]> Git Repo - linux.git/blob - drivers/infiniband/core/verbs.c
Merge tag 'v6.1-rc8' into rdma.git for-next
[linux.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59                                struct rdma_ah_attr *ah_attr);
60
61 static const char * const ib_events[] = {
62         [IB_EVENT_CQ_ERR]               = "CQ error",
63         [IB_EVENT_QP_FATAL]             = "QP fatal error",
64         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
65         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
66         [IB_EVENT_COMM_EST]             = "communication established",
67         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
68         [IB_EVENT_PATH_MIG]             = "path migration successful",
69         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
70         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
71         [IB_EVENT_PORT_ACTIVE]          = "port active",
72         [IB_EVENT_PORT_ERR]             = "port error",
73         [IB_EVENT_LID_CHANGE]           = "LID change",
74         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
75         [IB_EVENT_SM_CHANGE]            = "SM change",
76         [IB_EVENT_SRQ_ERR]              = "SRQ error",
77         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
78         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
79         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
80         [IB_EVENT_GID_CHANGE]           = "GID changed",
81 };
82
83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85         size_t index = event;
86
87         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88                         ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93         [IB_WC_SUCCESS]                 = "success",
94         [IB_WC_LOC_LEN_ERR]             = "local length error",
95         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
96         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
97         [IB_WC_LOC_PROT_ERR]            = "local protection error",
98         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
99         [IB_WC_MW_BIND_ERR]             = "memory bind operation error",
100         [IB_WC_BAD_RESP_ERR]            = "bad response error",
101         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
102         [IB_WC_REM_INV_REQ_ERR]         = "remote invalid request error",
103         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
104         [IB_WC_REM_OP_ERR]              = "remote operation error",
105         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
106         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
107         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
108         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
109         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
110         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
111         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
112         [IB_WC_FATAL_ERR]               = "fatal error",
113         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
114         [IB_WC_GENERAL_ERR]             = "general error",
115 };
116
117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119         size_t index = status;
120
121         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122                         wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128         switch (rate) {
129         case IB_RATE_2_5_GBPS: return   1;
130         case IB_RATE_5_GBPS:   return   2;
131         case IB_RATE_10_GBPS:  return   4;
132         case IB_RATE_20_GBPS:  return   8;
133         case IB_RATE_30_GBPS:  return  12;
134         case IB_RATE_40_GBPS:  return  16;
135         case IB_RATE_60_GBPS:  return  24;
136         case IB_RATE_80_GBPS:  return  32;
137         case IB_RATE_120_GBPS: return  48;
138         case IB_RATE_14_GBPS:  return   6;
139         case IB_RATE_56_GBPS:  return  22;
140         case IB_RATE_112_GBPS: return  45;
141         case IB_RATE_168_GBPS: return  67;
142         case IB_RATE_25_GBPS:  return  10;
143         case IB_RATE_100_GBPS: return  40;
144         case IB_RATE_200_GBPS: return  80;
145         case IB_RATE_300_GBPS: return 120;
146         case IB_RATE_28_GBPS:  return  11;
147         case IB_RATE_50_GBPS:  return  20;
148         case IB_RATE_400_GBPS: return 160;
149         case IB_RATE_600_GBPS: return 240;
150         default:               return  -1;
151         }
152 }
153 EXPORT_SYMBOL(ib_rate_to_mult);
154
155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156 {
157         switch (mult) {
158         case 1:   return IB_RATE_2_5_GBPS;
159         case 2:   return IB_RATE_5_GBPS;
160         case 4:   return IB_RATE_10_GBPS;
161         case 8:   return IB_RATE_20_GBPS;
162         case 12:  return IB_RATE_30_GBPS;
163         case 16:  return IB_RATE_40_GBPS;
164         case 24:  return IB_RATE_60_GBPS;
165         case 32:  return IB_RATE_80_GBPS;
166         case 48:  return IB_RATE_120_GBPS;
167         case 6:   return IB_RATE_14_GBPS;
168         case 22:  return IB_RATE_56_GBPS;
169         case 45:  return IB_RATE_112_GBPS;
170         case 67:  return IB_RATE_168_GBPS;
171         case 10:  return IB_RATE_25_GBPS;
172         case 40:  return IB_RATE_100_GBPS;
173         case 80:  return IB_RATE_200_GBPS;
174         case 120: return IB_RATE_300_GBPS;
175         case 11:  return IB_RATE_28_GBPS;
176         case 20:  return IB_RATE_50_GBPS;
177         case 160: return IB_RATE_400_GBPS;
178         case 240: return IB_RATE_600_GBPS;
179         default:  return IB_RATE_PORT_CURRENT;
180         }
181 }
182 EXPORT_SYMBOL(mult_to_ib_rate);
183
184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185 {
186         switch (rate) {
187         case IB_RATE_2_5_GBPS: return 2500;
188         case IB_RATE_5_GBPS:   return 5000;
189         case IB_RATE_10_GBPS:  return 10000;
190         case IB_RATE_20_GBPS:  return 20000;
191         case IB_RATE_30_GBPS:  return 30000;
192         case IB_RATE_40_GBPS:  return 40000;
193         case IB_RATE_60_GBPS:  return 60000;
194         case IB_RATE_80_GBPS:  return 80000;
195         case IB_RATE_120_GBPS: return 120000;
196         case IB_RATE_14_GBPS:  return 14062;
197         case IB_RATE_56_GBPS:  return 56250;
198         case IB_RATE_112_GBPS: return 112500;
199         case IB_RATE_168_GBPS: return 168750;
200         case IB_RATE_25_GBPS:  return 25781;
201         case IB_RATE_100_GBPS: return 103125;
202         case IB_RATE_200_GBPS: return 206250;
203         case IB_RATE_300_GBPS: return 309375;
204         case IB_RATE_28_GBPS:  return 28125;
205         case IB_RATE_50_GBPS:  return 53125;
206         case IB_RATE_400_GBPS: return 425000;
207         case IB_RATE_600_GBPS: return 637500;
208         default:               return -1;
209         }
210 }
211 EXPORT_SYMBOL(ib_rate_to_mbps);
212
213 __attribute_const__ enum rdma_transport_type
214 rdma_node_get_transport(unsigned int node_type)
215 {
216
217         if (node_type == RDMA_NODE_USNIC)
218                 return RDMA_TRANSPORT_USNIC;
219         if (node_type == RDMA_NODE_USNIC_UDP)
220                 return RDMA_TRANSPORT_USNIC_UDP;
221         if (node_type == RDMA_NODE_RNIC)
222                 return RDMA_TRANSPORT_IWARP;
223         if (node_type == RDMA_NODE_UNSPECIFIED)
224                 return RDMA_TRANSPORT_UNSPECIFIED;
225
226         return RDMA_TRANSPORT_IB;
227 }
228 EXPORT_SYMBOL(rdma_node_get_transport);
229
230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
231                                               u32 port_num)
232 {
233         enum rdma_transport_type lt;
234         if (device->ops.get_link_layer)
235                 return device->ops.get_link_layer(device, port_num);
236
237         lt = rdma_node_get_transport(device->node_type);
238         if (lt == RDMA_TRANSPORT_IB)
239                 return IB_LINK_LAYER_INFINIBAND;
240
241         return IB_LINK_LAYER_ETHERNET;
242 }
243 EXPORT_SYMBOL(rdma_port_get_link_layer);
244
245 /* Protection domains */
246
247 /**
248  * __ib_alloc_pd - Allocates an unused protection domain.
249  * @device: The device on which to allocate the protection domain.
250  * @flags: protection domain flags
251  * @caller: caller's build-time module name
252  *
253  * A protection domain object provides an association between QPs, shared
254  * receive queues, address handles, memory regions, and memory windows.
255  *
256  * Every PD has a local_dma_lkey which can be used as the lkey value for local
257  * memory operations.
258  */
259 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
260                 const char *caller)
261 {
262         struct ib_pd *pd;
263         int mr_access_flags = 0;
264         int ret;
265
266         pd = rdma_zalloc_drv_obj(device, ib_pd);
267         if (!pd)
268                 return ERR_PTR(-ENOMEM);
269
270         pd->device = device;
271         pd->flags = flags;
272
273         rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
274         rdma_restrack_set_name(&pd->res, caller);
275
276         ret = device->ops.alloc_pd(pd, NULL);
277         if (ret) {
278                 rdma_restrack_put(&pd->res);
279                 kfree(pd);
280                 return ERR_PTR(ret);
281         }
282         rdma_restrack_add(&pd->res);
283
284         if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
285                 pd->local_dma_lkey = device->local_dma_lkey;
286         else
287                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
288
289         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
290                 pr_warn("%s: enabling unsafe global rkey\n", caller);
291                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
292         }
293
294         if (mr_access_flags) {
295                 struct ib_mr *mr;
296
297                 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
298                 if (IS_ERR(mr)) {
299                         ib_dealloc_pd(pd);
300                         return ERR_CAST(mr);
301                 }
302
303                 mr->device      = pd->device;
304                 mr->pd          = pd;
305                 mr->type        = IB_MR_TYPE_DMA;
306                 mr->uobject     = NULL;
307                 mr->need_inval  = false;
308
309                 pd->__internal_mr = mr;
310
311                 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
312                         pd->local_dma_lkey = pd->__internal_mr->lkey;
313
314                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
315                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
316         }
317
318         return pd;
319 }
320 EXPORT_SYMBOL(__ib_alloc_pd);
321
322 /**
323  * ib_dealloc_pd_user - Deallocates a protection domain.
324  * @pd: The protection domain to deallocate.
325  * @udata: Valid user data or NULL for kernel object
326  *
327  * It is an error to call this function while any resources in the pd still
328  * exist.  The caller is responsible to synchronously destroy them and
329  * guarantee no new allocations will happen.
330  */
331 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
332 {
333         int ret;
334
335         if (pd->__internal_mr) {
336                 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
337                 WARN_ON(ret);
338                 pd->__internal_mr = NULL;
339         }
340
341         ret = pd->device->ops.dealloc_pd(pd, udata);
342         if (ret)
343                 return ret;
344
345         rdma_restrack_del(&pd->res);
346         kfree(pd);
347         return ret;
348 }
349 EXPORT_SYMBOL(ib_dealloc_pd_user);
350
351 /* Address handles */
352
353 /**
354  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
355  * @dest:       Pointer to destination ah_attr. Contents of the destination
356  *              pointer is assumed to be invalid and attribute are overwritten.
357  * @src:        Pointer to source ah_attr.
358  */
359 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
360                        const struct rdma_ah_attr *src)
361 {
362         *dest = *src;
363         if (dest->grh.sgid_attr)
364                 rdma_hold_gid_attr(dest->grh.sgid_attr);
365 }
366 EXPORT_SYMBOL(rdma_copy_ah_attr);
367
368 /**
369  * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
370  * @old:        Pointer to existing ah_attr which needs to be replaced.
371  *              old is assumed to be valid or zero'd
372  * @new:        Pointer to the new ah_attr.
373  *
374  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
375  * old the ah_attr is valid; after that it copies the new attribute and holds
376  * the reference to the replaced ah_attr.
377  */
378 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
379                           const struct rdma_ah_attr *new)
380 {
381         rdma_destroy_ah_attr(old);
382         *old = *new;
383         if (old->grh.sgid_attr)
384                 rdma_hold_gid_attr(old->grh.sgid_attr);
385 }
386 EXPORT_SYMBOL(rdma_replace_ah_attr);
387
388 /**
389  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
390  * @dest:       Pointer to destination ah_attr to copy to.
391  *              dest is assumed to be valid or zero'd
392  * @src:        Pointer to the new ah_attr.
393  *
394  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
395  * if it is valid. This also transfers ownership of internal references from
396  * src to dest, making src invalid in the process. No new reference of the src
397  * ah_attr is taken.
