1 // SPDX-License-Identifier: GPL-2.0-only
3 * mm/readahead.c - address_space-level file readahead.
5 * Copyright (C) 2002, Linus Torvalds
7 * 09Apr2002 Andrew Morton
11 #include <linux/kernel.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/export.h>
15 #include <linux/blkdev.h>
16 #include <linux/backing-dev.h>
17 #include <linux/task_io_accounting_ops.h>
18 #include <linux/pagevec.h>
19 #include <linux/pagemap.h>
20 #include <linux/syscalls.h>
21 #include <linux/file.h>
22 #include <linux/mm_inline.h>
23 #include <linux/blk-cgroup.h>
24 #include <linux/fadvise.h>
25 #include <linux/sched/mm.h>
30 * Initialise a struct file's readahead state. Assumes that the caller has
34 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
36 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
39 EXPORT_SYMBOL_GPL(file_ra_state_init);
42 * see if a page needs releasing upon read_cache_pages() failure
43 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
44 * before calling, such as the NFS fs marking pages that are cached locally
45 * on disk, thus we need to give the fs a chance to clean up in the event of
48 static void read_cache_pages_invalidate_page(struct address_space *mapping,
51 if (page_has_private(page)) {
52 if (!trylock_page(page))
54 page->mapping = mapping;
55 do_invalidatepage(page, 0, PAGE_SIZE);
63 * release a list of pages, invalidating them first if need be
65 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
66 struct list_head *pages)
70 while (!list_empty(pages)) {
71 victim = lru_to_page(pages);
72 list_del(&victim->lru);
73 read_cache_pages_invalidate_page(mapping, victim);
78 * read_cache_pages - populate an address space with some pages & start reads against them
79 * @mapping: the address_space
80 * @pages: The address of a list_head which contains the target pages. These
81 * pages have their ->index populated and are otherwise uninitialised.
82 * @filler: callback routine for filling a single page.
83 * @data: private data for the callback routine.
85 * Hides the details of the LRU cache etc from the filesystems.
87 * Returns: %0 on success, error return by @filler otherwise
89 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
90 int (*filler)(void *, struct page *), void *data)
95 while (!list_empty(pages)) {
96 page = lru_to_page(pages);
98 if (add_to_page_cache_lru(page, mapping, page->index,
99 readahead_gfp_mask(mapping))) {
100 read_cache_pages_invalidate_page(mapping, page);
105 ret = filler(data, page);
107 read_cache_pages_invalidate_pages(mapping, pages);
110 task_io_account_read(PAGE_SIZE);
115 EXPORT_SYMBOL(read_cache_pages);
117 static void read_pages(struct readahead_control *rac, struct list_head *pages,
120 const struct address_space_operations *aops = rac->mapping->a_ops;
122 struct blk_plug plug;
124 if (!readahead_count(rac))
127 blk_start_plug(&plug);
129 if (aops->readahead) {
130 aops->readahead(rac);
131 /* Clean up the remaining pages */
132 while ((page = readahead_page(rac))) {
136 } else if (aops->readpages) {
137 aops->readpages(rac->file, rac->mapping, pages,
138 readahead_count(rac));
139 /* Clean up the remaining pages */
140 put_pages_list(pages);
141 rac->_index += rac->_nr_pages;
144 while ((page = readahead_page(rac))) {
145 aops->readpage(rac->file, page);
150 blk_finish_plug(&plug);
152 BUG_ON(!list_empty(pages));
153 BUG_ON(readahead_count(rac));
161 * page_cache_ra_unbounded - Start unchecked readahead.
162 * @ractl: Readahead control.
163 * @nr_to_read: The number of pages to read.
164 * @lookahead_size: Where to start the next readahead.
166 * This function is for filesystems to call when they want to start
167 * readahead beyond a file's stated i_size. This is almost certainly
168 * not the function you want to call. Use page_cache_async_readahead()
169 * or page_cache_sync_readahead() instead.
171 * Context: File is referenced by caller. Mutexes may be held by caller.
172 * May sleep, but will not reenter filesystem to reclaim memory.
