2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
51 #define CREATE_TRACE_POINTS
54 #include <asm/debugreg.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
69 #define emul_to_vcpu(ctxt) \
70 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 * - enable syscall per default because its emulated by KVM
74 * - enable LME and LMA per default on 64 bit KVM
78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
86 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
87 static void process_nmi(struct kvm_vcpu *vcpu);
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
92 static bool ignore_msrs = 0;
93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32 kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
101 static u32 tsc_tolerance_ppm = 250;
102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
104 #define KVM_NR_SHARED_MSRS 16
106 struct kvm_shared_msrs_global {
108 u32 msrs[KVM_NR_SHARED_MSRS];
111 struct kvm_shared_msrs {
112 struct user_return_notifier urn;
114 struct kvm_shared_msr_values {
117 } values[KVM_NR_SHARED_MSRS];
120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
123 struct kvm_stats_debugfs_item debugfs_entries[] = {
124 { "pf_fixed", VCPU_STAT(pf_fixed) },
125 { "pf_guest", VCPU_STAT(pf_guest) },
126 { "tlb_flush", VCPU_STAT(tlb_flush) },
127 { "invlpg", VCPU_STAT(invlpg) },
128 { "exits", VCPU_STAT(exits) },
129 { "io_exits", VCPU_STAT(io_exits) },
130 { "mmio_exits", VCPU_STAT(mmio_exits) },
131 { "signal_exits", VCPU_STAT(signal_exits) },
132 { "irq_window", VCPU_STAT(irq_window_exits) },
133 { "nmi_window", VCPU_STAT(nmi_window_exits) },
134 { "halt_exits", VCPU_STAT(halt_exits) },
135 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
136 { "hypercalls", VCPU_STAT(hypercalls) },
137 { "request_irq", VCPU_STAT(request_irq_exits) },
138 { "irq_exits", VCPU_STAT(irq_exits) },
139 { "host_state_reload", VCPU_STAT(host_state_reload) },
140 { "efer_reload", VCPU_STAT(efer_reload) },
141 { "fpu_reload", VCPU_STAT(fpu_reload) },
142 { "insn_emulation", VCPU_STAT(insn_emulation) },
143 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
144 { "irq_injections", VCPU_STAT(irq_injections) },
145 { "nmi_injections", VCPU_STAT(nmi_injections) },
146 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
147 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
148 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
149 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
150 { "mmu_flooded", VM_STAT(mmu_flooded) },
151 { "mmu_recycled", VM_STAT(mmu_recycled) },
152 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
153 { "mmu_unsync", VM_STAT(mmu_unsync) },
154 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
155 { "largepages", VM_STAT(lpages) },
159 u64 __read_mostly host_xcr0;
161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
167 vcpu->arch.apf.gfns[i] = ~0;
170 static void kvm_on_user_return(struct user_return_notifier *urn)
173 struct kvm_shared_msrs *locals
174 = container_of(urn, struct kvm_shared_msrs, urn);
175 struct kvm_shared_msr_values *values;
177 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
178 values = &locals->values[slot];
179 if (values->host != values->curr) {
180 wrmsrl(shared_msrs_global.msrs[slot], values->host);
181 values->curr = values->host;
184 locals->registered = false;
185 user_return_notifier_unregister(urn);
188 static void shared_msr_update(unsigned slot, u32 msr)
190 struct kvm_shared_msrs *smsr;
193 smsr = &__get_cpu_var(shared_msrs);
194 /* only read, and nobody should modify it at this time,
195 * so don't need lock */
196 if (slot >= shared_msrs_global.nr) {
197 printk(KERN_ERR "kvm: invalid MSR slot!");
200 rdmsrl_safe(msr, &value);
201 smsr->values[slot].host = value;
202 smsr->values[slot].curr = value;
205 void kvm_define_shared_msr(unsigned slot, u32 msr)
207 if (slot >= shared_msrs_global.nr)
208 shared_msrs_global.nr = slot + 1;
209 shared_msrs_global.msrs[slot] = msr;
210 /* we need ensured the shared_msr_global have been updated */
213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
215 static void kvm_shared_msr_cpu_online(void)
219 for (i = 0; i < shared_msrs_global.nr; ++i)
220 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
225 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
227 if (((value ^ smsr->values[slot].curr) & mask) == 0)
229 smsr->values[slot].curr = value;
230 wrmsrl(shared_msrs_global.msrs[slot], value);
231 if (!smsr->registered) {
232 smsr->urn.on_user_return = kvm_on_user_return;
233 user_return_notifier_register(&smsr->urn);
234 smsr->registered = true;
237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
239 static void drop_user_return_notifiers(void *ignore)
241 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
243 if (smsr->registered)
244 kvm_on_user_return(&smsr->urn);
247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
249 if (irqchip_in_kernel(vcpu->kvm))
250 return vcpu->arch.apic_base;
252 return vcpu->arch.apic_base;
254 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 /* TODO: reserve bits check */
259 if (irqchip_in_kernel(vcpu->kvm))
260 kvm_lapic_set_base(vcpu, data);
262 vcpu->arch.apic_base = data;
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
266 #define EXCPT_BENIGN 0
267 #define EXCPT_CONTRIBUTORY 1
270 static int exception_class(int vector)
280 return EXCPT_CONTRIBUTORY;
287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
288 unsigned nr, bool has_error, u32 error_code,
294 kvm_make_request(KVM_REQ_EVENT, vcpu);
296 if (!vcpu->arch.exception.pending) {
298 vcpu->arch.exception.pending = true;
299 vcpu->arch.exception.has_error_code = has_error;
300 vcpu->arch.exception.nr = nr;
301 vcpu->arch.exception.error_code = error_code;
302 vcpu->arch.exception.reinject = reinject;
306 /* to check exception */
307 prev_nr = vcpu->arch.exception.nr;
308 if (prev_nr == DF_VECTOR) {
309 /* triple fault -> shutdown */
310 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
313 class1 = exception_class(prev_nr);
314 class2 = exception_class(nr);
315 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
316 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
317 /* generate double fault per SDM Table 5-5 */
318 vcpu->arch.exception.pending = true;
319 vcpu->arch.exception.has_error_code = true;
320 vcpu->arch.exception.nr = DF_VECTOR;
321 vcpu->arch.exception.error_code = 0;
323 /* replace previous exception with a new one in a hope
324 that instruction re-execution will regenerate lost
329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
331 kvm_multiple_exception(vcpu, nr, false, 0, false);
333 EXPORT_SYMBOL_GPL(kvm_queue_exception);
335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
337 kvm_multiple_exception(vcpu, nr, false, 0, true);
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
344 kvm_inject_gp(vcpu, 0);
346 kvm_x86_ops->skip_emulated_instruction(vcpu);
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
352 ++vcpu->stat.pf_guest;
353 vcpu->arch.cr2 = fault->address;
354 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
360 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
361 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
363 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
366 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
368 atomic_inc(&vcpu->arch.nmi_queued);
369 kvm_make_request(KVM_REQ_NMI, vcpu);
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
375 kvm_multiple_exception(vcpu, nr, true, error_code, false);
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
381 kvm_multiple_exception(vcpu, nr, true, error_code, true);
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
386 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
387 * a #GP and return false.
389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
391 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
393 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
396 EXPORT_SYMBOL_GPL(kvm_require_cpl);
399 * This function will be used to read from the physical memory of the currently
400 * running guest. The difference to kvm_read_guest_page is that this function
401 * can read from guest physical or from the guest's guest physical memory.
403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
404 gfn_t ngfn, void *data, int offset, int len,
410 ngpa = gfn_to_gpa(ngfn);
411 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
412 if (real_gfn == UNMAPPED_GVA)
415 real_gfn = gpa_to_gfn(real_gfn);
417 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
422 void *data, int offset, int len, u32 access)
424 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
425 data, offset, len, access);
429 * Load the pae pdptrs. Return true is they are all valid.
431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
433 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
434 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
437 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
439 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
440 offset * sizeof(u64), sizeof(pdpte),
441 PFERR_USER_MASK|PFERR_WRITE_MASK);
446 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
447 if (is_present_gpte(pdpte[i]) &&
448 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
455 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
456 __set_bit(VCPU_EXREG_PDPTR,
457 (unsigned long *)&vcpu->arch.regs_avail);
458 __set_bit(VCPU_EXREG_PDPTR,
459 (unsigned long *)&vcpu->arch.regs_dirty);
464 EXPORT_SYMBOL_GPL(load_pdptrs);
466 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
468 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474 if (is_long_mode(vcpu) || !is_pae(vcpu))
477 if (!test_bit(VCPU_EXREG_PDPTR,
478 (unsigned long *)&vcpu->arch.regs_avail))
481 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
482 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
483 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
484 PFERR_USER_MASK | PFERR_WRITE_MASK);
487 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
495 unsigned long old_cr0 = kvm_read_cr0(vcpu);
496 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
497 X86_CR0_CD | X86_CR0_NW;
502 if (cr0 & 0xffffffff00000000UL)
506 cr0 &= ~CR0_RESERVED_BITS;
508 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
511 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
514 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
516 if ((vcpu->arch.efer & EFER_LME)) {
521 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
526 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
531 kvm_x86_ops->set_cr0(vcpu, cr0);
533 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
534 kvm_clear_async_pf_completion_queue(vcpu);
535 kvm_async_pf_hash_reset(vcpu);
538 if ((cr0 ^ old_cr0) & update_bits)
539 kvm_mmu_reset_context(vcpu);
542 EXPORT_SYMBOL_GPL(kvm_set_cr0);
544 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
546 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
548 EXPORT_SYMBOL_GPL(kvm_lmsw);
550 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
554 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
555 if (index != XCR_XFEATURE_ENABLED_MASK)
558 if (kvm_x86_ops->get_cpl(vcpu) != 0)
560 if (!(xcr0 & XSTATE_FP))
562 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
564 if (xcr0 & ~host_xcr0)
566 vcpu->arch.xcr0 = xcr0;
567 vcpu->guest_xcr0_loaded = 0;
571 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
573 if (__kvm_set_xcr(vcpu, index, xcr)) {
574 kvm_inject_gp(vcpu, 0);
579 EXPORT_SYMBOL_GPL(kvm_set_xcr);
581 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
583 unsigned long old_cr4 = kvm_read_cr4(vcpu);
584 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
585 X86_CR4_PAE | X86_CR4_SMEP;
586 if (cr4 & CR4_RESERVED_BITS)
589 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
592 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
595 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
598 if (is_long_mode(vcpu)) {
599 if (!(cr4 & X86_CR4_PAE))
601 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
602 && ((cr4 ^ old_cr4) & pdptr_bits)
603 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 if (kvm_x86_ops->set_cr4(vcpu, cr4))
610 if ((cr4 ^ old_cr4) & pdptr_bits)
611 kvm_mmu_reset_context(vcpu);
613 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
614 kvm_update_cpuid(vcpu);
618 EXPORT_SYMBOL_GPL(kvm_set_cr4);
620 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
622 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
623 kvm_mmu_sync_roots(vcpu);
624 kvm_mmu_flush_tlb(vcpu);
628 if (is_long_mode(vcpu)) {
629 if (cr3 & CR3_L_MODE_RESERVED_BITS)
633 if (cr3 & CR3_PAE_RESERVED_BITS)
635 if (is_paging(vcpu) &&
636 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
640 * We don't check reserved bits in nonpae mode, because
641 * this isn't enforced, and VMware depends on this.
646 * Does the new cr3 value map to physical memory? (Note, we
647 * catch an invalid cr3 even in real-mode, because it would
648 * cause trouble later on when we turn on paging anyway.)
650 * A real CPU would silently accept an invalid cr3 and would
651 * attempt to use it - with largely undefined (and often hard
652 * to debug) behavior on the guest side.
654 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
656 vcpu->arch.cr3 = cr3;
657 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
658 vcpu->arch.mmu.new_cr3(vcpu);
661 EXPORT_SYMBOL_GPL(kvm_set_cr3);
663 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
665 if (cr8 & CR8_RESERVED_BITS)
667 if (irqchip_in_kernel(vcpu->kvm))
668 kvm_lapic_set_tpr(vcpu, cr8);
670 vcpu->arch.cr8 = cr8;
673 EXPORT_SYMBOL_GPL(kvm_set_cr8);
675 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
677 if (irqchip_in_kernel(vcpu->kvm))
678 return kvm_lapic_get_cr8(vcpu);
680 return vcpu->arch.cr8;
682 EXPORT_SYMBOL_GPL(kvm_get_cr8);
684 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
688 vcpu->arch.db[dr] = val;
689 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
690 vcpu->arch.eff_db[dr] = val;
693 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
697 if (val & 0xffffffff00000000ULL)
699 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
702 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
706 if (val & 0xffffffff00000000ULL)
708 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
709 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
710 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
711 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
719 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
723 res = __kvm_set_dr(vcpu, dr, val);
725 kvm_queue_exception(vcpu, UD_VECTOR);
727 kvm_inject_gp(vcpu, 0);
731 EXPORT_SYMBOL_GPL(kvm_set_dr);
733 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
737 *val = vcpu->arch.db[dr];
740 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
744 *val = vcpu->arch.dr6;
747 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
751 *val = vcpu->arch.dr7;
758 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
760 if (_kvm_get_dr(vcpu, dr, val)) {
761 kvm_queue_exception(vcpu, UD_VECTOR);
766 EXPORT_SYMBOL_GPL(kvm_get_dr);
768 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
770 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
774 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
777 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
778 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
781 EXPORT_SYMBOL_GPL(kvm_rdpmc);
784 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
785 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
787 * This list is modified at module load time to reflect the
788 * capabilities of the host cpu. This capabilities test skips MSRs that are
789 * kvm-specific. Those are put in the beginning of the list.
792 #define KVM_SAVE_MSRS_BEGIN 9
793 static u32 msrs_to_save[] = {
794 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
795 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
796 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
797 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
798 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
801 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
803 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
806 static unsigned num_msrs_to_save;
808 static u32 emulated_msrs[] = {
809 MSR_IA32_TSCDEADLINE,
810 MSR_IA32_MISC_ENABLE,
815 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
817 u64 old_efer = vcpu->arch.efer;
819 if (efer & efer_reserved_bits)
823 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
826 if (efer & EFER_FFXSR) {
827 struct kvm_cpuid_entry2 *feat;
829 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
830 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
834 if (efer & EFER_SVME) {
835 struct kvm_cpuid_entry2 *feat;
837 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
838 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
843 efer |= vcpu->arch.efer & EFER_LMA;
845 kvm_x86_ops->set_efer(vcpu, efer);
847 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
849 /* Update reserved bits */
850 if ((efer ^ old_efer) & EFER_NX)
851 kvm_mmu_reset_context(vcpu);
856 void kvm_enable_efer_bits(u64 mask)
858 efer_reserved_bits &= ~mask;
860 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
864 * Writes msr value into into the appropriate "register".
865 * Returns 0 on success, non-0 otherwise.
866 * Assumes vcpu_load() was already called.
868 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
870 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
874 * Adapt set_msr() to msr_io()'s calling convention
876 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
878 return kvm_set_msr(vcpu, index, *data);
881 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
885 struct pvclock_wall_clock wc;
886 struct timespec boot;
891 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
896 ++version; /* first time write, random junk */
900 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
903 * The guest calculates current wall clock time by adding
904 * system time (updated by kvm_guest_time_update below) to the
905 * wall clock specified here. guest system time equals host
906 * system time for us, thus we must fill in host boot time here.
910 wc.sec = boot.tv_sec;
911 wc.nsec = boot.tv_nsec;
912 wc.version = version;
914 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
917 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
920 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
922 uint32_t quotient, remainder;
924 /* Don't try to replace with do_div(), this one calculates
925 * "(dividend << 32) / divisor" */
927 : "=a" (quotient), "=d" (remainder)
928 : "0" (0), "1" (dividend), "r" (divisor) );
932 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
933 s8 *pshift, u32 *pmultiplier)
940 tps64 = base_khz * 1000LL;
941 scaled64 = scaled_khz * 1000LL;
942 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
947 tps32 = (uint32_t)tps64;
948 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
949 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
957 *pmultiplier = div_frac(scaled64, tps32);
959 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
960 __func__, base_khz, scaled_khz, shift, *pmultiplier);
963 static inline u64 get_kernel_ns(void)
967 WARN_ON(preemptible());
969 monotonic_to_bootbased(&ts);
970 return timespec_to_ns(&ts);
973 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
974 unsigned long max_tsc_khz;
976 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
978 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
979 vcpu->arch.virtual_tsc_shift);
982 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
984 u64 v = (u64)khz * (1000000 + ppm);
989 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
991 u32 thresh_lo, thresh_hi;
994 /* Compute a scale to convert nanoseconds in TSC cycles */
995 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
996 &vcpu->arch.virtual_tsc_shift,
997 &vcpu->arch.virtual_tsc_mult);
998 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1001 * Compute the variation in TSC rate which is acceptable
1002 * within the range of tolerance and decide if the
1003 * rate being applied is within that bounds of the hardware
1004 * rate. If so, no scaling or compensation need be done.
