1 // SPDX-License-Identifier: GPL-2.0+
4 * Freescale QuadSPI driver.
6 * Copyright (C) 2013 Freescale Semiconductor, Inc.
7 * Copyright (C) 2018 Bootlin
8 * Copyright (C) 2018 exceet electronics GmbH
9 * Copyright (C) 2018 Kontron Electronics GmbH
11 * Transition to SPI MEM interface:
18 * Based on the original fsl-quadspi.c spi-nor driver:
19 * Author: Freescale Semiconductor, Inc.
23 #include <linux/bitops.h>
24 #include <linux/clk.h>
25 #include <linux/completion.h>
26 #include <linux/delay.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
31 #include <linux/iopoll.h>
32 #include <linux/jiffies.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/mutex.h>
37 #include <linux/of_device.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm_qos.h>
40 #include <linux/sizes.h>
42 #include <linux/spi/spi.h>
43 #include <linux/spi/spi-mem.h>
46 * The driver only uses one single LUT entry, that is updated on
47 * each call of exec_op(). Index 0 is preset at boot with a basic
48 * read operation, so let's use the last entry (15).
52 /* Registers used by the driver */
53 #define QUADSPI_MCR 0x00
54 #define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16)
55 #define QUADSPI_MCR_MDIS_MASK BIT(14)
56 #define QUADSPI_MCR_CLR_TXF_MASK BIT(11)
57 #define QUADSPI_MCR_CLR_RXF_MASK BIT(10)
58 #define QUADSPI_MCR_DDR_EN_MASK BIT(7)
59 #define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2)
60 #define QUADSPI_MCR_SWRSTHD_MASK BIT(1)
61 #define QUADSPI_MCR_SWRSTSD_MASK BIT(0)
63 #define QUADSPI_IPCR 0x08
64 #define QUADSPI_IPCR_SEQID(x) ((x) << 24)
66 #define QUADSPI_BUF0CR 0x10
67 #define QUADSPI_BUF1CR 0x14
68 #define QUADSPI_BUF2CR 0x18
69 #define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
71 #define QUADSPI_BUF3CR 0x1c
72 #define QUADSPI_BUF3CR_ALLMST_MASK BIT(31)
73 #define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8)
74 #define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8)
76 #define QUADSPI_BFGENCR 0x20
77 #define QUADSPI_BFGENCR_SEQID(x) ((x) << 12)
79 #define QUADSPI_BUF0IND 0x30
80 #define QUADSPI_BUF1IND 0x34
81 #define QUADSPI_BUF2IND 0x38
82 #define QUADSPI_SFAR 0x100
84 #define QUADSPI_SMPR 0x108
85 #define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16)
86 #define QUADSPI_SMPR_FSDLY_MASK BIT(6)
87 #define QUADSPI_SMPR_FSPHS_MASK BIT(5)
88 #define QUADSPI_SMPR_HSENA_MASK BIT(0)
90 #define QUADSPI_RBCT 0x110
91 #define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0)
92 #define QUADSPI_RBCT_RXBRD_USEIPS BIT(8)
94 #define QUADSPI_TBDR 0x154
96 #define QUADSPI_SR 0x15c
97 #define QUADSPI_SR_IP_ACC_MASK BIT(1)
98 #define QUADSPI_SR_AHB_ACC_MASK BIT(2)
100 #define QUADSPI_FR 0x160
101 #define QUADSPI_FR_TFF_MASK BIT(0)
103 #define QUADSPI_SPTRCLR 0x16c
104 #define QUADSPI_SPTRCLR_IPPTRC BIT(8)
105 #define QUADSPI_SPTRCLR_BFPTRC BIT(0)
107 #define QUADSPI_SFA1AD 0x180
108 #define QUADSPI_SFA2AD 0x184
109 #define QUADSPI_SFB1AD 0x188
110 #define QUADSPI_SFB2AD 0x18c
111 #define QUADSPI_RBDR(x) (0x200 + ((x) * 4))
113 #define QUADSPI_LUTKEY 0x300
114 #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
116 #define QUADSPI_LCKCR 0x304
117 #define QUADSPI_LCKER_LOCK BIT(0)
118 #define QUADSPI_LCKER_UNLOCK BIT(1)
120 #define QUADSPI_RSER 0x164
121 #define QUADSPI_RSER_TFIE BIT(0)
123 #define QUADSPI_LUT_BASE 0x310
124 #define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
125 #define QUADSPI_LUT_REG(idx) \
126 (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
128 /* Instruction set for the LUT register */
136 #define LUT_FSL_READ 7
137 #define LUT_FSL_WRITE 8
138 #define LUT_JMP_ON_CS 9
139 #define LUT_ADDR_DDR 10
140 #define LUT_MODE_DDR 11
141 #define LUT_MODE2_DDR 12
142 #define LUT_MODE4_DDR 13
143 #define LUT_FSL_READ_DDR 14
144 #define LUT_FSL_WRITE_DDR 15
145 #define LUT_DATA_LEARN 16
148 * The PAD definitions for LUT register.