398  */
399 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
400 {
401         rdma_destroy_ah_attr(dest);
402         *dest = *src;
403         src->grh.sgid_attr = NULL;
404 }
405 EXPORT_SYMBOL(rdma_move_ah_attr);
406
407 /*
408  * Validate that the rdma_ah_attr is valid for the device before passing it
409  * off to the driver.
410  */
411 static int rdma_check_ah_attr(struct ib_device *device,
412                               struct rdma_ah_attr *ah_attr)
413 {
414         if (!rdma_is_port_valid(device, ah_attr->port_num))
415                 return -EINVAL;
416
417         if ((rdma_is_grh_required(device, ah_attr->port_num) ||
418              ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
419             !(ah_attr->ah_flags & IB_AH_GRH))
420                 return -EINVAL;
421
422         if (ah_attr->grh.sgid_attr) {
423                 /*
424                  * Make sure the passed sgid_attr is consistent with the
425                  * parameters
426                  */
427                 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
428                     ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
429                         return -EINVAL;
430         }
431         return 0;
432 }
433
434 /*
435  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
436  * On success the caller is responsible to call rdma_unfill_sgid_attr().
437  */
438 static int rdma_fill_sgid_attr(struct ib_device *device,
439                                struct rdma_ah_attr *ah_attr,
440                                const struct ib_gid_attr **old_sgid_attr)
441 {
442         const struct ib_gid_attr *sgid_attr;
443         struct ib_global_route *grh;
444         int ret;
445
446         *old_sgid_attr = ah_attr->grh.sgid_attr;
447
448         ret = rdma_check_ah_attr(device, ah_attr);
449         if (ret)
450                 return ret;
451
452         if (!(ah_attr->ah_flags & IB_AH_GRH))
453                 return 0;
454
455         grh = rdma_ah_retrieve_grh(ah_attr);
456         if (grh->sgid_attr)
457                 return 0;
458
459         sgid_attr =
460                 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
461         if (IS_ERR(sgid_attr))
462                 return PTR_ERR(sgid_attr);
463
464         /* Move ownerhip of the kref into the ah_attr */
465         grh->sgid_attr = sgid_attr;
466         return 0;
467 }
468
469 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
470                                   const struct ib_gid_attr *old_sgid_attr)
471 {
472         /*
473          * Fill didn't change anything, the caller retains ownership of
474          * whatever it passed
475          */
476         if (ah_attr->grh.sgid_attr == old_sgid_attr)
477                 return;
478
479         /*
480          * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
481          * doesn't see any change in the rdma_ah_attr. If we get here
482          * old_sgid_attr is NULL.
483          */
484         rdma_destroy_ah_attr(ah_attr);
485 }
486
487 static const struct ib_gid_attr *
488 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
489                       const struct ib_gid_attr *old_attr)
490 {
491         if (old_attr)
492                 rdma_put_gid_attr(old_attr);
493         if (ah_attr->ah_flags & IB_AH_GRH) {
494                 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
495                 return ah_attr->grh.sgid_attr;
496         }
497         return NULL;
498 }
499
500 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
501                                      struct rdma_ah_attr *ah_attr,
502                                      u32 flags,
503                                      struct ib_udata *udata,
504                                      struct net_device *xmit_slave)
505 {
506         struct rdma_ah_init_attr init_attr = {};
507         struct ib_device *device = pd->device;
508         struct ib_ah *ah;
509         int ret;
510
511         might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
512
513         if (!udata && !device->ops.create_ah)
514                 return ERR_PTR(-EOPNOTSUPP);
515
516         ah = rdma_zalloc_drv_obj_gfp(
517                 device, ib_ah,
518                 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
519         if (!ah)
520                 return ERR_PTR(-ENOMEM);
521
522         ah->device = device;
523         ah->pd = pd;
524         ah->type = ah_attr->type;
525         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
526         init_attr.ah_attr = ah_attr;
527         init_attr.flags = flags;
528         init_attr.xmit_slave = xmit_slave;
529
530         if (udata)
531                 ret = device->ops.create_user_ah(ah, &init_attr, udata);
532         else
533                 ret = device->ops.create_ah(ah, &init_attr, NULL);
534         if (ret) {
535                 kfree(ah);
536                 return ERR_PTR(ret);
537         }
538
539         atomic_inc(&pd->usecnt);
540         return ah;
541 }
542
543 /**
544  * rdma_create_ah - Creates an address handle for the
545  * given address vector.
546  * @pd: The protection domain associated with the address handle.
547  * @ah_attr: The attributes of the address vector.
548  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
549  *
550  * It returns 0 on success and returns appropriate error code on error.
551  * The address handle is used to reference a local or global destination
552  * in all UD QP post sends.
553  */
554 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
555                              u32 flags)
556 {
557         const struct ib_gid_attr *old_sgid_attr;
558         struct net_device *slave;
559         struct ib_ah *ah;
560         int ret;
561
562         ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
563         if (ret)
564                 return ERR_PTR(ret);
565         slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
566                                            (flags & RDMA_CREATE_AH_SLEEPABLE) ?
567                                            GFP_KERNEL : GFP_ATOMIC);
568         if (IS_ERR(slave)) {
569                 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
570                 return (void *)slave;
571         }
572         ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
573         rdma_lag_put_ah_roce_slave(slave);
574         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
575         return ah;
576 }
577 EXPORT_SYMBOL(rdma_create_ah);
578
579 /**
580  * rdma_create_user_ah - Creates an address handle for the
581  * given address vector.
582  * It resolves destination mac address for ah attribute of RoCE type.
583  * @pd: The protection domain associated with the address handle.
584  * @ah_attr: The attributes of the address vector.
585  * @udata: pointer to user's input output buffer information need by
586  *         provider driver.
587  *
588  * It returns 0 on success and returns appropriate error code on error.
589  * The address handle is used to reference a local or global destination
590  * in all UD QP post sends.
591  */
592 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
593                                   struct rdma_ah_attr *ah_attr,
594                                   struct ib_udata *udata)
595 {
596         const struct ib_gid_attr *old_sgid_attr;
597         struct ib_ah *ah;
598         int err;
599
600         err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
601         if (err)
602                 return ERR_PTR(err);
603
604         if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
605                 err = ib_resolve_eth_dmac(pd->device, ah_attr);
606                 if (err) {
607                         ah = ERR_PTR(err);
608                         goto out;
609                 }
610         }
611
612         ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
613                              udata, NULL);
614
615 out:
616         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
617         return ah;
618 }
619 EXPORT_SYMBOL(rdma_create_user_ah);
620
621 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
622 {
623         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
624         struct iphdr ip4h_checked;
625         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
626
627         /* If it's IPv6, the version must be 6, otherwise, the first
628          * 20 bytes (before the IPv4 header) are garbled.
629          */
630         if (ip6h->version != 6)
631                 return (ip4h->version == 4) ? 4 : 0;
632         /* version may be 6 or 4 because the first 20 bytes could be garbled */
633
634         /* RoCE v2 requires no options, thus header length
635          * must be 5 words
636          */
637         if (ip4h->ihl != 5)
638                 return 6;
639
640         /* Verify checksum.
641          * We can't write on scattered buffers so we need to copy to
642          * temp buffer.
643          */
644         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
645         ip4h_checked.check = 0;
646         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
647         /* if IPv4 header checksum is OK, believe it */
648         if (ip4h->check == ip4h_checked.check)
649                 return 4;
650         return 6;
651 }
652 EXPORT_SYMBOL(ib_get_rdma_header_version);
653
654 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
655                                                      u32 port_num,
656                                                      const struct ib_grh *grh)
657 {
658         int grh_version;
659
660         if (rdma_protocol_ib(device, port_num))
661                 return RDMA_NETWORK_IB;
662
663         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
664
665         if (grh_version == 4)
666                 return RDMA_NETWORK_IPV4;
667
668         if (grh->next_hdr == IPPROTO_UDP)
669                 return RDMA_NETWORK_IPV6;
670
671         return RDMA_NETWORK_ROCE_V1;
672 }
673
674 struct find_gid_index_context {
675         u16 vlan_id;
676         enum ib_gid_type gid_type;
677 };
678
679 static bool find_gid_index(const union ib_gid *gid,
680                            const struct ib_gid_attr *gid_attr,
681                            void *context)
682 {
683         struct find_gid_index_context *ctx = context;
684         u16 vlan_id = 0xffff;
685         int ret;
686
687         if (ctx->gid_type != gid_attr->gid_type)
688                 return false;
689
690         ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
691         if (ret)
692                 return false;
693
694         return ctx->vlan_id == vlan_id;
695 }
696
697 static const struct ib_gid_attr *
698 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
699                        u16 vlan_id, const union ib_gid *sgid,
700                        enum ib_gid_type gid_type)
701 {
702         struct find_gid_index_context context = {.vlan_id = vlan_id,
703                                                  .gid_type = gid_type};
704
705         return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
706                                        &context);
707 }
708
709 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
710                               enum rdma_network_type net_type,
711                               union ib_gid *sgid, union ib_gid *dgid)
712 {
713         struct sockaddr_in  src_in;
714         struct sockaddr_in  dst_in;
715         __be32 src_saddr, dst_saddr;
716
717         if (!sgid || !dgid)
718                 return -EINVAL;
719
720         if (net_type == RDMA_NETWORK_IPV4) {
721                 memcpy(&src_in.sin_addr.s_addr,
722                        &hdr->roce4grh.saddr, 4);
723                 memcpy(&dst_in.sin_addr.s_addr,
724                        &hdr->roce4grh.daddr, 4);
725                 src_saddr = src_in.sin_addr.s_addr;
726                 dst_saddr = dst_in.sin_addr.s_addr;
727                 ipv6_addr_set_v4mapped(src_saddr,
728                                        (struct in6_addr *)sgid);
729                 ipv6_addr_set_v4mapped(dst_saddr,
730                                        (struct in6_addr *)dgid);
731                 return 0;
732         } else if (net_type == RDMA_NETWORK_IPV6 ||
733                    net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
734                 *dgid = hdr->ibgrh.dgid;
735                 *sgid = hdr->ibgrh.sgid;
736                 return 0;
737         } else {
738                 return -EINVAL;
739         }
740 }
741 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
742
743 /* Resolve destination mac address and hop limit for unicast destination
744  * GID entry, considering the source GID entry as well.
745  * ah_attribute must have have valid port_num, sgid_index.
746  */
747 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
748                                        struct rdma_ah_attr *ah_attr)
749 {
750         struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
751         const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
752         int hop_limit = 0xff;
753         int ret = 0;
754
755         /* If destination is link local and source GID is RoCEv1,
756          * IP stack is not used.
757          */
758         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
759             sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
760                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
761                                 ah_attr->roce.dmac);
762                 return ret;
763         }
764
765         ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
766                                            ah_attr->roce.dmac,
767                                            sgid_attr, &hop_limit);
768
769         grh->hop_limit = hop_limit;
770         return ret;
771 }
772
773 /*
774  * This function initializes address handle attributes from the incoming packet.
775  * Incoming packet has dgid of the receiver node on which this code is
776  * getting executed and, sgid contains the GID of the sender.
777  *
778  * When resolving mac address of destination, the arrived dgid is used
779  * as sgid and, sgid is used as dgid because sgid contains destinations
780  * GID whom to respond to.
781  *
782  * On success the caller is responsible to call rdma_destroy_ah_attr on the
783  * attr.
