2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
35 #include "btrfs_inode.h"
36 #include "transaction.h"
38 static int g_verbose = 0;
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
56 unsigned short buf_len:15;
57 unsigned short reversed:1;
61 * Average path length does not exceed 200 bytes, we'll have
62 * better packing in the slab and higher chance to satisfy
63 * a allocation later during send.
68 #define FS_PATH_INLINE_SIZE \
69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72 /* reused for each extent */
74 struct btrfs_root *root;
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
85 struct file *send_filp;
91 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
94 struct btrfs_root *send_root;
95 struct btrfs_root *parent_root;
96 struct clone_root *clone_roots;
99 /* current state of the compare_tree call */
100 struct btrfs_path *left_path;
101 struct btrfs_path *right_path;
102 struct btrfs_key *cmp_key;
105 * infos of the currently processed inode. In case of deleted inodes,
106 * these are the values from the deleted inode.
111 int cur_inode_new_gen;
112 int cur_inode_deleted;
116 u64 cur_inode_last_extent;
120 struct list_head new_refs;
121 struct list_head deleted_refs;
123 struct radix_tree_root name_cache;
124 struct list_head name_cache_list;
127 struct file_ra_state ra;
132 * We process inodes by their increasing order, so if before an
133 * incremental send we reverse the parent/child relationship of
134 * directories such that a directory with a lower inode number was
135 * the parent of a directory with a higher inode number, and the one
136 * becoming the new parent got renamed too, we can't rename/move the
137 * directory with lower inode number when we finish processing it - we
138 * must process the directory with higher inode number first, then
139 * rename/move it and then rename/move the directory with lower inode
140 * number. Example follows.
142 * Tree state when the first send was performed:
154 * Tree state when the second (incremental) send is performed:
163 * The sequence of steps that lead to the second state was:
165 * mv /a/b/c/d /a/b/c2/d2
166 * mv /a/b/c /a/b/c2/d2/cc
168 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 * before we move "d", which has higher inode number.
171 * So we just memorize which move/rename operations must be performed
172 * later when their respective parent is processed and moved/renamed.
175 /* Indexed by parent directory inode number. */
176 struct rb_root pending_dir_moves;
179 * Reverse index, indexed by the inode number of a directory that
180 * is waiting for the move/rename of its immediate parent before its
181 * own move/rename can be performed.
183 struct rb_root waiting_dir_moves;
186 * A directory that is going to be rm'ed might have a child directory
187 * which is in the pending directory moves index above. In this case,
188 * the directory can only be removed after the move/rename of its child
189 * is performed. Example:
209 * Sequence of steps that lead to the send snapshot:
210 * rm -f /a/b/c/foo.txt
212 * mv /a/b/c/x /a/b/YY
215 * When the child is processed, its move/rename is delayed until its
216 * parent is processed (as explained above), but all other operations
217 * like update utimes, chown, chgrp, etc, are performed and the paths
218 * that it uses for those operations must use the orphanized name of
219 * its parent (the directory we're going to rm later), so we need to
220 * memorize that name.
222 * Indexed by the inode number of the directory to be deleted.
224 struct rb_root orphan_dirs;
227 struct pending_dir_move {
229 struct list_head list;
234 struct list_head update_refs;
237 struct waiting_dir_move {
241 * There might be some directory that could not be removed because it
242 * was waiting for this directory inode to be moved first. Therefore
243 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
249 struct orphan_dir_info {
255 struct name_cache_entry {
256 struct list_head list;
258 * radix_tree has only 32bit entries but we need to handle 64bit inums.
259 * We use the lower 32bit of the 64bit inum to store it in the tree. If
260 * more then one inum would fall into the same entry, we use radix_list
261 * to store the additional entries. radix_list is also used to store
262 * entries where two entries have the same inum but different
265 struct list_head radix_list;
271 int need_later_update;
276 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
278 static struct waiting_dir_move *
279 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
281 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
283 static int need_send_hole(struct send_ctx *sctx)
285 return (sctx->parent_root && !sctx->cur_inode_new &&
286 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
287 S_ISREG(sctx->cur_inode_mode));
290 static void fs_path_reset(struct fs_path *p)
293 p->start = p->buf + p->buf_len - 1;
303 static struct fs_path *fs_path_alloc(void)
307 p = kmalloc(sizeof(*p), GFP_NOFS);
311 p->buf = p->inline_buf;
312 p->buf_len = FS_PATH_INLINE_SIZE;
317 static struct fs_path *fs_path_alloc_reversed(void)
329 static void fs_path_free(struct fs_path *p)
333 if (p->buf != p->inline_buf)
338 static int fs_path_len(struct fs_path *p)
340 return p->end - p->start;
343 static int fs_path_ensure_buf(struct fs_path *p, int len)
351 if (p->buf_len >= len)
354 if (len > PATH_MAX) {
359 path_len = p->end - p->start;
360 old_buf_len = p->buf_len;
363 * First time the inline_buf does not suffice
365 if (p->buf == p->inline_buf) {
366 tmp_buf = kmalloc(len, GFP_NOFS);
368 memcpy(tmp_buf, p->buf, old_buf_len);
370 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
376 * The real size of the buffer is bigger, this will let the fast path
377 * happen most of the time
379 p->buf_len = ksize(p->buf);
382 tmp_buf = p->buf + old_buf_len - path_len - 1;
383 p->end = p->buf + p->buf_len - 1;
384 p->start = p->end - path_len;
385 memmove(p->start, tmp_buf, path_len + 1);
388 p->end = p->start + path_len;
393 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
399 new_len = p->end - p->start + name_len;
400 if (p->start != p->end)
402 ret = fs_path_ensure_buf(p, new_len);
407 if (p->start != p->end)
409 p->start -= name_len;
410 *prepared = p->start;
412 if (p->start != p->end)
423 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
428 ret = fs_path_prepare_for_add(p, name_len, &prepared);
431 memcpy(prepared, name, name_len);
437 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
442 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
445 memcpy(prepared, p2->start, p2->end - p2->start);
451 static int fs_path_add_from_extent_buffer(struct fs_path *p,
452 struct extent_buffer *eb,
453 unsigned long off, int len)
458 ret = fs_path_prepare_for_add(p, len, &prepared);
462 read_extent_buffer(eb, prepared, off, len);
468 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
472 p->reversed = from->reversed;
475 ret = fs_path_add_path(p, from);
481 static void fs_path_unreverse(struct fs_path *p)
490 len = p->end - p->start;
492 p->end = p->start + len;
493 memmove(p->start, tmp, len + 1);
497 static struct btrfs_path *alloc_path_for_send(void)
499 struct btrfs_path *path;
501 path = btrfs_alloc_path();
504 path->search_commit_root = 1;
505 path->skip_locking = 1;
506 path->need_commit_sem = 1;
510 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
520 ret = vfs_write(filp, (__force const char __user *)buf + pos,
522 /* TODO handle that correctly */
523 /*if (ret == -ERESTARTSYS) {
542 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
544 struct btrfs_tlv_header *hdr;
545 int total_len = sizeof(*hdr) + len;
546 int left = sctx->send_max_size - sctx->send_size;
548 if (unlikely(left < total_len))
551 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
552 hdr->tlv_type = cpu_to_le16(attr);
553 hdr->tlv_len = cpu_to_le16(len);
554 memcpy(hdr + 1, data, len);
555 sctx->send_size += total_len;
560 #define TLV_PUT_DEFINE_INT(bits) \
561 static int tlv_put_u##bits(struct send_ctx *sctx, \
562 u##bits attr, u##bits value) \
564 __le##bits __tmp = cpu_to_le##bits(value); \
565 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
568 TLV_PUT_DEFINE_INT(64)
570 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
571 const char *str, int len)
575 return tlv_put(sctx, attr, str, len);
578 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
581 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
584 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
585 struct extent_buffer *eb,
586 struct btrfs_timespec *ts)
588 struct btrfs_timespec bts;
589 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
590 return tlv_put(sctx, attr, &bts, sizeof(bts));
594 #define TLV_PUT(sctx, attrtype, attrlen, data) \
596 ret = tlv_put(sctx, attrtype, attrlen, data); \
598 goto tlv_put_failure; \
601 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
603 ret = tlv_put_u##bits(sctx, attrtype, value); \
605 goto tlv_put_failure; \
608 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
609 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
610 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
611 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
612 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
614 ret = tlv_put_string(sctx, attrtype, str, len); \
616 goto tlv_put_failure; \
618 #define TLV_PUT_PATH(sctx, attrtype, p) \
620 ret = tlv_put_string(sctx, attrtype, p->start, \
621 p->end - p->start); \
623 goto tlv_put_failure; \
625 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
627 ret = tlv_put_uuid(sctx, attrtype, uuid); \
629 goto tlv_put_failure; \
631 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
633 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
635 goto tlv_put_failure; \
638 static int send_header(struct send_ctx *sctx)
640 struct btrfs_stream_header hdr;
642 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
643 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
645 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
650 * For each command/item we want to send to userspace, we call this function.
