
984 * reclaim. Wait for the writeback to complete.
986 * In cases 1) and 2) we activate the pages to get them out of
987 * the way while we continue scanning for clean pages on the
988 * inactive list and refilling from the active list. The
989 * observation here is that waiting for disk writes is more
990 * expensive than potentially causing reloads down the line.
991 * Since they're marked for immediate reclaim, they won't put
992 * memory pressure on the cache working set any longer than it
993 * takes to write them to disk.
995 if (PageWriteback(page)) {
997 if (current_is_kswapd() &&
999 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1001 goto activate_locked;
1004 } else if (sane_reclaim(sc) ||
1005 !PageReclaim(page) || !may_enter_fs) {
1007 * This is slightly racy - end_page_writeback()
1008 * might have just cleared PageReclaim, then
1009 * setting PageReclaim here end up interpreted
1010 * as PageReadahead - but that does not matter
1011 * enough to care. What we do want is for this
1012 * page to have PageReclaim set next time memcg
1013 * reclaim reaches the tests above, so it will
1014 * then wait_on_page_writeback() to avoid OOM;
1015 * and it's also appropriate in global reclaim.
1017 SetPageReclaim(page);
1019 goto activate_locked;
1024 wait_on_page_writeback(page);
1025 /* then go back and try same page again */
1026 list_add_tail(&page->lru, page_list);
1032 references = page_check_references(page, sc);
1034 switch (references) {
1035 case PAGEREF_ACTIVATE:
1036 goto activate_locked;
1040 case PAGEREF_RECLAIM:
1041 case PAGEREF_RECLAIM_CLEAN:
1042 ; /* try to reclaim the page below */
1046 * Anonymous process memory has backing store?
1047 * Try to allocate it some swap space here.
1048 * Lazyfree page could be freed directly
1050 if (PageAnon(page) && PageSwapBacked(page)) {
1051 if (!PageSwapCache(page)) {
1052 if (!(sc->gfp_mask & __GFP_IO))
1054 if (PageTransHuge(page)) {
1055 /* cannot split THP, skip it */
1056 if (!can_split_huge_page(page, NULL))
1057 goto activate_locked;
1059 * Split pages without a PMD map right
1060 * away. Chances are some or all of the
1061 * tail pages can be freed without IO.
1063 if (!compound_mapcount(page) &&
1064 split_huge_page_to_list(page,
1066 goto activate_locked;
1068 if (!add_to_swap(page)) {
1069 if (!PageTransHuge(page))
1070 goto activate_locked;
1071 /* Fallback to swap normal pages */
1072 if (split_huge_page_to_list(page,
1074 goto activate_locked;
1075 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1076 count_vm_event(THP_SWPOUT_FALLBACK);
1078 if (!add_to_swap(page))
1079 goto activate_locked;
1084 /* Adding to swap updated mapping */
1085 mapping = page_mapping(page);
1087 } else if (unlikely(PageTransHuge(page))) {
1088 /* Split file THP */
1089 if (split_huge_page_to_list(page, page_list))
1094 * The page is mapped into the page tables of one or more
1095 * processes. Try to unmap it here.
1097 if (page_mapped(page)) {
1098 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1100 if (unlikely(PageTransHuge(page)))
1101 flags |= TTU_SPLIT_HUGE_PMD;
1102 if (!try_to_unmap(page, flags)) {
1104 goto activate_locked;
1108 if (PageDirty(page)) {
1110 * Only kswapd can writeback filesystem pages
1111 * to avoid risk of stack overflow. But avoid
1112 * injecting inefficient single-page IO into
1113 * flusher writeback as much as possible: only
1114 * write pages when we've encountered many
1115 * dirty pages, and when we've already scanned
1116 * the rest of the LRU for clean pages and see
1117 * the same dirty pages again (PageReclaim).
1119 if (page_is_file_cache(page) &&
1120 (!current_is_kswapd() || !PageReclaim(page) ||
1121 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1123 * Immediately reclaim when written back.
1124 * Similar in principal to deactivate_page()
1125 * except we already have the page isolated
1126 * and know it's dirty
1128 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1129 SetPageReclaim(page);
1131 goto activate_locked;
1134 if (references == PAGEREF_RECLAIM_CLEAN)
1138 if (!sc->may_writepage)
1142 * Page is dirty. Flush the TLB if a writable entry
1143 * potentially exists to avoid CPU writes after IO
1144 * starts and then write it out here.
1146 try_to_unmap_flush_dirty();
1147 switch (pageout(page, mapping, sc)) {
1151 goto activate_locked;
1153 if (PageWriteback(page))
1155 if (PageDirty(page))
1159 * A synchronous write - probably a ramdisk. Go
1160 * ahead and try to reclaim the page.
1162 if (!trylock_page(page))
1164 if (PageDirty(page) || PageWriteback(page))
1166 mapping = page_mapping(page);
1168 ; /* try to free the page below */
1173 * If the page has buffers, try to free the buffer mappings
1174 * associated with this page. If we succeed we try to free
1177 * We do this even if the page is PageDirty().
1178 * try_to_release_page() does not perform I/O, but it is
1179 * possible for a page to have PageDirty set, but it is actually
1180 * clean (all its buffers are clean). This happens if the
1181 * buffers were written out directly, with submit_bh(). ext3
1182 * will do this, as well as the blockdev mapping.
1183 * try_to_release_page() will discover that cleanness and will
1184 * drop the buffers and mark the page clean - it can be freed.
1186 * Rarely, pages can have buffers and no ->mapping. These are
1187 * the pages which were not successfully invalidated in
1188 * truncate_complete_page(). We try to drop those buffers here
1189 * and if that worked, and the page is no longer mapped into
1190 * process address space (page_count == 1) it can be freed.
1191 * Otherwise, leave the page on the LRU so it is swappable.
1193 if (page_has_private(page)) {
1194 if (!try_to_release_page(page, sc->gfp_mask))
1195 goto activate_locked;
1196 if (!mapping && page_count(page) == 1) {
1198 if (put_page_testzero(page))
1202 * rare race with speculative reference.
1203 * the speculative reference will free
1204 * this page shortly, so we may
1205 * increment nr_reclaimed here (and
1206 * leave it off the LRU).
1214 if (PageAnon(page) && !PageSwapBacked(page)) {
1215 /* follow __remove_mapping for reference */
1216 if (!page_ref_freeze(page, 1))
1218 if (PageDirty(page)) {
1219 page_ref_unfreeze(page, 1);
1223 count_vm_event(PGLAZYFREED);
1224 count_memcg_page_event(page, PGLAZYFREED);
1225 } else if (!mapping || !__remove_mapping(mapping, page, true))
1228 * At this point, we have no other references and there is
1229 * no way to pick any more up (removed from LRU, removed
1230 * from pagecache). Can use non-atomic bitops now (and
1231 * we obviously don't have to worry about waking up a process
1232 * waiting on the page lock, because there are no references.
1234 __ClearPageLocked(page);
1239 * Is there need to periodically free_page_list? It would
1240 * appear not as the counts should be low
1242 if (unlikely(PageTransHuge(page))) {
1243 mem_cgroup_uncharge(page);
1244 (*get_compound_page_dtor(page))(page);
1246 list_add(&page->lru, &free_pages);
1250 /* Not a candidate for swapping, so reclaim swap space. */
1251 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1253 try_to_free_swap(page);
1254 VM_BUG_ON_PAGE(PageActive(page), page);
1255 if (!PageMlocked(page)) {
1256 SetPageActive(page);
1258 count_memcg_page_event(page, PGACTIVATE);
1263 list_add(&page->lru, &ret_pages);
1264 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1267 mem_cgroup_uncharge_list(&free_pages);
1268 try_to_unmap_flush();
1269 free_unref_page_list(&free_pages);
1271 list_splice(&ret_pages, page_list);
1272 count_vm_events(PGACTIVATE, pgactivate);
1275 stat->nr_dirty = nr_dirty;
1276 stat->nr_congested = nr_congested;
1277 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1278 stat->nr_writeback = nr_writeback;
1279 stat->nr_immediate = nr_immediate;
1280 stat->nr_activate = pgactivate;
1281 stat->nr_ref_keep = nr_ref_keep;
1282 stat->nr_unmap_fail = nr_unmap_fail;
1284 return nr_reclaimed;
1287 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1288 struct list_head *page_list)
1290 struct scan_control sc = {
1291 .gfp_mask = GFP_KERNEL,
1292 .priority = DEF_PRIORITY,
1296 struct page *page, *next;
1297 LIST_HEAD(clean_pages);
1299 list_for_each_entry_safe(page, next, page_list, lru) {
1300 if (page_is_file_cache(page) && !PageDirty(page) &&
1301 !__PageMovable(page)) {
1302 ClearPageActive(page);
1303 list_move(&page->lru, &clean_pages);
1307 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1308 TTU_IGNORE_ACCESS, NULL, true);
1309 list_splice(&clean_pages, page_list);
1310 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1315 * Attempt to remove the specified page from its LRU. Only take this page
1316 * if it is of the appropriate PageActive status. Pages which are being
1317 * freed elsewhere are also ignored.