784  */
785 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
786                             const struct ib_wc *wc, const struct ib_grh *grh,
787                             struct rdma_ah_attr *ah_attr)
788 {
789         u32 flow_class;
790         int ret;
791         enum rdma_network_type net_type = RDMA_NETWORK_IB;
792         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
793         const struct ib_gid_attr *sgid_attr;
794         int hoplimit = 0xff;
795         union ib_gid dgid;
796         union ib_gid sgid;
797
798         might_sleep();
799
800         memset(ah_attr, 0, sizeof *ah_attr);
801         ah_attr->type = rdma_ah_find_type(device, port_num);
802         if (rdma_cap_eth_ah(device, port_num)) {
803                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
804                         net_type = wc->network_hdr_type;
805                 else
806                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
807                 gid_type = ib_network_to_gid_type(net_type);
808         }
809         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
810                                         &sgid, &dgid);
811         if (ret)
812                 return ret;
813
814         rdma_ah_set_sl(ah_attr, wc->sl);
815         rdma_ah_set_port_num(ah_attr, port_num);
816
817         if (rdma_protocol_roce(device, port_num)) {
818                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
819                                 wc->vlan_id : 0xffff;
820
821                 if (!(wc->wc_flags & IB_WC_GRH))
822                         return -EPROTOTYPE;
823
824                 sgid_attr = get_sgid_attr_from_eth(device, port_num,
825                                                    vlan_id, &dgid,
826                                                    gid_type);
827                 if (IS_ERR(sgid_attr))
828                         return PTR_ERR(sgid_attr);
829
830                 flow_class = be32_to_cpu(grh->version_tclass_flow);
831                 rdma_move_grh_sgid_attr(ah_attr,
832                                         &sgid,
833                                         flow_class & 0xFFFFF,
834                                         hoplimit,
835                                         (flow_class >> 20) & 0xFF,
836                                         sgid_attr);
837
838                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
839                 if (ret)
840                         rdma_destroy_ah_attr(ah_attr);
841
842                 return ret;
843         } else {
844                 rdma_ah_set_dlid(ah_attr, wc->slid);
845                 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
846
847                 if ((wc->wc_flags & IB_WC_GRH) == 0)
848                         return 0;
849
850                 if (dgid.global.interface_id !=
851                                         cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
852                         sgid_attr = rdma_find_gid_by_port(
853                                 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
854                 } else
855                         sgid_attr = rdma_get_gid_attr(device, port_num, 0);
856
857                 if (IS_ERR(sgid_attr))
858                         return PTR_ERR(sgid_attr);
859                 flow_class = be32_to_cpu(grh->version_tclass_flow);
860                 rdma_move_grh_sgid_attr(ah_attr,
861                                         &sgid,
862                                         flow_class & 0xFFFFF,
863                                         hoplimit,
864                                         (flow_class >> 20) & 0xFF,
865                                         sgid_attr);
866
867                 return 0;
868         }
869 }
870 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
871
872 /**
873  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
874  * of the reference
875  *
876  * @attr:       Pointer to AH attribute structure
877  * @dgid:       Destination GID
878  * @flow_label: Flow label
879  * @hop_limit:  Hop limit
880  * @traffic_class: traffic class
881  * @sgid_attr:  Pointer to SGID attribute
882  *
883  * This takes ownership of the sgid_attr reference. The caller must ensure
884  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
885  * calling this function.
886  */
887 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
888                              u32 flow_label, u8 hop_limit, u8 traffic_class,
889                              const struct ib_gid_attr *sgid_attr)
890 {
891         rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
892                         traffic_class);
893         attr->grh.sgid_attr = sgid_attr;
894 }
895 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
896
897 /**
898  * rdma_destroy_ah_attr - Release reference to SGID attribute of
899  * ah attribute.
900  * @ah_attr: Pointer to ah attribute
901  *
902  * Release reference to the SGID attribute of the ah attribute if it is
903  * non NULL. It is safe to call this multiple times, and safe to call it on
904  * a zero initialized ah_attr.
905  */
906 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
907 {
908         if (ah_attr->grh.sgid_attr) {
909                 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
910                 ah_attr->grh.sgid_attr = NULL;
911         }
912 }
913 EXPORT_SYMBOL(rdma_destroy_ah_attr);
914
915 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
916                                    const struct ib_grh *grh, u32 port_num)
917 {
918         struct rdma_ah_attr ah_attr;
919         struct ib_ah *ah;
920         int ret;
921
922         ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
923         if (ret)
924                 return ERR_PTR(ret);
925
926         ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
927
928         rdma_destroy_ah_attr(&ah_attr);
929         return ah;
930 }
931 EXPORT_SYMBOL(ib_create_ah_from_wc);
932
933 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
934 {
935         const struct ib_gid_attr *old_sgid_attr;
936         int ret;
937
938         if (ah->type != ah_attr->type)
939                 return -EINVAL;
940
941         ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
942         if (ret)
943                 return ret;
944
945         ret = ah->device->ops.modify_ah ?
946                 ah->device->ops.modify_ah(ah, ah_attr) :
947                 -EOPNOTSUPP;
948
949         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
950         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
951         return ret;
952 }
953 EXPORT_SYMBOL(rdma_modify_ah);
954
955 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
956 {
957         ah_attr->grh.sgid_attr = NULL;
958
959         return ah->device->ops.query_ah ?
960                 ah->device->ops.query_ah(ah, ah_attr) :
961                 -EOPNOTSUPP;
962 }
963 EXPORT_SYMBOL(rdma_query_ah);
964
965 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
966 {
967         const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
968         struct ib_pd *pd;
969         int ret;
970
971         might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
972
973         pd = ah->pd;
974
975         ret = ah->device->ops.destroy_ah(ah, flags);
976         if (ret)
977                 return ret;
978
979         atomic_dec(&pd->usecnt);
980         if (sgid_attr)
981                 rdma_put_gid_attr(sgid_attr);
982
983         kfree(ah);
984         return ret;
985 }
986 EXPORT_SYMBOL(rdma_destroy_ah_user);
987
988 /* Shared receive queues */
989
990 /**
991  * ib_create_srq_user - Creates a SRQ associated with the specified protection
992  *   domain.
993  * @pd: The protection domain associated with the SRQ.
994  * @srq_init_attr: A list of initial attributes required to create the
995  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
996  *   the actual capabilities of the created SRQ.
997  * @uobject: uobject pointer if this is not a kernel SRQ
998  * @udata: udata pointer if this is not a kernel SRQ
999  *
1000  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1001  * requested size of the SRQ, and set to the actual values allocated
1002  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1003  * will always be at least as large as the requested values.
1004  */
1005 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1006                                   struct ib_srq_init_attr *srq_init_attr,
1007                                   struct ib_usrq_object *uobject,
1008                                   struct ib_udata *udata)
1009 {
1010         struct ib_srq *srq;
1011         int ret;
1012
1013         srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1014         if (!srq)
1015                 return ERR_PTR(-ENOMEM);
1016
1017         srq->device = pd->device;
1018         srq->pd = pd;
1019         srq->event_handler = srq_init_attr->event_handler;
1020         srq->srq_context = srq_init_attr->srq_context;
1021         srq->srq_type = srq_init_attr->srq_type;
1022         srq->uobject = uobject;
1023
1024         if (ib_srq_has_cq(srq->srq_type)) {
1025                 srq->ext.cq = srq_init_attr->ext.cq;
1026                 atomic_inc(&srq->ext.cq->usecnt);
1027         }
1028         if (srq->srq_type == IB_SRQT_XRC) {
1029                 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1030                 if (srq->ext.xrc.xrcd)
1031                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1032         }
1033         atomic_inc(&pd->usecnt);
1034
1035         rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1036         rdma_restrack_parent_name(&srq->res, &pd->res);
1037
1038         ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1039         if (ret) {
1040                 rdma_restrack_put(&srq->res);
1041                 atomic_dec(&pd->usecnt);
1042                 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1043                         atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1044                 if (ib_srq_has_cq(srq->srq_type))
1045                         atomic_dec(&srq->ext.cq->usecnt);
1046                 kfree(srq);
1047                 return ERR_PTR(ret);
1048         }
1049
1050         rdma_restrack_add(&srq->res);
1051
1052         return srq;
1053 }
1054 EXPORT_SYMBOL(ib_create_srq_user);
1055
1056 int ib_modify_srq(struct ib_srq *srq,
1057                   struct ib_srq_attr *srq_attr,
1058                   enum ib_srq_attr_mask srq_attr_mask)
1059 {
1060         return srq->device->ops.modify_srq ?
1061                 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1062                                             NULL) : -EOPNOTSUPP;
1063 }
1064 EXPORT_SYMBOL(ib_modify_srq);
1065
1066 int ib_query_srq(struct ib_srq *srq,
1067                  struct ib_srq_attr *srq_attr)
1068 {
1069         return srq->device->ops.query_srq ?
1070                 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1071 }
1072 EXPORT_SYMBOL(ib_query_srq);
1073
1074 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1075 {
1076         int ret;
1077
1078         if (atomic_read(&srq->usecnt))
1079                 return -EBUSY;
1080
1081         ret = srq->device->ops.destroy_srq(srq, udata);
1082         if (ret)
1083                 return ret;
1084
1085         atomic_dec(&srq->pd->usecnt);
1086         if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1087                 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1088         if (ib_srq_has_cq(srq->srq_type))
1089                 atomic_dec(&srq->ext.cq->usecnt);
1090         rdma_restrack_del(&srq->res);
1091         kfree(srq);
1092
1093         return ret;
1094 }
1095 EXPORT_SYMBOL(ib_destroy_srq_user);
1096
1097 /* Queue pairs */
1098
1099 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1100 {
1101         struct ib_qp *qp = context;
1102         unsigned long flags;
1103
1104         spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1105         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1106                 if (event->element.qp->event_handler)
1107                         event->element.qp->event_handler(event, event->element.qp->qp_context);
1108         spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1109 }
1110
1111 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1112                                   void (*event_handler)(struct ib_event *, void *),
1113                                   void *qp_context)
1114 {
1115         struct ib_qp *qp;
1116         unsigned long flags;
1117         int err;
1118
1119         qp = kzalloc(sizeof *qp, GFP_KERNEL);
1120         if (!qp)
1121                 return ERR_PTR(-ENOMEM);
1122
1123         qp->real_qp = real_qp;
1124         err = ib_open_shared_qp_security(qp, real_qp->device);
1125         if (err) {
1126                 kfree(qp);
1127                 return ERR_PTR(err);
1128         }
1129
1130         qp->real_qp = real_qp;
1131         atomic_inc(&real_qp->usecnt);
1132         qp->device = real_qp->device;
1133         qp->event_handler = event_handler;
1134         qp->qp_context = qp_context;
1135         qp->qp_num = real_qp->qp_num;
1136         qp->qp_type = real_qp->qp_type;
1137
1138         spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1139         list_add(&qp->open_list, &real_qp->open_list);
1140         spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1141
1142         return qp;
1143 }
1144
1145 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1146                          struct ib_qp_open_attr *qp_open_attr)
1147 {
1148         struct ib_qp *qp, *real_qp;
1149
1150         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1151                 return ERR_PTR(-EINVAL);
1152
1153         down_read(&xrcd->tgt_qps_rwsem);
1154         real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1155         if (!real_qp) {
1156                 up_read(&xrcd->tgt_qps_rwsem);
1157                 return ERR_PTR(-EINVAL);
1158         }
1159         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1160                           qp_open_attr->qp_context);
1161         up_read(&xrcd->tgt_qps_rwsem);
1162         return qp;
1163 }
1164 EXPORT_SYMBOL(ib_open_qp);
1165
1166 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1167                                         struct ib_qp_init_attr *qp_init_attr)
1168 {
1169         struct ib_qp *real_qp = qp;
1170         int err;
1171
1172         qp->event_handler = __ib_shared_qp_event_handler;
1173         qp->qp_context = qp;
1174         qp->pd = NULL;
1175         qp->send_cq = qp->recv_cq = NULL;
1176         qp->srq = NULL;
1177         qp->xrcd = qp_init_attr->xrcd;
1178         atomic_inc(&qp_init_attr->xrcd->usecnt);
1179         INIT_LIST_HEAD(&qp->open_list);
1180
1181         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1182                           qp_init_attr->qp_context);
1183         if (IS_ERR(qp))
1184                 return qp;
1185
1186         err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1187                               real_qp, GFP_KERNEL));
1188         if (err) {
1189                 ib_close_qp(qp);
1190                 return ERR_PTR(err);
1191         }
1192         return qp;
1193 }
1194
1195 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1196                                struct ib_qp_init_attr *attr,
1197                                struct ib_udata *udata,
1198                                struct ib_uqp_object *uobj, const char *caller)
1199 {
1200         struct ib_udata dummy = {};
1201         struct ib_qp *qp;
1202         int ret;
1203
1204         if (!dev->ops.create_qp)
1205                 return ERR_PTR(-EOPNOTSUPP);
1206
1207         qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1208         if (!qp)
1209                 return ERR_PTR(-ENOMEM);
1210
1211         qp->device = dev;
1212         qp->pd = pd;
1213         qp->uobject = uobj;
1214         qp->real_qp = qp;
1215
1216         qp->qp_type = attr->qp_type;
1217         qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1218         qp->srq = attr->srq;
1219         qp->event_handler = attr->event_handler;
1220         qp->port = attr->port_num;
1221         qp->qp_context = attr->qp_context;
1222
1223         spin_lock_init(&qp->mr_lock);
1224         INIT_LIST_HEAD(&qp->rdma_mrs);
1225         INIT_LIST_HEAD(&qp->sig_mrs);
1226
1227         qp->send_cq = attr->send_cq;
1228         qp->recv_cq = attr->recv_cq;
1229
1230         rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1231         WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1232         rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1233         ret = dev->ops.create_qp(qp, attr, udata);
1234         if (ret)
1235                 goto err_create;
1236
1237         /*
1238          * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1239          * Unfortunately, it is not an easy task to fix that driver.