1006 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1007 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1008 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1009 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1012 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1015 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1017 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1018 vcpu->arch.virtual_tsc_mult,
1019 vcpu->arch.virtual_tsc_shift);
1020 tsc += vcpu->arch.this_tsc_write;
1024 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1026 struct kvm *kvm = vcpu->kvm;
1027 u64 offset, ns, elapsed;
1028 unsigned long flags;
1031 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1032 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1033 ns = get_kernel_ns();
1034 elapsed = ns - kvm->arch.last_tsc_nsec;
1036 /* n.b - signed multiplication and division required */
1037 usdiff = data - kvm->arch.last_tsc_write;
1038 #ifdef CONFIG_X86_64
1039 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1041 /* do_div() only does unsigned */
1042 asm("idivl %2; xor %%edx, %%edx"
1044 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1046 do_div(elapsed, 1000);
1052 * Special case: TSC write with a small delta (1 second) of virtual
1053 * cycle time against real time is interpreted as an attempt to
1054 * synchronize the CPU.
1056 * For a reliable TSC, we can match TSC offsets, and for an unstable
1057 * TSC, we add elapsed time in this computation. We could let the
1058 * compensation code attempt to catch up if we fall behind, but
1059 * it's better to try to match offsets from the beginning.
1061 if (usdiff < USEC_PER_SEC &&
1062 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1063 if (!check_tsc_unstable()) {
1064 offset = kvm->arch.cur_tsc_offset;
1065 pr_debug("kvm: matched tsc offset for %llu\n", data);
1067 u64 delta = nsec_to_cycles(vcpu, elapsed);
1069 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1070 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1074 * We split periods of matched TSC writes into generations.
1075 * For each generation, we track the original measured
1076 * nanosecond time, offset, and write, so if TSCs are in
1077 * sync, we can match exact offset, and if not, we can match
1078 * exact software computaion in compute_guest_tsc()
1080 * These values are tracked in kvm->arch.cur_xxx variables.
1082 kvm->arch.cur_tsc_generation++;
1083 kvm->arch.cur_tsc_nsec = ns;
1084 kvm->arch.cur_tsc_write = data;
1085 kvm->arch.cur_tsc_offset = offset;
1086 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1087 kvm->arch.cur_tsc_generation, data);
1091 * We also track th most recent recorded KHZ, write and time to
1092 * allow the matching interval to be extended at each write.
1094 kvm->arch.last_tsc_nsec = ns;
1095 kvm->arch.last_tsc_write = data;
1096 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1098 /* Reset of TSC must disable overshoot protection below */
1099 vcpu->arch.hv_clock.tsc_timestamp = 0;
1100 vcpu->arch.last_guest_tsc = data;
1102 /* Keep track of which generation this VCPU has synchronized to */
1103 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1104 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1105 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1107 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1108 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1111 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1113 static int kvm_guest_time_update(struct kvm_vcpu *v)
1115 unsigned long flags;
1116 struct kvm_vcpu_arch *vcpu = &v->arch;
1118 unsigned long this_tsc_khz;
1119 s64 kernel_ns, max_kernel_ns;
1122 /* Keep irq disabled to prevent changes to the clock */
1123 local_irq_save(flags);
1124 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1125 kernel_ns = get_kernel_ns();
1126 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1127 if (unlikely(this_tsc_khz == 0)) {
1128 local_irq_restore(flags);
1129 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1134 * We may have to catch up the TSC to match elapsed wall clock
1135 * time for two reasons, even if kvmclock is used.
1136 * 1) CPU could have been running below the maximum TSC rate
1137 * 2) Broken TSC compensation resets the base at each VCPU
1138 * entry to avoid unknown leaps of TSC even when running
1139 * again on the same CPU. This may cause apparent elapsed
1140 * time to disappear, and the guest to stand still or run
1143 if (vcpu->tsc_catchup) {
1144 u64 tsc = compute_guest_tsc(v, kernel_ns);
1145 if (tsc > tsc_timestamp) {
1146 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1147 tsc_timestamp = tsc;
1151 local_irq_restore(flags);
1153 if (!vcpu->time_page)
1157 * Time as measured by the TSC may go backwards when resetting the base
1158 * tsc_timestamp. The reason for this is that the TSC resolution is
1159 * higher than the resolution of the other clock scales. Thus, many
1160 * possible measurments of the TSC correspond to one measurement of any
1161 * other clock, and so a spread of values is possible. This is not a
1162 * problem for the computation of the nanosecond clock; with TSC rates
1163 * around 1GHZ, there can only be a few cycles which correspond to one
1164 * nanosecond value, and any path through this code will inevitably
1165 * take longer than that. However, with the kernel_ns value itself,
1166 * the precision may be much lower, down to HZ granularity. If the
1167 * first sampling of TSC against kernel_ns ends in the low part of the
1168 * range, and the second in the high end of the range, we can get:
1170 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1172 * As the sampling errors potentially range in the thousands of cycles,
1173 * it is possible such a time value has already been observed by the
1174 * guest. To protect against this, we must compute the system time as
1175 * observed by the guest and ensure the new system time is greater.
1178 if (vcpu->hv_clock.tsc_timestamp) {
1179 max_kernel_ns = vcpu->last_guest_tsc -
1180 vcpu->hv_clock.tsc_timestamp;
1181 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1182 vcpu->hv_clock.tsc_to_system_mul,
1183 vcpu->hv_clock.tsc_shift);
1184 max_kernel_ns += vcpu->last_kernel_ns;
1187 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1188 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1189 &vcpu->hv_clock.tsc_shift,
1190 &vcpu->hv_clock.tsc_to_system_mul);
1191 vcpu->hw_tsc_khz = this_tsc_khz;
1194 if (max_kernel_ns > kernel_ns)
1195 kernel_ns = max_kernel_ns;
1197 /* With all the info we got, fill in the values */
1198 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1199 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1200 vcpu->last_kernel_ns = kernel_ns;
1201 vcpu->last_guest_tsc = tsc_timestamp;
1202 vcpu->hv_clock.flags = 0;
1205 * The interface expects us to write an even number signaling that the
1206 * update is finished. Since the guest won't see the intermediate
1207 * state, we just increase by 2 at the end.
1209 vcpu->hv_clock.version += 2;
1211 shared_kaddr = kmap_atomic(vcpu->time_page);
1213 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1214 sizeof(vcpu->hv_clock));
1216 kunmap_atomic(shared_kaddr);
1218 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1222 static bool msr_mtrr_valid(unsigned msr)
1225 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1226 case MSR_MTRRfix64K_00000:
1227 case MSR_MTRRfix16K_80000:
1228 case MSR_MTRRfix16K_A0000:
1229 case MSR_MTRRfix4K_C0000:
1230 case MSR_MTRRfix4K_C8000:
1231 case MSR_MTRRfix4K_D0000:
1232 case MSR_MTRRfix4K_D8000:
1233 case MSR_MTRRfix4K_E0000:
1234 case MSR_MTRRfix4K_E8000:
1235 case MSR_MTRRfix4K_F0000:
1236 case MSR_MTRRfix4K_F8000:
1237 case MSR_MTRRdefType:
1238 case MSR_IA32_CR_PAT:
1246 static bool valid_pat_type(unsigned t)
1248 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1251 static bool valid_mtrr_type(unsigned t)
1253 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1256 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1260 if (!msr_mtrr_valid(msr))
1263 if (msr == MSR_IA32_CR_PAT) {
1264 for (i = 0; i < 8; i++)
1265 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1268 } else if (msr == MSR_MTRRdefType) {
1271 return valid_mtrr_type(data & 0xff);
1272 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1273 for (i = 0; i < 8 ; i++)
1274 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1279 /* variable MTRRs */
1280 return valid_mtrr_type(data & 0xff);
1283 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1285 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1287 if (!mtrr_valid(vcpu, msr, data))
1290 if (msr == MSR_MTRRdefType) {
1291 vcpu->arch.mtrr_state.def_type = data;
1292 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1293 } else if (msr == MSR_MTRRfix64K_00000)
1295 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1296 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1297 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1298 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1299 else if (msr == MSR_IA32_CR_PAT)
1300 vcpu->arch.pat = data;
1301 else { /* Variable MTRRs */
1302 int idx, is_mtrr_mask;
1305 idx = (msr - 0x200) / 2;
1306 is_mtrr_mask = msr - 0x200 - 2 * idx;
1309 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1312 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1316 kvm_mmu_reset_context(vcpu);
1320 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1322 u64 mcg_cap = vcpu->arch.mcg_cap;
1323 unsigned bank_num = mcg_cap & 0xff;
1326 case MSR_IA32_MCG_STATUS:
1327 vcpu->arch.mcg_status = data;
1329 case MSR_IA32_MCG_CTL:
1330 if (!(mcg_cap & MCG_CTL_P))
1332 if (data != 0 && data != ~(u64)0)
1334 vcpu->arch.mcg_ctl = data;
1337 if (msr >= MSR_IA32_MC0_CTL &&
1338 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1339 u32 offset = msr - MSR_IA32_MC0_CTL;
1340 /* only 0 or all 1s can be written to IA32_MCi_CTL
1341 * some Linux kernels though clear bit 10 in bank 4 to
1342 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1343 * this to avoid an uncatched #GP in the guest
1345 if ((offset & 0x3) == 0 &&
1346 data != 0 && (data | (1 << 10)) != ~(u64)0)
1348 vcpu->arch.mce_banks[offset] = data;
1356 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1358 struct kvm *kvm = vcpu->kvm;
1359 int lm = is_long_mode(vcpu);
1360 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1361 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1362 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1363 : kvm->arch.xen_hvm_config.blob_size_32;
1364 u32 page_num = data & ~PAGE_MASK;
1365 u64 page_addr = data & PAGE_MASK;
1370 if (page_num >= blob_size)
1373 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1378 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1387 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1389 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1392 static bool kvm_hv_msr_partition_wide(u32 msr)
1396 case HV_X64_MSR_GUEST_OS_ID:
1397 case HV_X64_MSR_HYPERCALL:
1405 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1407 struct kvm *kvm = vcpu->kvm;
1410 case HV_X64_MSR_GUEST_OS_ID:
1411 kvm->arch.hv_guest_os_id = data;
1412 /* setting guest os id to zero disables hypercall page */
1413 if (!kvm->arch.hv_guest_os_id)
1414 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1416 case HV_X64_MSR_HYPERCALL: {
1421 /* if guest os id is not set hypercall should remain disabled */
1422 if (!kvm->arch.hv_guest_os_id)
1424 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1425 kvm->arch.hv_hypercall = data;
1428 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1429 addr = gfn_to_hva(kvm, gfn);
1430 if (kvm_is_error_hva(addr))
1432 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1433 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1434 if (__copy_to_user((void __user *)addr, instructions, 4))
1436 kvm->arch.hv_hypercall = data;
1440 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1441 "data 0x%llx\n", msr, data);
1447 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1450 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1453 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1454 vcpu->arch.hv_vapic = data;
1457 addr = gfn_to_hva(vcpu->kvm, data >>
1458 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1459 if (kvm_is_error_hva(addr))
1461 if (__clear_user((void __user *)addr, PAGE_SIZE))
1463 vcpu->arch.hv_vapic = data;
1466 case HV_X64_MSR_EOI:
1467 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1468 case HV_X64_MSR_ICR:
1469 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1470 case HV_X64_MSR_TPR:
1471 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1473 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1474 "data 0x%llx\n", msr, data);
1481 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1483 gpa_t gpa = data & ~0x3f;
1485 /* Bits 2:5 are resrved, Should be zero */
1489 vcpu->arch.apf.msr_val = data;
1491 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1492 kvm_clear_async_pf_completion_queue(vcpu);
1493 kvm_async_pf_hash_reset(vcpu);
1497 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1500 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1501 kvm_async_pf_wakeup_all(vcpu);
1505 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1507 if (vcpu->arch.time_page) {
1508 kvm_release_page_dirty(vcpu->arch.time_page);
1509 vcpu->arch.time_page = NULL;
1513 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1517 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1520 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1521 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1522 vcpu->arch.st.accum_steal = delta;
1525 static void record_steal_time(struct kvm_vcpu *vcpu)
1527 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1530 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1531 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1534 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1535 vcpu->arch.st.steal.version += 2;
1536 vcpu->arch.st.accum_steal = 0;
1538 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1539 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1542 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1548 return set_efer(vcpu, data);
1550 data &= ~(u64)0x40; /* ignore flush filter disable */
1551 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1552 data &= ~(u64)0x8; /* ignore TLB cache disable */
1554 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1559 case MSR_FAM10H_MMIO_CONF_BASE:
1561 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1566 case MSR_AMD64_NB_CFG:
1568 case MSR_IA32_DEBUGCTLMSR:
1570 /* We support the non-activated case already */
1572 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1573 /* Values other than LBR and BTF are vendor-specific,
1574 thus reserved and should throw a #GP */
1577 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1580 case MSR_IA32_UCODE_REV:
1581 case MSR_IA32_UCODE_WRITE:
1582 case MSR_VM_HSAVE_PA:
1583 case MSR_AMD64_PATCH_LOADER:
1585 case 0x200 ... 0x2ff:
1586 return set_msr_mtrr(vcpu, msr, data);
1587 case MSR_IA32_APICBASE:
1588 kvm_set_apic_base(vcpu, data);
1590 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1591 return kvm_x2apic_msr_write(vcpu, msr, data);
1592 case MSR_IA32_TSCDEADLINE:
1593 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1595 case MSR_IA32_MISC_ENABLE:
1596 vcpu->arch.ia32_misc_enable_msr = data;
1598 case MSR_KVM_WALL_CLOCK_NEW:
1599 case MSR_KVM_WALL_CLOCK:
1600 vcpu->kvm->arch.wall_clock = data;
1601 kvm_write_wall_clock(vcpu->kvm, data);
1603 case MSR_KVM_SYSTEM_TIME_NEW:
1604 case MSR_KVM_SYSTEM_TIME: {
1605 kvmclock_reset(vcpu);
1607 vcpu->arch.time = data;
1608 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1610 /* we verify if the enable bit is set... */
1614 /* ...but clean it before doing the actual write */
1615 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1617 vcpu->arch.time_page =
1618 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1620 if (is_error_page(vcpu->arch.time_page)) {
1621 kvm_release_page_clean(vcpu->arch.time_page);
1622 vcpu->arch.time_page = NULL;
1626 case MSR_KVM_ASYNC_PF_EN:
1627 if (kvm_pv_enable_async_pf(vcpu, data))
1630 case MSR_KVM_STEAL_TIME:
1632 if (unlikely(!sched_info_on()))
1635 if (data & KVM_STEAL_RESERVED_MASK)
1638 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1639 data & KVM_STEAL_VALID_BITS))
1642 vcpu->arch.st.msr_val = data;
1644 if (!(data & KVM_MSR_ENABLED))
1647 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1650 accumulate_steal_time(vcpu);
1653 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1657 case MSR_IA32_MCG_CTL:
1658 case MSR_IA32_MCG_STATUS:
1659 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1660 return set_msr_mce(vcpu, msr, data);
1662 /* Performance counters are not protected by a CPUID bit,
1663 * so we should check all of them in the generic path for the sake of
1664 * cross vendor migration.
1665 * Writing a zero into the event select MSRs disables them,
1666 * which we perfectly emulate ;-). Any other value should be at least
1667 * reported, some guests depend on them.
1669 case MSR_K7_EVNTSEL0:
1670 case MSR_K7_EVNTSEL1:
1671 case MSR_K7_EVNTSEL2:
1672 case MSR_K7_EVNTSEL3:
1674 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1675 "0x%x data 0x%llx\n", msr, data);
1677 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1678 * so we ignore writes to make it happy.