174 void page_cache_ra_unbounded(struct readahead_control *ractl,
175 unsigned long nr_to_read, unsigned long lookahead_size)
177 struct address_space *mapping = ractl->mapping;
178 unsigned long index = readahead_index(ractl);
179 LIST_HEAD(page_pool);
180 gfp_t gfp_mask = readahead_gfp_mask(mapping);
184 * Partway through the readahead operation, we will have added
185 * locked pages to the page cache, but will not yet have submitted
186 * them for I/O. Adding another page may need to allocate memory,
187 * which can trigger memory reclaim. Telling the VM we're in
188 * the middle of a filesystem operation will cause it to not
189 * touch file-backed pages, preventing a deadlock. Most (all?)
190 * filesystems already specify __GFP_NOFS in their mapping's
191 * gfp_mask, but let's be explicit here.
193 unsigned int nofs = memalloc_nofs_save();
196 * Preallocate as many pages as we will need.
198 for (i = 0; i < nr_to_read; i++) {
199 struct page *page = xa_load(&mapping->i_pages, index + i);
201 if (page && !xa_is_value(page)) {
203 * Page already present? Kick off the current batch
204 * of contiguous pages before continuing with the
205 * next batch. This page may be the one we would
206 * have intended to mark as Readahead, but we don't
207 * have a stable reference to this page, and it's
208 * not worth getting one just for that.
210 read_pages(ractl, &page_pool, true);
211 i = ractl->_index + ractl->_nr_pages - index - 1;
215 page = __page_cache_alloc(gfp_mask);
218 if (mapping->a_ops->readpages) {
219 page->index = index + i;
220 list_add(&page->lru, &page_pool);
221 } else if (add_to_page_cache_lru(page, mapping, index + i,
224 read_pages(ractl, &page_pool, true);
225 i = ractl->_index + ractl->_nr_pages - index - 1;
228 if (i == nr_to_read - lookahead_size)
229 SetPageReadahead(page);
234 * Now start the IO. We ignore I/O errors - if the page is not
235 * uptodate then the caller will launch readpage again, and
236 * will then handle the error.
238 read_pages(ractl, &page_pool, false);
239 memalloc_nofs_restore(nofs);
241 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
244 * do_page_cache_ra() actually reads a chunk of disk. It allocates
245 * the pages first, then submits them for I/O. This avoids the very bad
246 * behaviour which would occur if page allocations are causing VM writeback.
247 * We really don't want to intermingle reads and writes like that.
249 void do_page_cache_ra(struct readahead_control *ractl,
250 unsigned long nr_to_read, unsigned long lookahead_size)
252 struct inode *inode = ractl->mapping->host;
253 unsigned long index = readahead_index(ractl);
254 loff_t isize = i_size_read(inode);
255 pgoff_t end_index; /* The last page we want to read */
260 end_index = (isize - 1) >> PAGE_SHIFT;
261 if (index > end_index)
263 /* Don't read past the page containing the last byte of the file */
264 if (nr_to_read > end_index - index)
265 nr_to_read = end_index - index + 1;
267 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
271 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
274 void force_page_cache_ra(struct readahead_control *ractl,
275 unsigned long nr_to_read)
277 struct address_space *mapping = ractl->mapping;
278 struct file_ra_state *ra = ractl->ra;
279 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
280 unsigned long max_pages, index;
282 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
283 !mapping->a_ops->readahead))
287 * If the request exceeds the readahead window, allow the read to
288 * be up to the optimal hardware IO size
290 index = readahead_index(ractl);
291 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
292 nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
294 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
296 if (this_chunk > nr_to_read)
297 this_chunk = nr_to_read;
298 ractl->_index = index;
299 do_page_cache_ra(ractl, this_chunk, 0);
302 nr_to_read -= this_chunk;
307 * Set the initial window size, round to next power of 2 and square
308 * for small size, x 4 for medium, and x 2 for large
309 * for 128k (32 page) max ra
310 * 1-8 page = 32k initial, > 8 page = 128k initial
312 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
314 unsigned long newsize = roundup_pow_of_two(size);
316 if (newsize <= max / 32)
317 newsize = newsize * 4;
318 else if (newsize <= max / 4)
319 newsize = newsize * 2;
327 * Get the previous window size, ramp it up, and
328 * return it as the new window size.
330 static unsigned long get_next_ra_size(struct file_ra_state *ra,
333 unsigned long cur = ra->size;
343 * On-demand readahead design.