652 static int begin_cmd(struct send_ctx *sctx, int cmd)
654 struct btrfs_cmd_header *hdr;
656 if (WARN_ON(!sctx->send_buf))
659 BUG_ON(sctx->send_size);
661 sctx->send_size += sizeof(*hdr);
662 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
663 hdr->cmd = cpu_to_le16(cmd);
668 static int send_cmd(struct send_ctx *sctx)
671 struct btrfs_cmd_header *hdr;
674 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
675 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
678 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
679 hdr->crc = cpu_to_le32(crc);
681 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
684 sctx->total_send_size += sctx->send_size;
685 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
692 * Sends a move instruction to user space
694 static int send_rename(struct send_ctx *sctx,
695 struct fs_path *from, struct fs_path *to)
699 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
701 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
705 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
706 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
708 ret = send_cmd(sctx);
716 * Sends a link instruction to user space
718 static int send_link(struct send_ctx *sctx,
719 struct fs_path *path, struct fs_path *lnk)
723 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
725 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
729 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
730 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
732 ret = send_cmd(sctx);
740 * Sends an unlink instruction to user space
742 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
746 verbose_printk("btrfs: send_unlink %s\n", path->start);
748 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
752 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
754 ret = send_cmd(sctx);
762 * Sends a rmdir instruction to user space
764 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
768 verbose_printk("btrfs: send_rmdir %s\n", path->start);
770 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
774 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
776 ret = send_cmd(sctx);
784 * Helper function to retrieve some fields from an inode item.
786 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
787 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
791 struct btrfs_inode_item *ii;
792 struct btrfs_key key;
795 key.type = BTRFS_INODE_ITEM_KEY;
797 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
804 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
805 struct btrfs_inode_item);
807 *size = btrfs_inode_size(path->nodes[0], ii);
809 *gen = btrfs_inode_generation(path->nodes[0], ii);
811 *mode = btrfs_inode_mode(path->nodes[0], ii);
813 *uid = btrfs_inode_uid(path->nodes[0], ii);
815 *gid = btrfs_inode_gid(path->nodes[0], ii);
817 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
822 static int get_inode_info(struct btrfs_root *root,
823 u64 ino, u64 *size, u64 *gen,
824 u64 *mode, u64 *uid, u64 *gid,
827 struct btrfs_path *path;
830 path = alloc_path_for_send();
833 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
835 btrfs_free_path(path);
839 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
844 * Helper function to iterate the entries in ONE btrfs_inode_ref or
845 * btrfs_inode_extref.
846 * The iterate callback may return a non zero value to stop iteration. This can
847 * be a negative value for error codes or 1 to simply stop it.
849 * path must point to the INODE_REF or INODE_EXTREF when called.
851 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
852 struct btrfs_key *found_key, int resolve,
853 iterate_inode_ref_t iterate, void *ctx)
855 struct extent_buffer *eb = path->nodes[0];
856 struct btrfs_item *item;
857 struct btrfs_inode_ref *iref;
858 struct btrfs_inode_extref *extref;
859 struct btrfs_path *tmp_path;
863 int slot = path->slots[0];
870 unsigned long name_off;
871 unsigned long elem_size;
874 p = fs_path_alloc_reversed();
878 tmp_path = alloc_path_for_send();
885 if (found_key->type == BTRFS_INODE_REF_KEY) {
886 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
887 struct btrfs_inode_ref);
888 item = btrfs_item_nr(slot);
889 total = btrfs_item_size(eb, item);
890 elem_size = sizeof(*iref);
892 ptr = btrfs_item_ptr_offset(eb, slot);
893 total = btrfs_item_size_nr(eb, slot);
894 elem_size = sizeof(*extref);
897 while (cur < total) {
900 if (found_key->type == BTRFS_INODE_REF_KEY) {
901 iref = (struct btrfs_inode_ref *)(ptr + cur);
902 name_len = btrfs_inode_ref_name_len(eb, iref);
903 name_off = (unsigned long)(iref + 1);
904 index = btrfs_inode_ref_index(eb, iref);
905 dir = found_key->offset;
907 extref = (struct btrfs_inode_extref *)(ptr + cur);
908 name_len = btrfs_inode_extref_name_len(eb, extref);
909 name_off = (unsigned long)&extref->name;
910 index = btrfs_inode_extref_index(eb, extref);
911 dir = btrfs_inode_extref_parent(eb, extref);
915 start = btrfs_ref_to_path(root, tmp_path, name_len,
919 ret = PTR_ERR(start);
922 if (start < p->buf) {
923 /* overflow , try again with larger buffer */
924 ret = fs_path_ensure_buf(p,
925 p->buf_len + p->buf - start);
928 start = btrfs_ref_to_path(root, tmp_path,
933 ret = PTR_ERR(start);
936 BUG_ON(start < p->buf);
940 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
946 cur += elem_size + name_len;
947 ret = iterate(num, dir, index, p, ctx);
954 btrfs_free_path(tmp_path);
959 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
960 const char *name, int name_len,
961 const char *data, int data_len,
965 * Helper function to iterate the entries in ONE btrfs_dir_item.
966 * The iterate callback may return a non zero value to stop iteration. This can
967 * be a negative value for error codes or 1 to simply stop it.
969 * path must point to the dir item when called.
971 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
972 struct btrfs_key *found_key,
973 iterate_dir_item_t iterate, void *ctx)
976 struct extent_buffer *eb;
977 struct btrfs_item *item;
978 struct btrfs_dir_item *di;
979 struct btrfs_key di_key;
992 * Start with a small buffer (1 page). If later we end up needing more
993 * space, which can happen for xattrs on a fs with a leaf size greater
994 * then the page size, attempt to increase the buffer. Typically xattr
998 buf = kmalloc(buf_len, GFP_NOFS);
1004 eb = path->nodes[0];
1005 slot = path->slots[0];
1006 item = btrfs_item_nr(slot);
1007 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1010 total = btrfs_item_size(eb, item);
1013 while (cur < total) {
1014 name_len = btrfs_dir_name_len(eb, di);
1015 data_len = btrfs_dir_data_len(eb, di);
1016 type = btrfs_dir_type(eb, di);
1017 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1019 if (type == BTRFS_FT_XATTR) {
1020 if (name_len > XATTR_NAME_MAX) {
1021 ret = -ENAMETOOLONG;
1024 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1032 if (name_len + data_len > PATH_MAX) {
1033 ret = -ENAMETOOLONG;
1038 if (name_len + data_len > buf_len) {
1039 buf_len = name_len + data_len;
1040 if (is_vmalloc_addr(buf)) {
1044 char *tmp = krealloc(buf, buf_len,
1045 GFP_NOFS | __GFP_NOWARN);
1052 buf = vmalloc(buf_len);
1060 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1061 name_len + data_len);
1063 len = sizeof(*di) + name_len + data_len;
1064 di = (struct btrfs_dir_item *)((char *)di + len);
1067 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1068 data_len, type, ctx);
1084 static int __copy_first_ref(int num, u64 dir, int index,
1085 struct fs_path *p, void *ctx)
1088 struct fs_path *pt = ctx;
1090 ret = fs_path_copy(pt, p);
1094 /* we want the first only */
1099 * Retrieve the first path of an inode. If an inode has more then one
1100 * ref/hardlink, this is ignored.