1319 * page: page to consider
1320 * mode: one of the LRU isolation modes defined above
1322 * returns 0 on success, -ve errno on failure.
1324 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1328 /* Only take pages on the LRU. */
1332 /* Compaction should not handle unevictable pages but CMA can do so */
1333 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1339 * To minimise LRU disruption, the caller can indicate that it only
1340 * wants to isolate pages it will be able to operate on without
1341 * blocking - clean pages for the most part.
1343 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1344 * that it is possible to migrate without blocking
1346 if (mode & ISOLATE_ASYNC_MIGRATE) {
1347 /* All the caller can do on PageWriteback is block */
1348 if (PageWriteback(page))
1351 if (PageDirty(page)) {
1352 struct address_space *mapping;
1356 * Only pages without mappings or that have a
1357 * ->migratepage callback are possible to migrate
1358 * without blocking. However, we can be racing with
1359 * truncation so it's necessary to lock the page
1360 * to stabilise the mapping as truncation holds
1361 * the page lock until after the page is removed
1362 * from the page cache.
1364 if (!trylock_page(page))
1367 mapping = page_mapping(page);
1368 migrate_dirty = mapping && mapping->a_ops->migratepage;
1375 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1378 if (likely(get_page_unless_zero(page))) {
1380 * Be careful not to clear PageLRU until after we're
1381 * sure the page is not being freed elsewhere -- the
1382 * page release code relies on it.
1393 * Update LRU sizes after isolating pages. The LRU size updates must
1394 * be complete before mem_cgroup_update_lru_size due to a santity check.
1396 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1397 enum lru_list lru, unsigned long *nr_zone_taken)
1401 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1402 if (!nr_zone_taken[zid])
1405 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1407 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1414 * zone_lru_lock is heavily contended. Some of the functions that
1415 * shrink the lists perform better by taking out a batch of pages
1416 * and working on them outside the LRU lock.
1418 * For pagecache intensive workloads, this function is the hottest
1419 * spot in the kernel (apart from copy_*_user functions).
1421 * Appropriate locks must be held before calling this function.
1423 * @nr_to_scan: The number of eligible pages to look through on the list.
1424 * @lruvec: The LRU vector to pull pages from.
1425 * @dst: The temp list to put pages on to.
1426 * @nr_scanned: The number of pages that were scanned.
1427 * @sc: The scan_control struct for this reclaim session
1428 * @mode: One of the LRU isolation modes
1429 * @lru: LRU list id for isolating
1431 * returns how many pages were moved onto *@dst.
1433 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1434 struct lruvec *lruvec, struct list_head *dst,
1435 unsigned long *nr_scanned, struct scan_control *sc,
1436 isolate_mode_t mode, enum lru_list lru)
1438 struct list_head *src = &lruvec->lists[lru];
1439 unsigned long nr_taken = 0;
1440 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1441 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1442 unsigned long skipped = 0;
1443 unsigned long scan, total_scan, nr_pages;
1444 LIST_HEAD(pages_skipped);
1447 for (total_scan = 0;
1448 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1452 page = lru_to_page(src);
1453 prefetchw_prev_lru_page(page, src, flags);
1455 VM_BUG_ON_PAGE(!PageLRU(page), page);
1457 if (page_zonenum(page) > sc->reclaim_idx) {
1458 list_move(&page->lru, &pages_skipped);
1459 nr_skipped[page_zonenum(page)]++;
1464 * Do not count skipped pages because that makes the function
1465 * return with no isolated pages if the LRU mostly contains
1466 * ineligible pages. This causes the VM to not reclaim any
1467 * pages, triggering a premature OOM.
1470 switch (__isolate_lru_page(page, mode)) {
1472 nr_pages = hpage_nr_pages(page);
1473 nr_taken += nr_pages;
1474 nr_zone_taken[page_zonenum(page)] += nr_pages;
1475 list_move(&page->lru, dst);
1479 /* else it is being freed elsewhere */
1480 list_move(&page->lru, src);
1489 * Splice any skipped pages to the start of the LRU list. Note that
1490 * this disrupts the LRU order when reclaiming for lower zones but
1491 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1492 * scanning would soon rescan the same pages to skip and put the
1493 * system at risk of premature OOM.
1495 if (!list_empty(&pages_skipped)) {
1498 list_splice(&pages_skipped, src);
1499 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1500 if (!nr_skipped[zid])
1503 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1504 skipped += nr_skipped[zid];
1507 *nr_scanned = total_scan;
1508 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1509 total_scan, skipped, nr_taken, mode, lru);
1510 update_lru_sizes(lruvec, lru, nr_zone_taken);
1515 * isolate_lru_page - tries to isolate a page from its LRU list
1516 * @page: page to isolate from its LRU list
1518 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1519 * vmstat statistic corresponding to whatever LRU list the page was on.
1521 * Returns 0 if the page was removed from an LRU list.
1522 * Returns -EBUSY if the page was not on an LRU list.
1524 * The returned page will have PageLRU() cleared. If it was found on
1525 * the active list, it will have PageActive set. If it was found on
1526 * the unevictable list, it will have the PageUnevictable bit set. That flag
1527 * may need to be cleared by the caller before letting the page go.
1529 * The vmstat statistic corresponding to the list on which the page was
1530 * found will be decremented.
1534 * (1) Must be called with an elevated refcount on the page. This is a
1535 * fundamentnal difference from isolate_lru_pages (which is called
1536 * without a stable reference).
1537 * (2) the lru_lock must not be held.
1538 * (3) interrupts must be enabled.
1540 int isolate_lru_page(struct page *page)
1544 VM_BUG_ON_PAGE(!page_count(page), page);
1545 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1547 if (PageLRU(page)) {
1548 struct zone *zone = page_zone(page);
1549 struct lruvec *lruvec;
1551 spin_lock_irq(zone_lru_lock(zone));
1552 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1553 if (PageLRU(page)) {
1554 int lru = page_lru(page);
1557 del_page_from_lru_list(page, lruvec, lru);
1560 spin_unlock_irq(zone_lru_lock(zone));
1566 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1567 * then get resheduled. When there are massive number of tasks doing page
1568 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1569 * the LRU list will go small and be scanned faster than necessary, leading to
1570 * unnecessary swapping, thrashing and OOM.
1572 static int too_many_isolated(struct pglist_data *pgdat, int file,
1573 struct scan_control *sc)
1575 unsigned long inactive, isolated;
1577 if (current_is_kswapd())
1580 if (!sane_reclaim(sc))
1584 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1585 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1587 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1588 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1592 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1593 * won't get blocked by normal direct-reclaimers, forming a circular
1596 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1599 return isolated > inactive;
1602 static noinline_for_stack void
1603 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1605 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1606 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1607 LIST_HEAD(pages_to_free);
1610 * Put back any unfreeable pages.
1612 while (!list_empty(page_list)) {
1613 struct page *page = lru_to_page(page_list);
1616 VM_BUG_ON_PAGE(PageLRU(page), page);
1617 list_del(&page->lru);
1618 if (unlikely(!page_evictable(page))) {
1619 spin_unlock_irq(&pgdat->lru_lock);
1620 putback_lru_page(page);
1621 spin_lock_irq(&pgdat->lru_lock);
1625 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1628 lru = page_lru(page);
1629 add_page_to_lru_list(page, lruvec, lru);
1631 if (is_active_lru(lru)) {
1632 int file = is_file_lru(lru);
1633 int numpages = hpage_nr_pages(page);
1634 reclaim_stat->recent_rotated[file] += numpages;
1636 if (put_page_testzero(page)) {
1637 __ClearPageLRU(page);
1638 __ClearPageActive(page);
1639 del_page_from_lru_list(page, lruvec, lru);
1641 if (unlikely(PageCompound(page))) {
1642 spin_unlock_irq(&pgdat->lru_lock);
1643 mem_cgroup_uncharge(page);
1644 (*get_compound_page_dtor(page))(page);
1645 spin_lock_irq(&pgdat->lru_lock);
1647 list_add(&page->lru, &pages_to_free);
1652 * To save our caller's stack, now use input list for pages to free.
1654 list_splice(&pages_to_free, page_list);
1658 * If a kernel thread (such as nfsd for loop-back mounts) services
1659 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1660 * In that case we should only throttle if the backing device it is
1661 * writing to is congested. In other cases it is safe to throttle.