345 * The fields in struct file_ra_state represent the most-recently-executed
348 * |<----- async_size ---------|
349 * |------------------- size -------------------->|
350 * |==================#===========================|
351 * ^start ^page marked with PG_readahead
353 * To overlap application thinking time and disk I/O time, we do
354 * `readahead pipelining': Do not wait until the application consumed all
355 * readahead pages and stalled on the missing page at readahead_index;
356 * Instead, submit an asynchronous readahead I/O as soon as there are
357 * only async_size pages left in the readahead window. Normally async_size
358 * will be equal to size, for maximum pipelining.
360 * In interleaved sequential reads, concurrent streams on the same fd can
361 * be invalidating each other's readahead state. So we flag the new readahead
362 * page at (start+size-async_size) with PG_readahead, and use it as readahead
363 * indicator. The flag won't be set on already cached pages, to avoid the
364 * readahead-for-nothing fuss, saving pointless page cache lookups.
366 * prev_pos tracks the last visited byte in the _previous_ read request.
367 * It should be maintained by the caller, and will be used for detecting
368 * small random reads. Note that the readahead algorithm checks loosely
369 * for sequential patterns. Hence interleaved reads might be served as
372 * There is a special-case: if the first page which the application tries to
373 * read happens to be the first page of the file, it is assumed that a linear
374 * read is about to happen and the window is immediately set to the initial size
375 * based on I/O request size and the max_readahead.
377 * The code ramps up the readahead size aggressively at first, but slow down as
378 * it approaches max_readhead.
382 * Count contiguously cached pages from @index-1 to @index-@max,
383 * this count is a conservative estimation of
384 * - length of the sequential read sequence, or
385 * - thrashing threshold in memory tight systems
387 static pgoff_t count_history_pages(struct address_space *mapping,
388 pgoff_t index, unsigned long max)
393 head = page_cache_prev_miss(mapping, index - 1, max);
396 return index - 1 - head;
400 * page cache context based read-ahead
402 static int try_context_readahead(struct address_space *mapping,
403 struct file_ra_state *ra,
405 unsigned long req_size,
410 size = count_history_pages(mapping, index, max);
413 * not enough history pages:
414 * it could be a random read
416 if (size <= req_size)
420 * starts from beginning of file:
421 * it is a strong indication of long-run stream (or whole-file-read)
427 ra->size = min(size + req_size, max);
434 * A minimal readahead algorithm for trivial sequential/random reads.
436 static void ondemand_readahead(struct readahead_control *ractl,
437 bool hit_readahead_marker, unsigned long req_size)
439 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
440 struct file_ra_state *ra = ractl->ra;
441 unsigned long max_pages = ra->ra_pages;
442 unsigned long add_pages;
443 unsigned long index = readahead_index(ractl);
447 * If the request exceeds the readahead window, allow the read to
448 * be up to the optimal hardware IO size
450 if (req_size > max_pages && bdi->io_pages > max_pages)
451 max_pages = min(req_size, bdi->io_pages);
457 goto initial_readahead;
460 * It's the expected callback index, assume sequential access.
461 * Ramp up sizes, and push forward the readahead window.
463 if ((index == (ra->start + ra->size - ra->async_size) ||
464 index == (ra->start + ra->size))) {
465 ra->start += ra->size;
466 ra->size = get_next_ra_size(ra, max_pages);
467 ra->async_size = ra->size;
472 * Hit a marked page without valid readahead state.
473 * E.g. interleaved reads.
474 * Query the pagecache for async_size, which normally equals to
475 * readahead size. Ramp it up and use it as the new readahead size.
477 if (hit_readahead_marker) {
481 start = page_cache_next_miss(ractl->mapping, index + 1,
485 if (!start || start - index > max_pages)
489 ra->size = start - index; /* old async_size */
490 ra->size += req_size;
491 ra->size = get_next_ra_size(ra, max_pages);
492 ra->async_size = ra->size;
499 if (req_size > max_pages)
500 goto initial_readahead;
503 * sequential cache miss
504 * trivial case: (index - prev_index) == 1
505 * unaligned reads: (index - prev_index) == 0
507 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
508 if (index - prev_index <= 1UL)
509 goto initial_readahead;
512 * Query the page cache and look for the traces(cached history pages)
513 * that a sequential stream would leave behind.