1102 static int get_inode_path(struct btrfs_root *root,
1103 u64 ino, struct fs_path *path)
1106 struct btrfs_key key, found_key;
1107 struct btrfs_path *p;
1109 p = alloc_path_for_send();
1113 fs_path_reset(path);
1116 key.type = BTRFS_INODE_REF_KEY;
1119 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1126 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1127 if (found_key.objectid != ino ||
1128 (found_key.type != BTRFS_INODE_REF_KEY &&
1129 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1134 ret = iterate_inode_ref(root, p, &found_key, 1,
1135 __copy_first_ref, path);
1145 struct backref_ctx {
1146 struct send_ctx *sctx;
1148 struct btrfs_path *path;
1149 /* number of total found references */
1153 * used for clones found in send_root. clones found behind cur_objectid
1154 * and cur_offset are not considered as allowed clones.
1159 /* may be truncated in case it's the last extent in a file */
1162 /* data offset in the file extent item */
1165 /* Just to check for bugs in backref resolving */
1169 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1171 u64 root = (u64)(uintptr_t)key;
1172 struct clone_root *cr = (struct clone_root *)elt;
1174 if (root < cr->root->objectid)
1176 if (root > cr->root->objectid)
1181 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1183 struct clone_root *cr1 = (struct clone_root *)e1;
1184 struct clone_root *cr2 = (struct clone_root *)e2;
1186 if (cr1->root->objectid < cr2->root->objectid)
1188 if (cr1->root->objectid > cr2->root->objectid)
1194 * Called for every backref that is found for the current extent.
1195 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1197 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1199 struct backref_ctx *bctx = ctx_;
1200 struct clone_root *found;
1204 /* First check if the root is in the list of accepted clone sources */
1205 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1206 bctx->sctx->clone_roots_cnt,
1207 sizeof(struct clone_root),
1208 __clone_root_cmp_bsearch);
1212 if (found->root == bctx->sctx->send_root &&
1213 ino == bctx->cur_objectid &&
1214 offset == bctx->cur_offset) {
1215 bctx->found_itself = 1;
1219 * There are inodes that have extents that lie behind its i_size. Don't
1220 * accept clones from these extents.
1222 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1224 btrfs_release_path(bctx->path);
1228 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1232 * Make sure we don't consider clones from send_root that are
1233 * behind the current inode/offset.
1235 if (found->root == bctx->sctx->send_root) {
1237 * TODO for the moment we don't accept clones from the inode
1238 * that is currently send. We may change this when
1239 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1242 if (ino >= bctx->cur_objectid)
1245 if (ino > bctx->cur_objectid)
1247 if (offset + bctx->extent_len > bctx->cur_offset)
1253 found->found_refs++;
1254 if (ino < found->ino) {
1256 found->offset = offset;
1257 } else if (found->ino == ino) {
1259 * same extent found more then once in the same file.
1261 if (found->offset > offset + bctx->extent_len)
1262 found->offset = offset;
1269 * Given an inode, offset and extent item, it finds a good clone for a clone
1270 * instruction. Returns -ENOENT when none could be found. The function makes
1271 * sure that the returned clone is usable at the point where sending is at the
1272 * moment. This means, that no clones are accepted which lie behind the current
1275 * path must point to the extent item when called.
1277 static int find_extent_clone(struct send_ctx *sctx,
1278 struct btrfs_path *path,
1279 u64 ino, u64 data_offset,
1281 struct clone_root **found)
1288 u64 extent_item_pos;
1290 struct btrfs_file_extent_item *fi;
1291 struct extent_buffer *eb = path->nodes[0];
1292 struct backref_ctx *backref_ctx = NULL;
1293 struct clone_root *cur_clone_root;
1294 struct btrfs_key found_key;
1295 struct btrfs_path *tmp_path;
1299 tmp_path = alloc_path_for_send();
1303 /* We only use this path under the commit sem */
1304 tmp_path->need_commit_sem = 0;
1306 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1312 backref_ctx->path = tmp_path;
1314 if (data_offset >= ino_size) {
1316 * There may be extents that lie behind the file's size.
1317 * I at least had this in combination with snapshotting while
1318 * writing large files.
1324 fi = btrfs_item_ptr(eb, path->slots[0],
1325 struct btrfs_file_extent_item);
1326 extent_type = btrfs_file_extent_type(eb, fi);
1327 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1331 compressed = btrfs_file_extent_compression(eb, fi);
1333 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1334 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1335 if (disk_byte == 0) {
1339 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1341 down_read(&sctx->send_root->fs_info->commit_root_sem);
1342 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1343 &found_key, &flags);
1344 up_read(&sctx->send_root->fs_info->commit_root_sem);
1345 btrfs_release_path(tmp_path);
1349 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1355 * Setup the clone roots.
1357 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1358 cur_clone_root = sctx->clone_roots + i;
1359 cur_clone_root->ino = (u64)-1;
1360 cur_clone_root->offset = 0;
1361 cur_clone_root->found_refs = 0;
1364 backref_ctx->sctx = sctx;
1365 backref_ctx->found = 0;
1366 backref_ctx->cur_objectid = ino;
1367 backref_ctx->cur_offset = data_offset;
1368 backref_ctx->found_itself = 0;
1369 backref_ctx->extent_len = num_bytes;
1371 * For non-compressed extents iterate_extent_inodes() gives us extent
1372 * offsets that already take into account the data offset, but not for
1373 * compressed extents, since the offset is logical and not relative to
1374 * the physical extent locations. We must take this into account to
1375 * avoid sending clone offsets that go beyond the source file's size,
1376 * which would result in the clone ioctl failing with -EINVAL on the
1379 if (compressed == BTRFS_COMPRESS_NONE)
1380 backref_ctx->data_offset = 0;
1382 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1385 * The last extent of a file may be too large due to page alignment.
1386 * We need to adjust extent_len in this case so that the checks in
1387 * __iterate_backrefs work.
1389 if (data_offset + num_bytes >= ino_size)
1390 backref_ctx->extent_len = ino_size - data_offset;
1393 * Now collect all backrefs.
1395 if (compressed == BTRFS_COMPRESS_NONE)
1396 extent_item_pos = logical - found_key.objectid;
1398 extent_item_pos = 0;
1399 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1400 found_key.objectid, extent_item_pos, 1,
1401 __iterate_backrefs, backref_ctx);
1406 if (!backref_ctx->found_itself) {
1407 /* found a bug in backref code? */
1409 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1410 "send_root. inode=%llu, offset=%llu, "
1411 "disk_byte=%llu found extent=%llu",
1412 ino, data_offset, disk_byte, found_key.objectid);
1416 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1418 "num_bytes=%llu, logical=%llu\n",
1419 data_offset, ino, num_bytes, logical);
1421 if (!backref_ctx->found)
1422 verbose_printk("btrfs: no clones found\n");
1424 cur_clone_root = NULL;
1425 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1426 if (sctx->clone_roots[i].found_refs) {
1427 if (!cur_clone_root)
1428 cur_clone_root = sctx->clone_roots + i;
1429 else if (sctx->clone_roots[i].root == sctx->send_root)
1430 /* prefer clones from send_root over others */
1431 cur_clone_root = sctx->clone_roots + i;
1436 if (cur_clone_root) {
1437 if (compressed != BTRFS_COMPRESS_NONE) {
1439 * Offsets given by iterate_extent_inodes() are relative
1440 * to the start of the extent, we need to add logical
1441 * offset from the file extent item.
