1 #include <linux/errno.h>
2 #include <linux/kernel.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <linux/stackprotector.h>
16 #include <linux/tick.h>
17 #include <linux/cpuidle.h>
18 #include <trace/events/power.h>
19 #include <linux/hw_breakpoint.h>
22 #include <asm/syscalls.h>
24 #include <asm/uaccess.h>
26 #include <asm/fpu-internal.h>
27 #include <asm/debugreg.h>
31 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
32 * no more per-task TSS's. The TSS size is kept cacheline-aligned
33 * so they are allowed to end up in the .data..cacheline_aligned
34 * section. Since TSS's are completely CPU-local, we want them
35 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
37 DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
40 static DEFINE_PER_CPU(unsigned char, is_idle);
41 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
43 void idle_notifier_register(struct notifier_block *n)
45 atomic_notifier_chain_register(&idle_notifier, n);
47 EXPORT_SYMBOL_GPL(idle_notifier_register);
49 void idle_notifier_unregister(struct notifier_block *n)
51 atomic_notifier_chain_unregister(&idle_notifier, n);
53 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56 struct kmem_cache *task_xstate_cachep;
57 EXPORT_SYMBOL_GPL(task_xstate_cachep);
59 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
64 if (fpu_allocated(&src->thread.fpu)) {
65 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
66 ret = fpu_alloc(&dst->thread.fpu);
69 fpu_copy(&dst->thread.fpu, &src->thread.fpu);
74 void free_thread_xstate(struct task_struct *tsk)
76 fpu_free(&tsk->thread.fpu);
79 void arch_release_task_struct(struct task_struct *tsk)
81 free_thread_xstate(tsk);
84 void arch_task_cache_init(void)
87 kmem_cache_create("task_xstate", xstate_size,
88 __alignof__(union thread_xstate),
89 SLAB_PANIC | SLAB_NOTRACK, NULL);
93 * Free current thread data structures etc..
95 void exit_thread(void)
97 struct task_struct *me = current;
98 struct thread_struct *t = &me->thread;
99 unsigned long *bp = t->io_bitmap_ptr;
102 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
104 t->io_bitmap_ptr = NULL;
105 clear_thread_flag(TIF_IO_BITMAP);
107 * Careful, clear this in the TSS too:
109 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
110 t->io_bitmap_max = 0;
116 void show_regs(struct pt_regs *regs)
118 show_registers(regs);
119 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
122 void show_regs_common(void)
124 const char *vendor, *product, *board;
126 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
129 product = dmi_get_system_info(DMI_PRODUCT_NAME);
133 /* Board Name is optional */
134 board = dmi_get_system_info(DMI_BOARD_NAME);
136 printk(KERN_CONT "\n");
137 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
138 current->pid, current->comm, print_tainted(),
139 init_utsname()->release,
140 (int)strcspn(init_utsname()->version, " "),
141 init_utsname()->version);
142 printk(KERN_CONT " %s %s", vendor, product);
144 printk(KERN_CONT "/%s", board);
145 printk(KERN_CONT "\n");
148 void flush_thread(void)
150 struct task_struct *tsk = current;
152 flush_ptrace_hw_breakpoint(tsk);
153 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
155 * Forget coprocessor state..
157 tsk->fpu_counter = 0;
162 static void hard_disable_TSC(void)
164 write_cr4(read_cr4() | X86_CR4_TSD);
167 void disable_TSC(void)
170 if (!test_and_set_thread_flag(TIF_NOTSC))
172 * Must flip the CPU state synchronously with
173 * TIF_NOTSC in the current running context.
179 static void hard_enable_TSC(void)
181 write_cr4(read_cr4() & ~X86_CR4_TSD);
184 static void enable_TSC(void)
187 if (test_and_clear_thread_flag(TIF_NOTSC))
189 * Must flip the CPU state synchronously with
190 * TIF_NOTSC in the current running context.
196 int get_tsc_mode(unsigned long adr)
200 if (test_thread_flag(TIF_NOTSC))
201 val = PR_TSC_SIGSEGV;
205 return put_user(val, (unsigned int __user *)adr);
208 int set_tsc_mode(unsigned int val)
210 if (val == PR_TSC_SIGSEGV)
212 else if (val == PR_TSC_ENABLE)
220 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
221 struct tss_struct *tss)
223 struct thread_struct *prev, *next;
225 prev = &prev_p->thread;
226 next = &next_p->thread;
228 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
229 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
230 unsigned long debugctl = get_debugctlmsr();
232 debugctl &= ~DEBUGCTLMSR_BTF;
233 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
234 debugctl |= DEBUGCTLMSR_BTF;
236 update_debugctlmsr(debugctl);
239 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
240 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
241 /* prev and next are different */
242 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
248 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
250 * Copy the relevant range of the IO bitmap.
