1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Generic pwmlib implementation
6 * Copyright (C) 2011-2012 Avionic Design GmbH
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
21 #include <dt-bindings/pwm/pwm.h>
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 static DEFINE_MUTEX(pwm_lock);
31 static LIST_HEAD(pwm_chips);
32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33 static RADIX_TREE(pwm_tree, GFP_KERNEL);
35 static struct pwm_device *pwm_to_device(unsigned int pwm)
37 return radix_tree_lookup(&pwm_tree, pwm);
40 static int alloc_pwms(int pwm, unsigned int count)
42 unsigned int from = 0;
51 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
54 if (pwm >= 0 && start != pwm)
57 if (start + count > MAX_PWMS)
63 static void free_pwms(struct pwm_chip *chip)
67 for (i = 0; i < chip->npwm; i++) {
68 struct pwm_device *pwm = &chip->pwms[i];
70 radix_tree_delete(&pwm_tree, pwm->pwm);
73 bitmap_clear(allocated_pwms, chip->base, chip->npwm);
79 static struct pwm_chip *pwmchip_find_by_name(const char *name)
81 struct pwm_chip *chip;
86 mutex_lock(&pwm_lock);
88 list_for_each_entry(chip, &pwm_chips, list) {
89 const char *chip_name = dev_name(chip->dev);
91 if (chip_name && strcmp(chip_name, name) == 0) {
92 mutex_unlock(&pwm_lock);
97 mutex_unlock(&pwm_lock);
102 static int pwm_device_request(struct pwm_device *pwm, const char *label)
106 if (test_bit(PWMF_REQUESTED, &pwm->flags))
109 if (!try_module_get(pwm->chip->ops->owner))
112 if (pwm->chip->ops->request) {
113 err = pwm->chip->ops->request(pwm->chip, pwm);
115 module_put(pwm->chip->ops->owner);
120 if (pwm->chip->ops->get_state) {
121 pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
122 trace_pwm_get(pwm, &pwm->state);
124 if (IS_ENABLED(PWM_DEBUG))
125 pwm->last = pwm->state;
128 set_bit(PWMF_REQUESTED, &pwm->flags);
135 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
137 struct pwm_device *pwm;
139 /* check, whether the driver supports a third cell for flags */
140 if (pc->of_pwm_n_cells < 3)
141 return ERR_PTR(-EINVAL);
143 /* flags in the third cell are optional */
144 if (args->args_count < 2)
145 return ERR_PTR(-EINVAL);
147 if (args->args[0] >= pc->npwm)
148 return ERR_PTR(-EINVAL);
150 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
154 pwm->args.period = args->args[1];
155 pwm->args.polarity = PWM_POLARITY_NORMAL;
157 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
158 pwm->args.polarity = PWM_POLARITY_INVERSED;
162 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
164 static struct pwm_device *
165 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
167 struct pwm_device *pwm;
169 /* sanity check driver support */
170 if (pc->of_pwm_n_cells < 2)
171 return ERR_PTR(-EINVAL);
173 /* all cells are required */
174 if (args->args_count != pc->of_pwm_n_cells)
175 return ERR_PTR(-EINVAL);
177 if (args->args[0] >= pc->npwm)
178 return ERR_PTR(-EINVAL);
180 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
184 pwm->args.period = args->args[1];
189 static void of_pwmchip_add(struct pwm_chip *chip)
191 if (!chip->dev || !chip->dev->of_node)
194 if (!chip->of_xlate) {
195 chip->of_xlate = of_pwm_simple_xlate;
196 chip->of_pwm_n_cells = 2;
199 of_node_get(chip->dev->of_node);
202 static void of_pwmchip_remove(struct pwm_chip *chip)
205 of_node_put(chip->dev->of_node);
209 * pwm_set_chip_data() - set private chip data for a PWM
211 * @data: pointer to chip-specific data
213 * Returns: 0 on success or a negative error code on failure.
215 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
220 pwm->chip_data = data;
224 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
227 * pwm_get_chip_data() - get private chip data for a PWM
230 * Returns: A pointer to the chip-private data for the PWM device.