1442 * (See why at backref.c:check_extent_in_eb())
1444 cur_clone_root->offset += btrfs_file_extent_offset(eb,
1447 *found = cur_clone_root;
1454 btrfs_free_path(tmp_path);
1459 static int read_symlink(struct btrfs_root *root,
1461 struct fs_path *dest)
1464 struct btrfs_path *path;
1465 struct btrfs_key key;
1466 struct btrfs_file_extent_item *ei;
1472 path = alloc_path_for_send();
1477 key.type = BTRFS_EXTENT_DATA_KEY;
1479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1484 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1485 struct btrfs_file_extent_item);
1486 type = btrfs_file_extent_type(path->nodes[0], ei);
1487 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1488 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1489 BUG_ON(compression);
1491 off = btrfs_file_extent_inline_start(ei);
1492 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1494 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1497 btrfs_free_path(path);
1502 * Helper function to generate a file name that is unique in the root of
1503 * send_root and parent_root. This is used to generate names for orphan inodes.
1505 static int gen_unique_name(struct send_ctx *sctx,
1507 struct fs_path *dest)
1510 struct btrfs_path *path;
1511 struct btrfs_dir_item *di;
1516 path = alloc_path_for_send();
1521 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1523 ASSERT(len < sizeof(tmp));
1525 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1526 path, BTRFS_FIRST_FREE_OBJECTID,
1527 tmp, strlen(tmp), 0);
1528 btrfs_release_path(path);
1534 /* not unique, try again */
1539 if (!sctx->parent_root) {
1545 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1546 path, BTRFS_FIRST_FREE_OBJECTID,
1547 tmp, strlen(tmp), 0);
1548 btrfs_release_path(path);
1554 /* not unique, try again */
1562 ret = fs_path_add(dest, tmp, strlen(tmp));
1565 btrfs_free_path(path);
1570 inode_state_no_change,
1571 inode_state_will_create,
1572 inode_state_did_create,
1573 inode_state_will_delete,
1574 inode_state_did_delete,
1577 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1585 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1587 if (ret < 0 && ret != -ENOENT)
1591 if (!sctx->parent_root) {
1592 right_ret = -ENOENT;
1594 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1595 NULL, NULL, NULL, NULL);
1596 if (ret < 0 && ret != -ENOENT)
1601 if (!left_ret && !right_ret) {
1602 if (left_gen == gen && right_gen == gen) {
1603 ret = inode_state_no_change;
1604 } else if (left_gen == gen) {
1605 if (ino < sctx->send_progress)
1606 ret = inode_state_did_create;
1608 ret = inode_state_will_create;
1609 } else if (right_gen == gen) {
1610 if (ino < sctx->send_progress)
1611 ret = inode_state_did_delete;
1613 ret = inode_state_will_delete;
1617 } else if (!left_ret) {
1618 if (left_gen == gen) {
1619 if (ino < sctx->send_progress)
1620 ret = inode_state_did_create;
1622 ret = inode_state_will_create;
1626 } else if (!right_ret) {
1627 if (right_gen == gen) {
1628 if (ino < sctx->send_progress)
1629 ret = inode_state_did_delete;
1631 ret = inode_state_will_delete;
1643 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1647 ret = get_cur_inode_state(sctx, ino, gen);
1651 if (ret == inode_state_no_change ||
1652 ret == inode_state_did_create ||
1653 ret == inode_state_will_delete)
1663 * Helper function to lookup a dir item in a dir.
1665 static int lookup_dir_item_inode(struct btrfs_root *root,
1666 u64 dir, const char *name, int name_len,
1671 struct btrfs_dir_item *di;
1672 struct btrfs_key key;
1673 struct btrfs_path *path;
1675 path = alloc_path_for_send();
1679 di = btrfs_lookup_dir_item(NULL, root, path,
1680 dir, name, name_len, 0);
1689 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1690 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1694 *found_inode = key.objectid;
1695 *found_type = btrfs_dir_type(path->nodes[0], di);
1698 btrfs_free_path(path);
1703 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1704 * generation of the parent dir and the name of the dir entry.
1706 static int get_first_ref(struct btrfs_root *root, u64 ino,
1707 u64 *dir, u64 *dir_gen, struct fs_path *name)
1710 struct btrfs_key key;
1711 struct btrfs_key found_key;
1712 struct btrfs_path *path;
1716 path = alloc_path_for_send();
1721 key.type = BTRFS_INODE_REF_KEY;
1724 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1728 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1730 if (ret || found_key.objectid != ino ||
1731 (found_key.type != BTRFS_INODE_REF_KEY &&
1732 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1737 if (found_key.type == BTRFS_INODE_REF_KEY) {
1738 struct btrfs_inode_ref *iref;
1739 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1740 struct btrfs_inode_ref);
1741 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1742 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1743 (unsigned long)(iref + 1),
1745 parent_dir = found_key.offset;
1747 struct btrfs_inode_extref *extref;
1748 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1749 struct btrfs_inode_extref);
1750 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1751 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1752 (unsigned long)&extref->name, len);
1753 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1757 btrfs_release_path(path);
1760 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1769 btrfs_free_path(path);
1773 static int is_first_ref(struct btrfs_root *root,
1775 const char *name, int name_len)
1778 struct fs_path *tmp_name;
1781 tmp_name = fs_path_alloc();
1785 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1789 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1794 ret = !memcmp(tmp_name->start, name, name_len);
1797 fs_path_free(tmp_name);
1802 * Used by process_recorded_refs to determine if a new ref would overwrite an
1803 * already existing ref. In case it detects an overwrite, it returns the
1804 * inode/gen in who_ino/who_gen.
1805 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1806 * to make sure later references to the overwritten inode are possible.
1807 * Orphanizing is however only required for the first ref of an inode.
1808 * process_recorded_refs does an additional is_first_ref check to see if
1809 * orphanizing is really required.
1811 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1812 const char *name, int name_len,
1813 u64 *who_ino, u64 *who_gen)
1817 u64 other_inode = 0;
1820 if (!sctx->parent_root)
1823 ret = is_inode_existent(sctx, dir, dir_gen);
1828 * If we have a parent root we need to verify that the parent dir was
1829 * not delted and then re-created, if it was then we have no overwrite
1830 * and we can just unlink this entry.
1832 if (sctx->parent_root) {
1833 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1835 if (ret < 0 && ret != -ENOENT)
1845 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1846 &other_inode, &other_type);
1847 if (ret < 0 && ret != -ENOENT)
1855 * Check if the overwritten ref was already processed. If yes, the ref
1856 * was already unlinked/moved, so we can safely assume that we will not
1857 * overwrite anything at this point in time.
1859 if (other_inode > sctx->send_progress) {
1860 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1861 who_gen, NULL, NULL, NULL, NULL);
1866 *who_ino = other_inode;
1876 * Checks if the ref was overwritten by an already processed inode. This is
1877 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1878 * thus the orphan name needs be used.
1879 * process_recorded_refs also uses it to avoid unlinking of refs that were
1882 static int did_overwrite_ref(struct send_ctx *sctx,
1883 u64 dir, u64 dir_gen,
1884 u64 ino, u64 ino_gen,
1885 const char *name, int name_len)
1892 if (!sctx->parent_root)
1895 ret = is_inode_existent(sctx, dir, dir_gen);
1899 /* check if the ref was overwritten by another ref */
1900 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1901 &ow_inode, &other_type);
1902 if (ret < 0 && ret != -ENOENT)
1905 /* was never and will never be overwritten */
1910 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1915 if (ow_inode == ino && gen == ino_gen) {
1921 * We know that it is or will be overwritten. Check this now.
1922 * The current inode being processed might have been the one that caused
1923 * inode 'ino' to be orphanized, therefore ow_inode can actually be the
1924 * same as sctx->send_progress.
1926 if (ow_inode <= sctx->send_progress)
1936 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1937 * that got overwritten. This is used by process_recorded_refs to determine
1938 * if it has to use the path as returned by get_cur_path or the orphan name.
1940 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1943 struct fs_path *name = NULL;
1947 if (!sctx->parent_root)
1950 name = fs_path_alloc();
1954 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1958 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1959 name->start, fs_path_len(name));
1967 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1968 * so we need to do some special handling in case we have clashes. This function
1969 * takes care of this with the help of name_cache_entry::radix_list.