1240          */
1241         qp->send_cq = attr->send_cq;
1242         qp->recv_cq = attr->recv_cq;
1243
1244         ret = ib_create_qp_security(qp, dev);
1245         if (ret)
1246                 goto err_security;
1247
1248         rdma_restrack_add(&qp->res);
1249         return qp;
1250
1251 err_security:
1252         qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1253 err_create:
1254         rdma_restrack_put(&qp->res);
1255         kfree(qp);
1256         return ERR_PTR(ret);
1257
1258 }
1259
1260 /**
1261  * ib_create_qp_user - Creates a QP associated with the specified protection
1262  *   domain.
1263  * @dev: IB device
1264  * @pd: The protection domain associated with the QP.
1265  * @attr: A list of initial attributes required to create the
1266  *   QP.  If QP creation succeeds, then the attributes are updated to
1267  *   the actual capabilities of the created QP.
1268  * @udata: User data
1269  * @uobj: uverbs obect
1270  * @caller: caller's build-time module name
1271  */
1272 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1273                                 struct ib_qp_init_attr *attr,
1274                                 struct ib_udata *udata,
1275                                 struct ib_uqp_object *uobj, const char *caller)
1276 {
1277         struct ib_qp *qp, *xrc_qp;
1278
1279         if (attr->qp_type == IB_QPT_XRC_TGT)
1280                 qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1281         else
1282                 qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1283         if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1284                 return qp;
1285
1286         xrc_qp = create_xrc_qp_user(qp, attr);
1287         if (IS_ERR(xrc_qp)) {
1288                 ib_destroy_qp(qp);
1289                 return xrc_qp;
1290         }
1291
1292         xrc_qp->uobject = uobj;
1293         return xrc_qp;
1294 }
1295 EXPORT_SYMBOL(ib_create_qp_user);
1296
1297 void ib_qp_usecnt_inc(struct ib_qp *qp)
1298 {
1299         if (qp->pd)
1300                 atomic_inc(&qp->pd->usecnt);
1301         if (qp->send_cq)
1302                 atomic_inc(&qp->send_cq->usecnt);
1303         if (qp->recv_cq)
1304                 atomic_inc(&qp->recv_cq->usecnt);
1305         if (qp->srq)
1306                 atomic_inc(&qp->srq->usecnt);
1307         if (qp->rwq_ind_tbl)
1308                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1309 }
1310 EXPORT_SYMBOL(ib_qp_usecnt_inc);
1311
1312 void ib_qp_usecnt_dec(struct ib_qp *qp)
1313 {
1314         if (qp->rwq_ind_tbl)
1315                 atomic_dec(&qp->rwq_ind_tbl->usecnt);
1316         if (qp->srq)
1317                 atomic_dec(&qp->srq->usecnt);
1318         if (qp->recv_cq)
1319                 atomic_dec(&qp->recv_cq->usecnt);
1320         if (qp->send_cq)
1321                 atomic_dec(&qp->send_cq->usecnt);
1322         if (qp->pd)
1323                 atomic_dec(&qp->pd->usecnt);
1324 }
1325 EXPORT_SYMBOL(ib_qp_usecnt_dec);
1326
1327 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1328                                   struct ib_qp_init_attr *qp_init_attr,
1329                                   const char *caller)
1330 {
1331         struct ib_device *device = pd->device;
1332         struct ib_qp *qp;
1333         int ret;
1334
1335         /*
1336          * If the callers is using the RDMA API calculate the resources
1337          * needed for the RDMA READ/WRITE operations.
1338          *
1339          * Note that these callers need to pass in a port number.
1340          */
1341         if (qp_init_attr->cap.max_rdma_ctxs)
1342                 rdma_rw_init_qp(device, qp_init_attr);
1343
1344         qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1345         if (IS_ERR(qp))
1346                 return qp;
1347
1348         ib_qp_usecnt_inc(qp);
1349
1350         if (qp_init_attr->cap.max_rdma_ctxs) {
1351                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1352                 if (ret)
1353                         goto err;
1354         }
1355
1356         /*
1357          * Note: all hw drivers guarantee that max_send_sge is lower than
1358          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1359          * max_send_sge <= max_sge_rd.
1360          */
1361         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1362         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1363                                  device->attrs.max_sge_rd);
1364         if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1365                 qp->integrity_en = true;
1366
1367         return qp;
1368
1369 err:
1370         ib_destroy_qp(qp);
1371         return ERR_PTR(ret);
1372
1373 }
1374 EXPORT_SYMBOL(ib_create_qp_kernel);
1375
1376 static const struct {
1377         int                     valid;
1378         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1379         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1380 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1381         [IB_QPS_RESET] = {
1382                 [IB_QPS_RESET] = { .valid = 1 },
1383                 [IB_QPS_INIT]  = {
1384                         .valid = 1,
1385                         .req_param = {
1386                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1387                                                 IB_QP_PORT                      |
1388                                                 IB_QP_QKEY),
1389                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1390                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1391                                                 IB_QP_PORT                      |
1392                                                 IB_QP_ACCESS_FLAGS),
1393                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1394                                                 IB_QP_PORT                      |
1395                                                 IB_QP_ACCESS_FLAGS),
1396                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1397                                                 IB_QP_PORT                      |
1398                                                 IB_QP_ACCESS_FLAGS),
1399                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1400                                                 IB_QP_PORT                      |
1401                                                 IB_QP_ACCESS_FLAGS),
1402                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1403                                                 IB_QP_QKEY),
1404                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1405                                                 IB_QP_QKEY),
1406                         }
1407                 },
1408         },
1409         [IB_QPS_INIT]  = {
1410                 [IB_QPS_RESET] = { .valid = 1 },
1411                 [IB_QPS_ERR] =   { .valid = 1 },
1412                 [IB_QPS_INIT]  = {
1413                         .valid = 1,
1414                         .opt_param = {
1415                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1416                                                 IB_QP_PORT                      |
1417                                                 IB_QP_QKEY),
1418                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1419                                                 IB_QP_PORT                      |
1420                                                 IB_QP_ACCESS_FLAGS),
1421                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1422                                                 IB_QP_PORT                      |
1423                                                 IB_QP_ACCESS_FLAGS),
1424                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1425                                                 IB_QP_PORT                      |
1426                                                 IB_QP_ACCESS_FLAGS),
1427                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1428                                                 IB_QP_PORT                      |
1429                                                 IB_QP_ACCESS_FLAGS),
1430                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1431                                                 IB_QP_QKEY),
1432                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1433                                                 IB_QP_QKEY),
1434                         }
1435                 },
1436                 [IB_QPS_RTR]   = {
1437                         .valid = 1,
1438                         .req_param = {
1439                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1440                                                 IB_QP_PATH_MTU                  |
1441                                                 IB_QP_DEST_QPN                  |
1442                                                 IB_QP_RQ_PSN),
1443                                 [IB_QPT_RC]  = (IB_QP_AV                        |
1444                                                 IB_QP_PATH_MTU                  |
1445                                                 IB_QP_DEST_QPN                  |
1446                                                 IB_QP_RQ_PSN                    |
1447                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1448                                                 IB_QP_MIN_RNR_TIMER),
1449                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1450                                                 IB_QP_PATH_MTU                  |
1451                                                 IB_QP_DEST_QPN                  |
1452                                                 IB_QP_RQ_PSN),
1453                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1454                                                 IB_QP_PATH_MTU                  |
1455                                                 IB_QP_DEST_QPN                  |
1456                                                 IB_QP_RQ_PSN                    |
1457                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1458                                                 IB_QP_MIN_RNR_TIMER),
1459                         },
1460                         .opt_param = {
1461                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1462                                                  IB_QP_QKEY),
1463                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1464                                                  IB_QP_ACCESS_FLAGS             |
1465                                                  IB_QP_PKEY_INDEX),
1466                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1467                                                  IB_QP_ACCESS_FLAGS             |
1468                                                  IB_QP_PKEY_INDEX),
1469                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1470                                                  IB_QP_ACCESS_FLAGS             |
1471                                                  IB_QP_PKEY_INDEX),
1472                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1473                                                  IB_QP_ACCESS_FLAGS             |
1474                                                  IB_QP_PKEY_INDEX),
1475                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1476                                                  IB_QP_QKEY),
1477                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1478                                                  IB_QP_QKEY),
1479                          },
1480                 },
1481         },
1482         [IB_QPS_RTR]   = {
1483                 [IB_QPS_RESET] = { .valid = 1 },
1484                 [IB_QPS_ERR] =   { .valid = 1 },
1485                 [IB_QPS_RTS]   = {
1486                         .valid = 1,
1487                         .req_param = {
1488                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1489                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1490                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1491                                                 IB_QP_RETRY_CNT                 |
1492                                                 IB_QP_RNR_RETRY                 |
1493                                                 IB_QP_SQ_PSN                    |
1494                                                 IB_QP_MAX_QP_RD_ATOMIC),
1495                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1496                                                 IB_QP_RETRY_CNT                 |
1497                                                 IB_QP_RNR_RETRY                 |
1498                                                 IB_QP_SQ_PSN                    |
1499                                                 IB_QP_MAX_QP_RD_ATOMIC),
1500                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1501                                                 IB_QP_SQ_PSN),
1502                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1503                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1504                         },
1505                         .opt_param = {
1506                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1507                                                  IB_QP_QKEY),
1508                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1509                                                  IB_QP_ALT_PATH                 |
1510                                                  IB_QP_ACCESS_FLAGS             |
1511                                                  IB_QP_PATH_MIG_STATE),
1512                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1513                                                  IB_QP_ALT_PATH                 |
1514                                                  IB_QP_ACCESS_FLAGS             |
1515                                                  IB_QP_MIN_RNR_TIMER            |
1516                                                  IB_QP_PATH_MIG_STATE),
1517                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1518                                                  IB_QP_ALT_PATH                 |
1519                                                  IB_QP_ACCESS_FLAGS             |
1520                                                  IB_QP_PATH_MIG_STATE),
1521                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1522                                                  IB_QP_ALT_PATH                 |
1523                                                  IB_QP_ACCESS_FLAGS             |
1524                                                  IB_QP_MIN_RNR_TIMER            |
1525                                                  IB_QP_PATH_MIG_STATE),
1526                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1527                                                  IB_QP_QKEY),
1528                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1529                                                  IB_QP_QKEY),
1530                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1531                          }
1532                 }
1533         },
1534         [IB_QPS_RTS]   = {
1535                 [IB_QPS_RESET] = { .valid = 1 },
1536                 [IB_QPS_ERR] =   { .valid = 1 },
1537                 [IB_QPS_RTS]   = {
1538                         .valid = 1,
1539                         .opt_param = {
1540                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1541                                                 IB_QP_QKEY),
1542                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1543                                                 IB_QP_ACCESS_FLAGS              |
1544                                                 IB_QP_ALT_PATH                  |
1545                                                 IB_QP_PATH_MIG_STATE),
1546                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1547                                                 IB_QP_ACCESS_FLAGS              |
1548                                                 IB_QP_ALT_PATH                  |
1549                                                 IB_QP_PATH_MIG_STATE            |
1550                                                 IB_QP_MIN_RNR_TIMER),
1551                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1552                                                 IB_QP_ACCESS_FLAGS              |
1553                                                 IB_QP_ALT_PATH                  |
1554                                                 IB_QP_PATH_MIG_STATE),