232 void *pwm_get_chip_data(struct pwm_device *pwm)
234 return pwm ? pwm->chip_data : NULL;
236 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
238 static bool pwm_ops_check(const struct pwm_chip *chip)
241 const struct pwm_ops *ops = chip->ops;
243 /* driver supports legacy, non-atomic operation */
244 if (ops->config && ops->enable && ops->disable) {
245 if (IS_ENABLED(CONFIG_PWM_DEBUG))
247 "Driver needs updating to atomic API\n");
255 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
257 "Please implement the .get_state() callback\n");
263 * pwmchip_add_with_polarity() - register a new PWM chip
264 * @chip: the PWM chip to add
265 * @polarity: initial polarity of PWM channels
267 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
268 * will be used. The initial polarity for all channels is specified by the
269 * @polarity parameter.
271 * Returns: 0 on success or a negative error code on failure.
273 int pwmchip_add_with_polarity(struct pwm_chip *chip,
274 enum pwm_polarity polarity)
276 struct pwm_device *pwm;
280 if (!chip || !chip->dev || !chip->ops || !chip->npwm)
283 if (!pwm_ops_check(chip))
286 mutex_lock(&pwm_lock);
288 ret = alloc_pwms(chip->base, chip->npwm);
292 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
300 for (i = 0; i < chip->npwm; i++) {
301 pwm = &chip->pwms[i];
304 pwm->pwm = chip->base + i;
306 pwm->state.polarity = polarity;
308 radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
311 bitmap_set(allocated_pwms, chip->base, chip->npwm);
313 INIT_LIST_HEAD(&chip->list);
314 list_add(&chip->list, &pwm_chips);
318 if (IS_ENABLED(CONFIG_OF))
319 of_pwmchip_add(chip);
322 mutex_unlock(&pwm_lock);
325 pwmchip_sysfs_export(chip);
329 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
332 * pwmchip_add() - register a new PWM chip
333 * @chip: the PWM chip to add
335 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
336 * will be used. The initial polarity for all channels is normal.
338 * Returns: 0 on success or a negative error code on failure.
340 int pwmchip_add(struct pwm_chip *chip)
342 return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
344 EXPORT_SYMBOL_GPL(pwmchip_add);
347 * pwmchip_remove() - remove a PWM chip
348 * @chip: the PWM chip to remove
350 * Removes a PWM chip. This function may return busy if the PWM chip provides
351 * a PWM device that is still requested.
353 * Returns: 0 on success or a negative error code on failure.
355 int pwmchip_remove(struct pwm_chip *chip)
360 pwmchip_sysfs_unexport(chip);
362 mutex_lock(&pwm_lock);
364 for (i = 0; i < chip->npwm; i++) {
365 struct pwm_device *pwm = &chip->pwms[i];
367 if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
373 list_del_init(&chip->list);
375 if (IS_ENABLED(CONFIG_OF))
376 of_pwmchip_remove(chip);
381 mutex_unlock(&pwm_lock);
384 EXPORT_SYMBOL_GPL(pwmchip_remove);
387 * pwm_request() - request a PWM device
388 * @pwm: global PWM device index
389 * @label: PWM device label
391 * This function is deprecated, use pwm_get() instead.
393 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
396 struct pwm_device *pwm_request(int pwm, const char *label)
398 struct pwm_device *dev;
401 if (pwm < 0 || pwm >= MAX_PWMS)
402 return ERR_PTR(-EINVAL);
404 mutex_lock(&pwm_lock);
406 dev = pwm_to_device(pwm);
408 dev = ERR_PTR(-EPROBE_DEFER);
412 err = pwm_device_request(dev, label);
417 mutex_unlock(&pwm_lock);
421 EXPORT_SYMBOL_GPL(pwm_request);
424 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
426 * @index: per-chip index of the PWM to request
427 * @label: a literal description string of this PWM
429 * Returns: A pointer to the PWM device at the given index of the given PWM
430 * chip. A negative error code is returned if the index is not valid for the
431 * specified PWM chip or if the PWM device cannot be requested.