1663 static int current_may_throttle(void)
1665 return !(current->flags & PF_LESS_THROTTLE) ||
1666 current->backing_dev_info == NULL ||
1667 bdi_write_congested(current->backing_dev_info);
1671 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1672 * of reclaimed pages
1674 static noinline_for_stack unsigned long
1675 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1676 struct scan_control *sc, enum lru_list lru)
1678 LIST_HEAD(page_list);
1679 unsigned long nr_scanned;
1680 unsigned long nr_reclaimed = 0;
1681 unsigned long nr_taken;
1682 struct reclaim_stat stat = {};
1683 isolate_mode_t isolate_mode = 0;
1684 int file = is_file_lru(lru);
1685 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1686 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1687 bool stalled = false;
1689 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1693 /* wait a bit for the reclaimer. */
1697 /* We are about to die and free our memory. Return now. */
1698 if (fatal_signal_pending(current))
1699 return SWAP_CLUSTER_MAX;
1705 isolate_mode |= ISOLATE_UNMAPPED;
1707 spin_lock_irq(&pgdat->lru_lock);
1709 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1710 &nr_scanned, sc, isolate_mode, lru);
1712 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1713 reclaim_stat->recent_scanned[file] += nr_taken;
1715 if (current_is_kswapd()) {
1716 if (global_reclaim(sc))
1717 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1718 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1721 if (global_reclaim(sc))
1722 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1723 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1726 spin_unlock_irq(&pgdat->lru_lock);
1731 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1734 spin_lock_irq(&pgdat->lru_lock);
1736 if (current_is_kswapd()) {
1737 if (global_reclaim(sc))
1738 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1739 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1742 if (global_reclaim(sc))
1743 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1744 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1748 putback_inactive_pages(lruvec, &page_list);
1750 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1752 spin_unlock_irq(&pgdat->lru_lock);
1754 mem_cgroup_uncharge_list(&page_list);
1755 free_unref_page_list(&page_list);
1758 * If reclaim is isolating dirty pages under writeback, it implies
1759 * that the long-lived page allocation rate is exceeding the page
1760 * laundering rate. Either the global limits are not being effective
1761 * at throttling processes due to the page distribution throughout
1762 * zones or there is heavy usage of a slow backing device. The
1763 * only option is to throttle from reclaim context which is not ideal
1764 * as there is no guarantee the dirtying process is throttled in the
1765 * same way balance_dirty_pages() manages.
1767 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1768 * of pages under pages flagged for immediate reclaim and stall if any
1769 * are encountered in the nr_immediate check below.
1771 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1772 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1775 * If dirty pages are scanned that are not queued for IO, it
1776 * implies that flushers are not doing their job. This can
1777 * happen when memory pressure pushes dirty pages to the end of
1778 * the LRU before the dirty limits are breached and the dirty
1779 * data has expired. It can also happen when the proportion of
1780 * dirty pages grows not through writes but through memory
1781 * pressure reclaiming all the clean cache. And in some cases,
1782 * the flushers simply cannot keep up with the allocation
1783 * rate. Nudge the flusher threads in case they are asleep.
1785 if (stat.nr_unqueued_dirty == nr_taken)
1786 wakeup_flusher_threads(WB_REASON_VMSCAN);
1789 * Legacy memcg will stall in page writeback so avoid forcibly
1792 if (sane_reclaim(sc)) {
1794 * Tag a zone as congested if all the dirty pages scanned were
1795 * backed by a congested BDI and wait_iff_congested will stall.
1797 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1798 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1800 /* Allow kswapd to start writing pages during reclaim. */
1801 if (stat.nr_unqueued_dirty == nr_taken)
1802 set_bit(PGDAT_DIRTY, &pgdat->flags);
1805 * If kswapd scans pages marked marked for immediate
1806 * reclaim and under writeback (nr_immediate), it implies
1807 * that pages are cycling through the LRU faster than
1808 * they are written so also forcibly stall.
1810 if (stat.nr_immediate && current_may_throttle())
1811 congestion_wait(BLK_RW_ASYNC, HZ/10);
1815 * Stall direct reclaim for IO completions if underlying BDIs or zone
1816 * is congested. Allow kswapd to continue until it starts encountering
1817 * unqueued dirty pages or cycling through the LRU too quickly.
1819 if (!sc->hibernation_mode && !current_is_kswapd() &&
1820 current_may_throttle())
1821 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1823 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1824 nr_scanned, nr_reclaimed,
1825 stat.nr_dirty, stat.nr_writeback,
1826 stat.nr_congested, stat.nr_immediate,
1827 stat.nr_activate, stat.nr_ref_keep,
1829 sc->priority, file);
1830 return nr_reclaimed;
1834 * This moves pages from the active list to the inactive list.
1836 * We move them the other way if the page is referenced by one or more
1837 * processes, from rmap.
1839 * If the pages are mostly unmapped, the processing is fast and it is
1840 * appropriate to hold zone_lru_lock across the whole operation. But if
1841 * the pages are mapped, the processing is slow (page_referenced()) so we
1842 * should drop zone_lru_lock around each page. It's impossible to balance
1843 * this, so instead we remove the pages from the LRU while processing them.
1844 * It is safe to rely on PG_active against the non-LRU pages in here because
1845 * nobody will play with that bit on a non-LRU page.
1847 * The downside is that we have to touch page->_refcount against each page.
1848 * But we had to alter page->flags anyway.
1850 * Returns the number of pages moved to the given lru.
1853 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1854 struct list_head *list,
1855 struct list_head *pages_to_free,
1858 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1863 while (!list_empty(list)) {
1864 page = lru_to_page(list);
1865 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1867 VM_BUG_ON_PAGE(PageLRU(page), page);
1870 nr_pages = hpage_nr_pages(page);
1871 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1872 list_move(&page->lru, &lruvec->lists[lru]);
1874 if (put_page_testzero(page)) {
1875 __ClearPageLRU(page);
1876 __ClearPageActive(page);
1877 del_page_from_lru_list(page, lruvec, lru);
1879 if (unlikely(PageCompound(page))) {
1880 spin_unlock_irq(&pgdat->lru_lock);
1881 mem_cgroup_uncharge(page);
1882 (*get_compound_page_dtor(page))(page);
1883 spin_lock_irq(&pgdat->lru_lock);
1885 list_add(&page->lru, pages_to_free);
1887 nr_moved += nr_pages;
1891 if (!is_active_lru(lru)) {
1892 __count_vm_events(PGDEACTIVATE, nr_moved);
1893 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1900 static void shrink_active_list(unsigned long nr_to_scan,
1901 struct lruvec *lruvec,
1902 struct scan_control *sc,
1905 unsigned long nr_taken;
1906 unsigned long nr_scanned;
1907 unsigned long vm_flags;
1908 LIST_HEAD(l_hold); /* The pages which were snipped off */
1909 LIST_HEAD(l_active);
1910 LIST_HEAD(l_inactive);
1912 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1913 unsigned nr_deactivate, nr_activate;
1914 unsigned nr_rotated = 0;
1915 isolate_mode_t isolate_mode = 0;
1916 int file = is_file_lru(lru);
1917 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1922 isolate_mode |= ISOLATE_UNMAPPED;
1924 spin_lock_irq(&pgdat->lru_lock);
1926 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1927 &nr_scanned, sc, isolate_mode, lru);
1929 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1930 reclaim_stat->recent_scanned[file] += nr_taken;
1932 __count_vm_events(PGREFILL, nr_scanned);
1933 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1935 spin_unlock_irq(&pgdat->lru_lock);
1937 while (!list_empty(&l_hold)) {
1939 page = lru_to_page(&l_hold);
1940 list_del(&page->lru);
1942 if (unlikely(!page_evictable(page))) {
1943 putback_lru_page(page);
1947 if (unlikely(buffer_heads_over_limit)) {
1948 if (page_has_private(page) && trylock_page(page)) {
1949 if (page_has_private(page))
1950 try_to_release_page(page, 0);
1955 if (page_referenced(page, 0, sc->target_mem_cgroup,
1957 nr_rotated += hpage_nr_pages(page);
1959 * Identify referenced, file-backed active pages and
1960 * give them one more trip around the active list. So
1961 * that executable code get better chances to stay in
1962 * memory under moderate memory pressure. Anon pages
1963 * are not likely to be evicted by use-once streaming
1964 * IO, plus JVM can create lots of anon VM_EXEC pages,
1965 * so we ignore them here.
1967 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1968 list_add(&page->lru, &l_active);
1973 ClearPageActive(page); /* we are de-activating */
1974 list_add(&page->lru, &l_inactive);
1978 * Move pages back to the lru list.
1980 spin_lock_irq(&pgdat->lru_lock);
1982 * Count referenced pages from currently used mappings as rotated,
1983 * even though only some of them are actually re-activated. This
1984 * helps balance scan pressure between file and anonymous pages in
1987 reclaim_stat->recent_rotated[file] += nr_rotated;
1989 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1990 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1991 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1992 spin_unlock_irq(&pgdat->lru_lock);
1994 mem_cgroup_uncharge_list(&l_hold);
1995 free_unref_page_list(&l_hold);
1996 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
1997 nr_deactivate, nr_rotated, sc->priority, file);
2001 * The inactive anon list should be small enough that the VM never has
2002 * to do too much work.
2004 * The inactive file list should be small enough to leave most memory
2005 * to the established workingset on the scan-resistant active list,
2006 * but large enough to avoid thrashing the aggregate readahead window.
2008 * Both inactive lists should also be large enough that each inactive
2009 * page has a chance to be referenced again before it is reclaimed.
2011 * If that fails and refaulting is observed, the inactive list grows.