1555                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1556                                                 IB_QP_ACCESS_FLAGS              |
1557                                                 IB_QP_ALT_PATH                  |
1558                                                 IB_QP_PATH_MIG_STATE            |
1559                                                 IB_QP_MIN_RNR_TIMER),
1560                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1561                                                 IB_QP_QKEY),
1562                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1563                                                 IB_QP_QKEY),
1564                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1565                         }
1566                 },
1567                 [IB_QPS_SQD]   = {
1568                         .valid = 1,
1569                         .opt_param = {
1570                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1571                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1572                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1573                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1574                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1575                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1576                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1577                         }
1578                 },
1579         },
1580         [IB_QPS_SQD]   = {
1581                 [IB_QPS_RESET] = { .valid = 1 },
1582                 [IB_QPS_ERR] =   { .valid = 1 },
1583                 [IB_QPS_RTS]   = {
1584                         .valid = 1,
1585                         .opt_param = {
1586                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1587                                                 IB_QP_QKEY),
1588                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1589                                                 IB_QP_ALT_PATH                  |
1590                                                 IB_QP_ACCESS_FLAGS              |
1591                                                 IB_QP_PATH_MIG_STATE),
1592                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1593                                                 IB_QP_ALT_PATH                  |
1594                                                 IB_QP_ACCESS_FLAGS              |
1595                                                 IB_QP_MIN_RNR_TIMER             |
1596                                                 IB_QP_PATH_MIG_STATE),
1597                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1598                                                 IB_QP_ALT_PATH                  |
1599                                                 IB_QP_ACCESS_FLAGS              |
1600                                                 IB_QP_PATH_MIG_STATE),
1601                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1602                                                 IB_QP_ALT_PATH                  |
1603                                                 IB_QP_ACCESS_FLAGS              |
1604                                                 IB_QP_MIN_RNR_TIMER             |
1605                                                 IB_QP_PATH_MIG_STATE),
1606                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1607                                                 IB_QP_QKEY),
1608                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1609                                                 IB_QP_QKEY),
1610                         }
1611                 },
1612                 [IB_QPS_SQD]   = {
1613                         .valid = 1,
1614                         .opt_param = {
1615                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1616                                                 IB_QP_QKEY),
1617                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1618                                                 IB_QP_ALT_PATH                  |
1619                                                 IB_QP_ACCESS_FLAGS              |
1620                                                 IB_QP_PKEY_INDEX                |
1621                                                 IB_QP_PATH_MIG_STATE),
1622                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1623                                                 IB_QP_AV                        |
1624                                                 IB_QP_TIMEOUT                   |
1625                                                 IB_QP_RETRY_CNT                 |
1626                                                 IB_QP_RNR_RETRY                 |
1627                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1628                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1629                                                 IB_QP_ALT_PATH                  |
1630                                                 IB_QP_ACCESS_FLAGS              |
1631                                                 IB_QP_PKEY_INDEX                |
1632                                                 IB_QP_MIN_RNR_TIMER             |
1633                                                 IB_QP_PATH_MIG_STATE),
1634                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1635                                                 IB_QP_AV                        |
1636                                                 IB_QP_TIMEOUT                   |
1637                                                 IB_QP_RETRY_CNT                 |
1638                                                 IB_QP_RNR_RETRY                 |
1639                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1640                                                 IB_QP_ALT_PATH                  |
1641                                                 IB_QP_ACCESS_FLAGS              |
1642                                                 IB_QP_PKEY_INDEX                |
1643                                                 IB_QP_PATH_MIG_STATE),
1644                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1645                                                 IB_QP_AV                        |
1646                                                 IB_QP_TIMEOUT                   |
1647                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1648                                                 IB_QP_ALT_PATH                  |
1649                                                 IB_QP_ACCESS_FLAGS              |
1650                                                 IB_QP_PKEY_INDEX                |
1651                                                 IB_QP_MIN_RNR_TIMER             |
1652                                                 IB_QP_PATH_MIG_STATE),
1653                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1654                                                 IB_QP_QKEY),
1655                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1656                                                 IB_QP_QKEY),
1657                         }
1658                 }
1659         },
1660         [IB_QPS_SQE]   = {
1661                 [IB_QPS_RESET] = { .valid = 1 },
1662                 [IB_QPS_ERR] =   { .valid = 1 },
1663                 [IB_QPS_RTS]   = {
1664                         .valid = 1,
1665                         .opt_param = {
1666                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1667                                                 IB_QP_QKEY),
1668                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1669                                                 IB_QP_ACCESS_FLAGS),
1670                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1671                                                 IB_QP_QKEY),
1672                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1673                                                 IB_QP_QKEY),
1674                         }
1675                 }
1676         },
1677         [IB_QPS_ERR] = {
1678                 [IB_QPS_RESET] = { .valid = 1 },
1679                 [IB_QPS_ERR] =   { .valid = 1 }
1680         }
1681 };
1682
1683 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1684                         enum ib_qp_type type, enum ib_qp_attr_mask mask)
1685 {
1686         enum ib_qp_attr_mask req_param, opt_param;
1687
1688         if (mask & IB_QP_CUR_STATE  &&
1689             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1690             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1691                 return false;
1692
1693         if (!qp_state_table[cur_state][next_state].valid)
1694                 return false;
1695
1696         req_param = qp_state_table[cur_state][next_state].req_param[type];
1697         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1698
1699         if ((mask & req_param) != req_param)
1700                 return false;
1701
1702         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1703                 return false;
1704
1705         return true;
1706 }
1707 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1708
1709 /**
1710  * ib_resolve_eth_dmac - Resolve destination mac address
1711  * @device:             Device to consider
1712  * @ah_attr:            address handle attribute which describes the
1713  *                      source and destination parameters
1714  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1715  * returns 0 on success or appropriate error code. It initializes the
1716  * necessary ah_attr fields when call is successful.
1717  */
1718 static int ib_resolve_eth_dmac(struct ib_device *device,
1719                                struct rdma_ah_attr *ah_attr)
1720 {
1721         int ret = 0;
1722
1723         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1724                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1725                         __be32 addr = 0;
1726
1727                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1728                         ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1729                 } else {
1730                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1731                                         (char *)ah_attr->roce.dmac);
1732                 }
1733         } else {
1734                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1735         }
1736         return ret;
1737 }
1738
1739 static bool is_qp_type_connected(const struct ib_qp *qp)
1740 {
1741         return (qp->qp_type == IB_QPT_UC ||
1742                 qp->qp_type == IB_QPT_RC ||
1743                 qp->qp_type == IB_QPT_XRC_INI ||
1744                 qp->qp_type == IB_QPT_XRC_TGT);
1745 }
1746
1747 /*
1748  * IB core internal function to perform QP attributes modification.
1749  */
1750 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1751                          int attr_mask, struct ib_udata *udata)
1752 {
1753         u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1754         const struct ib_gid_attr *old_sgid_attr_av;
1755         const struct ib_gid_attr *old_sgid_attr_alt_av;
1756         int ret;
1757
1758         attr->xmit_slave = NULL;
1759         if (attr_mask & IB_QP_AV) {
1760                 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1761                                           &old_sgid_attr_av);
1762                 if (ret)
1763                         return ret;
1764
1765                 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1766                     is_qp_type_connected(qp)) {
1767                         struct net_device *slave;
1768
1769                         /*
1770                          * If the user provided the qp_attr then we have to
1771                          * resolve it. Kerne users have to provide already
1772                          * resolved rdma_ah_attr's.
1773                          */
1774                         if (udata) {
1775                                 ret = ib_resolve_eth_dmac(qp->device,
1776                                                           &attr->ah_attr);
1777                                 if (ret)
1778                                         goto out_av;
1779                         }
1780                         slave = rdma_lag_get_ah_roce_slave(qp->device,
1781                                                            &attr->ah_attr,
1782                                                            GFP_KERNEL);
1783                         if (IS_ERR(slave)) {
1784                                 ret = PTR_ERR(slave);
1785                                 goto out_av;
1786                         }
1787                         attr->xmit_slave = slave;
1788                 }
1789         }
1790         if (attr_mask & IB_QP_ALT_PATH) {
1791                 /*
1792                  * FIXME: This does not track the migration state, so if the
1793                  * user loads a new alternate path after the HW has migrated
1794                  * from primary->alternate we will keep the wrong
1795                  * references. This is OK for IB because the reference
1796                  * counting does not serve any functional purpose.
1797                  */
1798                 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1799                                           &old_sgid_attr_alt_av);
1800                 if (ret)
1801                         goto out_av;
1802
1803                 /*
1804                  * Today the core code can only handle alternate paths and APM
1805                  * for IB. Ban them in roce mode.
1806                  */
1807                 if (!(rdma_protocol_ib(qp->device,
1808                                        attr->alt_ah_attr.port_num) &&
1809                       rdma_protocol_ib(qp->device, port))) {
1810                         ret = -EINVAL;
1811                         goto out;
1812                 }
1813         }
1814
1815         if (rdma_ib_or_roce(qp->device, port)) {
1816                 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1817                         dev_warn(&qp->device->dev,
1818                                  "%s rq_psn overflow, masking to 24 bits\n",
1819                                  __func__);
1820                         attr->rq_psn &= 0xffffff;
1821                 }
1822
1823                 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1824                         dev_warn(&qp->device->dev,
1825                                  " %s sq_psn overflow, masking to 24 bits\n",
1826                                  __func__);
1827                         attr->sq_psn &= 0xffffff;
1828                 }
1829         }
1830
1831         /*
1832          * Bind this qp to a counter automatically based on the rdma counter
1833          * rules. This only set in RST2INIT with port specified
1834          */
1835         if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1836             ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1837                 rdma_counter_bind_qp_auto(qp, attr->port_num);
1838
1839         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1840         if (ret)
1841                 goto out;
1842
1843         if (attr_mask & IB_QP_PORT)
1844                 qp->port = attr->port_num;
1845         if (attr_mask & IB_QP_AV)
1846                 qp->av_sgid_attr =
1847                         rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1848         if (attr_mask & IB_QP_ALT_PATH)
1849                 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1850                         &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1851
1852 out:
1853         if (attr_mask & IB_QP_ALT_PATH)
1854                 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1855 out_av:
1856         if (attr_mask & IB_QP_AV) {
1857                 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1858                 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1859         }
1860         return ret;
1861 }
1862
1863 /**
1864  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1865  * @ib_qp: The QP to modify.
1866  * @attr: On input, specifies the QP attributes to modify.  On output,
1867  *   the current values of selected QP attributes are returned.
1868  * @attr_mask: A bit-mask used to specify which attributes of the QP
1869  *   are being modified.
1870  * @udata: pointer to user's input output buffer information
1871  *   are being modified.
1872  * It returns 0 on success and returns appropriate error code on error.