433 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
437 struct pwm_device *pwm;
440 if (!chip || index >= chip->npwm)
441 return ERR_PTR(-EINVAL);
443 mutex_lock(&pwm_lock);
444 pwm = &chip->pwms[index];
446 err = pwm_device_request(pwm, label);
450 mutex_unlock(&pwm_lock);
453 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
456 * pwm_free() - free a PWM device
459 * This function is deprecated, use pwm_put() instead.
461 void pwm_free(struct pwm_device *pwm)
465 EXPORT_SYMBOL_GPL(pwm_free);
467 static void pwm_apply_state_debug(struct pwm_device *pwm,
468 const struct pwm_state *state)
470 struct pwm_state *last = &pwm->last;
471 struct pwm_chip *chip = pwm->chip;
472 struct pwm_state s1, s2;
475 if (!IS_ENABLED(CONFIG_PWM_DEBUG))
478 /* No reasonable diagnosis possible without .get_state() */
479 if (!chip->ops->get_state)
483 * *state was just applied. Read out the hardware state and do some
487 chip->ops->get_state(chip, pwm, &s1);
488 trace_pwm_get(pwm, &s1);
491 * The lowlevel driver either ignored .polarity (which is a bug) or as
492 * best effort inverted .polarity and fixed .duty_cycle respectively.
493 * Undo this inversion and fixup for further tests.
495 if (s1.enabled && s1.polarity != state->polarity) {
496 s2.polarity = state->polarity;
497 s2.duty_cycle = s1.period - s1.duty_cycle;
498 s2.period = s1.period;
499 s2.enabled = s1.enabled;
504 if (s2.polarity != state->polarity &&
505 state->duty_cycle < state->period)
506 dev_warn(chip->dev, ".apply ignored .polarity\n");
508 if (state->enabled &&
509 last->polarity == state->polarity &&
510 last->period > s2.period &&
511 last->period <= state->period)
513 ".apply didn't pick the best available period (requested: %u, applied: %u, possible: %u)\n",
514 state->period, s2.period, last->period);
516 if (state->enabled && state->period < s2.period)
518 ".apply is supposed to round down period (requested: %u, applied: %u)\n",
519 state->period, s2.period);
521 if (state->enabled &&
522 last->polarity == state->polarity &&
523 last->period == s2.period &&
524 last->duty_cycle > s2.duty_cycle &&
525 last->duty_cycle <= state->duty_cycle)
527 ".apply didn't pick the best available duty cycle (requested: %u/%u, applied: %u/%u, possible: %u/%u)\n",
528 state->duty_cycle, state->period,
529 s2.duty_cycle, s2.period,
530 last->duty_cycle, last->period);
532 if (state->enabled && state->duty_cycle < s2.duty_cycle)
534 ".apply is supposed to round down duty_cycle (requested: %u/%u, applied: %u/%u)\n",
535 state->duty_cycle, state->period,
536 s2.duty_cycle, s2.period);
538 if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
540 "requested disabled, but yielded enabled with duty > 0");
542 /* reapply the state that the driver reported being configured. */
543 err = chip->ops->apply(chip, pwm, &s1);
546 dev_err(chip->dev, "failed to reapply current setting\n");
550 trace_pwm_apply(pwm, &s1);
552 chip->ops->get_state(chip, pwm, last);
553 trace_pwm_get(pwm, last);
555 /* reapplication of the current state should give an exact match */
556 if (s1.enabled != last->enabled ||
557 s1.polarity != last->polarity ||
558 (s1.enabled && s1.period != last->period) ||
559 (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
561 ".apply is not idempotent (ena=%d pol=%d %u/%u) -> (ena=%d pol=%d %u/%u)\n",
562 s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
563 last->enabled, last->polarity, last->duty_cycle,
569 * pwm_apply_state() - atomically apply a new state to a PWM device
571 * @state: new state to apply
573 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
575 struct pwm_chip *chip;
578 if (!pwm || !state || !state->period ||
579 state->duty_cycle > state->period)
584 if (state->period == pwm->state.period &&
585 state->duty_cycle == pwm->state.duty_cycle &&
586 state->polarity == pwm->state.polarity &&
587 state->enabled == pwm->state.enabled)
590 if (chip->ops->apply) {
591 err = chip->ops->apply(chip, pwm, state);
595 trace_pwm_apply(pwm, state);
600 * only do this after pwm->state was applied as some
601 * implementations of .get_state depend on this
603 pwm_apply_state_debug(pwm, state);
606 * FIXME: restore the initial state in case of error.