1680 case MSR_K7_PERFCTR0:
1681 case MSR_K7_PERFCTR1:
1682 case MSR_K7_PERFCTR2:
1683 case MSR_K7_PERFCTR3:
1684 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1685 "0x%x data 0x%llx\n", msr, data);
1687 case MSR_P6_PERFCTR0:
1688 case MSR_P6_PERFCTR1:
1690 case MSR_P6_EVNTSEL0:
1691 case MSR_P6_EVNTSEL1:
1692 if (kvm_pmu_msr(vcpu, msr))
1693 return kvm_pmu_set_msr(vcpu, msr, data);
1695 if (pr || data != 0)
1696 pr_unimpl(vcpu, "disabled perfctr wrmsr: "
1697 "0x%x data 0x%llx\n", msr, data);
1699 case MSR_K7_CLK_CTL:
1701 * Ignore all writes to this no longer documented MSR.
1702 * Writes are only relevant for old K7 processors,
1703 * all pre-dating SVM, but a recommended workaround from
1704 * AMD for these chips. It is possible to speicify the
1705 * affected processor models on the command line, hence
1706 * the need to ignore the workaround.
1709 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1710 if (kvm_hv_msr_partition_wide(msr)) {
1712 mutex_lock(&vcpu->kvm->lock);
1713 r = set_msr_hyperv_pw(vcpu, msr, data);
1714 mutex_unlock(&vcpu->kvm->lock);
1717 return set_msr_hyperv(vcpu, msr, data);
1719 case MSR_IA32_BBL_CR_CTL3:
1720 /* Drop writes to this legacy MSR -- see rdmsr
1721 * counterpart for further detail.
1723 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1725 case MSR_AMD64_OSVW_ID_LENGTH:
1726 if (!guest_cpuid_has_osvw(vcpu))
1728 vcpu->arch.osvw.length = data;
1730 case MSR_AMD64_OSVW_STATUS:
1731 if (!guest_cpuid_has_osvw(vcpu))
1733 vcpu->arch.osvw.status = data;
1736 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1737 return xen_hvm_config(vcpu, data);
1738 if (kvm_pmu_msr(vcpu, msr))
1739 return kvm_pmu_set_msr(vcpu, msr, data);
1741 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1745 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1752 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1756 * Reads an msr value (of 'msr_index') into 'pdata'.
1757 * Returns 0 on success, non-0 otherwise.
1758 * Assumes vcpu_load() was already called.
1760 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1762 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1765 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1767 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1769 if (!msr_mtrr_valid(msr))
1772 if (msr == MSR_MTRRdefType)
1773 *pdata = vcpu->arch.mtrr_state.def_type +
1774 (vcpu->arch.mtrr_state.enabled << 10);
1775 else if (msr == MSR_MTRRfix64K_00000)
1777 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1778 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1779 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1780 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1781 else if (msr == MSR_IA32_CR_PAT)
1782 *pdata = vcpu->arch.pat;
1783 else { /* Variable MTRRs */
1784 int idx, is_mtrr_mask;
1787 idx = (msr - 0x200) / 2;
1788 is_mtrr_mask = msr - 0x200 - 2 * idx;
1791 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1794 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1801 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1804 u64 mcg_cap = vcpu->arch.mcg_cap;
1805 unsigned bank_num = mcg_cap & 0xff;
1808 case MSR_IA32_P5_MC_ADDR:
1809 case MSR_IA32_P5_MC_TYPE:
1812 case MSR_IA32_MCG_CAP:
1813 data = vcpu->arch.mcg_cap;
1815 case MSR_IA32_MCG_CTL:
1816 if (!(mcg_cap & MCG_CTL_P))
1818 data = vcpu->arch.mcg_ctl;
1820 case MSR_IA32_MCG_STATUS:
1821 data = vcpu->arch.mcg_status;
1824 if (msr >= MSR_IA32_MC0_CTL &&
1825 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1826 u32 offset = msr - MSR_IA32_MC0_CTL;
1827 data = vcpu->arch.mce_banks[offset];
1836 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1839 struct kvm *kvm = vcpu->kvm;
1842 case HV_X64_MSR_GUEST_OS_ID:
1843 data = kvm->arch.hv_guest_os_id;
1845 case HV_X64_MSR_HYPERCALL:
1846 data = kvm->arch.hv_hypercall;
1849 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1857 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1862 case HV_X64_MSR_VP_INDEX: {
1865 kvm_for_each_vcpu(r, v, vcpu->kvm)
1870 case HV_X64_MSR_EOI:
1871 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1872 case HV_X64_MSR_ICR:
1873 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1874 case HV_X64_MSR_TPR:
1875 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1876 case HV_X64_MSR_APIC_ASSIST_PAGE:
1877 data = vcpu->arch.hv_vapic;
1880 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1887 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1892 case MSR_IA32_PLATFORM_ID:
1893 case MSR_IA32_EBL_CR_POWERON:
1894 case MSR_IA32_DEBUGCTLMSR:
1895 case MSR_IA32_LASTBRANCHFROMIP:
1896 case MSR_IA32_LASTBRANCHTOIP:
1897 case MSR_IA32_LASTINTFROMIP:
1898 case MSR_IA32_LASTINTTOIP:
1901 case MSR_VM_HSAVE_PA:
1902 case MSR_K7_EVNTSEL0:
1903 case MSR_K7_PERFCTR0:
1904 case MSR_K8_INT_PENDING_MSG:
1905 case MSR_AMD64_NB_CFG:
1906 case MSR_FAM10H_MMIO_CONF_BASE:
1909 case MSR_P6_PERFCTR0:
1910 case MSR_P6_PERFCTR1:
1911 case MSR_P6_EVNTSEL0:
1912 case MSR_P6_EVNTSEL1:
1913 if (kvm_pmu_msr(vcpu, msr))
1914 return kvm_pmu_get_msr(vcpu, msr, pdata);
1917 case MSR_IA32_UCODE_REV:
1918 data = 0x100000000ULL;
1921 data = 0x500 | KVM_NR_VAR_MTRR;
1923 case 0x200 ... 0x2ff:
1924 return get_msr_mtrr(vcpu, msr, pdata);
1925 case 0xcd: /* fsb frequency */
1929 * MSR_EBC_FREQUENCY_ID
1930 * Conservative value valid for even the basic CPU models.
1931 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1932 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1933 * and 266MHz for model 3, or 4. Set Core Clock
1934 * Frequency to System Bus Frequency Ratio to 1 (bits
1935 * 31:24) even though these are only valid for CPU
1936 * models > 2, however guests may end up dividing or
1937 * multiplying by zero otherwise.
1939 case MSR_EBC_FREQUENCY_ID:
1942 case MSR_IA32_APICBASE:
1943 data = kvm_get_apic_base(vcpu);
1945 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1946 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1948 case MSR_IA32_TSCDEADLINE:
1949 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1951 case MSR_IA32_MISC_ENABLE:
1952 data = vcpu->arch.ia32_misc_enable_msr;
1954 case MSR_IA32_PERF_STATUS:
1955 /* TSC increment by tick */
1957 /* CPU multiplier */
1958 data |= (((uint64_t)4ULL) << 40);
1961 data = vcpu->arch.efer;
1963 case MSR_KVM_WALL_CLOCK:
1964 case MSR_KVM_WALL_CLOCK_NEW:
1965 data = vcpu->kvm->arch.wall_clock;
1967 case MSR_KVM_SYSTEM_TIME:
1968 case MSR_KVM_SYSTEM_TIME_NEW:
1969 data = vcpu->arch.time;
1971 case MSR_KVM_ASYNC_PF_EN:
1972 data = vcpu->arch.apf.msr_val;
1974 case MSR_KVM_STEAL_TIME:
1975 data = vcpu->arch.st.msr_val;
1977 case MSR_IA32_P5_MC_ADDR:
1978 case MSR_IA32_P5_MC_TYPE:
1979 case MSR_IA32_MCG_CAP:
1980 case MSR_IA32_MCG_CTL:
1981 case MSR_IA32_MCG_STATUS:
1982 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1983 return get_msr_mce(vcpu, msr, pdata);
1984 case MSR_K7_CLK_CTL:
1986 * Provide expected ramp-up count for K7. All other
1987 * are set to zero, indicating minimum divisors for
1990 * This prevents guest kernels on AMD host with CPU
1991 * type 6, model 8 and higher from exploding due to
1992 * the rdmsr failing.
1996 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1997 if (kvm_hv_msr_partition_wide(msr)) {
1999 mutex_lock(&vcpu->kvm->lock);
2000 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2001 mutex_unlock(&vcpu->kvm->lock);
2004 return get_msr_hyperv(vcpu, msr, pdata);
2006 case MSR_IA32_BBL_CR_CTL3:
2007 /* This legacy MSR exists but isn't fully documented in current
2008 * silicon. It is however accessed by winxp in very narrow
2009 * scenarios where it sets bit #19, itself documented as
2010 * a "reserved" bit. Best effort attempt to source coherent
2011 * read data here should the balance of the register be
2012 * interpreted by the guest:
2014 * L2 cache control register 3: 64GB range, 256KB size,
2015 * enabled, latency 0x1, configured
2019 case MSR_AMD64_OSVW_ID_LENGTH:
2020 if (!guest_cpuid_has_osvw(vcpu))
2022 data = vcpu->arch.osvw.length;
2024 case MSR_AMD64_OSVW_STATUS:
2025 if (!guest_cpuid_has_osvw(vcpu))
2027 data = vcpu->arch.osvw.status;
2030 if (kvm_pmu_msr(vcpu, msr))
2031 return kvm_pmu_get_msr(vcpu, msr, pdata);
2033 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2036 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2044 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2047 * Read or write a bunch of msrs. All parameters are kernel addresses.
2049 * @return number of msrs set successfully.
2051 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2052 struct kvm_msr_entry *entries,
2053 int (*do_msr)(struct kvm_vcpu *vcpu,
2054 unsigned index, u64 *data))
2058 idx = srcu_read_lock(&vcpu->kvm->srcu);
2059 for (i = 0; i < msrs->nmsrs; ++i)
2060 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2062 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2068 * Read or write a bunch of msrs. Parameters are user addresses.
2070 * @return number of msrs set successfully.
2072 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2073 int (*do_msr)(struct kvm_vcpu *vcpu,
2074 unsigned index, u64 *data),
2077 struct kvm_msrs msrs;
2078 struct kvm_msr_entry *entries;
2083 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2087 if (msrs.nmsrs >= MAX_IO_MSRS)
2090 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2091 entries = memdup_user(user_msrs->entries, size);
2092 if (IS_ERR(entries)) {
2093 r = PTR_ERR(entries);
2097 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2102 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2113 int kvm_dev_ioctl_check_extension(long ext)
2118 case KVM_CAP_IRQCHIP:
2120 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2121 case KVM_CAP_SET_TSS_ADDR:
2122 case KVM_CAP_EXT_CPUID:
2123 case KVM_CAP_CLOCKSOURCE:
2125 case KVM_CAP_NOP_IO_DELAY:
2126 case KVM_CAP_MP_STATE:
2127 case KVM_CAP_SYNC_MMU:
2128 case KVM_CAP_USER_NMI:
2129 case KVM_CAP_REINJECT_CONTROL:
2130 case KVM_CAP_IRQ_INJECT_STATUS:
2131 case KVM_CAP_ASSIGN_DEV_IRQ:
2133 case KVM_CAP_IOEVENTFD:
2135 case KVM_CAP_PIT_STATE2:
2136 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2137 case KVM_CAP_XEN_HVM:
2138 case KVM_CAP_ADJUST_CLOCK:
2139 case KVM_CAP_VCPU_EVENTS:
2140 case KVM_CAP_HYPERV:
2141 case KVM_CAP_HYPERV_VAPIC:
2142 case KVM_CAP_HYPERV_SPIN:
2143 case KVM_CAP_PCI_SEGMENT:
2144 case KVM_CAP_DEBUGREGS:
2145 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2147 case KVM_CAP_ASYNC_PF:
2148 case KVM_CAP_GET_TSC_KHZ:
2149 case KVM_CAP_PCI_2_3:
2152 case KVM_CAP_COALESCED_MMIO:
2153 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2156 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2158 case KVM_CAP_NR_VCPUS:
2159 r = KVM_SOFT_MAX_VCPUS;
2161 case KVM_CAP_MAX_VCPUS:
2164 case KVM_CAP_NR_MEMSLOTS:
2165 r = KVM_MEMORY_SLOTS;
2167 case KVM_CAP_PV_MMU: /* obsolete */
2171 r = iommu_present(&pci_bus_type);
2174 r = KVM_MAX_MCE_BANKS;
2179 case KVM_CAP_TSC_CONTROL:
2180 r = kvm_has_tsc_control;
2182 case KVM_CAP_TSC_DEADLINE_TIMER:
2183 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2193 long kvm_arch_dev_ioctl(struct file *filp,
2194 unsigned int ioctl, unsigned long arg)
2196 void __user *argp = (void __user *)arg;
2200 case KVM_GET_MSR_INDEX_LIST: {
2201 struct kvm_msr_list __user *user_msr_list = argp;
2202 struct kvm_msr_list msr_list;
2206 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2209 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2210 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2213 if (n < msr_list.nmsrs)
2216 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2217 num_msrs_to_save * sizeof(u32)))
2219 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2221 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2226 case KVM_GET_SUPPORTED_CPUID: {
2227 struct kvm_cpuid2 __user *cpuid_arg = argp;
2228 struct kvm_cpuid2 cpuid;
2231 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2233 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2234 cpuid_arg->entries);
2239 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2244 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2247 mce_cap = KVM_MCE_CAP_SUPPORTED;
2249 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2261 static void wbinvd_ipi(void *garbage)
2266 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2268 return vcpu->kvm->arch.iommu_domain &&
2269 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2272 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2274 /* Address WBINVD may be executed by guest */
2275 if (need_emulate_wbinvd(vcpu)) {
2276 if (kvm_x86_ops->has_wbinvd_exit())
2277 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2278 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2279 smp_call_function_single(vcpu->cpu,
2280 wbinvd_ipi, NULL, 1);
2283 kvm_x86_ops->vcpu_load(vcpu, cpu);
2285 /* Apply any externally detected TSC adjustments (due to suspend) */
2286 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2287 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2288 vcpu->arch.tsc_offset_adjustment = 0;
2289 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2292 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2293 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2294 native_read_tsc() - vcpu->arch.last_host_tsc;
2296 mark_tsc_unstable("KVM discovered backwards TSC");
2297 if (check_tsc_unstable()) {
2298 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2299 vcpu->arch.last_guest_tsc);
2300 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2301 vcpu->arch.tsc_catchup = 1;
2303 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2304 if (vcpu->cpu != cpu)
2305 kvm_migrate_timers(vcpu);
2309 accumulate_steal_time(vcpu);
2310 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2313 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2315 kvm_x86_ops->vcpu_put(vcpu);
2316 kvm_put_guest_fpu(vcpu);
2317 vcpu->arch.last_host_tsc = native_read_tsc();
2320 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2321 struct kvm_lapic_state *s)
2323 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2328 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2329 struct kvm_lapic_state *s)
2331 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2332 kvm_apic_post_state_restore(vcpu);
2333 update_cr8_intercept(vcpu);
2338 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2339 struct kvm_interrupt *irq)
2341 if (irq->irq < 0 || irq->irq >= 256)
2343 if (irqchip_in_kernel(vcpu->kvm))
2346 kvm_queue_interrupt(vcpu, irq->irq, false);
2347 kvm_make_request(KVM_REQ_EVENT, vcpu);
2352 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2354 kvm_inject_nmi(vcpu);
2359 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2360 struct kvm_tpr_access_ctl *tac)
2364 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2368 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2372 unsigned bank_num = mcg_cap & 0xff, bank;
2375 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2377 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2380 vcpu->arch.mcg_cap = mcg_cap;
2381 /* Init IA32_MCG_CTL to all 1s */
2382 if (mcg_cap & MCG_CTL_P)
2383 vcpu->arch.mcg_ctl = ~(u64)0;
2384 /* Init IA32_MCi_CTL to all 1s */
2385 for (bank = 0; bank < bank_num; bank++)
2386 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2391 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2392 struct kvm_x86_mce *mce)
2394 u64 mcg_cap = vcpu->arch.mcg_cap;
2395 unsigned bank_num = mcg_cap & 0xff;
2396 u64 *banks = vcpu->arch.mce_banks;
2398 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2401 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2402 * reporting is disabled
2404 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2405 vcpu->arch.mcg_ctl != ~(u64)0)
2407 banks += 4 * mce->bank;
2409 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2410 * reporting is disabled for the bank
2412 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2414 if (mce->status & MCI_STATUS_UC) {
2415 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2416 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2417 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2420 if (banks[1] & MCI_STATUS_VAL)
2421 mce->status |= MCI_STATUS_OVER;
2422 banks[2] = mce->addr;