1873  */
1874 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1875                             int attr_mask, struct ib_udata *udata)
1876 {
1877         return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1878 }
1879 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1880
1881 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1882 {
1883         int rc;
1884         u32 netdev_speed;
1885         struct net_device *netdev;
1886         struct ethtool_link_ksettings lksettings;
1887
1888         if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1889                 return -EINVAL;
1890
1891         netdev = ib_device_get_netdev(dev, port_num);
1892         if (!netdev)
1893                 return -ENODEV;
1894
1895         rtnl_lock();
1896         rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1897         rtnl_unlock();
1898
1899         dev_put(netdev);
1900
1901         if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1902                 netdev_speed = lksettings.base.speed;
1903         } else {
1904                 netdev_speed = SPEED_1000;
1905                 pr_warn("%s speed is unknown, defaulting to %u\n", netdev->name,
1906                         netdev_speed);
1907         }
1908
1909         if (netdev_speed <= SPEED_1000) {
1910                 *width = IB_WIDTH_1X;
1911                 *speed = IB_SPEED_SDR;
1912         } else if (netdev_speed <= SPEED_10000) {
1913                 *width = IB_WIDTH_1X;
1914                 *speed = IB_SPEED_FDR10;
1915         } else if (netdev_speed <= SPEED_20000) {
1916                 *width = IB_WIDTH_4X;
1917                 *speed = IB_SPEED_DDR;
1918         } else if (netdev_speed <= SPEED_25000) {
1919                 *width = IB_WIDTH_1X;
1920                 *speed = IB_SPEED_EDR;
1921         } else if (netdev_speed <= SPEED_40000) {
1922                 *width = IB_WIDTH_4X;
1923                 *speed = IB_SPEED_FDR10;
1924         } else {
1925                 *width = IB_WIDTH_4X;
1926                 *speed = IB_SPEED_EDR;
1927         }
1928
1929         return 0;
1930 }
1931 EXPORT_SYMBOL(ib_get_eth_speed);
1932
1933 int ib_modify_qp(struct ib_qp *qp,
1934                  struct ib_qp_attr *qp_attr,
1935                  int qp_attr_mask)
1936 {
1937         return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1938 }
1939 EXPORT_SYMBOL(ib_modify_qp);
1940
1941 int ib_query_qp(struct ib_qp *qp,
1942                 struct ib_qp_attr *qp_attr,
1943                 int qp_attr_mask,
1944                 struct ib_qp_init_attr *qp_init_attr)
1945 {
1946         qp_attr->ah_attr.grh.sgid_attr = NULL;
1947         qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1948
1949         return qp->device->ops.query_qp ?
1950                 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1951                                          qp_init_attr) : -EOPNOTSUPP;
1952 }
1953 EXPORT_SYMBOL(ib_query_qp);
1954
1955 int ib_close_qp(struct ib_qp *qp)
1956 {
1957         struct ib_qp *real_qp;
1958         unsigned long flags;
1959
1960         real_qp = qp->real_qp;
1961         if (real_qp == qp)
1962                 return -EINVAL;
1963
1964         spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1965         list_del(&qp->open_list);
1966         spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1967
1968         atomic_dec(&real_qp->usecnt);
1969         if (qp->qp_sec)
1970                 ib_close_shared_qp_security(qp->qp_sec);
1971         kfree(qp);
1972
1973         return 0;
1974 }
1975 EXPORT_SYMBOL(ib_close_qp);
1976
1977 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1978 {
1979         struct ib_xrcd *xrcd;
1980         struct ib_qp *real_qp;
1981         int ret;
1982
1983         real_qp = qp->real_qp;
1984         xrcd = real_qp->xrcd;
1985         down_write(&xrcd->tgt_qps_rwsem);
1986         ib_close_qp(qp);
1987         if (atomic_read(&real_qp->usecnt) == 0)
1988                 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1989         else
1990                 real_qp = NULL;
1991         up_write(&xrcd->tgt_qps_rwsem);
1992
1993         if (real_qp) {
1994                 ret = ib_destroy_qp(real_qp);
1995                 if (!ret)
1996                         atomic_dec(&xrcd->usecnt);
1997         }
1998
1999         return 0;
2000 }
2001
2002 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2003 {
2004         const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2005         const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2006         struct ib_qp_security *sec;
2007         int ret;
2008
2009         WARN_ON_ONCE(qp->mrs_used > 0);
2010
2011         if (atomic_read(&qp->usecnt))
2012                 return -EBUSY;
2013
2014         if (qp->real_qp != qp)
2015                 return __ib_destroy_shared_qp(qp);
2016
2017         sec  = qp->qp_sec;
2018         if (sec)
2019                 ib_destroy_qp_security_begin(sec);
2020
2021         if (!qp->uobject)
2022                 rdma_rw_cleanup_mrs(qp);
2023
2024         rdma_counter_unbind_qp(qp, true);
2025         ret = qp->device->ops.destroy_qp(qp, udata);
2026         if (ret) {
2027                 if (sec)
2028                         ib_destroy_qp_security_abort(sec);
2029                 return ret;
2030         }
2031
2032         if (alt_path_sgid_attr)
2033                 rdma_put_gid_attr(alt_path_sgid_attr);
2034         if (av_sgid_attr)
2035                 rdma_put_gid_attr(av_sgid_attr);
2036
2037         ib_qp_usecnt_dec(qp);
2038         if (sec)
2039                 ib_destroy_qp_security_end(sec);
2040
2041         rdma_restrack_del(&qp->res);
2042         kfree(qp);
2043         return ret;
2044 }
2045 EXPORT_SYMBOL(ib_destroy_qp_user);
2046
2047 /* Completion queues */
2048
2049 struct ib_cq *__ib_create_cq(struct ib_device *device,
2050                              ib_comp_handler comp_handler,
2051                              void (*event_handler)(struct ib_event *, void *),
2052                              void *cq_context,
2053                              const struct ib_cq_init_attr *cq_attr,
2054                              const char *caller)
2055 {
2056         struct ib_cq *cq;
2057         int ret;
2058
2059         cq = rdma_zalloc_drv_obj(device, ib_cq);
2060         if (!cq)
2061                 return ERR_PTR(-ENOMEM);
2062
2063         cq->device = device;
2064         cq->uobject = NULL;
2065         cq->comp_handler = comp_handler;
2066         cq->event_handler = event_handler;
2067         cq->cq_context = cq_context;
2068         atomic_set(&cq->usecnt, 0);
2069
2070         rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2071         rdma_restrack_set_name(&cq->res, caller);
2072
2073         ret = device->ops.create_cq(cq, cq_attr, NULL);
2074         if (ret) {
2075                 rdma_restrack_put(&cq->res);
2076                 kfree(cq);
2077                 return ERR_PTR(ret);
2078         }
2079
2080         rdma_restrack_add(&cq->res);
2081         return cq;
2082 }
2083 EXPORT_SYMBOL(__ib_create_cq);
2084
2085 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2086 {
2087         if (cq->shared)
2088                 return -EOPNOTSUPP;
2089
2090         return cq->device->ops.modify_cq ?
2091                 cq->device->ops.modify_cq(cq, cq_count,
2092                                           cq_period) : -EOPNOTSUPP;
2093 }
2094 EXPORT_SYMBOL(rdma_set_cq_moderation);
2095
2096 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2097 {
2098         int ret;
2099
2100         if (WARN_ON_ONCE(cq->shared))
2101                 return -EOPNOTSUPP;
2102
2103         if (atomic_read(&cq->usecnt))
2104                 return -EBUSY;
2105
2106         ret = cq->device->ops.destroy_cq(cq, udata);
2107         if (ret)
2108                 return ret;
2109
2110         rdma_restrack_del(&cq->res);
2111         kfree(cq);
2112         return ret;
2113 }
2114 EXPORT_SYMBOL(ib_destroy_cq_user);
2115
2116 int ib_resize_cq(struct ib_cq *cq, int cqe)
2117 {
2118         if (cq->shared)
2119                 return -EOPNOTSUPP;
2120
2121         return cq->device->ops.resize_cq ?
2122                 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2123 }
2124 EXPORT_SYMBOL(ib_resize_cq);
2125
2126 /* Memory regions */
2127
2128 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2129                              u64 virt_addr, int access_flags)
2130 {
2131         struct ib_mr *mr;
2132
2133         if (access_flags & IB_ACCESS_ON_DEMAND) {
2134                 if (!(pd->device->attrs.kernel_cap_flags &
2135                       IBK_ON_DEMAND_PAGING)) {
2136                         pr_debug("ODP support not available\n");
2137                         return ERR_PTR(-EINVAL);
2138                 }
2139         }
2140
2141         mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2142                                          access_flags, NULL);
2143
2144         if (IS_ERR(mr))
2145                 return mr;
2146
2147         mr->device = pd->device;
2148         mr->type = IB_MR_TYPE_USER;
2149         mr->pd = pd;
2150         mr->dm = NULL;
2151         atomic_inc(&pd->usecnt);
2152         mr->iova =  virt_addr;
2153         mr->length = length;
2154
2155         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2156         rdma_restrack_parent_name(&mr->res, &pd->res);
2157         rdma_restrack_add(&mr->res);
2158
2159         return mr;
2160 }
2161 EXPORT_SYMBOL(ib_reg_user_mr);
2162
2163 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2164                  u32 flags, struct ib_sge *sg_list, u32 num_sge)
2165 {
2166         if (!pd->device->ops.advise_mr)
2167                 return -EOPNOTSUPP;
2168
2169         if (!num_sge)
2170                 return 0;
2171
2172         return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2173                                          NULL);
2174 }
2175 EXPORT_SYMBOL(ib_advise_mr);
2176
2177 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2178 {
2179         struct ib_pd *pd = mr->pd;
2180         struct ib_dm *dm = mr->dm;
2181         struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2182         int ret;
2183
2184         trace_mr_dereg(mr);
2185         rdma_restrack_del(&mr->res);
2186         ret = mr->device->ops.dereg_mr(mr, udata);
2187         if (!ret) {
2188                 atomic_dec(&pd->usecnt);
2189                 if (dm)
2190                         atomic_dec(&dm->usecnt);
2191                 kfree(sig_attrs);
2192         }
2193
2194         return ret;
2195 }
2196 EXPORT_SYMBOL(ib_dereg_mr_user);
2197
2198 /**
2199  * ib_alloc_mr() - Allocates a memory region
2200  * @pd:            protection domain associated with the region
2201  * @mr_type:       memory region type
2202  * @max_num_sg:    maximum sg entries available for registration.
2203  *
2204  * Notes:
2205  * Memory registeration page/sg lists must not exceed max_num_sg.
2206  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2207  * max_num_sg * used_page_size.
2208  *
2209  */
2210 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2211                           u32 max_num_sg)
2212 {
2213         struct ib_mr *mr;
2214
2215         if (!pd->device->ops.alloc_mr) {
2216                 mr = ERR_PTR(-EOPNOTSUPP);
2217                 goto out;
2218         }
2219
2220         if (mr_type == IB_MR_TYPE_INTEGRITY) {
2221                 WARN_ON_ONCE(1);
2222                 mr = ERR_PTR(-EINVAL);
2223                 goto out;
2224         }
2225
2226         mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2227         if (IS_ERR(mr))
2228                 goto out;
2229
2230         mr->device = pd->device;
2231         mr->pd = pd;
2232         mr->dm = NULL;
2233         mr->uobject = NULL;
2234         atomic_inc(&pd->usecnt);
2235         mr->need_inval = false;
2236         mr->type = mr_type;
2237         mr->sig_attrs = NULL;
2238
2239         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2240         rdma_restrack_parent_name(&mr->res, &pd->res);
2241         rdma_restrack_add(&mr->res);
2242 out:
2243         trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2244         return mr;
2245 }
2246 EXPORT_SYMBOL(ib_alloc_mr);
2247
2248 /**
2249  * ib_alloc_mr_integrity() - Allocates an integrity memory region
2250  * @pd:                      protection domain associated with the region
2251  * @max_num_data_sg:         maximum data sg entries available for registration
2252  * @max_num_meta_sg:         maximum metadata sg entries available for
2253  *                           registration
2254  *
2255  * Notes:
2256  * Memory registration page/sg lists must not exceed max_num_sg,
2257  * also the integrity page/sg lists must not exceed max_num_meta_sg.