608 if (state->polarity != pwm->state.polarity) {
609 if (!chip->ops->set_polarity)
613 * Changing the polarity of a running PWM is
614 * only allowed when the PWM driver implements
617 if (pwm->state.enabled) {
618 chip->ops->disable(chip, pwm);
619 pwm->state.enabled = false;
622 err = chip->ops->set_polarity(chip, pwm,
627 pwm->state.polarity = state->polarity;
630 if (state->period != pwm->state.period ||
631 state->duty_cycle != pwm->state.duty_cycle) {
632 err = chip->ops->config(pwm->chip, pwm,
638 pwm->state.duty_cycle = state->duty_cycle;
639 pwm->state.period = state->period;
642 if (state->enabled != pwm->state.enabled) {
643 if (state->enabled) {
644 err = chip->ops->enable(chip, pwm);
648 chip->ops->disable(chip, pwm);
651 pwm->state.enabled = state->enabled;
657 EXPORT_SYMBOL_GPL(pwm_apply_state);
660 * pwm_capture() - capture and report a PWM signal
662 * @result: structure to fill with capture result
663 * @timeout: time to wait, in milliseconds, before giving up on capture
665 * Returns: 0 on success or a negative error code on failure.
667 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
668 unsigned long timeout)
672 if (!pwm || !pwm->chip->ops)
675 if (!pwm->chip->ops->capture)
678 mutex_lock(&pwm_lock);
679 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
680 mutex_unlock(&pwm_lock);
684 EXPORT_SYMBOL_GPL(pwm_capture);
687 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
690 * This function will adjust the PWM config to the PWM arguments provided
691 * by the DT or PWM lookup table. This is particularly useful to adapt
692 * the bootloader config to the Linux one.
694 int pwm_adjust_config(struct pwm_device *pwm)
696 struct pwm_state state;
697 struct pwm_args pargs;
699 pwm_get_args(pwm, &pargs);
700 pwm_get_state(pwm, &state);
703 * If the current period is zero it means that either the PWM driver
704 * does not support initial state retrieval or the PWM has not yet
707 * In either case, we setup the new period and polarity, and assign a
711 state.duty_cycle = 0;
712 state.period = pargs.period;
713 state.polarity = pargs.polarity;
715 return pwm_apply_state(pwm, &state);
719 * Adjust the PWM duty cycle/period based on the period value provided
722 if (pargs.period != state.period) {
723 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
725 do_div(dutycycle, state.period);
726 state.duty_cycle = dutycycle;
727 state.period = pargs.period;
731 * If the polarity changed, we should also change the duty cycle.
733 if (pargs.polarity != state.polarity) {
734 state.polarity = pargs.polarity;
735 state.duty_cycle = state.period - state.duty_cycle;
738 return pwm_apply_state(pwm, &state);
740 EXPORT_SYMBOL_GPL(pwm_adjust_config);
742 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
744 struct pwm_chip *chip;
746 mutex_lock(&pwm_lock);
748 list_for_each_entry(chip, &pwm_chips, list)
749 if (chip->dev && chip->dev->of_node == np) {
750 mutex_unlock(&pwm_lock);
754 mutex_unlock(&pwm_lock);
756 return ERR_PTR(-EPROBE_DEFER);
759 static struct device_link *pwm_device_link_add(struct device *dev,
760 struct pwm_device *pwm)
762 struct device_link *dl;
766 * No device for the PWM consumer has been provided. It may
767 * impact the PM sequence ordering: the PWM supplier may get
768 * suspended before the consumer.