150 * The pad stands for the number of IO lines [0:3].
151 * For example, the quad read needs four IO lines,
152 * so you should use LUT_PAD(4).
154 #define LUT_PAD(x) (fls(x) - 1)
157 * Macro for constructing the LUT entries with the following
160 * ---------------------------------------------------
161 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
162 * ---------------------------------------------------
164 #define LUT_DEF(idx, ins, pad, opr) \
165 ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
167 /* Controller needs driver to swap endianness */
168 #define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0)
170 /* Controller needs 4x internal clock */
171 #define QUADSPI_QUIRK_4X_INT_CLK BIT(1)
174 * TKT253890, the controller needs the driver to fill the txfifo with
175 * 16 bytes at least to trigger a data transfer, even though the extra
176 * data won't be transferred.
178 #define QUADSPI_QUIRK_TKT253890 BIT(2)
180 /* TKT245618, the controller cannot wake up from wait mode */
181 #define QUADSPI_QUIRK_TKT245618 BIT(3)
184 * Controller adds QSPI_AMBA_BASE (base address of the mapped memory)
185 * internally. No need to add it when setting SFXXAD and SFAR registers
187 #define QUADSPI_QUIRK_BASE_INTERNAL BIT(4)
189 struct fsl_qspi_devtype_data {
193 unsigned int ahb_buf_size;
198 static const struct fsl_qspi_devtype_data vybrid_data = {
201 .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
202 .ahb_buf_size = SZ_1K,
203 .quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
204 .little_endian = true,
207 static const struct fsl_qspi_devtype_data imx6sx_data = {
210 .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
211 .ahb_buf_size = SZ_1K,
212 .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
213 .little_endian = true,
216 static const struct fsl_qspi_devtype_data imx7d_data = {
219 .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
220 .ahb_buf_size = SZ_1K,
221 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK,
222 .little_endian = true,
225 static const struct fsl_qspi_devtype_data imx6ul_data = {
228 .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
229 .ahb_buf_size = SZ_1K,
230 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK,
231 .little_endian = true,
234 static const struct fsl_qspi_devtype_data ls1021a_data = {
237 .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
238 .ahb_buf_size = SZ_1K,
240 .little_endian = false,
243 static const struct fsl_qspi_devtype_data ls2080a_data = {
246 .ahb_buf_size = SZ_1K,
247 .invalid_mstrid = 0x0,
248 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL,
249 .little_endian = true,
253 void __iomem *iobase;
254 void __iomem *ahb_addr;
256 struct clk *clk, *clk_en;
259 const struct fsl_qspi_devtype_data *devtype_data;
261 struct pm_qos_request pm_qos_req;
265 static inline int needs_swap_endian(struct fsl_qspi *q)
267 return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
270 static inline int needs_4x_clock(struct fsl_qspi *q)
272 return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
275 static inline int needs_fill_txfifo(struct fsl_qspi *q)
277 return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
280 static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
282 return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
285 static inline int needs_amba_base_offset(struct fsl_qspi *q)
287 return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL);
291 * An IC bug makes it necessary to rearrange the 32-bit data.
292 * Later chips, such as IMX6SLX, have fixed this bug.
294 static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
296 return needs_swap_endian(q) ? __swab32(a) : a;
300 * R/W functions for big- or little-endian registers:
301 * The QSPI controller's endianness is independent of
302 * the CPU core's endianness. So far, although the CPU
303 * core is little-endian the QSPI controller can use
304 * big-endian or little-endian.
306 static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
308 if (q->devtype_data->little_endian)
309 iowrite32(val, addr);
311 iowrite32be(val, addr);
314 static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
316 if (q->devtype_data->little_endian)
317 return ioread32(addr);
319 return ioread32be(addr);
322 static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
324 struct fsl_qspi *q = dev_id;
327 /* clear interrupt */
328 reg = qspi_readl(q, q->iobase + QUADSPI_FR);
329 qspi_writel(q, reg, q->iobase + QUADSPI_FR);
331 if (reg & QUADSPI_FR_TFF_MASK)
334 dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg);
338 static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
350 static bool fsl_qspi_supports_op(struct spi_mem *mem,
351 const struct spi_mem_op *op)
353 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
356 ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
359 ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
361 if (op->dummy.nbytes)
362 ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
365 ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
371 * The number of instructions needed for the op, needs
372 * to fit into a single LUT entry.