2013 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2014 * on this LRU, maintained by the pageout code. An inactive_ratio
2015 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2018 * memory ratio inactive
2019 * -------------------------------------
2028 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2029 struct mem_cgroup *memcg,
2030 struct scan_control *sc, bool actual_reclaim)
2032 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2033 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2034 enum lru_list inactive_lru = file * LRU_FILE;
2035 unsigned long inactive, active;
2036 unsigned long inactive_ratio;
2037 unsigned long refaults;
2041 * If we don't have swap space, anonymous page deactivation
2044 if (!file && !total_swap_pages)
2047 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2048 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2051 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2053 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2056 * When refaults are being observed, it means a new workingset
2057 * is being established. Disable active list protection to get
2058 * rid of the stale workingset quickly.
2060 if (file && actual_reclaim && lruvec->refaults != refaults) {
2063 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2065 inactive_ratio = int_sqrt(10 * gb);
2071 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2072 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2073 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2074 inactive_ratio, file);
2076 return inactive * inactive_ratio < active;
2079 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2080 struct lruvec *lruvec, struct mem_cgroup *memcg,
2081 struct scan_control *sc)
2083 if (is_active_lru(lru)) {
2084 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2086 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2090 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2101 * Determine how aggressively the anon and file LRU lists should be
2102 * scanned. The relative value of each set of LRU lists is determined
2103 * by looking at the fraction of the pages scanned we did rotate back
2104 * onto the active list instead of evict.
2106 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2107 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2109 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2110 struct scan_control *sc, unsigned long *nr,
2111 unsigned long *lru_pages)
2113 int swappiness = mem_cgroup_swappiness(memcg);
2114 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2116 u64 denominator = 0; /* gcc */
2117 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2118 unsigned long anon_prio, file_prio;
2119 enum scan_balance scan_balance;
2120 unsigned long anon, file;
2121 unsigned long ap, fp;
2124 /* If we have no swap space, do not bother scanning anon pages. */
2125 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2126 scan_balance = SCAN_FILE;
2131 * Global reclaim will swap to prevent OOM even with no
2132 * swappiness, but memcg users want to use this knob to
2133 * disable swapping for individual groups completely when
2134 * using the memory controller's swap limit feature would be
2137 if (!global_reclaim(sc) && !swappiness) {
2138 scan_balance = SCAN_FILE;
2143 * Do not apply any pressure balancing cleverness when the
2144 * system is close to OOM, scan both anon and file equally
2145 * (unless the swappiness setting disagrees with swapping).
2147 if (!sc->priority && swappiness) {
2148 scan_balance = SCAN_EQUAL;
2153 * Prevent the reclaimer from falling into the cache trap: as
2154 * cache pages start out inactive, every cache fault will tip
2155 * the scan balance towards the file LRU. And as the file LRU
2156 * shrinks, so does the window for rotation from references.
2157 * This means we have a runaway feedback loop where a tiny
2158 * thrashing file LRU becomes infinitely more attractive than
2159 * anon pages. Try to detect this based on file LRU size.
2161 if (global_reclaim(sc)) {
2162 unsigned long pgdatfile;
2163 unsigned long pgdatfree;
2165 unsigned long total_high_wmark = 0;
2167 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2168 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2169 node_page_state(pgdat, NR_INACTIVE_FILE);
2171 for (z = 0; z < MAX_NR_ZONES; z++) {
2172 struct zone *zone = &pgdat->node_zones[z];
2173 if (!managed_zone(zone))
2176 total_high_wmark += high_wmark_pages(zone);
2179 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2181 * Force SCAN_ANON if there are enough inactive
2182 * anonymous pages on the LRU in eligible zones.
2183 * Otherwise, the small LRU gets thrashed.
2185 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2186 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2188 scan_balance = SCAN_ANON;
2195 * If there is enough inactive page cache, i.e. if the size of the
2196 * inactive list is greater than that of the active list *and* the
2197 * inactive list actually has some pages to scan on this priority, we
2198 * do not reclaim anything from the anonymous working set right now.
2199 * Without the second condition we could end up never scanning an
2200 * lruvec even if it has plenty of old anonymous pages unless the
2201 * system is under heavy pressure.
2203 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2204 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2205 scan_balance = SCAN_FILE;
2209 scan_balance = SCAN_FRACT;
2212 * With swappiness at 100, anonymous and file have the same priority.
2213 * This scanning priority is essentially the inverse of IO cost.
2215 anon_prio = swappiness;
2216 file_prio = 200 - anon_prio;
2219 * OK, so we have swap space and a fair amount of page cache
2220 * pages. We use the recently rotated / recently scanned
2221 * ratios to determine how valuable each cache is.
2223 * Because workloads change over time (and to avoid overflow)
2224 * we keep these statistics as a floating average, which ends
2225 * up weighing recent references more than old ones.
2227 * anon in [0], file in [1]
2230 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2231 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2232 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2233 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2235 spin_lock_irq(&pgdat->lru_lock);
2236 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2237 reclaim_stat->recent_scanned[0] /= 2;
2238 reclaim_stat->recent_rotated[0] /= 2;
2241 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2242 reclaim_stat->recent_scanned[1] /= 2;
2243 reclaim_stat->recent_rotated[1] /= 2;
2247 * The amount of pressure on anon vs file pages is inversely
2248 * proportional to the fraction of recently scanned pages on
2249 * each list that were recently referenced and in active use.
2251 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2252 ap /= reclaim_stat->recent_rotated[0] + 1;
2254 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2255 fp /= reclaim_stat->recent_rotated[1] + 1;
2256 spin_unlock_irq(&pgdat->lru_lock);
2260 denominator = ap + fp + 1;
2263 for_each_evictable_lru(lru) {
2264 int file = is_file_lru(lru);
2268 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2269 scan = size >> sc->priority;
2271 * If the cgroup's already been deleted, make sure to
2272 * scrape out the remaining cache.
2274 if (!scan && !mem_cgroup_online(memcg))
2275 scan = min(size, SWAP_CLUSTER_MAX);
2277 switch (scan_balance) {
2279 /* Scan lists relative to size */
2283 * Scan types proportional to swappiness and
2284 * their relative recent reclaim efficiency.
2286 scan = div64_u64(scan * fraction[file],
2291 /* Scan one type exclusively */
2292 if ((scan_balance == SCAN_FILE) != file) {
2298 /* Look ma, no brain */
2308 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2310 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2311 struct scan_control *sc, unsigned long *lru_pages)
2313 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2314 unsigned long nr[NR_LRU_LISTS];
2315 unsigned long targets[NR_LRU_LISTS];
2316 unsigned long nr_to_scan;
2318 unsigned long nr_reclaimed = 0;
2319 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2320 struct blk_plug plug;
2323 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2325 /* Record the original scan target for proportional adjustments later */
2326 memcpy(targets, nr, sizeof(nr));
2329 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2330 * event that can occur when there is little memory pressure e.g.
2331 * multiple streaming readers/writers. Hence, we do not abort scanning
2332 * when the requested number of pages are reclaimed when scanning at
2333 * DEF_PRIORITY on the assumption that the fact we are direct
2334 * reclaiming implies that kswapd is not keeping up and it is best to
2335 * do a batch of work at once. For memcg reclaim one check is made to
2336 * abort proportional reclaim if either the file or anon lru has already
2337 * dropped to zero at the first pass.
2339 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2340 sc->priority == DEF_PRIORITY);
2342 blk_start_plug(&plug);
2343 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2344 nr[LRU_INACTIVE_FILE]) {
2345 unsigned long nr_anon, nr_file, percentage;
2346 unsigned long nr_scanned;
2348 for_each_evictable_lru(lru) {
2350 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2351 nr[lru] -= nr_to_scan;
2353 nr_reclaimed += shrink_list(lru, nr_to_scan,
2360 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2364 * For kswapd and memcg, reclaim at least the number of pages
2365 * requested. Ensure that the anon and file LRUs are scanned
2366 * proportionally what was requested by get_scan_count(). We
2367 * stop reclaiming one LRU and reduce the amount scanning
2368 * proportional to the original scan target.
2370 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2371 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2374 * It's just vindictive to attack the larger once the smaller
2375 * has gone to zero. And given the way we stop scanning the
2376 * smaller below, this makes sure that we only make one nudge
2377 * towards proportionality once we've got nr_to_reclaim.
2379 if (!nr_file || !nr_anon)
2382 if (nr_file > nr_anon) {
2383 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2384 targets[LRU_ACTIVE_ANON] + 1;
2386 percentage = nr_anon * 100 / scan_target;
2388 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2389 targets[LRU_ACTIVE_FILE] + 1;
2391 percentage = nr_file * 100 / scan_target;
2394 /* Stop scanning the smaller of the LRU */
2396 nr[lru + LRU_ACTIVE] = 0;
2399 * Recalculate the other LRU scan count based on its original
2400 * scan target and the percentage scanning already complete
2402 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2403 nr_scanned = targets[lru] - nr[lru];
2404 nr[lru] = targets[lru] * (100 - percentage) / 100;
2405 nr[lru] -= min(nr[lru], nr_scanned);
2408 nr_scanned = targets[lru] - nr[lru];
2409 nr[lru] = targets[lru] * (100 - percentage) / 100;
2410 nr[lru] -= min(nr[lru], nr_scanned);
2412 scan_adjusted = true;
2414 blk_finish_plug(&plug);
2415 sc->nr_reclaimed += nr_reclaimed;
2418 * Even if we did not try to evict anon pages at all, we want to
2419 * rebalance the anon lru active/inactive ratio.