770 dev_warn(pwm->chip->dev,
771 "No consumer device specified to create a link to\n");
775 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
777 dev_err(dev, "failed to create device link to %s\n",
778 dev_name(pwm->chip->dev));
779 return ERR_PTR(-EINVAL);
786 * of_pwm_get() - request a PWM via the PWM framework
787 * @dev: device for PWM consumer
788 * @np: device node to get the PWM from
789 * @con_id: consumer name
791 * Returns the PWM device parsed from the phandle and index specified in the
792 * "pwms" property of a device tree node or a negative error-code on failure.
793 * Values parsed from the device tree are stored in the returned PWM device
796 * If con_id is NULL, the first PWM device listed in the "pwms" property will
797 * be requested. Otherwise the "pwm-names" property is used to do a reverse
798 * lookup of the PWM index. This also means that the "pwm-names" property
799 * becomes mandatory for devices that look up the PWM device via the con_id
802 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
803 * error code on failure.
805 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
808 struct pwm_device *pwm = NULL;
809 struct of_phandle_args args;
810 struct device_link *dl;
816 index = of_property_match_string(np, "pwm-names", con_id);
818 return ERR_PTR(index);
821 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
824 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
828 pc = of_node_to_pwmchip(args.np);
830 if (PTR_ERR(pc) != -EPROBE_DEFER)
831 pr_err("%s(): PWM chip not found\n", __func__);
837 pwm = pc->of_xlate(pc, &args);
841 dl = pwm_device_link_add(dev, pwm);
843 /* of_xlate ended up calling pwm_request_from_chip() */
850 * If a consumer name was not given, try to look it up from the
851 * "pwm-names" property if it exists. Otherwise use the name of
852 * the user device node.
855 err = of_property_read_string_index(np, "pwm-names", index,
864 of_node_put(args.np);
868 EXPORT_SYMBOL_GPL(of_pwm_get);
870 #if IS_ENABLED(CONFIG_ACPI)
871 static struct pwm_chip *device_to_pwmchip(struct device *dev)
873 struct pwm_chip *chip;
875 mutex_lock(&pwm_lock);
877 list_for_each_entry(chip, &pwm_chips, list) {
878 struct acpi_device *adev = ACPI_COMPANION(chip->dev);
880 if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
881 mutex_unlock(&pwm_lock);
886 mutex_unlock(&pwm_lock);
888 return ERR_PTR(-EPROBE_DEFER);
893 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
894 * @fwnode: firmware node to get the "pwm" property from
896 * Returns the PWM device parsed from the fwnode and index specified in the
897 * "pwms" property or a negative error-code on failure.
898 * Values parsed from the device tree are stored in the returned PWM device
901 * This is analogous to of_pwm_get() except con_id is not yet supported.
902 * ACPI entries must look like
903 * Package () {"pwms", Package ()
904 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
906 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
907 * error code on failure.
909 static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
911 struct pwm_device *pwm = ERR_PTR(-ENODEV);
912 #if IS_ENABLED(CONFIG_ACPI)
913 struct fwnode_reference_args args;
914 struct acpi_device *acpi;
915 struct pwm_chip *chip;
918 memset(&args, 0, sizeof(args));
920 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
924 acpi = to_acpi_device_node(args.fwnode);
926 return ERR_PTR(-EINVAL);
929 return ERR_PTR(-EPROTO);
931 chip = device_to_pwmchip(&acpi->dev);
933 return ERR_CAST(chip);
935 pwm = pwm_request_from_chip(chip, args.args[0], NULL);
939 pwm->args.period = args.args[1];
940 pwm->args.polarity = PWM_POLARITY_NORMAL;
942 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
943 pwm->args.polarity = PWM_POLARITY_INVERSED;
950 * pwm_add_table() - register PWM device consumers
951 * @table: array of consumers to register
952 * @num: number of consumers in table
954 void pwm_add_table(struct pwm_lookup *table, size_t num)
956 mutex_lock(&pwm_lookup_lock);
959 list_add_tail(&table->list, &pwm_lookup_list);
963 mutex_unlock(&pwm_lookup_lock);
967 * pwm_remove_table() - unregister PWM device consumers
968 * @table: array of consumers to unregister
969 * @num: number of consumers in table
971 void pwm_remove_table(struct pwm_lookup *table, size_t num)
973 mutex_lock(&pwm_lookup_lock);
976 list_del(&table->list);
980 mutex_unlock(&pwm_lookup_lock);
984 * pwm_get() - look up and request a PWM device
985 * @dev: device for PWM consumer
986 * @con_id: consumer name
988 * Lookup is first attempted using DT. If the device was not instantiated from
989 * a device tree, a PWM chip and a relative index is looked up via a table
990 * supplied by board setup code (see pwm_add_table()).