2423 banks[3] = mce->misc;
2424 vcpu->arch.mcg_status = mce->mcg_status;
2425 banks[1] = mce->status;
2426 kvm_queue_exception(vcpu, MC_VECTOR);
2427 } else if (!(banks[1] & MCI_STATUS_VAL)
2428 || !(banks[1] & MCI_STATUS_UC)) {
2429 if (banks[1] & MCI_STATUS_VAL)
2430 mce->status |= MCI_STATUS_OVER;
2431 banks[2] = mce->addr;
2432 banks[3] = mce->misc;
2433 banks[1] = mce->status;
2435 banks[1] |= MCI_STATUS_OVER;
2439 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2440 struct kvm_vcpu_events *events)
2443 events->exception.injected =
2444 vcpu->arch.exception.pending &&
2445 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2446 events->exception.nr = vcpu->arch.exception.nr;
2447 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2448 events->exception.pad = 0;
2449 events->exception.error_code = vcpu->arch.exception.error_code;
2451 events->interrupt.injected =
2452 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2453 events->interrupt.nr = vcpu->arch.interrupt.nr;
2454 events->interrupt.soft = 0;
2455 events->interrupt.shadow =
2456 kvm_x86_ops->get_interrupt_shadow(vcpu,
2457 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2459 events->nmi.injected = vcpu->arch.nmi_injected;
2460 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2461 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2462 events->nmi.pad = 0;
2464 events->sipi_vector = vcpu->arch.sipi_vector;
2466 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2467 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2468 | KVM_VCPUEVENT_VALID_SHADOW);
2469 memset(&events->reserved, 0, sizeof(events->reserved));
2472 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2473 struct kvm_vcpu_events *events)
2475 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2476 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2477 | KVM_VCPUEVENT_VALID_SHADOW))
2481 vcpu->arch.exception.pending = events->exception.injected;
2482 vcpu->arch.exception.nr = events->exception.nr;
2483 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2484 vcpu->arch.exception.error_code = events->exception.error_code;
2486 vcpu->arch.interrupt.pending = events->interrupt.injected;
2487 vcpu->arch.interrupt.nr = events->interrupt.nr;
2488 vcpu->arch.interrupt.soft = events->interrupt.soft;
2489 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2490 kvm_x86_ops->set_interrupt_shadow(vcpu,
2491 events->interrupt.shadow);
2493 vcpu->arch.nmi_injected = events->nmi.injected;
2494 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2495 vcpu->arch.nmi_pending = events->nmi.pending;
2496 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2498 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2499 vcpu->arch.sipi_vector = events->sipi_vector;
2501 kvm_make_request(KVM_REQ_EVENT, vcpu);
2506 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2507 struct kvm_debugregs *dbgregs)
2509 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2510 dbgregs->dr6 = vcpu->arch.dr6;
2511 dbgregs->dr7 = vcpu->arch.dr7;
2513 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2516 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2517 struct kvm_debugregs *dbgregs)
2522 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2523 vcpu->arch.dr6 = dbgregs->dr6;
2524 vcpu->arch.dr7 = dbgregs->dr7;
2529 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2530 struct kvm_xsave *guest_xsave)
2533 memcpy(guest_xsave->region,
2534 &vcpu->arch.guest_fpu.state->xsave,
2537 memcpy(guest_xsave->region,
2538 &vcpu->arch.guest_fpu.state->fxsave,
2539 sizeof(struct i387_fxsave_struct));
2540 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2545 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2546 struct kvm_xsave *guest_xsave)
2549 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2552 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2553 guest_xsave->region, xstate_size);
2555 if (xstate_bv & ~XSTATE_FPSSE)
2557 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2558 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2563 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2564 struct kvm_xcrs *guest_xcrs)
2566 if (!cpu_has_xsave) {
2567 guest_xcrs->nr_xcrs = 0;
2571 guest_xcrs->nr_xcrs = 1;
2572 guest_xcrs->flags = 0;
2573 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2574 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2577 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2578 struct kvm_xcrs *guest_xcrs)
2585 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2588 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2589 /* Only support XCR0 currently */
2590 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2591 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2592 guest_xcrs->xcrs[0].value);
2600 long kvm_arch_vcpu_ioctl(struct file *filp,
2601 unsigned int ioctl, unsigned long arg)
2603 struct kvm_vcpu *vcpu = filp->private_data;
2604 void __user *argp = (void __user *)arg;
2607 struct kvm_lapic_state *lapic;
2608 struct kvm_xsave *xsave;
2609 struct kvm_xcrs *xcrs;
2615 case KVM_GET_LAPIC: {
2617 if (!vcpu->arch.apic)
2619 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2624 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2628 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2633 case KVM_SET_LAPIC: {
2635 if (!vcpu->arch.apic)
2637 u.lapic = memdup_user(argp, sizeof(*u.lapic));
2638 if (IS_ERR(u.lapic)) {
2639 r = PTR_ERR(u.lapic);
2643 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2649 case KVM_INTERRUPT: {
2650 struct kvm_interrupt irq;
2653 if (copy_from_user(&irq, argp, sizeof irq))
2655 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2662 r = kvm_vcpu_ioctl_nmi(vcpu);
2668 case KVM_SET_CPUID: {
2669 struct kvm_cpuid __user *cpuid_arg = argp;
2670 struct kvm_cpuid cpuid;
2673 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2675 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2680 case KVM_SET_CPUID2: {
2681 struct kvm_cpuid2 __user *cpuid_arg = argp;
2682 struct kvm_cpuid2 cpuid;
2685 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2687 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2688 cpuid_arg->entries);
2693 case KVM_GET_CPUID2: {
2694 struct kvm_cpuid2 __user *cpuid_arg = argp;
2695 struct kvm_cpuid2 cpuid;
2698 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2700 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2701 cpuid_arg->entries);
2705 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2711 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2714 r = msr_io(vcpu, argp, do_set_msr, 0);
2716 case KVM_TPR_ACCESS_REPORTING: {
2717 struct kvm_tpr_access_ctl tac;
2720 if (copy_from_user(&tac, argp, sizeof tac))
2722 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2726 if (copy_to_user(argp, &tac, sizeof tac))
2731 case KVM_SET_VAPIC_ADDR: {
2732 struct kvm_vapic_addr va;
2735 if (!irqchip_in_kernel(vcpu->kvm))
2738 if (copy_from_user(&va, argp, sizeof va))
2741 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2744 case KVM_X86_SETUP_MCE: {
2748 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2750 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2753 case KVM_X86_SET_MCE: {
2754 struct kvm_x86_mce mce;
2757 if (copy_from_user(&mce, argp, sizeof mce))
2759 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2762 case KVM_GET_VCPU_EVENTS: {
2763 struct kvm_vcpu_events events;
2765 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2768 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2773 case KVM_SET_VCPU_EVENTS: {
2774 struct kvm_vcpu_events events;
2777 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2780 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2783 case KVM_GET_DEBUGREGS: {
2784 struct kvm_debugregs dbgregs;
2786 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2789 if (copy_to_user(argp, &dbgregs,
2790 sizeof(struct kvm_debugregs)))
2795 case KVM_SET_DEBUGREGS: {
2796 struct kvm_debugregs dbgregs;
2799 if (copy_from_user(&dbgregs, argp,
2800 sizeof(struct kvm_debugregs)))
2803 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2806 case KVM_GET_XSAVE: {
2807 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2812 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2815 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2820 case KVM_SET_XSAVE: {
2821 u.xsave = memdup_user(argp, sizeof(*u.xsave));
2822 if (IS_ERR(u.xsave)) {
2823 r = PTR_ERR(u.xsave);
2827 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2830 case KVM_GET_XCRS: {
2831 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2836 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2839 if (copy_to_user(argp, u.xcrs,
2840 sizeof(struct kvm_xcrs)))
2845 case KVM_SET_XCRS: {
2846 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2847 if (IS_ERR(u.xcrs)) {
2848 r = PTR_ERR(u.xcrs);
2852 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2855 case KVM_SET_TSC_KHZ: {
2859 user_tsc_khz = (u32)arg;
2861 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2864 if (user_tsc_khz == 0)
2865 user_tsc_khz = tsc_khz;
2867 kvm_set_tsc_khz(vcpu, user_tsc_khz);
2872 case KVM_GET_TSC_KHZ: {
2873 r = vcpu->arch.virtual_tsc_khz;
2884 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2886 return VM_FAULT_SIGBUS;
2889 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2893 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2895 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2899 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2902 kvm->arch.ept_identity_map_addr = ident_addr;
2906 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2907 u32 kvm_nr_mmu_pages)
2909 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2912 mutex_lock(&kvm->slots_lock);
2913 spin_lock(&kvm->mmu_lock);
2915 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2916 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2918 spin_unlock(&kvm->mmu_lock);
2919 mutex_unlock(&kvm->slots_lock);
2923 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2925 return kvm->arch.n_max_mmu_pages;
2928 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2933 switch (chip->chip_id) {
2934 case KVM_IRQCHIP_PIC_MASTER:
2935 memcpy(&chip->chip.pic,
2936 &pic_irqchip(kvm)->pics[0],
2937 sizeof(struct kvm_pic_state));
2939 case KVM_IRQCHIP_PIC_SLAVE:
2940 memcpy(&chip->chip.pic,
2941 &pic_irqchip(kvm)->pics[1],
2942 sizeof(struct kvm_pic_state));
2944 case KVM_IRQCHIP_IOAPIC:
2945 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2954 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2959 switch (chip->chip_id) {
2960 case KVM_IRQCHIP_PIC_MASTER:
2961 spin_lock(&pic_irqchip(kvm)->lock);
2962 memcpy(&pic_irqchip(kvm)->pics[0],
2964 sizeof(struct kvm_pic_state));
2965 spin_unlock(&pic_irqchip(kvm)->lock);
2967 case KVM_IRQCHIP_PIC_SLAVE:
2968 spin_lock(&pic_irqchip(kvm)->lock);
2969 memcpy(&pic_irqchip(kvm)->pics[1],
2971 sizeof(struct kvm_pic_state));
2972 spin_unlock(&pic_irqchip(kvm)->lock);
2974 case KVM_IRQCHIP_IOAPIC:
2975 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2981 kvm_pic_update_irq(pic_irqchip(kvm));
2985 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2989 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2990 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2991 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2995 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2999 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3000 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3001 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3002 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3006 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3010 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3011 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3012 sizeof(ps->channels));
3013 ps->flags = kvm->arch.vpit->pit_state.flags;
3014 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3015 memset(&ps->reserved, 0, sizeof(ps->reserved));
3019 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3021 int r = 0, start = 0;
3022 u32 prev_legacy, cur_legacy;
3023 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3024 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3025 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3026 if (!prev_legacy && cur_legacy)
3028 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3029 sizeof(kvm->arch.vpit->pit_state.channels));
3030 kvm->arch.vpit->pit_state.flags = ps->flags;
3031 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3032 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3036 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3037 struct kvm_reinject_control *control)
3039 if (!kvm->arch.vpit)
3041 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3042 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3043 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3048 * write_protect_slot - write protect a slot for dirty logging
3049 * @kvm: the kvm instance
3050 * @memslot: the slot we protect
3051 * @dirty_bitmap: the bitmap indicating which pages are dirty
3052 * @nr_dirty_pages: the number of dirty pages
3054 * We have two ways to find all sptes to protect:
3055 * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and
3056 * checks ones that have a spte mapping a page in the slot.
3057 * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap.
3059 * Generally speaking, if there are not so many dirty pages compared to the
3060 * number of shadow pages, we should use the latter.
3062 * Note that letting others write into a page marked dirty in the old bitmap
3063 * by using the remaining tlb entry is not a problem. That page will become
3064 * write protected again when we flush the tlb and then be reported dirty to
3065 * the user space by copying the old bitmap.
3067 static void write_protect_slot(struct kvm *kvm,
3068 struct kvm_memory_slot *memslot,
3069 unsigned long *dirty_bitmap,
3070 unsigned long nr_dirty_pages)
3072 spin_lock(&kvm->mmu_lock);
3074 /* Not many dirty pages compared to # of shadow pages. */
3075 if (nr_dirty_pages < kvm->arch.n_used_mmu_pages) {
3076 unsigned long gfn_offset;
3078 for_each_set_bit(gfn_offset, dirty_bitmap, memslot->npages) {
3079 unsigned long gfn = memslot->base_gfn + gfn_offset;
3081 kvm_mmu_rmap_write_protect(kvm, gfn, memslot);
3083 kvm_flush_remote_tlbs(kvm);
3085 kvm_mmu_slot_remove_write_access(kvm, memslot->id);
3087 spin_unlock(&kvm->mmu_lock);
3091 * Get (and clear) the dirty memory log for a memory slot.
3093 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3094 struct kvm_dirty_log *log)
3097 struct kvm_memory_slot *memslot;
3098 unsigned long n, nr_dirty_pages;
3100 mutex_lock(&kvm->slots_lock);
3103 if (log->slot >= KVM_MEMORY_SLOTS)
3106 memslot = id_to_memslot(kvm->memslots, log->slot);
3108 if (!memslot->dirty_bitmap)
3111 n = kvm_dirty_bitmap_bytes(memslot);
3112 nr_dirty_pages = memslot->nr_dirty_pages;
3114 /* If nothing is dirty, don't bother messing with page tables. */
3115 if (nr_dirty_pages) {
3116 struct kvm_memslots *slots, *old_slots;
3117 unsigned long *dirty_bitmap, *dirty_bitmap_head;
3119 dirty_bitmap = memslot->dirty_bitmap;
3120 dirty_bitmap_head = memslot->dirty_bitmap_head;
3121 if (dirty_bitmap == dirty_bitmap_head)
3122 dirty_bitmap_head += n / sizeof(long);
3123 memset(dirty_bitmap_head, 0, n);
3126 slots = kmemdup(kvm->memslots, sizeof(*kvm->memslots), GFP_KERNEL);
3130 memslot = id_to_memslot(slots, log->slot);
3131 memslot->nr_dirty_pages = 0;
3132 memslot->dirty_bitmap = dirty_bitmap_head;
3133 update_memslots(slots, NULL);
3135 old_slots = kvm->memslots;
3136 rcu_assign_pointer(kvm->memslots, slots);
3137 synchronize_srcu_expedited(&kvm->srcu);
3140 write_protect_slot(kvm, memslot, dirty_bitmap, nr_dirty_pages);
3143 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3147 if (clear_user(log->dirty_bitmap, n))
3153 mutex_unlock(&kvm->slots_lock);
3157 long kvm_arch_vm_ioctl(struct file *filp,
3158 unsigned int ioctl, unsigned long arg)
3160 struct kvm *kvm = filp->private_data;
3161 void __user *argp = (void __user *)arg;
3164 * This union makes it completely explicit to gcc-3.x
3165 * that these two variables' stack usage should be
3166 * combined, not added together.