2421 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2422 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2423 sc, LRU_ACTIVE_ANON);
2426 /* Use reclaim/compaction for costly allocs or under memory pressure */
2427 static bool in_reclaim_compaction(struct scan_control *sc)
2429 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2430 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2431 sc->priority < DEF_PRIORITY - 2))
2438 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2439 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2440 * true if more pages should be reclaimed such that when the page allocator
2441 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2442 * It will give up earlier than that if there is difficulty reclaiming pages.
2444 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2445 unsigned long nr_reclaimed,
2446 unsigned long nr_scanned,
2447 struct scan_control *sc)
2449 unsigned long pages_for_compaction;
2450 unsigned long inactive_lru_pages;
2453 /* If not in reclaim/compaction mode, stop */
2454 if (!in_reclaim_compaction(sc))
2457 /* Consider stopping depending on scan and reclaim activity */
2458 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2460 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2461 * full LRU list has been scanned and we are still failing
2462 * to reclaim pages. This full LRU scan is potentially
2463 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2465 if (!nr_reclaimed && !nr_scanned)
2469 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2470 * fail without consequence, stop if we failed to reclaim
2471 * any pages from the last SWAP_CLUSTER_MAX number of
2472 * pages that were scanned. This will return to the
2473 * caller faster at the risk reclaim/compaction and
2474 * the resulting allocation attempt fails
2481 * If we have not reclaimed enough pages for compaction and the
2482 * inactive lists are large enough, continue reclaiming
2484 pages_for_compaction = compact_gap(sc->order);
2485 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2486 if (get_nr_swap_pages() > 0)
2487 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2488 if (sc->nr_reclaimed < pages_for_compaction &&
2489 inactive_lru_pages > pages_for_compaction)
2492 /* If compaction would go ahead or the allocation would succeed, stop */
2493 for (z = 0; z <= sc->reclaim_idx; z++) {
2494 struct zone *zone = &pgdat->node_zones[z];
2495 if (!managed_zone(zone))
2498 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2499 case COMPACT_SUCCESS:
2500 case COMPACT_CONTINUE:
2503 /* check next zone */
2510 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2512 struct reclaim_state *reclaim_state = current->reclaim_state;
2513 unsigned long nr_reclaimed, nr_scanned;
2514 bool reclaimable = false;
2517 struct mem_cgroup *root = sc->target_mem_cgroup;
2518 struct mem_cgroup_reclaim_cookie reclaim = {
2520 .priority = sc->priority,
2522 unsigned long node_lru_pages = 0;
2523 struct mem_cgroup *memcg;
2525 nr_reclaimed = sc->nr_reclaimed;
2526 nr_scanned = sc->nr_scanned;
2528 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2530 unsigned long lru_pages;
2531 unsigned long reclaimed;
2532 unsigned long scanned;
2534 if (mem_cgroup_low(root, memcg)) {
2535 if (!sc->memcg_low_reclaim) {
2536 sc->memcg_low_skipped = 1;
2539 mem_cgroup_event(memcg, MEMCG_LOW);
2542 reclaimed = sc->nr_reclaimed;
2543 scanned = sc->nr_scanned;
2544 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2545 node_lru_pages += lru_pages;
2548 shrink_slab(sc->gfp_mask, pgdat->node_id,
2549 memcg, sc->priority);
2551 /* Record the group's reclaim efficiency */
2552 vmpressure(sc->gfp_mask, memcg, false,
2553 sc->nr_scanned - scanned,
2554 sc->nr_reclaimed - reclaimed);
2557 * Direct reclaim and kswapd have to scan all memory
2558 * cgroups to fulfill the overall scan target for the
2561 * Limit reclaim, on the other hand, only cares about
2562 * nr_to_reclaim pages to be reclaimed and it will
2563 * retry with decreasing priority if one round over the
2564 * whole hierarchy is not sufficient.
2566 if (!global_reclaim(sc) &&
2567 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2568 mem_cgroup_iter_break(root, memcg);
2571 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2573 if (global_reclaim(sc))
2574 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2577 if (reclaim_state) {
2578 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2579 reclaim_state->reclaimed_slab = 0;
2582 /* Record the subtree's reclaim efficiency */
2583 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2584 sc->nr_scanned - nr_scanned,
2585 sc->nr_reclaimed - nr_reclaimed);
2587 if (sc->nr_reclaimed - nr_reclaimed)
2590 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2591 sc->nr_scanned - nr_scanned, sc));
2594 * Kswapd gives up on balancing particular nodes after too
2595 * many failures to reclaim anything from them and goes to
2596 * sleep. On reclaim progress, reset the failure counter. A
2597 * successful direct reclaim run will revive a dormant kswapd.
2600 pgdat->kswapd_failures = 0;
2606 * Returns true if compaction should go ahead for a costly-order request, or
2607 * the allocation would already succeed without compaction. Return false if we
2608 * should reclaim first.
2610 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2612 unsigned long watermark;
2613 enum compact_result suitable;
2615 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2616 if (suitable == COMPACT_SUCCESS)
2617 /* Allocation should succeed already. Don't reclaim. */
2619 if (suitable == COMPACT_SKIPPED)
2620 /* Compaction cannot yet proceed. Do reclaim. */
2624 * Compaction is already possible, but it takes time to run and there
2625 * are potentially other callers using the pages just freed. So proceed
2626 * with reclaim to make a buffer of free pages available to give
2627 * compaction a reasonable chance of completing and allocating the page.
2628 * Note that we won't actually reclaim the whole buffer in one attempt
2629 * as the target watermark in should_continue_reclaim() is lower. But if
2630 * we are already above the high+gap watermark, don't reclaim at all.
2632 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2634 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2638 * This is the direct reclaim path, for page-allocating processes. We only
2639 * try to reclaim pages from zones which will satisfy the caller's allocation
2642 * If a zone is deemed to be full of pinned pages then just give it a light
2643 * scan then give up on it.
2645 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2649 unsigned long nr_soft_reclaimed;
2650 unsigned long nr_soft_scanned;
2652 pg_data_t *last_pgdat = NULL;
2655 * If the number of buffer_heads in the machine exceeds the maximum
2656 * allowed level, force direct reclaim to scan the highmem zone as
2657 * highmem pages could be pinning lowmem pages storing buffer_heads
2659 orig_mask = sc->gfp_mask;
2660 if (buffer_heads_over_limit) {
2661 sc->gfp_mask |= __GFP_HIGHMEM;
2662 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2665 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2666 sc->reclaim_idx, sc->nodemask) {
2668 * Take care memory controller reclaiming has small influence
2671 if (global_reclaim(sc)) {
2672 if (!cpuset_zone_allowed(zone,
2673 GFP_KERNEL | __GFP_HARDWALL))
2677 * If we already have plenty of memory free for
2678 * compaction in this zone, don't free any more.
2679 * Even though compaction is invoked for any
2680 * non-zero order, only frequent costly order
2681 * reclamation is disruptive enough to become a
2682 * noticeable problem, like transparent huge
2685 if (IS_ENABLED(CONFIG_COMPACTION) &&
2686 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2687 compaction_ready(zone, sc)) {
2688 sc->compaction_ready = true;
2693 * Shrink each node in the zonelist once. If the
2694 * zonelist is ordered by zone (not the default) then a
2695 * node may be shrunk multiple times but in that case
2696 * the user prefers lower zones being preserved.
2698 if (zone->zone_pgdat == last_pgdat)
2702 * This steals pages from memory cgroups over softlimit
2703 * and returns the number of reclaimed pages and
2704 * scanned pages. This works for global memory pressure
2705 * and balancing, not for a memcg's limit.
2707 nr_soft_scanned = 0;
2708 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2709 sc->order, sc->gfp_mask,
2711 sc->nr_reclaimed += nr_soft_reclaimed;
2712 sc->nr_scanned += nr_soft_scanned;
2713 /* need some check for avoid more shrink_zone() */
2716 /* See comment about same check for global reclaim above */
2717 if (zone->zone_pgdat == last_pgdat)
2719 last_pgdat = zone->zone_pgdat;
2720 shrink_node(zone->zone_pgdat, sc);
2724 * Restore to original mask to avoid the impact on the caller if we
2725 * promoted it to __GFP_HIGHMEM.
2727 sc->gfp_mask = orig_mask;
2730 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2732 struct mem_cgroup *memcg;
2734 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2736 unsigned long refaults;
2737 struct lruvec *lruvec;
2740 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2742 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2744 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2745 lruvec->refaults = refaults;
2746 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2750 * This is the main entry point to direct page reclaim.
2752 * If a full scan of the inactive list fails to free enough memory then we
2753 * are "out of memory" and something needs to be killed.
2755 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2756 * high - the zone may be full of dirty or under-writeback pages, which this
2757 * caller can't do much about. We kick the writeback threads and take explicit
2758 * naps in the hope that some of these pages can be written. But if the
2759 * allocating task holds filesystem locks which prevent writeout this might not
2760 * work, and the allocation attempt will fail.