251 * Normally this is 128 bytes or less:
253 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
254 max(prev->io_bitmap_max, next->io_bitmap_max));
255 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
257 * Clear any possible leftover bits:
259 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
261 propagate_user_return_notify(prev_p, next_p);
264 int sys_fork(struct pt_regs *regs)
266 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
270 * This is trivial, and on the face of it looks like it
271 * could equally well be done in user mode.
273 * Not so, for quite unobvious reasons - register pressure.
274 * In user mode vfork() cannot have a stack frame, and if
275 * done by calling the "clone()" system call directly, you
276 * do not have enough call-clobbered registers to hold all
277 * the information you need.
279 int sys_vfork(struct pt_regs *regs)
281 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
286 sys_clone(unsigned long clone_flags, unsigned long newsp,
287 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
291 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
295 * This gets run with %si containing the
296 * function to call, and %di containing
299 extern void kernel_thread_helper(void);
302 * Create a kernel thread
304 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
308 memset(®s, 0, sizeof(regs));
310 regs.si = (unsigned long) fn;
311 regs.di = (unsigned long) arg;
316 regs.fs = __KERNEL_PERCPU;
317 regs.gs = __KERNEL_STACK_CANARY;
319 regs.ss = __KERNEL_DS;
323 regs.ip = (unsigned long) kernel_thread_helper;
324 regs.cs = __KERNEL_CS | get_kernel_rpl();
325 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
327 /* Ok, create the new process.. */
328 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL);
330 EXPORT_SYMBOL(kernel_thread);
333 * sys_execve() executes a new program.
335 long sys_execve(const char __user *name,
336 const char __user *const __user *argv,
337 const char __user *const __user *envp, struct pt_regs *regs)
342 filename = getname(name);
343 error = PTR_ERR(filename);
344 if (IS_ERR(filename))
346 error = do_execve(filename, argv, envp, regs);
350 /* Make sure we don't return using sysenter.. */
351 set_thread_flag(TIF_IRET);
360 * Idle related variables and functions
362 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
363 EXPORT_SYMBOL(boot_option_idle_override);
366 * Powermanagement idle function, if any..
368 void (*pm_idle)(void);
369 #ifdef CONFIG_APM_MODULE
370 EXPORT_SYMBOL(pm_idle);
373 static inline int hlt_use_halt(void)
379 static inline void play_dead(void)
386 void enter_idle(void)
388 this_cpu_write(is_idle, 1);
389 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
392 static void __exit_idle(void)
394 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
396 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
399 /* Called from interrupts to signify idle end */
402 /* idle loop has pid 0 */
410 * The idle thread. There's no useful work to be
411 * done, so just try to conserve power and have a
412 * low exit latency (ie sit in a loop waiting for
413 * somebody to say that they'd like to reschedule)
418 * If we're the non-boot CPU, nothing set the stack canary up
419 * for us. CPU0 already has it initialized but no harm in
420 * doing it again. This is a good place for updating it, as
421 * we wont ever return from this function (so the invalid
422 * canaries already on the stack wont ever trigger).
424 boot_init_stack_canary();
425 current_thread_info()->status |= TS_POLLING;
428 tick_nohz_idle_enter();
430 while (!need_resched()) {
433 if (cpu_is_offline(smp_processor_id()))
437 * Idle routines should keep interrupts disabled
438 * from here on, until they go to idle.
439 * Otherwise, idle callbacks can misfire.
446 /* Don't trace irqs off for idle */
447 stop_critical_timings();
449 /* enter_idle() needs rcu for notifiers */
452 if (cpuidle_idle_call())
456 start_critical_timings();
458 /* In many cases the interrupt that ended idle
459 has already called exit_idle. But some idle
460 loops can be woken up without interrupt. */
464 tick_nohz_idle_exit();
465 preempt_enable_no_resched();
472 * We use this if we don't have any better
475 void default_idle(void)
477 if (hlt_use_halt()) {
478 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
479 trace_cpu_idle_rcuidle(1, smp_processor_id());
480 current_thread_info()->status &= ~TS_POLLING;
482 * TS_POLLING-cleared state must be visible before we
488 safe_halt(); /* enables interrupts racelessly */
491 current_thread_info()->status |= TS_POLLING;
492 trace_power_end_rcuidle(smp_processor_id());
493 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
496 /* loop is done by the caller */
500 #ifdef CONFIG_APM_MODULE
501 EXPORT_SYMBOL(default_idle);
504 bool set_pm_idle_to_default(void)
506 bool ret = !!pm_idle;
508 pm_idle = default_idle;
512 void stop_this_cpu(void *dummy)
518 set_cpu_online(smp_processor_id(), false);
519 disable_local_APIC();
522 if (hlt_works(smp_processor_id()))
527 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
528 static void mwait_idle(void)
530 if (!need_resched()) {
531 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
532 trace_cpu_idle_rcuidle(1, smp_processor_id());
533 if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
534 clflush((void *)¤t_thread_info()->flags);
536 __monitor((void *)¤t_thread_info()->flags, 0, 0);
542 trace_power_end_rcuidle(smp_processor_id());
543 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
549 * On SMP it's slightly faster (but much more power-consuming!)