2258  *
2259  */
2260 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2261                                     u32 max_num_data_sg,
2262                                     u32 max_num_meta_sg)
2263 {
2264         struct ib_mr *mr;
2265         struct ib_sig_attrs *sig_attrs;
2266
2267         if (!pd->device->ops.alloc_mr_integrity ||
2268             !pd->device->ops.map_mr_sg_pi) {
2269                 mr = ERR_PTR(-EOPNOTSUPP);
2270                 goto out;
2271         }
2272
2273         if (!max_num_meta_sg) {
2274                 mr = ERR_PTR(-EINVAL);
2275                 goto out;
2276         }
2277
2278         sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2279         if (!sig_attrs) {
2280                 mr = ERR_PTR(-ENOMEM);
2281                 goto out;
2282         }
2283
2284         mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2285                                                 max_num_meta_sg);
2286         if (IS_ERR(mr)) {
2287                 kfree(sig_attrs);
2288                 goto out;
2289         }
2290
2291         mr->device = pd->device;
2292         mr->pd = pd;
2293         mr->dm = NULL;
2294         mr->uobject = NULL;
2295         atomic_inc(&pd->usecnt);
2296         mr->need_inval = false;
2297         mr->type = IB_MR_TYPE_INTEGRITY;
2298         mr->sig_attrs = sig_attrs;
2299
2300         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2301         rdma_restrack_parent_name(&mr->res, &pd->res);
2302         rdma_restrack_add(&mr->res);
2303 out:
2304         trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2305         return mr;
2306 }
2307 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2308
2309 /* Multicast groups */
2310
2311 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2312 {
2313         struct ib_qp_init_attr init_attr = {};
2314         struct ib_qp_attr attr = {};
2315         int num_eth_ports = 0;
2316         unsigned int port;
2317
2318         /* If QP state >= init, it is assigned to a port and we can check this
2319          * port only.
2320          */
2321         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2322                 if (attr.qp_state >= IB_QPS_INIT) {
2323                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2324                             IB_LINK_LAYER_INFINIBAND)
2325                                 return true;
2326                         goto lid_check;
2327                 }
2328         }
2329
2330         /* Can't get a quick answer, iterate over all ports */
2331         rdma_for_each_port(qp->device, port)
2332                 if (rdma_port_get_link_layer(qp->device, port) !=
2333                     IB_LINK_LAYER_INFINIBAND)
2334                         num_eth_ports++;
2335
2336         /* If we have at lease one Ethernet port, RoCE annex declares that
2337          * multicast LID should be ignored. We can't tell at this step if the
2338          * QP belongs to an IB or Ethernet port.
2339          */
2340         if (num_eth_ports)
2341                 return true;
2342
2343         /* If all the ports are IB, we can check according to IB spec. */
2344 lid_check:
2345         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2346                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
2347 }
2348
2349 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2350 {
2351         int ret;
2352
2353         if (!qp->device->ops.attach_mcast)
2354                 return -EOPNOTSUPP;
2355
2356         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2357             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2358                 return -EINVAL;
2359
2360         ret = qp->device->ops.attach_mcast(qp, gid, lid);
2361         if (!ret)
2362                 atomic_inc(&qp->usecnt);
2363         return ret;
2364 }
2365 EXPORT_SYMBOL(ib_attach_mcast);
2366
2367 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2368 {
2369         int ret;
2370
2371         if (!qp->device->ops.detach_mcast)
2372                 return -EOPNOTSUPP;
2373
2374         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2375             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2376                 return -EINVAL;
2377
2378         ret = qp->device->ops.detach_mcast(qp, gid, lid);
2379         if (!ret)
2380                 atomic_dec(&qp->usecnt);
2381         return ret;
2382 }
2383 EXPORT_SYMBOL(ib_detach_mcast);
2384
2385 /**
2386  * ib_alloc_xrcd_user - Allocates an XRC domain.
2387  * @device: The device on which to allocate the XRC domain.
2388  * @inode: inode to connect XRCD
2389  * @udata: Valid user data or NULL for kernel object
2390  */
2391 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2392                                    struct inode *inode, struct ib_udata *udata)
2393 {
2394         struct ib_xrcd *xrcd;
2395         int ret;
2396
2397         if (!device->ops.alloc_xrcd)
2398                 return ERR_PTR(-EOPNOTSUPP);
2399
2400         xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2401         if (!xrcd)
2402                 return ERR_PTR(-ENOMEM);
2403
2404         xrcd->device = device;
2405         xrcd->inode = inode;
2406         atomic_set(&xrcd->usecnt, 0);
2407         init_rwsem(&xrcd->tgt_qps_rwsem);
2408         xa_init(&xrcd->tgt_qps);
2409
2410         ret = device->ops.alloc_xrcd(xrcd, udata);
2411         if (ret)
2412                 goto err;
2413         return xrcd;
2414 err:
2415         kfree(xrcd);
2416         return ERR_PTR(ret);
2417 }
2418 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2419
2420 /**
2421  * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2422  * @xrcd: The XRC domain to deallocate.
2423  * @udata: Valid user data or NULL for kernel object
2424  */
2425 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2426 {
2427         int ret;
2428
2429         if (atomic_read(&xrcd->usecnt))
2430                 return -EBUSY;
2431
2432         WARN_ON(!xa_empty(&xrcd->tgt_qps));
2433         ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2434         if (ret)
2435                 return ret;
2436         kfree(xrcd);
2437         return ret;
2438 }
2439 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2440
2441 /**
2442  * ib_create_wq - Creates a WQ associated with the specified protection
2443  * domain.
2444  * @pd: The protection domain associated with the WQ.
2445  * @wq_attr: A list of initial attributes required to create the
2446  * WQ. If WQ creation succeeds, then the attributes are updated to
2447  * the actual capabilities of the created WQ.
2448  *
2449  * wq_attr->max_wr and wq_attr->max_sge determine
2450  * the requested size of the WQ, and set to the actual values allocated
2451  * on return.
2452  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2453  * at least as large as the requested values.
2454  */
2455 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2456                            struct ib_wq_init_attr *wq_attr)
2457 {
2458         struct ib_wq *wq;
2459
2460         if (!pd->device->ops.create_wq)
2461                 return ERR_PTR(-EOPNOTSUPP);
2462
2463         wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2464         if (!IS_ERR(wq)) {
2465                 wq->event_handler = wq_attr->event_handler;
2466                 wq->wq_context = wq_attr->wq_context;
2467                 wq->wq_type = wq_attr->wq_type;
2468                 wq->cq = wq_attr->cq;
2469                 wq->device = pd->device;
2470                 wq->pd = pd;
2471                 wq->uobject = NULL;
2472                 atomic_inc(&pd->usecnt);
2473                 atomic_inc(&wq_attr->cq->usecnt);
2474                 atomic_set(&wq->usecnt, 0);
2475         }
2476         return wq;
2477 }
2478 EXPORT_SYMBOL(ib_create_wq);
2479
2480 /**
2481  * ib_destroy_wq_user - Destroys the specified user WQ.
2482  * @wq: The WQ to destroy.
2483  * @udata: Valid user data
2484  */
2485 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2486 {
2487         struct ib_cq *cq = wq->cq;
2488         struct ib_pd *pd = wq->pd;
2489         int ret;
2490
2491         if (atomic_read(&wq->usecnt))
2492                 return -EBUSY;
2493
2494         ret = wq->device->ops.destroy_wq(wq, udata);
2495         if (ret)
2496                 return ret;
2497
2498         atomic_dec(&pd->usecnt);
2499         atomic_dec(&cq->usecnt);
2500         return ret;
2501 }
2502 EXPORT_SYMBOL(ib_destroy_wq_user);
2503
2504 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2505                        struct ib_mr_status *mr_status)
2506 {
2507         if (!mr->device->ops.check_mr_status)
2508                 return -EOPNOTSUPP;
2509
2510         return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2511 }
2512 EXPORT_SYMBOL(ib_check_mr_status);
2513
2514 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2515                          int state)
2516 {
2517         if (!device->ops.set_vf_link_state)
2518                 return -EOPNOTSUPP;
2519
2520         return device->ops.set_vf_link_state(device, vf, port, state);
2521 }
2522 EXPORT_SYMBOL(ib_set_vf_link_state);
2523
2524 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2525                      struct ifla_vf_info *info)
2526 {
2527         if (!device->ops.get_vf_config)
2528                 return -EOPNOTSUPP;
2529
2530         return device->ops.get_vf_config(device, vf, port, info);
2531 }
2532 EXPORT_SYMBOL(ib_get_vf_config);
2533
2534 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2535                     struct ifla_vf_stats *stats)
2536 {
2537         if (!device->ops.get_vf_stats)
2538                 return -EOPNOTSUPP;
2539
2540         return device->ops.get_vf_stats(device, vf, port, stats);
2541 }
2542 EXPORT_SYMBOL(ib_get_vf_stats);
2543
2544 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2545                    int type)
2546 {
2547         if (!device->ops.set_vf_guid)
2548                 return -EOPNOTSUPP;
2549
2550         return device->ops.set_vf_guid(device, vf, port, guid, type);
2551 }
2552 EXPORT_SYMBOL(ib_set_vf_guid);
2553
2554 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2555                    struct ifla_vf_guid *node_guid,
2556                    struct ifla_vf_guid *port_guid)
2557 {
2558         if (!device->ops.get_vf_guid)
2559                 return -EOPNOTSUPP;
2560
2561         return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2562 }
2563 EXPORT_SYMBOL(ib_get_vf_guid);
2564 /**
2565  * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2566  *     information) and set an appropriate memory region for registration.
2567  * @mr:             memory region
2568  * @data_sg:        dma mapped scatterlist for data
2569  * @data_sg_nents:  number of entries in data_sg
2570  * @data_sg_offset: offset in bytes into data_sg
2571  * @meta_sg:        dma mapped scatterlist for metadata
2572  * @meta_sg_nents:  number of entries in meta_sg
2573  * @meta_sg_offset: offset in bytes into meta_sg
2574  * @page_size:      page vector desired page size
2575  *
2576  * Constraints:
2577  * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2578  *
2579  * Return: 0 on success.
2580  *
2581  * After this completes successfully, the  memory region
2582  * is ready for registration.
2583  */
2584 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2585                     int data_sg_nents, unsigned int *data_sg_offset,
2586                     struct scatterlist *meta_sg, int meta_sg_nents,
2587                     unsigned int *meta_sg_offset, unsigned int page_size)
2588 {
2589         if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2590                      WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2591                 return -EOPNOTSUPP;
2592
2593         mr->page_size = page_size;
2594
2595         return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2596                                             data_sg_offset, meta_sg,
2597                                             meta_sg_nents, meta_sg_offset);
2598 }
2599 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2600
2601 /**
2602  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2603  *     and set it the memory region.
2604  * @mr:            memory region
2605  * @sg:            dma mapped scatterlist
2606  * @sg_nents:      number of entries in sg
2607  * @sg_offset:     offset in bytes into sg
2608  * @page_size:     page vector desired page size
2609  *
2610  * Constraints:
2611  *
2612  * - The first sg element is allowed to have an offset.
2613  * - Each sg element must either be aligned to page_size or virtually
2614  *   contiguous to the previous element. In case an sg element has a
2615  *   non-contiguous offset, the mapping prefix will not include it.
2616  * - The last sg element is allowed to have length less than page_size.
2617  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2618  *   then only max_num_sg entries will be mapped.
2619  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2620  *   constraints holds and the page_size argument is ignored.
2621  *
2622  * Returns the number of sg elements that were mapped to the memory region.
2623  *
2624  * After this completes successfully, the  memory region
2625  * is ready for registration.