1970 * In case of error, nce is kfreed.
1972 static int name_cache_insert(struct send_ctx *sctx,
1973 struct name_cache_entry *nce)
1976 struct list_head *nce_head;
1978 nce_head = radix_tree_lookup(&sctx->name_cache,
1979 (unsigned long)nce->ino);
1981 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1986 INIT_LIST_HEAD(nce_head);
1988 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1995 list_add_tail(&nce->radix_list, nce_head);
1996 list_add_tail(&nce->list, &sctx->name_cache_list);
1997 sctx->name_cache_size++;
2002 static void name_cache_delete(struct send_ctx *sctx,
2003 struct name_cache_entry *nce)
2005 struct list_head *nce_head;
2007 nce_head = radix_tree_lookup(&sctx->name_cache,
2008 (unsigned long)nce->ino);
2010 btrfs_err(sctx->send_root->fs_info,
2011 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2012 nce->ino, sctx->name_cache_size);
2015 list_del(&nce->radix_list);
2016 list_del(&nce->list);
2017 sctx->name_cache_size--;
2020 * We may not get to the final release of nce_head if the lookup fails
2022 if (nce_head && list_empty(nce_head)) {
2023 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2028 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2031 struct list_head *nce_head;
2032 struct name_cache_entry *cur;
2034 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2038 list_for_each_entry(cur, nce_head, radix_list) {
2039 if (cur->ino == ino && cur->gen == gen)
2046 * Removes the entry from the list and adds it back to the end. This marks the
2047 * entry as recently used so that name_cache_clean_unused does not remove it.
2049 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2051 list_del(&nce->list);
2052 list_add_tail(&nce->list, &sctx->name_cache_list);
2056 * Remove some entries from the beginning of name_cache_list.
2058 static void name_cache_clean_unused(struct send_ctx *sctx)
2060 struct name_cache_entry *nce;
2062 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2065 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2066 nce = list_entry(sctx->name_cache_list.next,
2067 struct name_cache_entry, list);
2068 name_cache_delete(sctx, nce);
2073 static void name_cache_free(struct send_ctx *sctx)
2075 struct name_cache_entry *nce;
2077 while (!list_empty(&sctx->name_cache_list)) {
2078 nce = list_entry(sctx->name_cache_list.next,
2079 struct name_cache_entry, list);
2080 name_cache_delete(sctx, nce);
2086 * Used by get_cur_path for each ref up to the root.
2087 * Returns 0 if it succeeded.
2088 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2089 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2090 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2091 * Returns <0 in case of error.
2093 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2097 struct fs_path *dest)
2101 struct name_cache_entry *nce = NULL;
2104 * First check if we already did a call to this function with the same
2105 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2106 * return the cached result.
2108 nce = name_cache_search(sctx, ino, gen);
2110 if (ino < sctx->send_progress && nce->need_later_update) {
2111 name_cache_delete(sctx, nce);
2115 name_cache_used(sctx, nce);
2116 *parent_ino = nce->parent_ino;
2117 *parent_gen = nce->parent_gen;
2118 ret = fs_path_add(dest, nce->name, nce->name_len);
2127 * If the inode is not existent yet, add the orphan name and return 1.
2128 * This should only happen for the parent dir that we determine in
2131 ret = is_inode_existent(sctx, ino, gen);
2136 ret = gen_unique_name(sctx, ino, gen, dest);
2144 * Depending on whether the inode was already processed or not, use
2145 * send_root or parent_root for ref lookup.
2147 if (ino < sctx->send_progress)
2148 ret = get_first_ref(sctx->send_root, ino,
2149 parent_ino, parent_gen, dest);
2151 ret = get_first_ref(sctx->parent_root, ino,
2152 parent_ino, parent_gen, dest);
2157 * Check if the ref was overwritten by an inode's ref that was processed
2158 * earlier. If yes, treat as orphan and return 1.
2160 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2161 dest->start, dest->end - dest->start);
2165 fs_path_reset(dest);
2166 ret = gen_unique_name(sctx, ino, gen, dest);
2174 * Store the result of the lookup in the name cache.
2176 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2184 nce->parent_ino = *parent_ino;
2185 nce->parent_gen = *parent_gen;
2186 nce->name_len = fs_path_len(dest);
2188 strcpy(nce->name, dest->start);
2190 if (ino < sctx->send_progress)
2191 nce->need_later_update = 0;
2193 nce->need_later_update = 1;
2195 nce_ret = name_cache_insert(sctx, nce);
2198 name_cache_clean_unused(sctx);
2205 * Magic happens here. This function returns the first ref to an inode as it
2206 * would look like while receiving the stream at this point in time.
2207 * We walk the path up to the root. For every inode in between, we check if it
2208 * was already processed/sent. If yes, we continue with the parent as found
2209 * in send_root. If not, we continue with the parent as found in parent_root.
2210 * If we encounter an inode that was deleted at this point in time, we use the
2211 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2212 * that were not created yet and overwritten inodes/refs.
2214 * When do we have have orphan inodes:
2215 * 1. When an inode is freshly created and thus no valid refs are available yet
2216 * 2. When a directory lost all it's refs (deleted) but still has dir items
2217 * inside which were not processed yet (pending for move/delete). If anyone
2218 * tried to get the path to the dir items, it would get a path inside that
2220 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2221 * of an unprocessed inode. If in that case the first ref would be
2222 * overwritten, the overwritten inode gets "orphanized". Later when we
2223 * process this overwritten inode, it is restored at a new place by moving
2226 * sctx->send_progress tells this function at which point in time receiving
2229 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2230 struct fs_path *dest)
2233 struct fs_path *name = NULL;
2234 u64 parent_inode = 0;
2238 name = fs_path_alloc();
2245 fs_path_reset(dest);
2247 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2248 struct waiting_dir_move *wdm;
2250 fs_path_reset(name);
2252 if (is_waiting_for_rm(sctx, ino)) {
2253 ret = gen_unique_name(sctx, ino, gen, name);
2256 ret = fs_path_add_path(dest, name);
2260 wdm = get_waiting_dir_move(sctx, ino);
2261 if (wdm && wdm->orphanized) {
2262 ret = gen_unique_name(sctx, ino, gen, name);
2265 ret = get_first_ref(sctx->parent_root, ino,
2266 &parent_inode, &parent_gen, name);
2268 ret = __get_cur_name_and_parent(sctx, ino, gen,
2278 ret = fs_path_add_path(dest, name);
2289 fs_path_unreverse(dest);
2294 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2296 static int send_subvol_begin(struct send_ctx *sctx)
2299 struct btrfs_root *send_root = sctx->send_root;
2300 struct btrfs_root *parent_root = sctx->parent_root;
2301 struct btrfs_path *path;
2302 struct btrfs_key key;
2303 struct btrfs_root_ref *ref;
2304 struct extent_buffer *leaf;
2308 path = btrfs_alloc_path();
2312 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2314 btrfs_free_path(path);
2318 key.objectid = send_root->objectid;
2319 key.type = BTRFS_ROOT_BACKREF_KEY;
2322 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2331 leaf = path->nodes[0];
2332 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2333 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2334 key.objectid != send_root->objectid) {
2338 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2339 namelen = btrfs_root_ref_name_len(leaf, ref);
2340 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2341 btrfs_release_path(path);
2344 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2348 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2353 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2354 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2355 sctx->send_root->root_item.uuid);
2356 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2357 le64_to_cpu(sctx->send_root->root_item.ctransid));
2359 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2360 sctx->parent_root->root_item.uuid);
2361 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2362 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2365 ret = send_cmd(sctx);
2369 btrfs_free_path(path);
2374 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2379 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2381 p = fs_path_alloc();
2385 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2389 ret = get_cur_path(sctx, ino, gen, p);
2392 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2393 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2395 ret = send_cmd(sctx);
2403 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2408 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2410 p = fs_path_alloc();
2414 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2418 ret = get_cur_path(sctx, ino, gen, p);
2421 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2422 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2424 ret = send_cmd(sctx);
2432 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2437 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2439 p = fs_path_alloc();
2443 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2447 ret = get_cur_path(sctx, ino, gen, p);
2450 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2451 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2452 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2454 ret = send_cmd(sctx);
2462 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2465 struct fs_path *p = NULL;
2466 struct btrfs_inode_item *ii;
2467 struct btrfs_path *path = NULL;
2468 struct extent_buffer *eb;
2469 struct btrfs_key key;
2472 verbose_printk("btrfs: send_utimes %llu\n", ino);
2474 p = fs_path_alloc();
2478 path = alloc_path_for_send();
2485 key.type = BTRFS_INODE_ITEM_KEY;
2487 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2491 eb = path->nodes[0];
2492 slot = path->slots[0];
2493 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2495 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2499 ret = get_cur_path(sctx, ino, gen, p);
2502 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2503 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2504 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2505 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2506 /* TODO Add otime support when the otime patches get into upstream */
2508 ret = send_cmd(sctx);
2513 btrfs_free_path(path);
2518 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2519 * a valid path yet because we did not process the refs yet. So, the inode
2520 * is created as orphan.