2762 * returns: 0, if no pages reclaimed
2763 * else, the number of pages reclaimed
2765 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2766 struct scan_control *sc)
2768 int initial_priority = sc->priority;
2769 pg_data_t *last_pgdat;
2773 delayacct_freepages_start();
2775 if (global_reclaim(sc))
2776 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2779 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2782 shrink_zones(zonelist, sc);
2784 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2787 if (sc->compaction_ready)
2791 * If we're getting trouble reclaiming, start doing
2792 * writepage even in laptop mode.
2794 if (sc->priority < DEF_PRIORITY - 2)
2795 sc->may_writepage = 1;
2796 } while (--sc->priority >= 0);
2799 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2801 if (zone->zone_pgdat == last_pgdat)
2803 last_pgdat = zone->zone_pgdat;
2804 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2807 delayacct_freepages_end();
2809 if (sc->nr_reclaimed)
2810 return sc->nr_reclaimed;
2812 /* Aborted reclaim to try compaction? don't OOM, then */
2813 if (sc->compaction_ready)
2816 /* Untapped cgroup reserves? Don't OOM, retry. */
2817 if (sc->memcg_low_skipped) {
2818 sc->priority = initial_priority;
2819 sc->memcg_low_reclaim = 1;
2820 sc->memcg_low_skipped = 0;
2827 static bool allow_direct_reclaim(pg_data_t *pgdat)
2830 unsigned long pfmemalloc_reserve = 0;
2831 unsigned long free_pages = 0;
2835 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2838 for (i = 0; i <= ZONE_NORMAL; i++) {
2839 zone = &pgdat->node_zones[i];
2840 if (!managed_zone(zone))
2843 if (!zone_reclaimable_pages(zone))
2846 pfmemalloc_reserve += min_wmark_pages(zone);
2847 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2850 /* If there are no reserves (unexpected config) then do not throttle */
2851 if (!pfmemalloc_reserve)
2854 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2856 /* kswapd must be awake if processes are being throttled */
2857 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2858 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2859 (enum zone_type)ZONE_NORMAL);
2860 wake_up_interruptible(&pgdat->kswapd_wait);
2867 * Throttle direct reclaimers if backing storage is backed by the network
2868 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2869 * depleted. kswapd will continue to make progress and wake the processes
2870 * when the low watermark is reached.
2872 * Returns true if a fatal signal was delivered during throttling. If this
2873 * happens, the page allocator should not consider triggering the OOM killer.
2875 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2876 nodemask_t *nodemask)
2880 pg_data_t *pgdat = NULL;
2883 * Kernel threads should not be throttled as they may be indirectly
2884 * responsible for cleaning pages necessary for reclaim to make forward
2885 * progress. kjournald for example may enter direct reclaim while
2886 * committing a transaction where throttling it could forcing other
2887 * processes to block on log_wait_commit().
2889 if (current->flags & PF_KTHREAD)
2893 * If a fatal signal is pending, this process should not throttle.
2894 * It should return quickly so it can exit and free its memory
2896 if (fatal_signal_pending(current))
2900 * Check if the pfmemalloc reserves are ok by finding the first node
2901 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2902 * GFP_KERNEL will be required for allocating network buffers when
2903 * swapping over the network so ZONE_HIGHMEM is unusable.
2905 * Throttling is based on the first usable node and throttled processes
2906 * wait on a queue until kswapd makes progress and wakes them. There
2907 * is an affinity then between processes waking up and where reclaim
2908 * progress has been made assuming the process wakes on the same node.
2909 * More importantly, processes running on remote nodes will not compete
2910 * for remote pfmemalloc reserves and processes on different nodes
2911 * should make reasonable progress.
2913 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2914 gfp_zone(gfp_mask), nodemask) {
2915 if (zone_idx(zone) > ZONE_NORMAL)
2918 /* Throttle based on the first usable node */
2919 pgdat = zone->zone_pgdat;
2920 if (allow_direct_reclaim(pgdat))
2925 /* If no zone was usable by the allocation flags then do not throttle */
2929 /* Account for the throttling */
2930 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2933 * If the caller cannot enter the filesystem, it's possible that it
2934 * is due to the caller holding an FS lock or performing a journal
2935 * transaction in the case of a filesystem like ext[3|4]. In this case,
2936 * it is not safe to block on pfmemalloc_wait as kswapd could be
2937 * blocked waiting on the same lock. Instead, throttle for up to a
2938 * second before continuing.
2940 if (!(gfp_mask & __GFP_FS)) {
2941 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2942 allow_direct_reclaim(pgdat), HZ);
2947 /* Throttle until kswapd wakes the process */
2948 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2949 allow_direct_reclaim(pgdat));
2952 if (fatal_signal_pending(current))
2959 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2960 gfp_t gfp_mask, nodemask_t *nodemask)
2962 unsigned long nr_reclaimed;
2963 struct scan_control sc = {
2964 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2965 .gfp_mask = current_gfp_context(gfp_mask),
2966 .reclaim_idx = gfp_zone(gfp_mask),
2968 .nodemask = nodemask,
2969 .priority = DEF_PRIORITY,
2970 .may_writepage = !laptop_mode,
2976 * Do not enter reclaim if fatal signal was delivered while throttled.
2977 * 1 is returned so that the page allocator does not OOM kill at this
2980 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
2983 trace_mm_vmscan_direct_reclaim_begin(order,
2988 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2990 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2992 return nr_reclaimed;
2997 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2998 gfp_t gfp_mask, bool noswap,
3000 unsigned long *nr_scanned)
3002 struct scan_control sc = {
3003 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3004 .target_mem_cgroup = memcg,
3005 .may_writepage = !laptop_mode,
3007 .reclaim_idx = MAX_NR_ZONES - 1,
3008 .may_swap = !noswap,
3010 unsigned long lru_pages;
3012 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3013 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3015 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3021 * NOTE: Although we can get the priority field, using it
3022 * here is not a good idea, since it limits the pages we can scan.
3023 * if we don't reclaim here, the shrink_node from balance_pgdat
3024 * will pick up pages from other mem cgroup's as well. We hack
3025 * the priority and make it zero.
3027 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3029 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3031 *nr_scanned = sc.nr_scanned;
3032 return sc.nr_reclaimed;
3035 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3036 unsigned long nr_pages,
3040 struct zonelist *zonelist;
3041 unsigned long nr_reclaimed;
3043 unsigned int noreclaim_flag;
3044 struct scan_control sc = {
3045 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3046 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3047 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3048 .reclaim_idx = MAX_NR_ZONES - 1,
3049 .target_mem_cgroup = memcg,
3050 .priority = DEF_PRIORITY,
3051 .may_writepage = !laptop_mode,
3053 .may_swap = may_swap,
3057 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3058 * take care of from where we get pages. So the node where we start the
3059 * scan does not need to be the current node.
3061 nid = mem_cgroup_select_victim_node(memcg);
3063 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3065 trace_mm_vmscan_memcg_reclaim_begin(0,
3070 noreclaim_flag = memalloc_noreclaim_save();
3071 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3072 memalloc_noreclaim_restore(noreclaim_flag);
3074 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3076 return nr_reclaimed;
3080 static void age_active_anon(struct pglist_data *pgdat,
3081 struct scan_control *sc)
3083 struct mem_cgroup *memcg;
3085 if (!total_swap_pages)
3088 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3090 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3092 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3093 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3094 sc, LRU_ACTIVE_ANON);
3096 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3101 * Returns true if there is an eligible zone balanced for the request order
3104 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3107 unsigned long mark = -1;
3110 for (i = 0; i <= classzone_idx; i++) {
3111 zone = pgdat->node_zones + i;
3113 if (!managed_zone(zone))
3116 mark = high_wmark_pages(zone);
3117 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3122 * If a node has no populated zone within classzone_idx, it does not
3123 * need balancing by definition. This can happen if a zone-restricted
3124 * allocation tries to wake a remote kswapd.
3132 /* Clear pgdat state for congested, dirty or under writeback. */
3133 static void clear_pgdat_congested(pg_data_t *pgdat)
3135 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3136 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3137 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3141 * Prepare kswapd for sleeping. This verifies that there are no processes
3142 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3144 * Returns true if kswapd is ready to sleep
3146 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3149 * The throttled processes are normally woken up in balance_pgdat() as
3150 * soon as allow_direct_reclaim() is true. But there is a potential
3151 * race between when kswapd checks the watermarks and a process gets
3152 * throttled. There is also a potential race if processes get
3153 * throttled, kswapd wakes, a large process exits thereby balancing the
3154 * zones, which causes kswapd to exit balance_pgdat() before reaching
3155 * the wake up checks. If kswapd is going to sleep, no process should
3156 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3157 * the wake up is premature, processes will wake kswapd and get
3158 * throttled again. The difference from wake ups in balance_pgdat() is
3159 * that here we are under prepare_to_wait().
3161 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3162 wake_up_all(&pgdat->pfmemalloc_wait);
3164 /* Hopeless node, leave it to direct reclaim */
3165 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3168 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3169 clear_pgdat_congested(pgdat);
3177 * kswapd shrinks a node of pages that are at or below the highest usable
3178 * zone that is currently unbalanced.
3180 * Returns true if kswapd scanned at least the requested number of pages to
3181 * reclaim or if the lack of progress was due to pages under writeback.