374 if (op->addr.nbytes +
375 (op->dummy.nbytes ? 1:0) +
376 (op->data.nbytes ? 1:0) > 6)
379 /* Max 64 dummy clock cycles supported */
380 if (op->dummy.nbytes &&
381 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
384 /* Max data length, check controller limits and alignment */
385 if (op->data.dir == SPI_MEM_DATA_IN &&
386 (op->data.nbytes > q->devtype_data->ahb_buf_size ||
387 (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
388 !IS_ALIGNED(op->data.nbytes, 8))))
391 if (op->data.dir == SPI_MEM_DATA_OUT &&
392 op->data.nbytes > q->devtype_data->txfifo)
398 static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
399 const struct spi_mem_op *op)
401 void __iomem *base = q->iobase;
405 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
409 * For some unknown reason, using LUT_ADDR doesn't work in some
410 * cases (at least with only one byte long addresses), so
411 * let's use LUT_MODE to write the address bytes one by one
413 for (i = 0; i < op->addr.nbytes; i++) {
414 u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
416 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
417 LUT_PAD(op->addr.buswidth),
422 if (op->dummy.nbytes) {
423 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
424 LUT_PAD(op->dummy.buswidth),
425 op->dummy.nbytes * 8 /
430 if (op->data.nbytes) {
431 lutval[lutidx / 2] |= LUT_DEF(lutidx,
432 op->data.dir == SPI_MEM_DATA_IN ?
433 LUT_FSL_READ : LUT_FSL_WRITE,
434 LUT_PAD(op->data.buswidth),
439 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
442 qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
443 qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
446 for (i = 0; i < ARRAY_SIZE(lutval); i++)
447 qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
450 qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
451 qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
454 static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
458 ret = clk_prepare_enable(q->clk_en);
462 ret = clk_prepare_enable(q->clk);
464 clk_disable_unprepare(q->clk_en);
468 if (needs_wakeup_wait_mode(q))
469 pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);
474 static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
476 if (needs_wakeup_wait_mode(q))
477 pm_qos_remove_request(&q->pm_qos_req);
479 clk_disable_unprepare(q->clk);
480 clk_disable_unprepare(q->clk_en);
484 * If we have changed the content of the flash by writing or erasing, or if we
485 * read from flash with a different offset into the page buffer, we need to
486 * invalidate the AHB buffer. If we do not do so, we may read out the wrong
487 * data. The spec tells us reset the AHB domain and Serial Flash domain at
490 static void fsl_qspi_invalidate(struct fsl_qspi *q)
494 reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
495 reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
496 qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
499 * The minimum delay : 1 AHB + 2 SFCK clocks.
500 * Delay 1 us is enough.
504 reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
505 qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
508 static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi)
510 unsigned long rate = spi->max_speed_hz;
513 if (q->selected == spi->chip_select)
516 if (needs_4x_clock(q))
519 fsl_qspi_clk_disable_unprep(q);
521 ret = clk_set_rate(q->clk, rate);
525 ret = fsl_qspi_clk_prep_enable(q);
529 q->selected = spi->chip_select;
531 fsl_qspi_invalidate(q);
534 static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
536 memcpy_fromio(op->data.buf.in,
537 q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size,
541 static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
542 const struct spi_mem_op *op)
544 void __iomem *base = q->iobase;
548 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
549 memcpy(&val, op->data.buf.out + i, 4);
550 val = fsl_qspi_endian_xchg(q, val);
551 qspi_writel(q, val, base + QUADSPI_TBDR);
554 if (i < op->data.nbytes) {
555 memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
556 val = fsl_qspi_endian_xchg(q, val);
557 qspi_writel(q, val, base + QUADSPI_TBDR);
560 if (needs_fill_txfifo(q)) {
561 for (i = op->data.nbytes; i < 16; i += 4)
562 qspi_writel(q, 0, base + QUADSPI_TBDR);
566 static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
567 const struct spi_mem_op *op)
569 void __iomem *base = q->iobase;
571 u8 *buf = op->data.buf.in;
574 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
575 val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
576 val = fsl_qspi_endian_xchg(q, val);
577 memcpy(buf + i, &val, 4);
580 if (i < op->data.nbytes) {
581 val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
582 val = fsl_qspi_endian_xchg(q, val);
583 memcpy(buf + i, &val, op->data.nbytes - i);
587 static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
589 void __iomem *base = q->iobase;
592 init_completion(&q->c);
595 * Always start the sequence at the same index since we update
596 * the LUT at each exec_op() call. And also specify the DATA
597 * length, since it's has not been specified in the LUT.