2522 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2531 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2533 p = fs_path_alloc();
2537 if (ino != sctx->cur_ino) {
2538 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2543 gen = sctx->cur_inode_gen;
2544 mode = sctx->cur_inode_mode;
2545 rdev = sctx->cur_inode_rdev;
2548 if (S_ISREG(mode)) {
2549 cmd = BTRFS_SEND_C_MKFILE;
2550 } else if (S_ISDIR(mode)) {
2551 cmd = BTRFS_SEND_C_MKDIR;
2552 } else if (S_ISLNK(mode)) {
2553 cmd = BTRFS_SEND_C_SYMLINK;
2554 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2555 cmd = BTRFS_SEND_C_MKNOD;
2556 } else if (S_ISFIFO(mode)) {
2557 cmd = BTRFS_SEND_C_MKFIFO;
2558 } else if (S_ISSOCK(mode)) {
2559 cmd = BTRFS_SEND_C_MKSOCK;
2561 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2562 (int)(mode & S_IFMT));
2567 ret = begin_cmd(sctx, cmd);
2571 ret = gen_unique_name(sctx, ino, gen, p);
2575 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2576 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2578 if (S_ISLNK(mode)) {
2580 ret = read_symlink(sctx->send_root, ino, p);
2583 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2584 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2585 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2586 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2587 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2590 ret = send_cmd(sctx);
2602 * We need some special handling for inodes that get processed before the parent
2603 * directory got created. See process_recorded_refs for details.
2604 * This function does the check if we already created the dir out of order.
2606 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2609 struct btrfs_path *path = NULL;
2610 struct btrfs_key key;
2611 struct btrfs_key found_key;
2612 struct btrfs_key di_key;
2613 struct extent_buffer *eb;
2614 struct btrfs_dir_item *di;
2617 path = alloc_path_for_send();
2624 key.type = BTRFS_DIR_INDEX_KEY;
2626 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2631 eb = path->nodes[0];
2632 slot = path->slots[0];
2633 if (slot >= btrfs_header_nritems(eb)) {
2634 ret = btrfs_next_leaf(sctx->send_root, path);
2637 } else if (ret > 0) {
2644 btrfs_item_key_to_cpu(eb, &found_key, slot);
2645 if (found_key.objectid != key.objectid ||
2646 found_key.type != key.type) {
2651 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2652 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2654 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2655 di_key.objectid < sctx->send_progress) {
2664 btrfs_free_path(path);
2669 * Only creates the inode if it is:
2670 * 1. Not a directory
2671 * 2. Or a directory which was not created already due to out of order
2672 * directories. See did_create_dir and process_recorded_refs for details.
2674 static int send_create_inode_if_needed(struct send_ctx *sctx)
2678 if (S_ISDIR(sctx->cur_inode_mode)) {
2679 ret = did_create_dir(sctx, sctx->cur_ino);
2688 ret = send_create_inode(sctx, sctx->cur_ino);
2696 struct recorded_ref {
2697 struct list_head list;
2700 struct fs_path *full_path;
2708 * We need to process new refs before deleted refs, but compare_tree gives us
2709 * everything mixed. So we first record all refs and later process them.
2710 * This function is a helper to record one ref.
2712 static int __record_ref(struct list_head *head, u64 dir,
2713 u64 dir_gen, struct fs_path *path)
2715 struct recorded_ref *ref;
2717 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2722 ref->dir_gen = dir_gen;
2723 ref->full_path = path;
2725 ref->name = (char *)kbasename(ref->full_path->start);
2726 ref->name_len = ref->full_path->end - ref->name;
2727 ref->dir_path = ref->full_path->start;
2728 if (ref->name == ref->full_path->start)
2729 ref->dir_path_len = 0;
2731 ref->dir_path_len = ref->full_path->end -
2732 ref->full_path->start - 1 - ref->name_len;
2734 list_add_tail(&ref->list, head);
2738 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2740 struct recorded_ref *new;
2742 new = kmalloc(sizeof(*ref), GFP_NOFS);
2746 new->dir = ref->dir;
2747 new->dir_gen = ref->dir_gen;
2748 new->full_path = NULL;
2749 INIT_LIST_HEAD(&new->list);
2750 list_add_tail(&new->list, list);
2754 static void __free_recorded_refs(struct list_head *head)
2756 struct recorded_ref *cur;
2758 while (!list_empty(head)) {
2759 cur = list_entry(head->next, struct recorded_ref, list);
2760 fs_path_free(cur->full_path);
2761 list_del(&cur->list);
2766 static void free_recorded_refs(struct send_ctx *sctx)
2768 __free_recorded_refs(&sctx->new_refs);
2769 __free_recorded_refs(&sctx->deleted_refs);
2773 * Renames/moves a file/dir to its orphan name. Used when the first
2774 * ref of an unprocessed inode gets overwritten and for all non empty
2777 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2778 struct fs_path *path)
2781 struct fs_path *orphan;
2783 orphan = fs_path_alloc();
2787 ret = gen_unique_name(sctx, ino, gen, orphan);
2791 ret = send_rename(sctx, path, orphan);
2794 fs_path_free(orphan);
2798 static struct orphan_dir_info *
2799 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2801 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2802 struct rb_node *parent = NULL;
2803 struct orphan_dir_info *entry, *odi;
2805 odi = kmalloc(sizeof(*odi), GFP_NOFS);
2807 return ERR_PTR(-ENOMEM);
2813 entry = rb_entry(parent, struct orphan_dir_info, node);
2814 if (dir_ino < entry->ino) {
2816 } else if (dir_ino > entry->ino) {
2817 p = &(*p)->rb_right;
2824 rb_link_node(&odi->node, parent, p);
2825 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2829 static struct orphan_dir_info *
2830 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2832 struct rb_node *n = sctx->orphan_dirs.rb_node;
2833 struct orphan_dir_info *entry;
2836 entry = rb_entry(n, struct orphan_dir_info, node);
2837 if (dir_ino < entry->ino)
2839 else if (dir_ino > entry->ino)
2847 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2849 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2854 static void free_orphan_dir_info(struct send_ctx *sctx,
2855 struct orphan_dir_info *odi)
2859 rb_erase(&odi->node, &sctx->orphan_dirs);
2864 * Returns 1 if a directory can be removed at this point in time.
2865 * We check this by iterating all dir items and checking if the inode behind
2866 * the dir item was already processed.
2868 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2872 struct btrfs_root *root = sctx->parent_root;
2873 struct btrfs_path *path;
2874 struct btrfs_key key;
2875 struct btrfs_key found_key;
2876 struct btrfs_key loc;
2877 struct btrfs_dir_item *di;
2880 * Don't try to rmdir the top/root subvolume dir.