3182 * This is used to determine if the scanning priority needs to be raised.
3184 static bool kswapd_shrink_node(pg_data_t *pgdat,
3185 struct scan_control *sc)
3190 /* Reclaim a number of pages proportional to the number of zones */
3191 sc->nr_to_reclaim = 0;
3192 for (z = 0; z <= sc->reclaim_idx; z++) {
3193 zone = pgdat->node_zones + z;
3194 if (!managed_zone(zone))
3197 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3201 * Historically care was taken to put equal pressure on all zones but
3202 * now pressure is applied based on node LRU order.
3204 shrink_node(pgdat, sc);
3207 * Fragmentation may mean that the system cannot be rebalanced for
3208 * high-order allocations. If twice the allocation size has been
3209 * reclaimed then recheck watermarks only at order-0 to prevent
3210 * excessive reclaim. Assume that a process requested a high-order
3211 * can direct reclaim/compact.
3213 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3216 return sc->nr_scanned >= sc->nr_to_reclaim;
3220 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3221 * that are eligible for use by the caller until at least one zone is
3224 * Returns the order kswapd finished reclaiming at.
3226 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3227 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3228 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3229 * or lower is eligible for reclaim until at least one usable zone is
3232 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3235 unsigned long nr_soft_reclaimed;
3236 unsigned long nr_soft_scanned;
3238 struct scan_control sc = {
3239 .gfp_mask = GFP_KERNEL,
3241 .priority = DEF_PRIORITY,
3242 .may_writepage = !laptop_mode,
3246 count_vm_event(PAGEOUTRUN);
3249 unsigned long nr_reclaimed = sc.nr_reclaimed;
3250 bool raise_priority = true;
3252 sc.reclaim_idx = classzone_idx;
3255 * If the number of buffer_heads exceeds the maximum allowed
3256 * then consider reclaiming from all zones. This has a dual
3257 * purpose -- on 64-bit systems it is expected that
3258 * buffer_heads are stripped during active rotation. On 32-bit
3259 * systems, highmem pages can pin lowmem memory and shrinking
3260 * buffers can relieve lowmem pressure. Reclaim may still not
3261 * go ahead if all eligible zones for the original allocation
3262 * request are balanced to avoid excessive reclaim from kswapd.
3264 if (buffer_heads_over_limit) {
3265 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3266 zone = pgdat->node_zones + i;
3267 if (!managed_zone(zone))
3276 * Only reclaim if there are no eligible zones. Note that
3277 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3280 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3284 * Do some background aging of the anon list, to give
3285 * pages a chance to be referenced before reclaiming. All
3286 * pages are rotated regardless of classzone as this is
3287 * about consistent aging.
3289 age_active_anon(pgdat, &sc);
3292 * If we're getting trouble reclaiming, start doing writepage
3293 * even in laptop mode.
3295 if (sc.priority < DEF_PRIORITY - 2)
3296 sc.may_writepage = 1;
3298 /* Call soft limit reclaim before calling shrink_node. */
3300 nr_soft_scanned = 0;
3301 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3302 sc.gfp_mask, &nr_soft_scanned);
3303 sc.nr_reclaimed += nr_soft_reclaimed;
3306 * There should be no need to raise the scanning priority if
3307 * enough pages are already being scanned that that high
3308 * watermark would be met at 100% efficiency.
3310 if (kswapd_shrink_node(pgdat, &sc))
3311 raise_priority = false;
3314 * If the low watermark is met there is no need for processes
3315 * to be throttled on pfmemalloc_wait as they should not be
3316 * able to safely make forward progress. Wake them
3318 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3319 allow_direct_reclaim(pgdat))
3320 wake_up_all(&pgdat->pfmemalloc_wait);
3322 /* Check if kswapd should be suspending */
3323 if (try_to_freeze() || kthread_should_stop())
3327 * Raise priority if scanning rate is too low or there was no
3328 * progress in reclaiming pages
3330 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3331 if (raise_priority || !nr_reclaimed)
3333 } while (sc.priority >= 1);
3335 if (!sc.nr_reclaimed)
3336 pgdat->kswapd_failures++;
3339 snapshot_refaults(NULL, pgdat);
3341 * Return the order kswapd stopped reclaiming at as
3342 * prepare_kswapd_sleep() takes it into account. If another caller
3343 * entered the allocator slow path while kswapd was awake, order will
3344 * remain at the higher level.
3350 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3351 * allocation request woke kswapd for. When kswapd has not woken recently,
3352 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3353 * given classzone and returns it or the highest classzone index kswapd
3354 * was recently woke for.
3356 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3357 enum zone_type classzone_idx)
3359 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3360 return classzone_idx;
3362 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3365 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3366 unsigned int classzone_idx)
3371 if (freezing(current) || kthread_should_stop())
3374 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3377 * Try to sleep for a short interval. Note that kcompactd will only be
3378 * woken if it is possible to sleep for a short interval. This is
3379 * deliberate on the assumption that if reclaim cannot keep an
3380 * eligible zone balanced that it's also unlikely that compaction will
3383 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3385 * Compaction records what page blocks it recently failed to
3386 * isolate pages from and skips them in the future scanning.
3387 * When kswapd is going to sleep, it is reasonable to assume
3388 * that pages and compaction may succeed so reset the cache.
3390 reset_isolation_suitable(pgdat);
3393 * We have freed the memory, now we should compact it to make
3394 * allocation of the requested order possible.
3396 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3398 remaining = schedule_timeout(HZ/10);
3401 * If woken prematurely then reset kswapd_classzone_idx and
3402 * order. The values will either be from a wakeup request or
3403 * the previous request that slept prematurely.
3406 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3407 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3410 finish_wait(&pgdat->kswapd_wait, &wait);
3411 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3415 * After a short sleep, check if it was a premature sleep. If not, then
3416 * go fully to sleep until explicitly woken up.
3419 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3420 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3423 * vmstat counters are not perfectly accurate and the estimated
3424 * value for counters such as NR_FREE_PAGES can deviate from the
3425 * true value by nr_online_cpus * threshold. To avoid the zone
3426 * watermarks being breached while under pressure, we reduce the
3427 * per-cpu vmstat threshold while kswapd is awake and restore
3428 * them before going back to sleep.
3430 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3432 if (!kthread_should_stop())
3435 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3438 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3440 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3442 finish_wait(&pgdat->kswapd_wait, &wait);
3446 * The background pageout daemon, started as a kernel thread
3447 * from the init process.
3449 * This basically trickles out pages so that we have _some_
3450 * free memory available even if there is no other activity
3451 * that frees anything up. This is needed for things like routing
3452 * etc, where we otherwise might have all activity going on in
3453 * asynchronous contexts that cannot page things out.
3455 * If there are applications that are active memory-allocators
3456 * (most normal use), this basically shouldn't matter.
3458 static int kswapd(void *p)
3460 unsigned int alloc_order, reclaim_order;
3461 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3462 pg_data_t *pgdat = (pg_data_t*)p;
3463 struct task_struct *tsk = current;
3465 struct reclaim_state reclaim_state = {
3466 .reclaimed_slab = 0,
3468 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3470 if (!cpumask_empty(cpumask))
3471 set_cpus_allowed_ptr(tsk, cpumask);
3472 current->reclaim_state = &reclaim_state;
3475 * Tell the memory management that we're a "memory allocator",
3476 * and that if we need more memory we should get access to it
3477 * regardless (see "__alloc_pages()"). "kswapd" should
3478 * never get caught in the normal page freeing logic.
3480 * (Kswapd normally doesn't need memory anyway, but sometimes
3481 * you need a small amount of memory in order to be able to
3482 * page out something else, and this flag essentially protects
3483 * us from recursively trying to free more memory as we're
3484 * trying to free the first piece of memory in the first place).
3486 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3489 pgdat->kswapd_order = 0;
3490 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3494 alloc_order = reclaim_order = pgdat->kswapd_order;
3495 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3498 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3501 /* Read the new order and classzone_idx */
3502 alloc_order = reclaim_order = pgdat->kswapd_order;
3503 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3504 pgdat->kswapd_order = 0;
3505 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3507 ret = try_to_freeze();
3508 if (kthread_should_stop())
3512 * We can speed up thawing tasks if we don't call balance_pgdat
3513 * after returning from the refrigerator
3519 * Reclaim begins at the requested order but if a high-order
3520 * reclaim fails then kswapd falls back to reclaiming for
3521 * order-0. If that happens, kswapd will consider sleeping
3522 * for the order it finished reclaiming at (reclaim_order)
3523 * but kcompactd is woken to compact for the original
3524 * request (alloc_order).