515 if (try_context_readahead(ractl->mapping, ra, index, req_size,
520 * standalone, small random read
521 * Read as is, and do not pollute the readahead state.
523 do_page_cache_ra(ractl, req_size, 0);
528 ra->size = get_init_ra_size(req_size, max_pages);
529 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
533 * Will this read hit the readahead marker made by itself?
534 * If so, trigger the readahead marker hit now, and merge
535 * the resulted next readahead window into the current one.
536 * Take care of maximum IO pages as above.
538 if (index == ra->start && ra->size == ra->async_size) {
539 add_pages = get_next_ra_size(ra, max_pages);
540 if (ra->size + add_pages <= max_pages) {
541 ra->async_size = add_pages;
542 ra->size += add_pages;
544 ra->size = max_pages;
545 ra->async_size = max_pages >> 1;
549 ractl->_index = ra->start;
550 do_page_cache_ra(ractl, ra->size, ra->async_size);
553 void page_cache_sync_ra(struct readahead_control *ractl,
554 unsigned long req_count)
556 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
559 * Even if read-ahead is disabled, issue this request as read-ahead
560 * as we'll need it to satisfy the requested range. The forced
561 * read-ahead will do the right thing and limit the read to just the
562 * requested range, which we'll set to 1 page for this case.
564 if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
573 force_page_cache_ra(ractl, req_count);
578 ondemand_readahead(ractl, false, req_count);
580 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
582 void page_cache_async_ra(struct readahead_control *ractl,
583 struct page *page, unsigned long req_count)
586 if (!ractl->ra->ra_pages)
590 * Same bit is used for PG_readahead and PG_reclaim.
592 if (PageWriteback(page))
595 ClearPageReadahead(page);
598 * Defer asynchronous read-ahead on IO congestion.
600 if (inode_read_congested(ractl->mapping->host))
603 if (blk_cgroup_congested())
607 ondemand_readahead(ractl, true, req_count);
609 EXPORT_SYMBOL_GPL(page_cache_async_ra);
611 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
618 if (!f.file || !(f.file->f_mode & FMODE_READ))
622 * The readahead() syscall is intended to run only on files
623 * that can execute readahead. If readahead is not possible
624 * on this file, then we must return -EINVAL.
627 if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
628 !S_ISREG(file_inode(f.file)->i_mode))
631 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
637 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
639 return ksys_readahead(fd, offset, count);
643 * readahead_expand - Expand a readahead request
644 * @ractl: The request to be expanded
645 * @new_start: The revised start
646 * @new_len: The revised size of the request
648 * Attempt to expand a readahead request outwards from the current size to the
649 * specified size by inserting locked pages before and after the current window
650 * to increase the size to the new window. This may involve the insertion of
651 * THPs, in which case the window may get expanded even beyond what was
654 * The algorithm will stop if it encounters a conflicting page already in the
655 * pagecache and leave a smaller expansion than requested.
657 * The caller must check for this by examining the revised @ractl object for a
658 * different expansion than was requested.
660 void readahead_expand(struct readahead_control *ractl,
661 loff_t new_start, size_t new_len)
663 struct address_space *mapping = ractl->mapping;
664 struct file_ra_state *ra = ractl->ra;
665 pgoff_t new_index, new_nr_pages;
666 gfp_t gfp_mask = readahead_gfp_mask(mapping);
668 new_index = new_start / PAGE_SIZE;
670 /* Expand the leading edge downwards */
671 while (ractl->_index > new_index) {
672 unsigned long index = ractl->_index - 1;
673 struct page *page = xa_load(&mapping->i_pages, index);
675 if (page && !xa_is_value(page))
676 return; /* Page apparently present */
678 page = __page_cache_alloc(gfp_mask);
681 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
687 ractl->_index = page->index;
690 new_len += new_start - readahead_pos(ractl);
691 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
693 /* Expand the trailing edge upwards */
694 while (ractl->_nr_pages < new_nr_pages) {
695 unsigned long index = ractl->_index + ractl->_nr_pages;
696 struct page *page = xa_load(&mapping->i_pages, index);
698 if (page && !xa_is_value(page))
699 return; /* Page apparently present */
701 page = __page_cache_alloc(gfp_mask);
704 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
715 EXPORT_SYMBOL(readahead_expand);