3169 struct kvm_pit_state ps;
3170 struct kvm_pit_state2 ps2;
3171 struct kvm_pit_config pit_config;
3175 case KVM_SET_TSS_ADDR:
3176 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3180 case KVM_SET_IDENTITY_MAP_ADDR: {
3184 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3186 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3191 case KVM_SET_NR_MMU_PAGES:
3192 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3196 case KVM_GET_NR_MMU_PAGES:
3197 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3199 case KVM_CREATE_IRQCHIP: {
3200 struct kvm_pic *vpic;
3202 mutex_lock(&kvm->lock);
3205 goto create_irqchip_unlock;
3207 if (atomic_read(&kvm->online_vcpus))
3208 goto create_irqchip_unlock;
3210 vpic = kvm_create_pic(kvm);
3212 r = kvm_ioapic_init(kvm);
3214 mutex_lock(&kvm->slots_lock);
3215 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3217 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3219 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3221 mutex_unlock(&kvm->slots_lock);
3223 goto create_irqchip_unlock;
3226 goto create_irqchip_unlock;
3228 kvm->arch.vpic = vpic;
3230 r = kvm_setup_default_irq_routing(kvm);
3232 mutex_lock(&kvm->slots_lock);
3233 mutex_lock(&kvm->irq_lock);
3234 kvm_ioapic_destroy(kvm);
3235 kvm_destroy_pic(kvm);
3236 mutex_unlock(&kvm->irq_lock);
3237 mutex_unlock(&kvm->slots_lock);
3239 create_irqchip_unlock:
3240 mutex_unlock(&kvm->lock);
3243 case KVM_CREATE_PIT:
3244 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3246 case KVM_CREATE_PIT2:
3248 if (copy_from_user(&u.pit_config, argp,
3249 sizeof(struct kvm_pit_config)))
3252 mutex_lock(&kvm->slots_lock);
3255 goto create_pit_unlock;
3257 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3261 mutex_unlock(&kvm->slots_lock);
3263 case KVM_IRQ_LINE_STATUS:
3264 case KVM_IRQ_LINE: {
3265 struct kvm_irq_level irq_event;
3268 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3271 if (irqchip_in_kernel(kvm)) {
3273 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3274 irq_event.irq, irq_event.level);
3275 if (ioctl == KVM_IRQ_LINE_STATUS) {
3277 irq_event.status = status;
3278 if (copy_to_user(argp, &irq_event,
3286 case KVM_GET_IRQCHIP: {
3287 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3288 struct kvm_irqchip *chip;
3290 chip = memdup_user(argp, sizeof(*chip));
3297 if (!irqchip_in_kernel(kvm))
3298 goto get_irqchip_out;
3299 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3301 goto get_irqchip_out;
3303 if (copy_to_user(argp, chip, sizeof *chip))
3304 goto get_irqchip_out;
3312 case KVM_SET_IRQCHIP: {
3313 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3314 struct kvm_irqchip *chip;
3316 chip = memdup_user(argp, sizeof(*chip));
3323 if (!irqchip_in_kernel(kvm))
3324 goto set_irqchip_out;
3325 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3327 goto set_irqchip_out;
3337 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3340 if (!kvm->arch.vpit)
3342 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3346 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3353 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3356 if (!kvm->arch.vpit)
3358 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3364 case KVM_GET_PIT2: {
3366 if (!kvm->arch.vpit)
3368 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3372 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3377 case KVM_SET_PIT2: {
3379 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3382 if (!kvm->arch.vpit)
3384 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3390 case KVM_REINJECT_CONTROL: {
3391 struct kvm_reinject_control control;
3393 if (copy_from_user(&control, argp, sizeof(control)))
3395 r = kvm_vm_ioctl_reinject(kvm, &control);
3401 case KVM_XEN_HVM_CONFIG: {
3403 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3404 sizeof(struct kvm_xen_hvm_config)))
3407 if (kvm->arch.xen_hvm_config.flags)
3412 case KVM_SET_CLOCK: {
3413 struct kvm_clock_data user_ns;
3418 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3426 local_irq_disable();
3427 now_ns = get_kernel_ns();
3428 delta = user_ns.clock - now_ns;
3430 kvm->arch.kvmclock_offset = delta;
3433 case KVM_GET_CLOCK: {
3434 struct kvm_clock_data user_ns;
3437 local_irq_disable();
3438 now_ns = get_kernel_ns();
3439 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3442 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3445 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3458 static void kvm_init_msr_list(void)
3463 /* skip the first msrs in the list. KVM-specific */
3464 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3465 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3468 msrs_to_save[j] = msrs_to_save[i];
3471 num_msrs_to_save = j;
3474 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3482 if (!(vcpu->arch.apic &&
3483 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3484 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3495 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3502 if (!(vcpu->arch.apic &&
3503 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3504 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3506 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3516 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3517 struct kvm_segment *var, int seg)
3519 kvm_x86_ops->set_segment(vcpu, var, seg);
3522 void kvm_get_segment(struct kvm_vcpu *vcpu,
3523 struct kvm_segment *var, int seg)
3525 kvm_x86_ops->get_segment(vcpu, var, seg);
3528 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3531 struct x86_exception exception;
3533 BUG_ON(!mmu_is_nested(vcpu));
3535 /* NPT walks are always user-walks */
3536 access |= PFERR_USER_MASK;
3537 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3542 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3543 struct x86_exception *exception)
3545 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3546 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3549 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3550 struct x86_exception *exception)
3552 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3553 access |= PFERR_FETCH_MASK;
3554 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3557 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3558 struct x86_exception *exception)
3560 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3561 access |= PFERR_WRITE_MASK;
3562 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3565 /* uses this to access any guest's mapped memory without checking CPL */
3566 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3567 struct x86_exception *exception)
3569 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3572 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3573 struct kvm_vcpu *vcpu, u32 access,
3574 struct x86_exception *exception)
3577 int r = X86EMUL_CONTINUE;
3580 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3582 unsigned offset = addr & (PAGE_SIZE-1);
3583 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3586 if (gpa == UNMAPPED_GVA)
3587 return X86EMUL_PROPAGATE_FAULT;
3588 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3590 r = X86EMUL_IO_NEEDED;
3602 /* used for instruction fetching */
3603 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3604 gva_t addr, void *val, unsigned int bytes,
3605 struct x86_exception *exception)
3607 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3608 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3610 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3611 access | PFERR_FETCH_MASK,
3615 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3616 gva_t addr, void *val, unsigned int bytes,
3617 struct x86_exception *exception)
3619 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3620 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3622 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3625 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3627 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3628 gva_t addr, void *val, unsigned int bytes,
3629 struct x86_exception *exception)
3631 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3632 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3635 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3636 gva_t addr, void *val,
3638 struct x86_exception *exception)
3640 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3642 int r = X86EMUL_CONTINUE;
3645 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3648 unsigned offset = addr & (PAGE_SIZE-1);
3649 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3652 if (gpa == UNMAPPED_GVA)
3653 return X86EMUL_PROPAGATE_FAULT;
3654 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3656 r = X86EMUL_IO_NEEDED;
3667 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3669 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3670 gpa_t *gpa, struct x86_exception *exception,
3673 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3675 if (vcpu_match_mmio_gva(vcpu, gva) &&
3676 check_write_user_access(vcpu, write, access,
3677 vcpu->arch.access)) {
3678 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3679 (gva & (PAGE_SIZE - 1));
3680 trace_vcpu_match_mmio(gva, *gpa, write, false);
3685 access |= PFERR_WRITE_MASK;
3687 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3689 if (*gpa == UNMAPPED_GVA)
3692 /* For APIC access vmexit */
3693 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3696 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3697 trace_vcpu_match_mmio(gva, *gpa, write, true);
3704 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3705 const void *val, int bytes)
3709 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3712 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3716 struct read_write_emulator_ops {
3717 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3719 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3720 void *val, int bytes);
3721 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3722 int bytes, void *val);
3723 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3724 void *val, int bytes);
3728 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3730 if (vcpu->mmio_read_completed) {
3731 memcpy(val, vcpu->mmio_data, bytes);
3732 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3733 vcpu->mmio_phys_addr, *(u64 *)val);
3734 vcpu->mmio_read_completed = 0;
3741 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3742 void *val, int bytes)
3744 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3747 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3748 void *val, int bytes)
3750 return emulator_write_phys(vcpu, gpa, val, bytes);
3753 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3755 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3756 return vcpu_mmio_write(vcpu, gpa, bytes, val);
3759 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3760 void *val, int bytes)
3762 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3763 return X86EMUL_IO_NEEDED;
3766 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3767 void *val, int bytes)
3769 memcpy(vcpu->mmio_data, val, bytes);
3770 memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3771 return X86EMUL_CONTINUE;
3774 static struct read_write_emulator_ops read_emultor = {
3775 .read_write_prepare = read_prepare,
3776 .read_write_emulate = read_emulate,
3777 .read_write_mmio = vcpu_mmio_read,
3778 .read_write_exit_mmio = read_exit_mmio,
3781 static struct read_write_emulator_ops write_emultor = {
3782 .read_write_emulate = write_emulate,
3783 .read_write_mmio = write_mmio,
3784 .read_write_exit_mmio = write_exit_mmio,
3788 static int emulator_read_write_onepage(unsigned long addr, void *val,
3790 struct x86_exception *exception,
3791 struct kvm_vcpu *vcpu,
3792 struct read_write_emulator_ops *ops)
3796 bool write = ops->write;
3798 if (ops->read_write_prepare &&
3799 ops->read_write_prepare(vcpu, val, bytes))
3800 return X86EMUL_CONTINUE;
3802 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3805 return X86EMUL_PROPAGATE_FAULT;
3807 /* For APIC access vmexit */
3811 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3812 return X86EMUL_CONTINUE;
3816 * Is this MMIO handled locally?
3818 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3819 if (handled == bytes)
3820 return X86EMUL_CONTINUE;
3826 vcpu->mmio_needed = 1;
3827 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3828 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3829 vcpu->mmio_size = bytes;
3830 vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3831 vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
3832 vcpu->mmio_index = 0;
3834 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3837 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3838 void *val, unsigned int bytes,
3839 struct x86_exception *exception,
3840 struct read_write_emulator_ops *ops)
3842 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3844 /* Crossing a page boundary? */
3845 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3848 now = -addr & ~PAGE_MASK;
3849 rc = emulator_read_write_onepage(addr, val, now, exception,
3852 if (rc != X86EMUL_CONTINUE)
3859 return emulator_read_write_onepage(addr, val, bytes, exception,
3863 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3867 struct x86_exception *exception)
3869 return emulator_read_write(ctxt, addr, val, bytes,
3870 exception, &read_emultor);
3873 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3877 struct x86_exception *exception)
3879 return emulator_read_write(ctxt, addr, (void *)val, bytes,
3880 exception, &write_emultor);
3883 #define CMPXCHG_TYPE(t, ptr, old, new) \
3884 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3886 #ifdef CONFIG_X86_64
3887 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3889 # define CMPXCHG64(ptr, old, new) \
3890 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3893 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3898 struct x86_exception *exception)
3900 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3906 /* guests cmpxchg8b have to be emulated atomically */
3907 if (bytes > 8 || (bytes & (bytes - 1)))
3910 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3912 if (gpa == UNMAPPED_GVA ||
3913 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3916 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3919 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3920 if (is_error_page(page)) {
3921 kvm_release_page_clean(page);
3925 kaddr = kmap_atomic(page);
3926 kaddr += offset_in_page(gpa);
3929 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3932 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3935 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3938 exchanged = CMPXCHG64(kaddr, old, new);
3943 kunmap_atomic(kaddr);
3944 kvm_release_page_dirty(page);
3947 return X86EMUL_CMPXCHG_FAILED;
3949 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3951 return X86EMUL_CONTINUE;
3954 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3956 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3959 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3961 /* TODO: String I/O for in kernel device */
3964 if (vcpu->arch.pio.in)
3965 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3966 vcpu->arch.pio.size, pd);
3968 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3969 vcpu->arch.pio.port, vcpu->arch.pio.size,
3974 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
3975 unsigned short port, void *val,
3976 unsigned int count, bool in)
3978 trace_kvm_pio(!in, port, size, count);
3980 vcpu->arch.pio.port = port;
3981 vcpu->arch.pio.in = in;
3982 vcpu->arch.pio.count = count;
3983 vcpu->arch.pio.size = size;
3985 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3986 vcpu->arch.pio.count = 0;
3990 vcpu->run->exit_reason = KVM_EXIT_IO;
3991 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3992 vcpu->run->io.size = size;
3993 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3994 vcpu->run->io.count = count;
3995 vcpu->run->io.port = port;
4000 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4001 int size, unsigned short port, void *val,
4004 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4007 if (vcpu->arch.pio.count)
4010 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4013 memcpy(val, vcpu->arch.pio_data, size * count);
4014 vcpu->arch.pio.count = 0;
4021 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4022 int size, unsigned short port,
4023 const void *val, unsigned int count)
4025 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4027 memcpy(vcpu->arch.pio_data, val, size * count);
4028 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4031 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4033 return kvm_x86_ops->get_segment_base(vcpu, seg);
4036 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4038 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4041 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4043 if (!need_emulate_wbinvd(vcpu))
4044 return X86EMUL_CONTINUE;
4046 if (kvm_x86_ops->has_wbinvd_exit()) {
4047 int cpu = get_cpu();
4049 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4050 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4051 wbinvd_ipi, NULL, 1);
4053 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4056 return X86EMUL_CONTINUE;
4058 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4060 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4062 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4065 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4067 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4070 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4073 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4076 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4078 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4081 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4083 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4084 unsigned long value;
4088 value = kvm_read_cr0(vcpu);
4091 value = vcpu->arch.cr2;
4094 value = kvm_read_cr3(vcpu);
4097 value = kvm_read_cr4(vcpu);
4100 value = kvm_get_cr8(vcpu);
4103 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4110 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4112 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4117 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4120 vcpu->arch.cr2 = val;
4123 res = kvm_set_cr3(vcpu, val);
4126 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4129 res = kvm_set_cr8(vcpu, val);
4132 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4139 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4141 kvm_set_rflags(emul_to_vcpu(ctxt), val);
4144 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4146 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4149 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4151 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4154 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4156 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4159 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4161 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4164 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4166 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4169 static unsigned long emulator_get_cached_segment_base(
4170 struct x86_emulate_ctxt *ctxt, int seg)
4172 return get_segment_base(emul_to_vcpu(ctxt), seg);
4175 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4176 struct desc_struct *desc, u32 *base3,
4179 struct kvm_segment var;
4181 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4182 *selector = var.selector;
4189 set_desc_limit(desc, var.limit);
4190 set_desc_base(desc, (unsigned long)var.base);
4191 #ifdef CONFIG_X86_64
4193 *base3 = var.base >> 32;
4195 desc->type = var.type;
4197 desc->dpl = var.dpl;
4198 desc->p = var.present;
4199 desc->avl = var.avl;
4207 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4208 struct desc_struct *desc, u32 base3,
4211 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4212 struct kvm_segment var;
4214 var.selector = selector;
4215 var.base = get_desc_base(desc);
4216 #ifdef CONFIG_X86_64
4217 var.base |= ((u64)base3) << 32;
4219 var.limit = get_desc_limit(desc);
4221 var.limit = (var.limit << 12) | 0xfff;
4222 var.type = desc->type;
4223 var.present = desc->p;
4224 var.dpl = desc->dpl;
4229 var.avl = desc->avl;
4230 var.present = desc->p;
4231 var.unusable = !var.present;
4234 kvm_set_segment(vcpu, &var, seg);
4238 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4239 u32 msr_index, u64 *pdata)
4241 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4244 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4245 u32 msr_index, u64 data)
4247 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4250 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4251 u32 pmc, u64 *pdata)
4253 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4256 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4258 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4261 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4264 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4266 * CR0.TS may reference the host fpu state, not the guest fpu state,
4267 * so it may be clear at this point.