3526 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3528 fs_reclaim_acquire(GFP_KERNEL);
3529 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3530 fs_reclaim_release(GFP_KERNEL);
3531 if (reclaim_order < alloc_order)
3532 goto kswapd_try_sleep;
3535 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3536 current->reclaim_state = NULL;
3542 * A zone is low on free memory or too fragmented for high-order memory. If
3543 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3544 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3545 * has failed or is not needed, still wake up kcompactd if only compaction is
3548 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3549 enum zone_type classzone_idx)
3553 if (!managed_zone(zone))
3556 if (!cpuset_zone_allowed(zone, gfp_flags))
3558 pgdat = zone->zone_pgdat;
3559 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3561 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3562 if (!waitqueue_active(&pgdat->kswapd_wait))
3565 /* Hopeless node, leave it to direct reclaim if possible */
3566 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3567 pgdat_balanced(pgdat, order, classzone_idx)) {
3569 * There may be plenty of free memory available, but it's too
3570 * fragmented for high-order allocations. Wake up kcompactd
3571 * and rely on compaction_suitable() to determine if it's
3572 * needed. If it fails, it will defer subsequent attempts to
3573 * ratelimit its work.
3575 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3576 wakeup_kcompactd(pgdat, order, classzone_idx);
3580 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3582 wake_up_interruptible(&pgdat->kswapd_wait);
3585 #ifdef CONFIG_HIBERNATION
3587 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3590 * Rather than trying to age LRUs the aim is to preserve the overall
3591 * LRU order by reclaiming preferentially
3592 * inactive > active > active referenced > active mapped
3594 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3596 struct reclaim_state reclaim_state;
3597 struct scan_control sc = {
3598 .nr_to_reclaim = nr_to_reclaim,
3599 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3600 .reclaim_idx = MAX_NR_ZONES - 1,
3601 .priority = DEF_PRIORITY,
3605 .hibernation_mode = 1,
3607 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3608 struct task_struct *p = current;
3609 unsigned long nr_reclaimed;
3610 unsigned int noreclaim_flag;
3612 noreclaim_flag = memalloc_noreclaim_save();
3613 fs_reclaim_acquire(sc.gfp_mask);
3614 reclaim_state.reclaimed_slab = 0;
3615 p->reclaim_state = &reclaim_state;
3617 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3619 p->reclaim_state = NULL;
3620 fs_reclaim_release(sc.gfp_mask);
3621 memalloc_noreclaim_restore(noreclaim_flag);
3623 return nr_reclaimed;
3625 #endif /* CONFIG_HIBERNATION */
3627 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3628 not required for correctness. So if the last cpu in a node goes
3629 away, we get changed to run anywhere: as the first one comes back,
3630 restore their cpu bindings. */
3631 static int kswapd_cpu_online(unsigned int cpu)
3635 for_each_node_state(nid, N_MEMORY) {
3636 pg_data_t *pgdat = NODE_DATA(nid);
3637 const struct cpumask *mask;
3639 mask = cpumask_of_node(pgdat->node_id);
3641 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3642 /* One of our CPUs online: restore mask */
3643 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3649 * This kswapd start function will be called by init and node-hot-add.
3650 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3652 int kswapd_run(int nid)
3654 pg_data_t *pgdat = NODE_DATA(nid);
3660 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3661 if (IS_ERR(pgdat->kswapd)) {
3662 /* failure at boot is fatal */
3663 BUG_ON(system_state < SYSTEM_RUNNING);
3664 pr_err("Failed to start kswapd on node %d\n", nid);
3665 ret = PTR_ERR(pgdat->kswapd);
3666 pgdat->kswapd = NULL;
3672 * Called by memory hotplug when all memory in a node is offlined. Caller must
3673 * hold mem_hotplug_begin/end().
3675 void kswapd_stop(int nid)
3677 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3680 kthread_stop(kswapd);
3681 NODE_DATA(nid)->kswapd = NULL;
3685 static int __init kswapd_init(void)
3690 for_each_node_state(nid, N_MEMORY)
3692 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3693 "mm/vmscan:online", kswapd_cpu_online,
3699 module_init(kswapd_init)
3705 * If non-zero call node_reclaim when the number of free pages falls below
3708 int node_reclaim_mode __read_mostly;
3710 #define RECLAIM_OFF 0
3711 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3712 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3713 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3716 * Priority for NODE_RECLAIM. This determines the fraction of pages
3717 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3720 #define NODE_RECLAIM_PRIORITY 4
3723 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3726 int sysctl_min_unmapped_ratio = 1;
3729 * If the number of slab pages in a zone grows beyond this percentage then
3730 * slab reclaim needs to occur.
3732 int sysctl_min_slab_ratio = 5;
3734 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3736 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3737 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3738 node_page_state(pgdat, NR_ACTIVE_FILE);
3741 * It's possible for there to be more file mapped pages than
3742 * accounted for by the pages on the file LRU lists because
3743 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3745 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3748 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3749 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3751 unsigned long nr_pagecache_reclaimable;
3752 unsigned long delta = 0;
3755 * If RECLAIM_UNMAP is set, then all file pages are considered
3756 * potentially reclaimable. Otherwise, we have to worry about
3757 * pages like swapcache and node_unmapped_file_pages() provides
3760 if (node_reclaim_mode & RECLAIM_UNMAP)
3761 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3763 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3765 /* If we can't clean pages, remove dirty pages from consideration */
3766 if (!(node_reclaim_mode & RECLAIM_WRITE))
3767 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3769 /* Watch for any possible underflows due to delta */
3770 if (unlikely(delta > nr_pagecache_reclaimable))
3771 delta = nr_pagecache_reclaimable;
3773 return nr_pagecache_reclaimable - delta;
3777 * Try to free up some pages from this node through reclaim.
3779 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3781 /* Minimum pages needed in order to stay on node */
3782 const unsigned long nr_pages = 1 << order;
3783 struct task_struct *p = current;
3784 struct reclaim_state reclaim_state;
3785 unsigned int noreclaim_flag;
3786 struct scan_control sc = {
3787 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3788 .gfp_mask = current_gfp_context(gfp_mask),
3790 .priority = NODE_RECLAIM_PRIORITY,
3791 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3792 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3794 .reclaim_idx = gfp_zone(gfp_mask),
3799 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3800 * and we also need to be able to write out pages for RECLAIM_WRITE
3801 * and RECLAIM_UNMAP.
3803 noreclaim_flag = memalloc_noreclaim_save();
3804 p->flags |= PF_SWAPWRITE;
3805 fs_reclaim_acquire(sc.gfp_mask);
3806 reclaim_state.reclaimed_slab = 0;
3807 p->reclaim_state = &reclaim_state;
3809 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3811 * Free memory by calling shrink zone with increasing
3812 * priorities until we have enough memory freed.
3815 shrink_node(pgdat, &sc);
3816 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3819 p->reclaim_state = NULL;
3820 fs_reclaim_release(gfp_mask);
3821 current->flags &= ~PF_SWAPWRITE;
3822 memalloc_noreclaim_restore(noreclaim_flag);
3823 return sc.nr_reclaimed >= nr_pages;
3826 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3831 * Node reclaim reclaims unmapped file backed pages and
3832 * slab pages if we are over the defined limits.
3834 * A small portion of unmapped file backed pages is needed for
3835 * file I/O otherwise pages read by file I/O will be immediately
3836 * thrown out if the node is overallocated. So we do not reclaim
3837 * if less than a specified percentage of the node is used by
3838 * unmapped file backed pages.
3840 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3841 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3842 return NODE_RECLAIM_FULL;
3845 * Do not scan if the allocation should not be delayed.
3847 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3848 return NODE_RECLAIM_NOSCAN;
3851 * Only run node reclaim on the local node or on nodes that do not
3852 * have associated processors. This will favor the local processor
3853 * over remote processors and spread off node memory allocations
3854 * as wide as possible.
3856 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3857 return NODE_RECLAIM_NOSCAN;
3859 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3860 return NODE_RECLAIM_NOSCAN;
3862 ret = __node_reclaim(pgdat, gfp_mask, order);
3863 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3866 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3873 * page_evictable - test whether a page is evictable
3874 * @page: the page to test
3876 * Test whether page is evictable--i.e., should be placed on active/inactive
3877 * lists vs unevictable list.
3879 * Reasons page might not be evictable:
3880 * (1) page's mapping marked unevictable
3881 * (2) page is part of an mlocked VMA
3884 int page_evictable(struct page *page)
3888 /* Prevent address_space of inode and swap cache from being freed */
3890 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3897 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3898 * @pages: array of pages to check
3899 * @nr_pages: number of pages to check
3901 * Checks pages for evictability and moves them to the appropriate lru list.
3903 * This function is only used for SysV IPC SHM_UNLOCK.
3905 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3907 struct lruvec *lruvec;
3908 struct pglist_data *pgdat = NULL;
3913 for (i = 0; i < nr_pages; i++) {
3914 struct page *page = pages[i];
3915 struct pglist_data *pagepgdat = page_pgdat(page);
3918 if (pagepgdat != pgdat) {
3920 spin_unlock_irq(&pgdat->lru_lock);
3922 spin_lock_irq(&pgdat->lru_lock);
3924 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3926 if (!PageLRU(page) || !PageUnevictable(page))
3929 if (page_evictable(page)) {
3930 enum lru_list lru = page_lru_base_type(page);
3932 VM_BUG_ON_PAGE(PageActive(page), page);
3933 ClearPageUnevictable(page);
3934 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3935 add_page_to_lru_list(page, lruvec, lru);
3941 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3942 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3943 spin_unlock_irq(&pgdat->lru_lock);
3946 #endif /* CONFIG_SHMEM */