992 * Once a PWM chip has been found the specified PWM device will be requested
993 * and is ready to be used.
995 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
996 * error code on failure.
998 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1000 const char *dev_id = dev ? dev_name(dev) : NULL;
1001 struct pwm_device *pwm;
1002 struct pwm_chip *chip;
1003 struct device_link *dl;
1004 unsigned int best = 0;
1005 struct pwm_lookup *p, *chosen = NULL;
1009 /* look up via DT first */
1010 if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
1011 return of_pwm_get(dev, dev->of_node, con_id);
1013 /* then lookup via ACPI */
1014 if (dev && is_acpi_node(dev->fwnode)) {
1015 pwm = acpi_pwm_get(dev->fwnode);
1016 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1021 * We look up the provider in the static table typically provided by
1022 * board setup code. We first try to lookup the consumer device by
1023 * name. If the consumer device was passed in as NULL or if no match
1024 * was found, we try to find the consumer by directly looking it up
1027 * If a match is found, the provider PWM chip is looked up by name
1028 * and a PWM device is requested using the PWM device per-chip index.
1030 * The lookup algorithm was shamelessly taken from the clock
1033 * We do slightly fuzzy matching here:
1034 * An entry with a NULL ID is assumed to be a wildcard.
1035 * If an entry has a device ID, it must match
1036 * If an entry has a connection ID, it must match
1037 * Then we take the most specific entry - with the following order
1038 * of precedence: dev+con > dev only > con only.
1040 mutex_lock(&pwm_lookup_lock);
1042 list_for_each_entry(p, &pwm_lookup_list, list) {
1046 if (!dev_id || strcmp(p->dev_id, dev_id))
1053 if (!con_id || strcmp(p->con_id, con_id))
1069 mutex_unlock(&pwm_lookup_lock);
1072 return ERR_PTR(-ENODEV);
1074 chip = pwmchip_find_by_name(chosen->provider);
1077 * If the lookup entry specifies a module, load the module and retry
1078 * the PWM chip lookup. This can be used to work around driver load
1079 * ordering issues if driver's can't be made to properly support the
1080 * deferred probe mechanism.
1082 if (!chip && chosen->module) {
1083 err = request_module(chosen->module);
1085 chip = pwmchip_find_by_name(chosen->provider);
1089 return ERR_PTR(-EPROBE_DEFER);
1091 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1095 dl = pwm_device_link_add(dev, pwm);
1098 return ERR_CAST(dl);
1101 pwm->args.period = chosen->period;
1102 pwm->args.polarity = chosen->polarity;
1106 EXPORT_SYMBOL_GPL(pwm_get);
1109 * pwm_put() - release a PWM device
1112 void pwm_put(struct pwm_device *pwm)
1117 mutex_lock(&pwm_lock);
1119 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1120 pr_warn("PWM device already freed\n");
1124 if (pwm->chip->ops->free)
1125 pwm->chip->ops->free(pwm->chip, pwm);
1127 pwm_set_chip_data(pwm, NULL);
1130 module_put(pwm->chip->ops->owner);
1132 mutex_unlock(&pwm_lock);
1134 EXPORT_SYMBOL_GPL(pwm_put);
1136 static void devm_pwm_release(struct device *dev, void *res)
1138 pwm_put(*(struct pwm_device **)res);
1142 * devm_pwm_get() - resource managed pwm_get()
1143 * @dev: device for PWM consumer
1144 * @con_id: consumer name
1146 * This function performs like pwm_get() but the acquired PWM device will
1147 * automatically be released on driver detach.
1149 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1150 * error code on failure.