4272 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4277 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4278 struct x86_instruction_info *info,
4279 enum x86_intercept_stage stage)
4281 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4284 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4285 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4287 struct kvm_cpuid_entry2 *cpuid = NULL;
4290 cpuid = kvm_find_cpuid_entry(emul_to_vcpu(ctxt),
4306 static struct x86_emulate_ops emulate_ops = {
4307 .read_std = kvm_read_guest_virt_system,
4308 .write_std = kvm_write_guest_virt_system,
4309 .fetch = kvm_fetch_guest_virt,
4310 .read_emulated = emulator_read_emulated,
4311 .write_emulated = emulator_write_emulated,
4312 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4313 .invlpg = emulator_invlpg,
4314 .pio_in_emulated = emulator_pio_in_emulated,
4315 .pio_out_emulated = emulator_pio_out_emulated,
4316 .get_segment = emulator_get_segment,
4317 .set_segment = emulator_set_segment,
4318 .get_cached_segment_base = emulator_get_cached_segment_base,
4319 .get_gdt = emulator_get_gdt,
4320 .get_idt = emulator_get_idt,
4321 .set_gdt = emulator_set_gdt,
4322 .set_idt = emulator_set_idt,
4323 .get_cr = emulator_get_cr,
4324 .set_cr = emulator_set_cr,
4325 .set_rflags = emulator_set_rflags,
4326 .cpl = emulator_get_cpl,
4327 .get_dr = emulator_get_dr,
4328 .set_dr = emulator_set_dr,
4329 .set_msr = emulator_set_msr,
4330 .get_msr = emulator_get_msr,
4331 .read_pmc = emulator_read_pmc,
4332 .halt = emulator_halt,
4333 .wbinvd = emulator_wbinvd,
4334 .fix_hypercall = emulator_fix_hypercall,
4335 .get_fpu = emulator_get_fpu,
4336 .put_fpu = emulator_put_fpu,
4337 .intercept = emulator_intercept,
4338 .get_cpuid = emulator_get_cpuid,
4341 static void cache_all_regs(struct kvm_vcpu *vcpu)
4343 kvm_register_read(vcpu, VCPU_REGS_RAX);
4344 kvm_register_read(vcpu, VCPU_REGS_RSP);
4345 kvm_register_read(vcpu, VCPU_REGS_RIP);
4346 vcpu->arch.regs_dirty = ~0;
4349 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4351 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4353 * an sti; sti; sequence only disable interrupts for the first
4354 * instruction. So, if the last instruction, be it emulated or
4355 * not, left the system with the INT_STI flag enabled, it
4356 * means that the last instruction is an sti. We should not
4357 * leave the flag on in this case. The same goes for mov ss
4359 if (!(int_shadow & mask))
4360 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4363 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4365 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4366 if (ctxt->exception.vector == PF_VECTOR)
4367 kvm_propagate_fault(vcpu, &ctxt->exception);
4368 else if (ctxt->exception.error_code_valid)
4369 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4370 ctxt->exception.error_code);
4372 kvm_queue_exception(vcpu, ctxt->exception.vector);
4375 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4376 const unsigned long *regs)
4378 memset(&ctxt->twobyte, 0,
4379 (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4380 memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4382 ctxt->fetch.start = 0;
4383 ctxt->fetch.end = 0;
4384 ctxt->io_read.pos = 0;
4385 ctxt->io_read.end = 0;
4386 ctxt->mem_read.pos = 0;
4387 ctxt->mem_read.end = 0;
4390 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4392 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4396 * TODO: fix emulate.c to use guest_read/write_register
4397 * instead of direct ->regs accesses, can save hundred cycles
4398 * on Intel for instructions that don't read/change RSP, for
4401 cache_all_regs(vcpu);
4403 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4405 ctxt->eflags = kvm_get_rflags(vcpu);
4406 ctxt->eip = kvm_rip_read(vcpu);
4407 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4408 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4409 cs_l ? X86EMUL_MODE_PROT64 :
4410 cs_db ? X86EMUL_MODE_PROT32 :
4411 X86EMUL_MODE_PROT16;
4412 ctxt->guest_mode = is_guest_mode(vcpu);
4414 init_decode_cache(ctxt, vcpu->arch.regs);
4415 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4418 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4420 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4423 init_emulate_ctxt(vcpu);
4427 ctxt->_eip = ctxt->eip + inc_eip;
4428 ret = emulate_int_real(ctxt, irq);
4430 if (ret != X86EMUL_CONTINUE)
4431 return EMULATE_FAIL;
4433 ctxt->eip = ctxt->_eip;
4434 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4435 kvm_rip_write(vcpu, ctxt->eip);
4436 kvm_set_rflags(vcpu, ctxt->eflags);
4438 if (irq == NMI_VECTOR)
4439 vcpu->arch.nmi_pending = 0;
4441 vcpu->arch.interrupt.pending = false;
4443 return EMULATE_DONE;
4445 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4447 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4449 int r = EMULATE_DONE;
4451 ++vcpu->stat.insn_emulation_fail;
4452 trace_kvm_emulate_insn_failed(vcpu);
4453 if (!is_guest_mode(vcpu)) {
4454 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4455 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4456 vcpu->run->internal.ndata = 0;
4459 kvm_queue_exception(vcpu, UD_VECTOR);
4464 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4472 * if emulation was due to access to shadowed page table
4473 * and it failed try to unshadow page and re-entetr the
4474 * guest to let CPU execute the instruction.
4476 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4479 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4481 if (gpa == UNMAPPED_GVA)
4482 return true; /* let cpu generate fault */
4484 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4490 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4491 unsigned long cr2, int emulation_type)
4493 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4494 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4496 last_retry_eip = vcpu->arch.last_retry_eip;
4497 last_retry_addr = vcpu->arch.last_retry_addr;
4500 * If the emulation is caused by #PF and it is non-page_table
4501 * writing instruction, it means the VM-EXIT is caused by shadow
4502 * page protected, we can zap the shadow page and retry this
4503 * instruction directly.
4505 * Note: if the guest uses a non-page-table modifying instruction
4506 * on the PDE that points to the instruction, then we will unmap
4507 * the instruction and go to an infinite loop. So, we cache the
4508 * last retried eip and the last fault address, if we meet the eip
4509 * and the address again, we can break out of the potential infinite
4512 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4514 if (!(emulation_type & EMULTYPE_RETRY))
4517 if (x86_page_table_writing_insn(ctxt))
4520 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4523 vcpu->arch.last_retry_eip = ctxt->eip;
4524 vcpu->arch.last_retry_addr = cr2;
4526 if (!vcpu->arch.mmu.direct_map)
4527 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4529 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4534 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4541 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4542 bool writeback = true;
4544 kvm_clear_exception_queue(vcpu);
4546 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4547 init_emulate_ctxt(vcpu);
4548 ctxt->interruptibility = 0;
4549 ctxt->have_exception = false;
4550 ctxt->perm_ok = false;
4552 ctxt->only_vendor_specific_insn
4553 = emulation_type & EMULTYPE_TRAP_UD;
4555 r = x86_decode_insn(ctxt, insn, insn_len);
4557 trace_kvm_emulate_insn_start(vcpu);
4558 ++vcpu->stat.insn_emulation;
4559 if (r != EMULATION_OK) {
4560 if (emulation_type & EMULTYPE_TRAP_UD)
4561 return EMULATE_FAIL;
4562 if (reexecute_instruction(vcpu, cr2))
4563 return EMULATE_DONE;
4564 if (emulation_type & EMULTYPE_SKIP)
4565 return EMULATE_FAIL;
4566 return handle_emulation_failure(vcpu);
4570 if (emulation_type & EMULTYPE_SKIP) {
4571 kvm_rip_write(vcpu, ctxt->_eip);
4572 return EMULATE_DONE;
4575 if (retry_instruction(ctxt, cr2, emulation_type))
4576 return EMULATE_DONE;
4578 /* this is needed for vmware backdoor interface to work since it
4579 changes registers values during IO operation */
4580 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4581 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4582 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4586 r = x86_emulate_insn(ctxt);
4588 if (r == EMULATION_INTERCEPTED)
4589 return EMULATE_DONE;
4591 if (r == EMULATION_FAILED) {
4592 if (reexecute_instruction(vcpu, cr2))
4593 return EMULATE_DONE;
4595 return handle_emulation_failure(vcpu);
4598 if (ctxt->have_exception) {
4599 inject_emulated_exception(vcpu);
4601 } else if (vcpu->arch.pio.count) {
4602 if (!vcpu->arch.pio.in)
4603 vcpu->arch.pio.count = 0;
4606 r = EMULATE_DO_MMIO;
4607 } else if (vcpu->mmio_needed) {
4608 if (!vcpu->mmio_is_write)
4610 r = EMULATE_DO_MMIO;
4611 } else if (r == EMULATION_RESTART)
4617 toggle_interruptibility(vcpu, ctxt->interruptibility);
4618 kvm_set_rflags(vcpu, ctxt->eflags);
4619 kvm_make_request(KVM_REQ_EVENT, vcpu);
4620 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4621 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4622 kvm_rip_write(vcpu, ctxt->eip);
4624 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4628 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4630 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4632 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4633 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4634 size, port, &val, 1);
4635 /* do not return to emulator after return from userspace */
4636 vcpu->arch.pio.count = 0;
4639 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4641 static void tsc_bad(void *info)
4643 __this_cpu_write(cpu_tsc_khz, 0);
4646 static void tsc_khz_changed(void *data)
4648 struct cpufreq_freqs *freq = data;
4649 unsigned long khz = 0;
4653 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4654 khz = cpufreq_quick_get(raw_smp_processor_id());
4657 __this_cpu_write(cpu_tsc_khz, khz);
4660 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4663 struct cpufreq_freqs *freq = data;
4665 struct kvm_vcpu *vcpu;
4666 int i, send_ipi = 0;
4669 * We allow guests to temporarily run on slowing clocks,
4670 * provided we notify them after, or to run on accelerating
4671 * clocks, provided we notify them before. Thus time never
4674 * However, we have a problem. We can't atomically update
4675 * the frequency of a given CPU from this function; it is
4676 * merely a notifier, which can be called from any CPU.
4677 * Changing the TSC frequency at arbitrary points in time
4678 * requires a recomputation of local variables related to
4679 * the TSC for each VCPU. We must flag these local variables
4680 * to be updated and be sure the update takes place with the
4681 * new frequency before any guests proceed.
4683 * Unfortunately, the combination of hotplug CPU and frequency
4684 * change creates an intractable locking scenario; the order
4685 * of when these callouts happen is undefined with respect to
4686 * CPU hotplug, and they can race with each other. As such,
4687 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4688 * undefined; you can actually have a CPU frequency change take
4689 * place in between the computation of X and the setting of the
4690 * variable. To protect against this problem, all updates of
4691 * the per_cpu tsc_khz variable are done in an interrupt
4692 * protected IPI, and all callers wishing to update the value
4693 * must wait for a synchronous IPI to complete (which is trivial
4694 * if the caller is on the CPU already). This establishes the
4695 * necessary total order on variable updates.
4697 * Note that because a guest time update may take place
4698 * anytime after the setting of the VCPU's request bit, the
4699 * correct TSC value must be set before the request. However,
4700 * to ensure the update actually makes it to any guest which
4701 * starts running in hardware virtualization between the set
4702 * and the acquisition of the spinlock, we must also ping the
4703 * CPU after setting the request bit.
4707 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4709 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4712 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4714 raw_spin_lock(&kvm_lock);
4715 list_for_each_entry(kvm, &vm_list, vm_list) {
4716 kvm_for_each_vcpu(i, vcpu, kvm) {
4717 if (vcpu->cpu != freq->cpu)
4719 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4720 if (vcpu->cpu != smp_processor_id())
4724 raw_spin_unlock(&kvm_lock);
4726 if (freq->old < freq->new && send_ipi) {
4728 * We upscale the frequency. Must make the guest
4729 * doesn't see old kvmclock values while running with
4730 * the new frequency, otherwise we risk the guest sees
4731 * time go backwards.
4733 * In case we update the frequency for another cpu
4734 * (which might be in guest context) send an interrupt
4735 * to kick the cpu out of guest context. Next time
4736 * guest context is entered kvmclock will be updated,
4737 * so the guest will not see stale values.
4739 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4744 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4745 .notifier_call = kvmclock_cpufreq_notifier
4748 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4749 unsigned long action, void *hcpu)
4751 unsigned int cpu = (unsigned long)hcpu;
4755 case CPU_DOWN_FAILED:
4756 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4758 case CPU_DOWN_PREPARE:
4759 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4765 static struct notifier_block kvmclock_cpu_notifier_block = {
4766 .notifier_call = kvmclock_cpu_notifier,
4767 .priority = -INT_MAX
4770 static void kvm_timer_init(void)
4774 max_tsc_khz = tsc_khz;
4775 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4776 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4777 #ifdef CONFIG_CPU_FREQ
4778 struct cpufreq_policy policy;
4779 memset(&policy, 0, sizeof(policy));
4781 cpufreq_get_policy(&policy, cpu);
4782 if (policy.cpuinfo.max_freq)
4783 max_tsc_khz = policy.cpuinfo.max_freq;
4786 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4787 CPUFREQ_TRANSITION_NOTIFIER);
4789 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4790 for_each_online_cpu(cpu)
4791 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4794 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4796 int kvm_is_in_guest(void)
4798 return __this_cpu_read(current_vcpu) != NULL;
4801 static int kvm_is_user_mode(void)
4805 if (__this_cpu_read(current_vcpu))
4806 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4808 return user_mode != 0;
4811 static unsigned long kvm_get_guest_ip(void)
4813 unsigned long ip = 0;
4815 if (__this_cpu_read(current_vcpu))
4816 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4821 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4822 .is_in_guest = kvm_is_in_guest,
4823 .is_user_mode = kvm_is_user_mode,
4824 .get_guest_ip = kvm_get_guest_ip,
4827 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4829 __this_cpu_write(current_vcpu, vcpu);
4831 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4833 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4835 __this_cpu_write(current_vcpu, NULL);
4837 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4839 static void kvm_set_mmio_spte_mask(void)
4842 int maxphyaddr = boot_cpu_data.x86_phys_bits;
4845 * Set the reserved bits and the present bit of an paging-structure
4846 * entry to generate page fault with PFER.RSV = 1.
4848 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4851 #ifdef CONFIG_X86_64
4853 * If reserved bit is not supported, clear the present bit to disable
4856 if (maxphyaddr == 52)
4860 kvm_mmu_set_mmio_spte_mask(mask);
4863 int kvm_arch_init(void *opaque)
4866 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4869 printk(KERN_ERR "kvm: already loaded the other module\n");
4874 if (!ops->cpu_has_kvm_support()) {
4875 printk(KERN_ERR "kvm: no hardware support\n");
4879 if (ops->disabled_by_bios()) {
4880 printk(KERN_ERR "kvm: disabled by bios\n");
4885 r = kvm_mmu_module_init();
4889 kvm_set_mmio_spte_mask();
4890 kvm_init_msr_list();
4893 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4894 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4898 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4901 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4909 void kvm_arch_exit(void)
4911 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4913 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4914 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4915 CPUFREQ_TRANSITION_NOTIFIER);
4916 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4918 kvm_mmu_module_exit();
4921 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4923 ++vcpu->stat.halt_exits;
4924 if (irqchip_in_kernel(vcpu->kvm)) {
4925 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4928 vcpu->run->exit_reason = KVM_EXIT_HLT;
4932 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4934 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4936 u64 param, ingpa, outgpa, ret;
4937 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4938 bool fast, longmode;
4942 * hypercall generates UD from non zero cpl and real mode
4945 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4946 kvm_queue_exception(vcpu, UD_VECTOR);
4950 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4951 longmode = is_long_mode(vcpu) && cs_l == 1;
4954 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4955 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4956 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4957 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4958 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4959 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4961 #ifdef CONFIG_X86_64
4963 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4964 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4965 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4969 code = param & 0xffff;
4970 fast = (param >> 16) & 0x1;
4971 rep_cnt = (param >> 32) & 0xfff;
4972 rep_idx = (param >> 48) & 0xfff;
4974 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4977 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4978 kvm_vcpu_on_spin(vcpu);
4981 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4985 ret = res | (((u64)rep_done & 0xfff) << 32);
4987 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4989 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4990 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4996 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4998 unsigned long nr, a0, a1, a2, a3, ret;
5001 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5002 return kvm_hv_hypercall(vcpu);
5004 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5005 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5006 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5007 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5008 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5010 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5012 if (!is_long_mode(vcpu)) {
5020 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5026 case KVM_HC_VAPIC_POLL_IRQ:
5034 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5035 ++vcpu->stat.hypercalls;
5038 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5040 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5042 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5043 char instruction[3];
5044 unsigned long rip = kvm_rip_read(vcpu);
5047 * Blow out the MMU to ensure that no other VCPU has an active mapping
5048 * to ensure that the updated hypercall appears atomically across all
5051 kvm_mmu_zap_all(vcpu->kvm);
5053 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5055 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5059 * Check if userspace requested an interrupt window, and that the
5060 * interrupt window is open.
5062 * No need to exit to userspace if we already have an interrupt queued.