2626  */
2627 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2628                  unsigned int *sg_offset, unsigned int page_size)
2629 {
2630         if (unlikely(!mr->device->ops.map_mr_sg))
2631                 return -EOPNOTSUPP;
2632
2633         mr->page_size = page_size;
2634
2635         return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2636 }
2637 EXPORT_SYMBOL(ib_map_mr_sg);
2638
2639 /**
2640  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2641  *     to a page vector
2642  * @mr:            memory region
2643  * @sgl:           dma mapped scatterlist
2644  * @sg_nents:      number of entries in sg
2645  * @sg_offset_p:   ==== =======================================================
2646  *                 IN   start offset in bytes into sg
2647  *                 OUT  offset in bytes for element n of the sg of the first
2648  *                      byte that has not been processed where n is the return
2649  *                      value of this function.
2650  *                 ==== =======================================================
2651  * @set_page:      driver page assignment function pointer
2652  *
2653  * Core service helper for drivers to convert the largest
2654  * prefix of given sg list to a page vector. The sg list
2655  * prefix converted is the prefix that meet the requirements
2656  * of ib_map_mr_sg.
2657  *
2658  * Returns the number of sg elements that were assigned to
2659  * a page vector.
2660  */
2661 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2662                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2663 {
2664         struct scatterlist *sg;
2665         u64 last_end_dma_addr = 0;
2666         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2667         unsigned int last_page_off = 0;
2668         u64 page_mask = ~((u64)mr->page_size - 1);
2669         int i, ret;
2670
2671         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2672                 return -EINVAL;
2673
2674         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2675         mr->length = 0;
2676
2677         for_each_sg(sgl, sg, sg_nents, i) {
2678                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2679                 u64 prev_addr = dma_addr;
2680                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2681                 u64 end_dma_addr = dma_addr + dma_len;
2682                 u64 page_addr = dma_addr & page_mask;
2683
2684                 /*
2685                  * For the second and later elements, check whether either the
2686                  * end of element i-1 or the start of element i is not aligned
2687                  * on a page boundary.
2688                  */
2689                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2690                         /* Stop mapping if there is a gap. */
2691                         if (last_end_dma_addr != dma_addr)
2692                                 break;
2693
2694                         /*
2695                          * Coalesce this element with the last. If it is small
2696                          * enough just update mr->length. Otherwise start
2697                          * mapping from the next page.
2698                          */
2699                         goto next_page;
2700                 }
2701
2702                 do {
2703                         ret = set_page(mr, page_addr);
2704                         if (unlikely(ret < 0)) {
2705                                 sg_offset = prev_addr - sg_dma_address(sg);
2706                                 mr->length += prev_addr - dma_addr;
2707                                 if (sg_offset_p)
2708                                         *sg_offset_p = sg_offset;
2709                                 return i || sg_offset ? i : ret;
2710                         }
2711                         prev_addr = page_addr;
2712 next_page:
2713                         page_addr += mr->page_size;
2714                 } while (page_addr < end_dma_addr);
2715
2716                 mr->length += dma_len;
2717                 last_end_dma_addr = end_dma_addr;
2718                 last_page_off = end_dma_addr & ~page_mask;
2719
2720                 sg_offset = 0;
2721         }
2722
2723         if (sg_offset_p)
2724                 *sg_offset_p = 0;
2725         return i;
2726 }
2727 EXPORT_SYMBOL(ib_sg_to_pages);
2728
2729 struct ib_drain_cqe {
2730         struct ib_cqe cqe;
2731         struct completion done;
2732 };
2733
2734 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2735 {
2736         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2737                                                 cqe);
2738
2739         complete(&cqe->done);
2740 }
2741
2742 /*
2743  * Post a WR and block until its completion is reaped for the SQ.
2744  */
2745 static void __ib_drain_sq(struct ib_qp *qp)
2746 {
2747         struct ib_cq *cq = qp->send_cq;
2748         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2749         struct ib_drain_cqe sdrain;
2750         struct ib_rdma_wr swr = {
2751                 .wr = {
2752                         .next = NULL,
2753                         { .wr_cqe       = &sdrain.cqe, },
2754                         .opcode = IB_WR_RDMA_WRITE,
2755                 },
2756         };
2757         int ret;
2758
2759         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2760         if (ret) {
2761                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2762                 return;
2763         }
2764
2765         sdrain.cqe.done = ib_drain_qp_done;
2766         init_completion(&sdrain.done);
2767
2768         ret = ib_post_send(qp, &swr.wr, NULL);
2769         if (ret) {
2770                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2771                 return;
2772         }
2773
2774         if (cq->poll_ctx == IB_POLL_DIRECT)
2775                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2776                         ib_process_cq_direct(cq, -1);
2777         else
2778                 wait_for_completion(&sdrain.done);
2779 }
2780
2781 /*
2782  * Post a WR and block until its completion is reaped for the RQ.
2783  */
2784 static void __ib_drain_rq(struct ib_qp *qp)
2785 {
2786         struct ib_cq *cq = qp->recv_cq;
2787         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2788         struct ib_drain_cqe rdrain;
2789         struct ib_recv_wr rwr = {};
2790         int ret;
2791
2792         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2793         if (ret) {
2794                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2795                 return;
2796         }
2797
2798         rwr.wr_cqe = &rdrain.cqe;
2799         rdrain.cqe.done = ib_drain_qp_done;
2800         init_completion(&rdrain.done);
2801
2802         ret = ib_post_recv(qp, &rwr, NULL);
2803         if (ret) {
2804                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2805                 return;
2806         }
2807
2808         if (cq->poll_ctx == IB_POLL_DIRECT)
2809                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2810                         ib_process_cq_direct(cq, -1);
2811         else
2812                 wait_for_completion(&rdrain.done);
2813 }
2814
2815 /**
2816  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2817  *                 application.
2818  * @qp:            queue pair to drain
2819  *
2820  * If the device has a provider-specific drain function, then
2821  * call that.  Otherwise call the generic drain function
2822  * __ib_drain_sq().
2823  *
2824  * The caller must:
2825  *
2826  * ensure there is room in the CQ and SQ for the drain work request and
2827  * completion.
2828  *
2829  * allocate the CQ using ib_alloc_cq().
2830  *
2831  * ensure that there are no other contexts that are posting WRs concurrently.
2832  * Otherwise the drain is not guaranteed.
2833  */
2834 void ib_drain_sq(struct ib_qp *qp)
2835 {
2836         if (qp->device->ops.drain_sq)
2837                 qp->device->ops.drain_sq(qp);
2838         else
2839                 __ib_drain_sq(qp);
2840         trace_cq_drain_complete(qp->send_cq);
2841 }
2842 EXPORT_SYMBOL(ib_drain_sq);
2843
2844 /**
2845  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2846  *                 application.
2847  * @qp:            queue pair to drain
2848  *
2849  * If the device has a provider-specific drain function, then
2850  * call that.  Otherwise call the generic drain function
2851  * __ib_drain_rq().
2852  *
2853  * The caller must:
2854  *
2855  * ensure there is room in the CQ and RQ for the drain work request and
2856  * completion.
2857  *
2858  * allocate the CQ using ib_alloc_cq().
2859  *
2860  * ensure that there are no other contexts that are posting WRs concurrently.
2861  * Otherwise the drain is not guaranteed.
2862  */
2863 void ib_drain_rq(struct ib_qp *qp)
2864 {
2865         if (qp->device->ops.drain_rq)
2866                 qp->device->ops.drain_rq(qp);
2867         else
2868                 __ib_drain_rq(qp);
2869         trace_cq_drain_complete(qp->recv_cq);
2870 }
2871 EXPORT_SYMBOL(ib_drain_rq);
2872
2873 /**
2874  * ib_drain_qp() - Block until all CQEs have been consumed by the
2875  *                 application on both the RQ and SQ.
2876  * @qp:            queue pair to drain
2877  *
2878  * The caller must:
2879  *
2880  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2881  * and completions.
2882  *
2883  * allocate the CQs using ib_alloc_cq().
2884  *
2885  * ensure that there are no other contexts that are posting WRs concurrently.
2886  * Otherwise the drain is not guaranteed.
2887  */
2888 void ib_drain_qp(struct ib_qp *qp)
2889 {
2890         ib_drain_sq(qp);
2891         if (!qp->srq)
2892                 ib_drain_rq(qp);
2893 }
2894 EXPORT_SYMBOL(ib_drain_qp);
2895
2896 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2897                                      enum rdma_netdev_t type, const char *name,
2898                                      unsigned char name_assign_type,
2899                                      void (*setup)(struct net_device *))
2900 {
2901         struct rdma_netdev_alloc_params params;
2902         struct net_device *netdev;
2903         int rc;
2904
2905         if (!device->ops.rdma_netdev_get_params)
2906                 return ERR_PTR(-EOPNOTSUPP);
2907
2908         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2909                                                 &params);
2910         if (rc)
2911                 return ERR_PTR(rc);
2912
2913         netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2914                                   setup, params.txqs, params.rxqs);
2915         if (!netdev)
2916                 return ERR_PTR(-ENOMEM);
2917
2918         return netdev;
2919 }
2920 EXPORT_SYMBOL(rdma_alloc_netdev);
2921
2922 int rdma_init_netdev(struct ib_device *device, u32 port_num,
2923                      enum rdma_netdev_t type, const char *name,
2924                      unsigned char name_assign_type,
2925                      void (*setup)(struct net_device *),
2926                      struct net_device *netdev)
2927 {
2928         struct rdma_netdev_alloc_params params;
2929         int rc;
2930
2931         if (!device->ops.rdma_netdev_get_params)
2932                 return -EOPNOTSUPP;
2933
2934         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2935                                                 &params);
2936         if (rc)
2937                 return rc;
2938
2939         return params.initialize_rdma_netdev(device, port_num,
2940                                              netdev, params.param);
2941 }
2942 EXPORT_SYMBOL(rdma_init_netdev);
2943
2944 void __rdma_block_iter_start(struct ib_block_iter *biter,
2945                              struct scatterlist *sglist, unsigned int nents,
2946                              unsigned long pgsz)
2947 {
2948         memset(biter, 0, sizeof(struct ib_block_iter));
2949         biter->__sg = sglist;
2950         biter->__sg_nents = nents;
2951
2952         /* Driver provides best block size to use */
2953         biter->__pg_bit = __fls(pgsz);
2954 }
2955 EXPORT_SYMBOL(__rdma_block_iter_start);
2956
2957 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2958 {
2959         unsigned int block_offset;
2960
2961         if (!biter->__sg_nents || !biter->__sg)
2962                 return false;
2963
2964         biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2965         block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2966         biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2967
2968         if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2969                 biter->__sg_advance = 0;
2970                 biter->__sg = sg_next(biter->__sg);
2971                 biter->__sg_nents--;
2972         }
2973
2974         return true;
2975 }
2976 EXPORT_SYMBOL(__rdma_block_iter_next);
2977
2978 /**
2979  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
2980  *   for the drivers.
2981  * @descs: array of static descriptors
2982  * @num_counters: number of elements in array
2983  * @lifespan: milliseconds between updates
2984  */
2985 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
2986         const struct rdma_stat_desc *descs, int num_counters,
2987         unsigned long lifespan)
2988 {
2989         struct rdma_hw_stats *stats;
2990
2991         stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
2992         if (!stats)
2993                 return NULL;
2994
2995         stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
2996                                      sizeof(*stats->is_disabled), GFP_KERNEL);
2997         if (!stats->is_disabled)
2998                 goto err;
2999
3000         stats->descs = descs;
3001         stats->num_counters = num_counters;
3002         stats->lifespan = msecs_to_jiffies(lifespan);
3003         mutex_init(&stats->lock);
3004
3005         return stats;
3006
3007 err:
3008         kfree(stats);
3009         return NULL;
3010 }
3011 EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3012
3013 /**
3014  * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3015  * @stats: statistics to release
3016  */
3017 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3018 {
3019         if (!stats)
3020                 return;
3021
3022         kfree(stats->is_disabled);
3023         kfree(stats);
3024 }
3025 EXPORT_SYMBOL(rdma_free_hw_stats_struct);
This page took 0.215567 seconds and 4 git commands to generate.