2882 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2885 path = alloc_path_for_send();
2890 key.type = BTRFS_DIR_INDEX_KEY;
2892 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2897 struct waiting_dir_move *dm;
2899 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2900 ret = btrfs_next_leaf(root, path);
2907 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2909 if (found_key.objectid != key.objectid ||
2910 found_key.type != key.type)
2913 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2914 struct btrfs_dir_item);
2915 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2917 dm = get_waiting_dir_move(sctx, loc.objectid);
2919 struct orphan_dir_info *odi;
2921 odi = add_orphan_dir_info(sctx, dir);
2927 dm->rmdir_ino = dir;
2932 if (loc.objectid > send_progress) {
2943 btrfs_free_path(path);
2947 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2949 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2951 return entry != NULL;
2954 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2956 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2957 struct rb_node *parent = NULL;
2958 struct waiting_dir_move *entry, *dm;
2960 dm = kmalloc(sizeof(*dm), GFP_NOFS);
2965 dm->orphanized = orphanized;
2969 entry = rb_entry(parent, struct waiting_dir_move, node);
2970 if (ino < entry->ino) {
2972 } else if (ino > entry->ino) {
2973 p = &(*p)->rb_right;
2980 rb_link_node(&dm->node, parent, p);
2981 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2985 static struct waiting_dir_move *
2986 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2988 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2989 struct waiting_dir_move *entry;
2992 entry = rb_entry(n, struct waiting_dir_move, node);
2993 if (ino < entry->ino)
2995 else if (ino > entry->ino)
3003 static void free_waiting_dir_move(struct send_ctx *sctx,
3004 struct waiting_dir_move *dm)
3008 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3012 static int add_pending_dir_move(struct send_ctx *sctx,
3016 struct list_head *new_refs,
3017 struct list_head *deleted_refs,
3018 const bool is_orphan)
3020 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3021 struct rb_node *parent = NULL;
3022 struct pending_dir_move *entry = NULL, *pm;
3023 struct recorded_ref *cur;
3027 pm = kmalloc(sizeof(*pm), GFP_NOFS);
3030 pm->parent_ino = parent_ino;
3033 pm->is_orphan = is_orphan;
3034 INIT_LIST_HEAD(&pm->list);
3035 INIT_LIST_HEAD(&pm->update_refs);
3036 RB_CLEAR_NODE(&pm->node);
3040 entry = rb_entry(parent, struct pending_dir_move, node);
3041 if (parent_ino < entry->parent_ino) {
3043 } else if (parent_ino > entry->parent_ino) {
3044 p = &(*p)->rb_right;
3051 list_for_each_entry(cur, deleted_refs, list) {
3052 ret = dup_ref(cur, &pm->update_refs);
3056 list_for_each_entry(cur, new_refs, list) {
3057 ret = dup_ref(cur, &pm->update_refs);
3062 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3067 list_add_tail(&pm->list, &entry->list);
3069 rb_link_node(&pm->node, parent, p);
3070 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3075 __free_recorded_refs(&pm->update_refs);
3081 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3084 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3085 struct pending_dir_move *entry;
3088 entry = rb_entry(n, struct pending_dir_move, node);
3089 if (parent_ino < entry->parent_ino)
3091 else if (parent_ino > entry->parent_ino)
3099 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3101 struct fs_path *from_path = NULL;
3102 struct fs_path *to_path = NULL;
3103 struct fs_path *name = NULL;
3104 u64 orig_progress = sctx->send_progress;
3105 struct recorded_ref *cur;
3106 u64 parent_ino, parent_gen;
3107 struct waiting_dir_move *dm = NULL;
3111 name = fs_path_alloc();
3112 from_path = fs_path_alloc();
3113 if (!name || !from_path) {
3118 dm = get_waiting_dir_move(sctx, pm->ino);
3120 rmdir_ino = dm->rmdir_ino;
3121 free_waiting_dir_move(sctx, dm);
3123 if (pm->is_orphan) {
3124 ret = gen_unique_name(sctx, pm->ino,
3125 pm->gen, from_path);
3127 ret = get_first_ref(sctx->parent_root, pm->ino,
3128 &parent_ino, &parent_gen, name);
3131 ret = get_cur_path(sctx, parent_ino, parent_gen,
3135 ret = fs_path_add_path(from_path, name);
3140 sctx->send_progress = sctx->cur_ino + 1;
3141 fs_path_reset(name);
3144 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3148 ret = send_rename(sctx, from_path, to_path);
3153 struct orphan_dir_info *odi;
3155 odi = get_orphan_dir_info(sctx, rmdir_ino);
3157 /* already deleted */
3160 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3166 name = fs_path_alloc();
3171 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3174 ret = send_rmdir(sctx, name);
3177 free_orphan_dir_info(sctx, odi);
3181 ret = send_utimes(sctx, pm->ino, pm->gen);
3186 * After rename/move, need to update the utimes of both new parent(s)
3187 * and old parent(s).
3189 list_for_each_entry(cur, &pm->update_refs, list) {
3190 if (cur->dir == rmdir_ino)
3192 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3199 fs_path_free(from_path);
3200 fs_path_free(to_path);
3201 sctx->send_progress = orig_progress;
3206 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3208 if (!list_empty(&m->list))
3210 if (!RB_EMPTY_NODE(&m->node))
3211 rb_erase(&m->node, &sctx->pending_dir_moves);
3212 __free_recorded_refs(&m->update_refs);
3216 static void tail_append_pending_moves(struct pending_dir_move *moves,
3217 struct list_head *stack)
3219 if (list_empty(&moves->list)) {
3220 list_add_tail(&moves->list, stack);
3223 list_splice_init(&moves->list, &list);
3224 list_add_tail(&moves->list, stack);
3225 list_splice_tail(&list, stack);
3229 static int apply_children_dir_moves(struct send_ctx *sctx)
3231 struct pending_dir_move *pm;
3232 struct list_head stack;
3233 u64 parent_ino = sctx->cur_ino;
3236 pm = get_pending_dir_moves(sctx, parent_ino);
3240 INIT_LIST_HEAD(&stack);
3241 tail_append_pending_moves(pm, &stack);
3243 while (!list_empty(&stack)) {
3244 pm = list_first_entry(&stack, struct pending_dir_move, list);
3245 parent_ino = pm->ino;
3246 ret = apply_dir_move(sctx, pm);
3247 free_pending_move(sctx, pm);
3250 pm = get_pending_dir_moves(sctx, parent_ino);
3252 tail_append_pending_moves(pm, &stack);
3257 while (!list_empty(&stack)) {
3258 pm = list_first_entry(&stack, struct pending_dir_move, list);
3259 free_pending_move(sctx, pm);
3265 * We might need to delay a directory rename even when no ancestor directory
3266 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3267 * renamed. This happens when we rename a directory to the old name (the name
3268 * in the parent root) of some other unrelated directory that got its rename
3269 * delayed due to some ancestor with higher number that got renamed.
3275 * |---- a/ (ino 257)
3276 * | |---- file (ino 260)
3278 * |---- b/ (ino 258)
3279 * |---- c/ (ino 259)
3283 * |---- a/ (ino 258)
3284 * |---- x/ (ino 259)
3285 * |---- y/ (ino 257)
3286 * |----- file (ino 260)
3288 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3289 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3290 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3293 * 1 - rename 259 from 'c' to 'x'
3294 * 2 - rename 257 from 'a' to 'x/y'
3295 * 3 - rename 258 from 'b' to 'a'
3297 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3298 * be done right away and < 0 on error.
3300 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3301 struct recorded_ref *parent_ref,
3302 const bool is_orphan)
3304 struct btrfs_path *path;
3305 struct btrfs_key key;
3306 struct btrfs_key di_key;
3307 struct btrfs_dir_item *di;
3312 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3315 path = alloc_path_for_send();
3319 key.objectid = parent_ref->dir;
3320 key.type = BTRFS_DIR_ITEM_KEY;
3321 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3323 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3326 } else if (ret > 0) {
3331 di = btrfs_match_dir_item_name(sctx->parent_root, path,
3332 parent_ref->name, parent_ref->name_len);
3338 * di_key.objectid has the number of the inode that has a dentry in the
3339 * parent directory with the same name that sctx->cur_ino is being
3340 * renamed to. We need to check if that inode is in the send root as
3341 * well and if it is currently marked as an inode with a pending rename,
3342 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3343 * that it happens after that other inode is renamed.