5064 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5066 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5067 vcpu->run->request_interrupt_window &&
5068 kvm_arch_interrupt_allowed(vcpu));
5071 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5073 struct kvm_run *kvm_run = vcpu->run;
5075 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5076 kvm_run->cr8 = kvm_get_cr8(vcpu);
5077 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5078 if (irqchip_in_kernel(vcpu->kvm))
5079 kvm_run->ready_for_interrupt_injection = 1;
5081 kvm_run->ready_for_interrupt_injection =
5082 kvm_arch_interrupt_allowed(vcpu) &&
5083 !kvm_cpu_has_interrupt(vcpu) &&
5084 !kvm_event_needs_reinjection(vcpu);
5087 static void vapic_enter(struct kvm_vcpu *vcpu)
5089 struct kvm_lapic *apic = vcpu->arch.apic;
5092 if (!apic || !apic->vapic_addr)
5095 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5097 vcpu->arch.apic->vapic_page = page;
5100 static void vapic_exit(struct kvm_vcpu *vcpu)
5102 struct kvm_lapic *apic = vcpu->arch.apic;
5105 if (!apic || !apic->vapic_addr)
5108 idx = srcu_read_lock(&vcpu->kvm->srcu);
5109 kvm_release_page_dirty(apic->vapic_page);
5110 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5111 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5114 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5118 if (!kvm_x86_ops->update_cr8_intercept)
5121 if (!vcpu->arch.apic)
5124 if (!vcpu->arch.apic->vapic_addr)
5125 max_irr = kvm_lapic_find_highest_irr(vcpu);
5132 tpr = kvm_lapic_get_cr8(vcpu);
5134 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5137 static void inject_pending_event(struct kvm_vcpu *vcpu)
5139 /* try to reinject previous events if any */
5140 if (vcpu->arch.exception.pending) {
5141 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5142 vcpu->arch.exception.has_error_code,
5143 vcpu->arch.exception.error_code);
5144 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5145 vcpu->arch.exception.has_error_code,
5146 vcpu->arch.exception.error_code,
5147 vcpu->arch.exception.reinject);
5151 if (vcpu->arch.nmi_injected) {
5152 kvm_x86_ops->set_nmi(vcpu);
5156 if (vcpu->arch.interrupt.pending) {
5157 kvm_x86_ops->set_irq(vcpu);
5161 /* try to inject new event if pending */
5162 if (vcpu->arch.nmi_pending) {
5163 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5164 --vcpu->arch.nmi_pending;
5165 vcpu->arch.nmi_injected = true;
5166 kvm_x86_ops->set_nmi(vcpu);
5168 } else if (kvm_cpu_has_interrupt(vcpu)) {
5169 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5170 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5172 kvm_x86_ops->set_irq(vcpu);
5177 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5179 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5180 !vcpu->guest_xcr0_loaded) {
5181 /* kvm_set_xcr() also depends on this */
5182 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5183 vcpu->guest_xcr0_loaded = 1;
5187 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5189 if (vcpu->guest_xcr0_loaded) {
5190 if (vcpu->arch.xcr0 != host_xcr0)
5191 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5192 vcpu->guest_xcr0_loaded = 0;
5196 static void process_nmi(struct kvm_vcpu *vcpu)
5201 * x86 is limited to one NMI running, and one NMI pending after it.
5202 * If an NMI is already in progress, limit further NMIs to just one.
5203 * Otherwise, allow two (and we'll inject the first one immediately).
5205 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5208 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5209 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5210 kvm_make_request(KVM_REQ_EVENT, vcpu);
5213 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5216 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5217 vcpu->run->request_interrupt_window;
5218 bool req_immediate_exit = 0;
5220 if (vcpu->requests) {
5221 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5222 kvm_mmu_unload(vcpu);
5223 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5224 __kvm_migrate_timers(vcpu);
5225 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5226 r = kvm_guest_time_update(vcpu);
5230 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5231 kvm_mmu_sync_roots(vcpu);
5232 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5233 kvm_x86_ops->tlb_flush(vcpu);
5234 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5235 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5239 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5240 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5244 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5245 vcpu->fpu_active = 0;
5246 kvm_x86_ops->fpu_deactivate(vcpu);
5248 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5249 /* Page is swapped out. Do synthetic halt */
5250 vcpu->arch.apf.halted = true;
5254 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5255 record_steal_time(vcpu);
5256 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5258 req_immediate_exit =
5259 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5260 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5261 kvm_handle_pmu_event(vcpu);
5262 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5263 kvm_deliver_pmi(vcpu);
5266 r = kvm_mmu_reload(vcpu);
5270 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5271 inject_pending_event(vcpu);
5273 /* enable NMI/IRQ window open exits if needed */
5274 if (vcpu->arch.nmi_pending)
5275 kvm_x86_ops->enable_nmi_window(vcpu);
5276 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5277 kvm_x86_ops->enable_irq_window(vcpu);
5279 if (kvm_lapic_enabled(vcpu)) {
5280 update_cr8_intercept(vcpu);
5281 kvm_lapic_sync_to_vapic(vcpu);
5287 kvm_x86_ops->prepare_guest_switch(vcpu);
5288 if (vcpu->fpu_active)
5289 kvm_load_guest_fpu(vcpu);
5290 kvm_load_guest_xcr0(vcpu);
5292 vcpu->mode = IN_GUEST_MODE;
5294 /* We should set ->mode before check ->requests,
5295 * see the comment in make_all_cpus_request.
5299 local_irq_disable();
5301 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5302 || need_resched() || signal_pending(current)) {
5303 vcpu->mode = OUTSIDE_GUEST_MODE;
5307 kvm_x86_ops->cancel_injection(vcpu);
5312 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5314 if (req_immediate_exit)
5315 smp_send_reschedule(vcpu->cpu);
5319 if (unlikely(vcpu->arch.switch_db_regs)) {
5321 set_debugreg(vcpu->arch.eff_db[0], 0);
5322 set_debugreg(vcpu->arch.eff_db[1], 1);
5323 set_debugreg(vcpu->arch.eff_db[2], 2);
5324 set_debugreg(vcpu->arch.eff_db[3], 3);
5327 trace_kvm_entry(vcpu->vcpu_id);
5328 kvm_x86_ops->run(vcpu);
5331 * If the guest has used debug registers, at least dr7
5332 * will be disabled while returning to the host.
5333 * If we don't have active breakpoints in the host, we don't
5334 * care about the messed up debug address registers. But if
5335 * we have some of them active, restore the old state.
5337 if (hw_breakpoint_active())
5338 hw_breakpoint_restore();
5340 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5342 vcpu->mode = OUTSIDE_GUEST_MODE;
5349 * We must have an instruction between local_irq_enable() and
5350 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5351 * the interrupt shadow. The stat.exits increment will do nicely.
5352 * But we need to prevent reordering, hence this barrier():
5360 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5363 * Profile KVM exit RIPs:
5365 if (unlikely(prof_on == KVM_PROFILING)) {
5366 unsigned long rip = kvm_rip_read(vcpu);
5367 profile_hit(KVM_PROFILING, (void *)rip);
5370 if (unlikely(vcpu->arch.tsc_always_catchup))
5371 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5373 kvm_lapic_sync_from_vapic(vcpu);
5375 r = kvm_x86_ops->handle_exit(vcpu);
5381 static int __vcpu_run(struct kvm_vcpu *vcpu)
5384 struct kvm *kvm = vcpu->kvm;
5386 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5387 pr_debug("vcpu %d received sipi with vector # %x\n",
5388 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5389 kvm_lapic_reset(vcpu);
5390 r = kvm_arch_vcpu_reset(vcpu);
5393 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5396 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5401 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5402 !vcpu->arch.apf.halted)
5403 r = vcpu_enter_guest(vcpu);
5405 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5406 kvm_vcpu_block(vcpu);
5407 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5408 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5410 switch(vcpu->arch.mp_state) {
5411 case KVM_MP_STATE_HALTED:
5412 vcpu->arch.mp_state =
5413 KVM_MP_STATE_RUNNABLE;
5414 case KVM_MP_STATE_RUNNABLE:
5415 vcpu->arch.apf.halted = false;
5417 case KVM_MP_STATE_SIPI_RECEIVED:
5428 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5429 if (kvm_cpu_has_pending_timer(vcpu))
5430 kvm_inject_pending_timer_irqs(vcpu);
5432 if (dm_request_for_irq_injection(vcpu)) {
5434 vcpu->run->exit_reason = KVM_EXIT_INTR;
5435 ++vcpu->stat.request_irq_exits;
5438 kvm_check_async_pf_completion(vcpu);
5440 if (signal_pending(current)) {
5442 vcpu->run->exit_reason = KVM_EXIT_INTR;
5443 ++vcpu->stat.signal_exits;
5445 if (need_resched()) {
5446 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5448 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5452 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5459 static int complete_mmio(struct kvm_vcpu *vcpu)
5461 struct kvm_run *run = vcpu->run;
5464 if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5467 if (vcpu->mmio_needed) {
5468 vcpu->mmio_needed = 0;
5469 if (!vcpu->mmio_is_write)
5470 memcpy(vcpu->mmio_data + vcpu->mmio_index,
5472 vcpu->mmio_index += 8;
5473 if (vcpu->mmio_index < vcpu->mmio_size) {
5474 run->exit_reason = KVM_EXIT_MMIO;
5475 run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5476 memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5477 run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5478 run->mmio.is_write = vcpu->mmio_is_write;
5479 vcpu->mmio_needed = 1;
5482 if (vcpu->mmio_is_write)
5484 vcpu->mmio_read_completed = 1;
5486 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5487 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5488 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5489 if (r != EMULATE_DONE)
5494 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5499 if (!tsk_used_math(current) && init_fpu(current))
5502 if (vcpu->sigset_active)
5503 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5505 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5506 kvm_vcpu_block(vcpu);
5507 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5512 /* re-sync apic's tpr */
5513 if (!irqchip_in_kernel(vcpu->kvm)) {
5514 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5520 r = complete_mmio(vcpu);
5524 r = __vcpu_run(vcpu);
5527 post_kvm_run_save(vcpu);
5528 if (vcpu->sigset_active)
5529 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5534 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5536 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5538 * We are here if userspace calls get_regs() in the middle of
5539 * instruction emulation. Registers state needs to be copied
5540 * back from emulation context to vcpu. Usrapace shouldn't do
5541 * that usually, but some bad designed PV devices (vmware
5542 * backdoor interface) need this to work
5544 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5545 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5546 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5548 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5549 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5550 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5551 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5552 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5553 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5554 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5555 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5556 #ifdef CONFIG_X86_64
5557 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5558 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5559 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5560 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5561 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5562 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5563 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5564 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5567 regs->rip = kvm_rip_read(vcpu);
5568 regs->rflags = kvm_get_rflags(vcpu);
5573 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5575 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5576 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5578 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5579 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5580 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5581 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5582 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5583 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5584 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5585 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5586 #ifdef CONFIG_X86_64
5587 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5588 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5589 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5590 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5591 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5592 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5593 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5594 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5597 kvm_rip_write(vcpu, regs->rip);
5598 kvm_set_rflags(vcpu, regs->rflags);
5600 vcpu->arch.exception.pending = false;
5602 kvm_make_request(KVM_REQ_EVENT, vcpu);
5607 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5609 struct kvm_segment cs;
5611 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5615 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5617 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5618 struct kvm_sregs *sregs)
5622 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5623 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5624 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5625 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5626 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5627 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5629 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5630 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5632 kvm_x86_ops->get_idt(vcpu, &dt);
5633 sregs->idt.limit = dt.size;
5634 sregs->idt.base = dt.address;
5635 kvm_x86_ops->get_gdt(vcpu, &dt);
5636 sregs->gdt.limit = dt.size;
5637 sregs->gdt.base = dt.address;
5639 sregs->cr0 = kvm_read_cr0(vcpu);
5640 sregs->cr2 = vcpu->arch.cr2;
5641 sregs->cr3 = kvm_read_cr3(vcpu);
5642 sregs->cr4 = kvm_read_cr4(vcpu);
5643 sregs->cr8 = kvm_get_cr8(vcpu);
5644 sregs->efer = vcpu->arch.efer;
5645 sregs->apic_base = kvm_get_apic_base(vcpu);
5647 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5649 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5650 set_bit(vcpu->arch.interrupt.nr,
5651 (unsigned long *)sregs->interrupt_bitmap);
5656 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5657 struct kvm_mp_state *mp_state)
5659 mp_state->mp_state = vcpu->arch.mp_state;
5663 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5664 struct kvm_mp_state *mp_state)
5666 vcpu->arch.mp_state = mp_state->mp_state;
5667 kvm_make_request(KVM_REQ_EVENT, vcpu);
5671 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
5672 int reason, bool has_error_code, u32 error_code)
5674 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5677 init_emulate_ctxt(vcpu);
5679 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
5680 has_error_code, error_code);
5683 return EMULATE_FAIL;
5685 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5686 kvm_rip_write(vcpu, ctxt->eip);
5687 kvm_set_rflags(vcpu, ctxt->eflags);
5688 kvm_make_request(KVM_REQ_EVENT, vcpu);
5689 return EMULATE_DONE;
5691 EXPORT_SYMBOL_GPL(kvm_task_switch);
5693 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5694 struct kvm_sregs *sregs)
5696 int mmu_reset_needed = 0;
5697 int pending_vec, max_bits, idx;
5700 dt.size = sregs->idt.limit;
5701 dt.address = sregs->idt.base;
5702 kvm_x86_ops->set_idt(vcpu, &dt);
5703 dt.size = sregs->gdt.limit;
5704 dt.address = sregs->gdt.base;
5705 kvm_x86_ops->set_gdt(vcpu, &dt);
5707 vcpu->arch.cr2 = sregs->cr2;
5708 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5709 vcpu->arch.cr3 = sregs->cr3;
5710 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5712 kvm_set_cr8(vcpu, sregs->cr8);
5714 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5715 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5716 kvm_set_apic_base(vcpu, sregs->apic_base);
5718 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5719 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5720 vcpu->arch.cr0 = sregs->cr0;
5722 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5723 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5724 if (sregs->cr4 & X86_CR4_OSXSAVE)
5725 kvm_update_cpuid(vcpu);
5727 idx = srcu_read_lock(&vcpu->kvm->srcu);
5728 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5729 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5730 mmu_reset_needed = 1;
5732 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5734 if (mmu_reset_needed)
5735 kvm_mmu_reset_context(vcpu);
5737 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5738 pending_vec = find_first_bit(
5739 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5740 if (pending_vec < max_bits) {
5741 kvm_queue_interrupt(vcpu, pending_vec, false);
5742 pr_debug("Set back pending irq %d\n", pending_vec);
5745 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5746 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5747 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5748 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5749 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5750 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5752 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5753 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5755 update_cr8_intercept(vcpu);
5757 /* Older userspace won't unhalt the vcpu on reset. */
5758 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5759 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5761 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5763 kvm_make_request(KVM_REQ_EVENT, vcpu);
5768 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5769 struct kvm_guest_debug *dbg)
5771 unsigned long rflags;
5774 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5776 if (vcpu->arch.exception.pending)
5778 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5779 kvm_queue_exception(vcpu, DB_VECTOR);
5781 kvm_queue_exception(vcpu, BP_VECTOR);
5785 * Read rflags as long as potentially injected trace flags are still
5788 rflags = kvm_get_rflags(vcpu);
5790 vcpu->guest_debug = dbg->control;
5791 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5792 vcpu->guest_debug = 0;
5794 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5795 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5796 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5797 vcpu->arch.switch_db_regs =
5798 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5800 for (i = 0; i < KVM_NR_DB_REGS; i++)
5801 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5802 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5805 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5806 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5807 get_segment_base(vcpu, VCPU_SREG_CS);
5810 * Trigger an rflags update that will inject or remove the trace
5813 kvm_set_rflags(vcpu, rflags);
5815 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5825 * Translate a guest virtual address to a guest physical address.
5827 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5828 struct kvm_translation *tr)
5830 unsigned long vaddr = tr->linear_address;
5834 idx = srcu_read_lock(&vcpu->kvm->srcu);
5835 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5836 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5837 tr->physical_address = gpa;
5838 tr->valid = gpa != UNMAPPED_GVA;
5845 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5847 struct i387_fxsave_struct *fxsave =
5848 &vcpu->arch.guest_fpu.state->fxsave;
5850 memcpy(fpu->fpr, fxsave->st_space, 128);
5851 fpu->fcw = fxsave->cwd;
5852 fpu->fsw = fxsave->swd;
5853 fpu->ftwx = fxsave->twd;
5854 fpu->last_opcode = fxsave->fop;
5855 fpu->last_ip = fxsave->rip;
5856 fpu->last_dp = fxsave->rdp;
5857 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5862 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5864 struct i387_fxsave_struct *fxsave =
5865 &vcpu->arch.guest_fpu.state->fxsave;
5867 memcpy(fxsave->st_space, fpu->fpr, 128);
5868 fxsave->cwd = fpu->fcw;
5869 fxsave->swd = fpu->fsw;
5870 fxsave->twd = fpu->ftwx;
5871 fxsave->fop = fpu->last_opcode;
5872 fxsave->rip = fpu->last_ip;
5873 fxsave->rdp = fpu->last_dp;
5874 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5879 int fx_init(struct kvm_vcpu *vcpu)
5883 err = fpu_alloc(&vcpu->arch.guest_fpu);
5887 fpu_finit(&vcpu->arch.guest_fpu);
5890 * Ensure guest xcr0 is valid for loading
5892 vcpu->arch.xcr0 = XSTATE_FP;
5894 vcpu->arch.cr0 |= X86_CR0_ET;
5898 EXPORT_SYMBOL_GPL(fx_init);
5900 static void fx_free(struct kvm_vcpu *vcpu)
5902 fpu_free(&vcpu->arch.guest_fpu);
5905 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5907 if (vcpu->guest_fpu_loaded)
5911 * Restore all possible states in the guest,
5912 * and assume host would use all available bits.