550 * to poll the ->work.need_resched flag instead of waiting for the
551 * cross-CPU IPI to arrive. Use this option with caution.
553 static void poll_idle(void)
555 trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
556 trace_cpu_idle_rcuidle(0, smp_processor_id());
558 while (!need_resched())
560 trace_power_end_rcuidle(smp_processor_id());
561 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
565 * mwait selection logic:
567 * It depends on the CPU. For AMD CPUs that support MWAIT this is
568 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
569 * then depend on a clock divisor and current Pstate of the core. If
570 * all cores of a processor are in halt state (C1) the processor can
571 * enter the C1E (C1 enhanced) state. If mwait is used this will never
574 * idle=mwait overrides this decision and forces the usage of mwait.
577 #define MWAIT_INFO 0x05
578 #define MWAIT_ECX_EXTENDED_INFO 0x01
579 #define MWAIT_EDX_C1 0xf0
581 int mwait_usable(const struct cpuinfo_x86 *c)
583 u32 eax, ebx, ecx, edx;
585 /* Use mwait if idle=mwait boot option is given */
586 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
590 * Any idle= boot option other than idle=mwait means that we must not
591 * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
593 if (boot_option_idle_override != IDLE_NO_OVERRIDE)
596 if (c->cpuid_level < MWAIT_INFO)
599 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
600 /* Check, whether EDX has extended info about MWAIT */
601 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
605 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
608 return (edx & MWAIT_EDX_C1);
611 bool amd_e400_c1e_detected;
612 EXPORT_SYMBOL(amd_e400_c1e_detected);
614 static cpumask_var_t amd_e400_c1e_mask;
616 void amd_e400_remove_cpu(int cpu)
618 if (amd_e400_c1e_mask != NULL)
619 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
623 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
624 * pending message MSR. If we detect C1E, then we handle it the same
625 * way as C3 power states (local apic timer and TSC stop)
627 static void amd_e400_idle(void)
632 if (!amd_e400_c1e_detected) {
635 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
637 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
638 amd_e400_c1e_detected = true;
639 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
640 mark_tsc_unstable("TSC halt in AMD C1E");
641 printk(KERN_INFO "System has AMD C1E enabled\n");
645 if (amd_e400_c1e_detected) {
646 int cpu = smp_processor_id();
648 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
649 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
651 * Force broadcast so ACPI can not interfere.
653 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
655 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
658 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
663 * The switch back from broadcast mode needs to be
664 * called with interrupts disabled.
667 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
673 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
676 if (pm_idle == poll_idle && smp_num_siblings > 1) {
677 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
678 " performance may degrade.\n");
684 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
686 * One CPU supports mwait => All CPUs supports mwait
688 printk(KERN_INFO "using mwait in idle threads.\n");
689 pm_idle = mwait_idle;
690 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
691 /* E400: APIC timer interrupt does not wake up CPU from C1e */
692 printk(KERN_INFO "using AMD E400 aware idle routine\n");
693 pm_idle = amd_e400_idle;
695 pm_idle = default_idle;
698 void __init init_amd_e400_c1e_mask(void)
700 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
701 if (pm_idle == amd_e400_idle)
702 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
705 static int __init idle_setup(char *str)
710 if (!strcmp(str, "poll")) {
711 printk("using polling idle threads.\n");
713 boot_option_idle_override = IDLE_POLL;
714 } else if (!strcmp(str, "mwait")) {
715 boot_option_idle_override = IDLE_FORCE_MWAIT;
716 WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
717 } else if (!strcmp(str, "halt")) {
719 * When the boot option of idle=halt is added, halt is
720 * forced to be used for CPU idle. In such case CPU C2/C3
721 * won't be used again.
722 * To continue to load the CPU idle driver, don't touch
723 * the boot_option_idle_override.
725 pm_idle = default_idle;
726 boot_option_idle_override = IDLE_HALT;
727 } else if (!strcmp(str, "nomwait")) {
729 * If the boot option of "idle=nomwait" is added,
730 * it means that mwait will be disabled for CPU C2/C3
731 * states. In such case it won't touch the variable
732 * of boot_option_idle_override.
734 boot_option_idle_override = IDLE_NOMWAIT;
740 early_param("idle", idle_setup);
742 unsigned long arch_align_stack(unsigned long sp)
744 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
745 sp -= get_random_int() % 8192;
749 unsigned long arch_randomize_brk(struct mm_struct *mm)
751 unsigned long range_end = mm->brk + 0x02000000;
752 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;