599 qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
600 base + QUADSPI_IPCR);
602 /* Wait for the interrupt. */
603 if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)))
606 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
607 fsl_qspi_read_rxfifo(q, op);
612 static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
613 u32 mask, u32 delay_us, u32 timeout_us)
617 if (!q->devtype_data->little_endian)
618 mask = (u32)cpu_to_be32(mask);
620 return readl_poll_timeout(base, reg, !(reg & mask), delay_us,
624 static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
626 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
627 void __iomem *base = q->iobase;
630 int invalid_mstrid = q->devtype_data->invalid_mstrid;
632 mutex_lock(&q->lock);
634 /* wait for the controller being ready */
635 fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
636 QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
638 fsl_qspi_select_mem(q, mem->spi);
640 if (needs_amba_base_offset(q))
641 addr_offset = q->memmap_phy;
644 q->selected * q->devtype_data->ahb_buf_size + addr_offset,
645 base + QUADSPI_SFAR);
647 qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
648 QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
651 qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
652 base + QUADSPI_SPTRCLR);
654 qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF0CR);
655 qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF1CR);
656 qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF2CR);
658 fsl_qspi_prepare_lut(q, op);
661 * If we have large chunks of data, we read them through the AHB bus
662 * by accessing the mapped memory. In all other cases we use
663 * IP commands to access the flash.
665 if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
666 op->data.dir == SPI_MEM_DATA_IN) {
667 fsl_qspi_read_ahb(q, op);
669 qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
670 QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);
672 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
673 fsl_qspi_fill_txfifo(q, op);
675 err = fsl_qspi_do_op(q, op);
678 /* Invalidate the data in the AHB buffer. */
679 fsl_qspi_invalidate(q);
681 mutex_unlock(&q->lock);
686 static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
688 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
690 if (op->data.dir == SPI_MEM_DATA_OUT) {
691 if (op->data.nbytes > q->devtype_data->txfifo)
692 op->data.nbytes = q->devtype_data->txfifo;
694 if (op->data.nbytes > q->devtype_data->ahb_buf_size)
695 op->data.nbytes = q->devtype_data->ahb_buf_size;
696 else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
697 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
703 static int fsl_qspi_default_setup(struct fsl_qspi *q)
705 void __iomem *base = q->iobase;
706 u32 reg, addr_offset = 0;
709 /* disable and unprepare clock to avoid glitch pass to controller */
710 fsl_qspi_clk_disable_unprep(q);
712 /* the default frequency, we will change it later if necessary. */
713 ret = clk_set_rate(q->clk, 66000000);
717 ret = fsl_qspi_clk_prep_enable(q);
721 /* Reset the module */
722 qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
726 /* Disable the module */
727 qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
730 reg = qspi_readl(q, base + QUADSPI_SMPR);
731 qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
732 | QUADSPI_SMPR_FSPHS_MASK
733 | QUADSPI_SMPR_HSENA_MASK
734 | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
736 /* We only use the buffer3 for AHB read */
737 qspi_writel(q, 0, base + QUADSPI_BUF0IND);
738 qspi_writel(q, 0, base + QUADSPI_BUF1IND);
739 qspi_writel(q, 0, base + QUADSPI_BUF2IND);
741 qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
742 q->iobase + QUADSPI_BFGENCR);
743 qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
744 qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
745 QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
746 base + QUADSPI_BUF3CR);
748 if (needs_amba_base_offset(q))
749 addr_offset = q->memmap_phy;
752 * In HW there can be a maximum of four chips on two buses with
753 * two chip selects on each bus. We use four chip selects in SW
754 * to differentiate between the four chips.
755 * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD,
756 * SFB2AD accordingly.
758 qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset,
759 base + QUADSPI_SFA1AD);
760 qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset,
761 base + QUADSPI_SFA2AD);
762 qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset,
763 base + QUADSPI_SFB1AD);
764 qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset,
765 base + QUADSPI_SFB2AD);
769 /* Enable the module */
770 qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
773 /* clear all interrupt status */
774 qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
776 /* enable the interrupt */
777 qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
782 static const char *fsl_qspi_get_name(struct spi_mem *mem)
784 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
785 struct device *dev = &mem->spi->dev;
789 * In order to keep mtdparts compatible with the old MTD driver at
790 * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the
791 * platform_device of the controller.