1152 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1154 struct pwm_device **ptr, *pwm;
1156 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1158 return ERR_PTR(-ENOMEM);
1160 pwm = pwm_get(dev, con_id);
1163 devres_add(dev, ptr);
1170 EXPORT_SYMBOL_GPL(devm_pwm_get);
1173 * devm_of_pwm_get() - resource managed of_pwm_get()
1174 * @dev: device for PWM consumer
1175 * @np: device node to get the PWM from
1176 * @con_id: consumer name
1178 * This function performs like of_pwm_get() but the acquired PWM device will
1179 * automatically be released on driver detach.
1181 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1182 * error code on failure.
1184 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1187 struct pwm_device **ptr, *pwm;
1189 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1191 return ERR_PTR(-ENOMEM);
1193 pwm = of_pwm_get(dev, np, con_id);
1196 devres_add(dev, ptr);
1203 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1206 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1207 * @dev: device for PWM consumer
1208 * @fwnode: firmware node to get the PWM from
1209 * @con_id: consumer name
1211 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1212 * acpi_pwm_get() for a detailed description.
1214 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1215 * error code on failure.
1217 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1218 struct fwnode_handle *fwnode,
1221 struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1223 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1225 return ERR_PTR(-ENOMEM);
1227 if (is_of_node(fwnode))
1228 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1229 else if (is_acpi_node(fwnode))
1230 pwm = acpi_pwm_get(fwnode);
1234 devres_add(dev, ptr);
1241 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1243 static int devm_pwm_match(struct device *dev, void *res, void *data)
1245 struct pwm_device **p = res;
1247 if (WARN_ON(!p || !*p))
1254 * devm_pwm_put() - resource managed pwm_put()
1255 * @dev: device for PWM consumer
1258 * Release a PWM previously allocated using devm_pwm_get(). Calling this
1259 * function is usually not needed because devm-allocated resources are
1260 * automatically released on driver detach.
1262 void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1264 WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1266 EXPORT_SYMBOL_GPL(devm_pwm_put);
1268 #ifdef CONFIG_DEBUG_FS
1269 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1273 for (i = 0; i < chip->npwm; i++) {
1274 struct pwm_device *pwm = &chip->pwms[i];
1275 struct pwm_state state;
1277 pwm_get_state(pwm, &state);
1279 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1281 if (test_bit(PWMF_REQUESTED, &pwm->flags))
1282 seq_puts(s, " requested");
1285 seq_puts(s, " enabled");
1287 seq_printf(s, " period: %u ns", state.period);
1288 seq_printf(s, " duty: %u ns", state.duty_cycle);
1289 seq_printf(s, " polarity: %s",
1290 state.polarity ? "inverse" : "normal");
1296 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1298 mutex_lock(&pwm_lock);
1301 return seq_list_start(&pwm_chips, *pos);
1304 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1308 return seq_list_next(v, &pwm_chips, pos);
1311 static void pwm_seq_stop(struct seq_file *s, void *v)
1313 mutex_unlock(&pwm_lock);
1316 static int pwm_seq_show(struct seq_file *s, void *v)
1318 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1320 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1321 chip->dev->bus ? chip->dev->bus->name : "no-bus",
1322 dev_name(chip->dev), chip->npwm,
1323 (chip->npwm != 1) ? "s" : "");
1325 pwm_dbg_show(chip, s);
1330 static const struct seq_operations pwm_seq_ops = {
1331 .start = pwm_seq_start,
1332 .next = pwm_seq_next,
1333 .stop = pwm_seq_stop,
1334 .show = pwm_seq_show,
1337 static int pwm_seq_open(struct inode *inode, struct file *file)
1339 return seq_open(file, &pwm_seq_ops);
1342 static const struct file_operations pwm_debugfs_ops = {
1343 .owner = THIS_MODULE,
1344 .open = pwm_seq_open,
1346 .llseek = seq_lseek,
1347 .release = seq_release,
1350 static int __init pwm_debugfs_init(void)
1352 debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1357 subsys_initcall(pwm_debugfs_init);
1358 #endif /* CONFIG_DEBUG_FS */