5913 * Guest xcr0 would be loaded later.
5915 kvm_put_guest_xcr0(vcpu);
5916 vcpu->guest_fpu_loaded = 1;
5917 unlazy_fpu(current);
5918 fpu_restore_checking(&vcpu->arch.guest_fpu);
5922 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5924 kvm_put_guest_xcr0(vcpu);
5926 if (!vcpu->guest_fpu_loaded)
5929 vcpu->guest_fpu_loaded = 0;
5930 fpu_save_init(&vcpu->arch.guest_fpu);
5931 ++vcpu->stat.fpu_reload;
5932 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5936 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5938 kvmclock_reset(vcpu);
5940 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5942 kvm_x86_ops->vcpu_free(vcpu);
5945 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5948 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5949 printk_once(KERN_WARNING
5950 "kvm: SMP vm created on host with unstable TSC; "
5951 "guest TSC will not be reliable\n");
5952 return kvm_x86_ops->vcpu_create(kvm, id);
5955 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5959 vcpu->arch.mtrr_state.have_fixed = 1;
5961 r = kvm_arch_vcpu_reset(vcpu);
5963 r = kvm_mmu_setup(vcpu);
5969 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5971 vcpu->arch.apf.msr_val = 0;
5974 kvm_mmu_unload(vcpu);
5978 kvm_x86_ops->vcpu_free(vcpu);
5981 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5983 atomic_set(&vcpu->arch.nmi_queued, 0);
5984 vcpu->arch.nmi_pending = 0;
5985 vcpu->arch.nmi_injected = false;
5987 vcpu->arch.switch_db_regs = 0;
5988 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5989 vcpu->arch.dr6 = DR6_FIXED_1;
5990 vcpu->arch.dr7 = DR7_FIXED_1;
5992 kvm_make_request(KVM_REQ_EVENT, vcpu);
5993 vcpu->arch.apf.msr_val = 0;
5994 vcpu->arch.st.msr_val = 0;
5996 kvmclock_reset(vcpu);
5998 kvm_clear_async_pf_completion_queue(vcpu);
5999 kvm_async_pf_hash_reset(vcpu);
6000 vcpu->arch.apf.halted = false;
6002 kvm_pmu_reset(vcpu);
6004 return kvm_x86_ops->vcpu_reset(vcpu);
6007 int kvm_arch_hardware_enable(void *garbage)
6010 struct kvm_vcpu *vcpu;
6015 bool stable, backwards_tsc = false;
6017 kvm_shared_msr_cpu_online();
6018 ret = kvm_x86_ops->hardware_enable(garbage);
6022 local_tsc = native_read_tsc();
6023 stable = !check_tsc_unstable();
6024 list_for_each_entry(kvm, &vm_list, vm_list) {
6025 kvm_for_each_vcpu(i, vcpu, kvm) {
6026 if (!stable && vcpu->cpu == smp_processor_id())
6027 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6028 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6029 backwards_tsc = true;
6030 if (vcpu->arch.last_host_tsc > max_tsc)
6031 max_tsc = vcpu->arch.last_host_tsc;
6037 * Sometimes, even reliable TSCs go backwards. This happens on
6038 * platforms that reset TSC during suspend or hibernate actions, but
6039 * maintain synchronization. We must compensate. Fortunately, we can
6040 * detect that condition here, which happens early in CPU bringup,
6041 * before any KVM threads can be running. Unfortunately, we can't
6042 * bring the TSCs fully up to date with real time, as we aren't yet far
6043 * enough into CPU bringup that we know how much real time has actually
6044 * elapsed; our helper function, get_kernel_ns() will be using boot
6045 * variables that haven't been updated yet.
6047 * So we simply find the maximum observed TSC above, then record the
6048 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6049 * the adjustment will be applied. Note that we accumulate
6050 * adjustments, in case multiple suspend cycles happen before some VCPU
6051 * gets a chance to run again. In the event that no KVM threads get a
6052 * chance to run, we will miss the entire elapsed period, as we'll have
6053 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6054 * loose cycle time. This isn't too big a deal, since the loss will be
6055 * uniform across all VCPUs (not to mention the scenario is extremely
6056 * unlikely). It is possible that a second hibernate recovery happens
6057 * much faster than a first, causing the observed TSC here to be
6058 * smaller; this would require additional padding adjustment, which is
6059 * why we set last_host_tsc to the local tsc observed here.
6061 * N.B. - this code below runs only on platforms with reliable TSC,
6062 * as that is the only way backwards_tsc is set above. Also note
6063 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6064 * have the same delta_cyc adjustment applied if backwards_tsc
6065 * is detected. Note further, this adjustment is only done once,
6066 * as we reset last_host_tsc on all VCPUs to stop this from being
6067 * called multiple times (one for each physical CPU bringup).
6069 * Platforms with unnreliable TSCs don't have to deal with this, they
6070 * will be compensated by the logic in vcpu_load, which sets the TSC to
6071 * catchup mode. This will catchup all VCPUs to real time, but cannot
6072 * guarantee that they stay in perfect synchronization.
6074 if (backwards_tsc) {
6075 u64 delta_cyc = max_tsc - local_tsc;
6076 list_for_each_entry(kvm, &vm_list, vm_list) {
6077 kvm_for_each_vcpu(i, vcpu, kvm) {
6078 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6079 vcpu->arch.last_host_tsc = local_tsc;
6083 * We have to disable TSC offset matching.. if you were
6084 * booting a VM while issuing an S4 host suspend....
6085 * you may have some problem. Solving this issue is
6086 * left as an exercise to the reader.
6088 kvm->arch.last_tsc_nsec = 0;
6089 kvm->arch.last_tsc_write = 0;
6096 void kvm_arch_hardware_disable(void *garbage)
6098 kvm_x86_ops->hardware_disable(garbage);
6099 drop_user_return_notifiers(garbage);
6102 int kvm_arch_hardware_setup(void)
6104 return kvm_x86_ops->hardware_setup();
6107 void kvm_arch_hardware_unsetup(void)
6109 kvm_x86_ops->hardware_unsetup();
6112 void kvm_arch_check_processor_compat(void *rtn)
6114 kvm_x86_ops->check_processor_compatibility(rtn);
6117 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6119 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6122 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6128 BUG_ON(vcpu->kvm == NULL);
6131 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6132 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6133 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6135 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6137 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6142 vcpu->arch.pio_data = page_address(page);
6144 kvm_set_tsc_khz(vcpu, max_tsc_khz);
6146 r = kvm_mmu_create(vcpu);
6148 goto fail_free_pio_data;
6150 if (irqchip_in_kernel(kvm)) {
6151 r = kvm_create_lapic(vcpu);
6153 goto fail_mmu_destroy;
6156 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6158 if (!vcpu->arch.mce_banks) {
6160 goto fail_free_lapic;
6162 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6164 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6165 goto fail_free_mce_banks;
6167 kvm_async_pf_hash_reset(vcpu);
6171 fail_free_mce_banks:
6172 kfree(vcpu->arch.mce_banks);
6174 kvm_free_lapic(vcpu);
6176 kvm_mmu_destroy(vcpu);
6178 free_page((unsigned long)vcpu->arch.pio_data);
6183 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6187 kvm_pmu_destroy(vcpu);
6188 kfree(vcpu->arch.mce_banks);
6189 kvm_free_lapic(vcpu);
6190 idx = srcu_read_lock(&vcpu->kvm->srcu);
6191 kvm_mmu_destroy(vcpu);
6192 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6193 free_page((unsigned long)vcpu->arch.pio_data);
6196 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6201 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6202 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6204 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6205 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6207 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6212 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6215 kvm_mmu_unload(vcpu);
6219 static void kvm_free_vcpus(struct kvm *kvm)
6222 struct kvm_vcpu *vcpu;
6225 * Unpin any mmu pages first.
6227 kvm_for_each_vcpu(i, vcpu, kvm) {
6228 kvm_clear_async_pf_completion_queue(vcpu);
6229 kvm_unload_vcpu_mmu(vcpu);
6231 kvm_for_each_vcpu(i, vcpu, kvm)
6232 kvm_arch_vcpu_free(vcpu);
6234 mutex_lock(&kvm->lock);
6235 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6236 kvm->vcpus[i] = NULL;
6238 atomic_set(&kvm->online_vcpus, 0);
6239 mutex_unlock(&kvm->lock);
6242 void kvm_arch_sync_events(struct kvm *kvm)
6244 kvm_free_all_assigned_devices(kvm);
6248 void kvm_arch_destroy_vm(struct kvm *kvm)
6250 kvm_iommu_unmap_guest(kvm);
6251 kfree(kvm->arch.vpic);
6252 kfree(kvm->arch.vioapic);
6253 kvm_free_vcpus(kvm);
6254 if (kvm->arch.apic_access_page)
6255 put_page(kvm->arch.apic_access_page);
6256 if (kvm->arch.ept_identity_pagetable)
6257 put_page(kvm->arch.ept_identity_pagetable);
6260 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6261 struct kvm_memory_slot *dont)
6265 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6266 if (!dont || free->arch.lpage_info[i] != dont->arch.lpage_info[i]) {
6267 vfree(free->arch.lpage_info[i]);
6268 free->arch.lpage_info[i] = NULL;
6273 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6277 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6282 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6283 slot->base_gfn, level) + 1;
6285 slot->arch.lpage_info[i] =
6286 vzalloc(lpages * sizeof(*slot->arch.lpage_info[i]));
6287 if (!slot->arch.lpage_info[i])
6290 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6291 slot->arch.lpage_info[i][0].write_count = 1;
6292 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6293 slot->arch.lpage_info[i][lpages - 1].write_count = 1;
6294 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6296 * If the gfn and userspace address are not aligned wrt each
6297 * other, or if explicitly asked to, disable large page
6298 * support for this slot
6300 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6301 !kvm_largepages_enabled()) {
6304 for (j = 0; j < lpages; ++j)
6305 slot->arch.lpage_info[i][j].write_count = 1;
6312 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6313 vfree(slot->arch.lpage_info[i]);
6314 slot->arch.lpage_info[i] = NULL;
6319 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6320 struct kvm_memory_slot *memslot,
6321 struct kvm_memory_slot old,
6322 struct kvm_userspace_memory_region *mem,
6325 int npages = memslot->npages;
6326 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6328 /* Prevent internal slot pages from being moved by fork()/COW. */
6329 if (memslot->id >= KVM_MEMORY_SLOTS)
6330 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6332 /*To keep backward compatibility with older userspace,
6333 *x86 needs to hanlde !user_alloc case.
6336 if (npages && !old.rmap) {
6337 unsigned long userspace_addr;
6339 userspace_addr = vm_mmap(NULL, 0,
6341 PROT_READ | PROT_WRITE,
6345 if (IS_ERR((void *)userspace_addr))
6346 return PTR_ERR((void *)userspace_addr);
6348 memslot->userspace_addr = userspace_addr;
6356 void kvm_arch_commit_memory_region(struct kvm *kvm,
6357 struct kvm_userspace_memory_region *mem,
6358 struct kvm_memory_slot old,
6362 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6364 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6367 ret = vm_munmap(old.userspace_addr,
6368 old.npages * PAGE_SIZE);
6371 "kvm_vm_ioctl_set_memory_region: "
6372 "failed to munmap memory\n");
6375 if (!kvm->arch.n_requested_mmu_pages)
6376 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6378 spin_lock(&kvm->mmu_lock);
6380 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6381 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6382 spin_unlock(&kvm->mmu_lock);
6385 void kvm_arch_flush_shadow(struct kvm *kvm)
6387 kvm_mmu_zap_all(kvm);
6388 kvm_reload_remote_mmus(kvm);
6391 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6393 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6394 !vcpu->arch.apf.halted)
6395 || !list_empty_careful(&vcpu->async_pf.done)
6396 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6397 || atomic_read(&vcpu->arch.nmi_queued) ||
6398 (kvm_arch_interrupt_allowed(vcpu) &&
6399 kvm_cpu_has_interrupt(vcpu));
6402 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6405 int cpu = vcpu->cpu;
6407 if (waitqueue_active(&vcpu->wq)) {
6408 wake_up_interruptible(&vcpu->wq);
6409 ++vcpu->stat.halt_wakeup;
6413 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6414 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6415 smp_send_reschedule(cpu);
6419 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6421 return kvm_x86_ops->interrupt_allowed(vcpu);
6424 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6426 unsigned long current_rip = kvm_rip_read(vcpu) +
6427 get_segment_base(vcpu, VCPU_SREG_CS);
6429 return current_rip == linear_rip;
6431 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6433 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6435 unsigned long rflags;
6437 rflags = kvm_x86_ops->get_rflags(vcpu);
6438 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6439 rflags &= ~X86_EFLAGS_TF;
6442 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6444 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6446 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6447 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6448 rflags |= X86_EFLAGS_TF;
6449 kvm_x86_ops->set_rflags(vcpu, rflags);
6450 kvm_make_request(KVM_REQ_EVENT, vcpu);
6452 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6454 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6458 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6459 is_error_page(work->page))
6462 r = kvm_mmu_reload(vcpu);
6466 if (!vcpu->arch.mmu.direct_map &&
6467 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6470 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6473 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6475 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6478 static inline u32 kvm_async_pf_next_probe(u32 key)
6480 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6483 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6485 u32 key = kvm_async_pf_hash_fn(gfn);
6487 while (vcpu->arch.apf.gfns[key] != ~0)
6488 key = kvm_async_pf_next_probe(key);
6490 vcpu->arch.apf.gfns[key] = gfn;
6493 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6496 u32 key = kvm_async_pf_hash_fn(gfn);
6498 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6499 (vcpu->arch.apf.gfns[key] != gfn &&
6500 vcpu->arch.apf.gfns[key] != ~0); i++)
6501 key = kvm_async_pf_next_probe(key);
6506 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6508 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6511 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6515 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6517 vcpu->arch.apf.gfns[i] = ~0;
6519 j = kvm_async_pf_next_probe(j);
6520 if (vcpu->arch.apf.gfns[j] == ~0)
6522 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6524 * k lies cyclically in ]i,j]
6526 * |....j i.k.| or |.k..j i...|
6528 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6529 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6534 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6537 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6541 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6542 struct kvm_async_pf *work)
6544 struct x86_exception fault;
6546 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6547 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6549 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6550 (vcpu->arch.apf.send_user_only &&
6551 kvm_x86_ops->get_cpl(vcpu) == 0))
6552 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6553 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6554 fault.vector = PF_VECTOR;
6555 fault.error_code_valid = true;
6556 fault.error_code = 0;
6557 fault.nested_page_fault = false;
6558 fault.address = work->arch.token;
6559 kvm_inject_page_fault(vcpu, &fault);
6563 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6564 struct kvm_async_pf *work)
6566 struct x86_exception fault;
6568 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6569 if (is_error_page(work->page))
6570 work->arch.token = ~0; /* broadcast wakeup */
6572 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6574 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6575 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6576 fault.vector = PF_VECTOR;
6577 fault.error_code_valid = true;
6578 fault.error_code = 0;
6579 fault.nested_page_fault = false;
6580 fault.address = work->arch.token;
6581 kvm_inject_page_fault(vcpu, &fault);
6583 vcpu->arch.apf.halted = false;
6584 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6587 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6589 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6592 return !kvm_event_needs_reinjection(vcpu) &&
6593 kvm_x86_ops->interrupt_allowed(vcpu);
6596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6599 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6600 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6601 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6602 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6603 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6604 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6605 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6606 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6607 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);