793 if (of_get_available_child_count(q->dev->of_node) == 1)
794 return dev_name(q->dev);
796 name = devm_kasprintf(dev, GFP_KERNEL,
797 "%s-%d", dev_name(q->dev),
798 mem->spi->chip_select);
801 dev_err(dev, "failed to get memory for custom flash name\n");
802 return ERR_PTR(-ENOMEM);
808 static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
809 .adjust_op_size = fsl_qspi_adjust_op_size,
810 .supports_op = fsl_qspi_supports_op,
811 .exec_op = fsl_qspi_exec_op,
812 .get_name = fsl_qspi_get_name,
815 static int fsl_qspi_probe(struct platform_device *pdev)
817 struct spi_controller *ctlr;
818 struct device *dev = &pdev->dev;
819 struct device_node *np = dev->of_node;
820 struct resource *res;
824 ctlr = spi_alloc_master(&pdev->dev, sizeof(*q));
828 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
829 SPI_TX_DUAL | SPI_TX_QUAD;
831 q = spi_controller_get_devdata(ctlr);
833 q->devtype_data = of_device_get_match_data(dev);
834 if (!q->devtype_data) {
839 platform_set_drvdata(pdev, q);
841 /* find the resources */
842 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
843 q->iobase = devm_ioremap_resource(dev, res);
844 if (IS_ERR(q->iobase)) {
845 ret = PTR_ERR(q->iobase);
849 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
851 q->ahb_addr = devm_ioremap_resource(dev, res);
852 if (IS_ERR(q->ahb_addr)) {
853 ret = PTR_ERR(q->ahb_addr);
857 q->memmap_phy = res->start;
859 /* find the clocks */
860 q->clk_en = devm_clk_get(dev, "qspi_en");
861 if (IS_ERR(q->clk_en)) {
862 ret = PTR_ERR(q->clk_en);
866 q->clk = devm_clk_get(dev, "qspi");
867 if (IS_ERR(q->clk)) {
868 ret = PTR_ERR(q->clk);
872 ret = fsl_qspi_clk_prep_enable(q);
874 dev_err(dev, "can not enable the clock\n");
879 ret = platform_get_irq(pdev, 0);
881 goto err_disable_clk;
883 ret = devm_request_irq(dev, ret,
884 fsl_qspi_irq_handler, 0, pdev->name, q);
886 dev_err(dev, "failed to request irq: %d\n", ret);
887 goto err_disable_clk;
890 mutex_init(&q->lock);
893 ctlr->num_chipselect = 4;
894 ctlr->mem_ops = &fsl_qspi_mem_ops;
896 fsl_qspi_default_setup(q);
898 ctlr->dev.of_node = np;
900 ret = devm_spi_register_controller(dev, ctlr);
902 goto err_destroy_mutex;
907 mutex_destroy(&q->lock);
910 fsl_qspi_clk_disable_unprep(q);
913 spi_controller_put(ctlr);
915 dev_err(dev, "Freescale QuadSPI probe failed\n");
919 static int fsl_qspi_remove(struct platform_device *pdev)
921 struct fsl_qspi *q = platform_get_drvdata(pdev);
923 /* disable the hardware */
924 qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
925 qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
927 fsl_qspi_clk_disable_unprep(q);
929 mutex_destroy(&q->lock);
934 static int fsl_qspi_suspend(struct device *dev)
939 static int fsl_qspi_resume(struct device *dev)
941 struct fsl_qspi *q = dev_get_drvdata(dev);
943 fsl_qspi_default_setup(q);
948 static const struct of_device_id fsl_qspi_dt_ids[] = {
949 { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
950 { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
951 { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
952 { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
953 { .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, },
954 { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
957 MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
959 static const struct dev_pm_ops fsl_qspi_pm_ops = {
960 .suspend = fsl_qspi_suspend,
961 .resume = fsl_qspi_resume,
964 static struct platform_driver fsl_qspi_driver = {
966 .name = "fsl-quadspi",
967 .of_match_table = fsl_qspi_dt_ids,
968 .pm = &fsl_qspi_pm_ops,
970 .probe = fsl_qspi_probe,
971 .remove = fsl_qspi_remove,
973 module_platform_driver(fsl_qspi_driver);
975 MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
976 MODULE_AUTHOR("Freescale Semiconductor Inc.");
981 MODULE_LICENSE("GPL v2");