3345 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3346 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3351 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3352 &left_gen, NULL, NULL, NULL, NULL);
3355 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3356 &right_gen, NULL, NULL, NULL, NULL);
3363 /* Different inode, no need to delay the rename of sctx->cur_ino */
3364 if (right_gen != left_gen) {
3369 if (is_waiting_for_move(sctx, di_key.objectid)) {
3370 ret = add_pending_dir_move(sctx,
3372 sctx->cur_inode_gen,
3375 &sctx->deleted_refs,
3381 btrfs_free_path(path);
3386 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3387 * Return 1 if true, 0 if false and < 0 on error.
3389 static int is_ancestor(struct btrfs_root *root,
3393 struct fs_path *fs_path)
3397 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3402 fs_path_reset(fs_path);
3403 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3405 if (ret == -ENOENT && ino == ino2)
3410 return parent_gen == ino1_gen ? 1 : 0;
3416 static int wait_for_parent_move(struct send_ctx *sctx,
3417 struct recorded_ref *parent_ref,
3418 const bool is_orphan)
3421 u64 ino = parent_ref->dir;
3422 u64 parent_ino_before, parent_ino_after;
3423 struct fs_path *path_before = NULL;
3424 struct fs_path *path_after = NULL;
3427 path_after = fs_path_alloc();
3428 path_before = fs_path_alloc();
3429 if (!path_after || !path_before) {
3435 * Our current directory inode may not yet be renamed/moved because some
3436 * ancestor (immediate or not) has to be renamed/moved first. So find if
3437 * such ancestor exists and make sure our own rename/move happens after
3438 * that ancestor is processed to avoid path build infinite loops (done
3439 * at get_cur_path()).
3441 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3442 if (is_waiting_for_move(sctx, ino)) {
3444 * If the current inode is an ancestor of ino in the
3445 * parent root, we need to delay the rename of the
3446 * current inode, otherwise don't delayed the rename
3447 * because we can end up with a circular dependency
3448 * of renames, resulting in some directories never
3449 * getting the respective rename operations issued in
3450 * the send stream or getting into infinite path build
3453 ret = is_ancestor(sctx->parent_root,
3454 sctx->cur_ino, sctx->cur_inode_gen,
3459 fs_path_reset(path_before);
3460 fs_path_reset(path_after);
3462 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3466 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3468 if (ret < 0 && ret != -ENOENT) {
3470 } else if (ret == -ENOENT) {
3475 len1 = fs_path_len(path_before);
3476 len2 = fs_path_len(path_after);
3477 if (ino > sctx->cur_ino &&
3478 (parent_ino_before != parent_ino_after || len1 != len2 ||
3479 memcmp(path_before->start, path_after->start, len1))) {
3483 ino = parent_ino_after;
3487 fs_path_free(path_before);
3488 fs_path_free(path_after);
3491 ret = add_pending_dir_move(sctx,
3493 sctx->cur_inode_gen,
3496 &sctx->deleted_refs,
3506 * This does all the move/link/unlink/rmdir magic.
3508 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3511 struct recorded_ref *cur;
3512 struct recorded_ref *cur2;
3513 struct list_head check_dirs;
3514 struct fs_path *valid_path = NULL;
3517 int did_overwrite = 0;
3519 u64 last_dir_ino_rm = 0;
3520 bool can_rename = true;
3522 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3525 * This should never happen as the root dir always has the same ref
3526 * which is always '..'
3528 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3529 INIT_LIST_HEAD(&check_dirs);
3531 valid_path = fs_path_alloc();
3538 * First, check if the first ref of the current inode was overwritten
3539 * before. If yes, we know that the current inode was already orphanized
3540 * and thus use the orphan name. If not, we can use get_cur_path to
3541 * get the path of the first ref as it would like while receiving at
3542 * this point in time.
3543 * New inodes are always orphan at the beginning, so force to use the
3544 * orphan name in this case.
3545 * The first ref is stored in valid_path and will be updated if it
3546 * gets moved around.
3548 if (!sctx->cur_inode_new) {
3549 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3550 sctx->cur_inode_gen);
3556 if (sctx->cur_inode_new || did_overwrite) {
3557 ret = gen_unique_name(sctx, sctx->cur_ino,
3558 sctx->cur_inode_gen, valid_path);
3563 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3569 list_for_each_entry(cur, &sctx->new_refs, list) {
3571 * We may have refs where the parent directory does not exist
3572 * yet. This happens if the parent directories inum is higher
3573 * the the current inum. To handle this case, we create the
3574 * parent directory out of order. But we need to check if this
3575 * did already happen before due to other refs in the same dir.
3577 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3580 if (ret == inode_state_will_create) {
3583 * First check if any of the current inodes refs did
3584 * already create the dir.
3586 list_for_each_entry(cur2, &sctx->new_refs, list) {
3589 if (cur2->dir == cur->dir) {
3596 * If that did not happen, check if a previous inode
3597 * did already create the dir.
3600 ret = did_create_dir(sctx, cur->dir);
3604 ret = send_create_inode(sctx, cur->dir);
3611 * Check if this new ref would overwrite the first ref of
3612 * another unprocessed inode. If yes, orphanize the
3613 * overwritten inode. If we find an overwritten ref that is
3614 * not the first ref, simply unlink it.
3616 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3617 cur->name, cur->name_len,
3618 &ow_inode, &ow_gen);
3622 ret = is_first_ref(sctx->parent_root,
3623 ow_inode, cur->dir, cur->name,
3628 struct name_cache_entry *nce;
3630 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3635 * Make sure we clear our orphanized inode's
3636 * name from the name cache. This is because the
3637 * inode ow_inode might be an ancestor of some
3638 * other inode that will be orphanized as well
3639 * later and has an inode number greater than
3640 * sctx->send_progress. We need to prevent
3641 * future name lookups from using the old name
3642 * and get instead the orphan name.
3644 nce = name_cache_search(sctx, ow_inode, ow_gen);
3646 name_cache_delete(sctx, nce);
3650 ret = send_unlink(sctx, cur->full_path);
3656 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3657 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3666 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3668 ret = wait_for_parent_move(sctx, cur, is_orphan);
3678 * link/move the ref to the new place. If we have an orphan
3679 * inode, move it and update valid_path. If not, link or move
3680 * it depending on the inode mode.
3682 if (is_orphan && can_rename) {
3683 ret = send_rename(sctx, valid_path, cur->full_path);
3687 ret = fs_path_copy(valid_path, cur->full_path);
3690 } else if (can_rename) {
3691 if (S_ISDIR(sctx->cur_inode_mode)) {
3693 * Dirs can't be linked, so move it. For moved
3694 * dirs, we always have one new and one deleted
3695 * ref. The deleted ref is ignored later.
3697 ret = send_rename(sctx, valid_path,
3700 ret = fs_path_copy(valid_path,
3705 ret = send_link(sctx, cur->full_path,
3711 ret = dup_ref(cur, &check_dirs);
3716 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3718 * Check if we can already rmdir the directory. If not,
3719 * orphanize it. For every dir item inside that gets deleted
3720 * later, we do this check again and rmdir it then if possible.
3721 * See the use of check_dirs for more details.
3723 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3728 ret = send_rmdir(sctx, valid_path);
3731 } else if (!is_orphan) {
3732 ret = orphanize_inode(sctx, sctx->cur_ino,
3733 sctx->cur_inode_gen, valid_path);
3739 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3740 ret = dup_ref(cur, &check_dirs);
3744 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3745 !list_empty(&sctx->deleted_refs)) {
3747 * We have a moved dir. Add the old parent to check_dirs
3749 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3751 ret = dup_ref(cur, &check_dirs);
3754 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3756 * We have a non dir inode. Go through all deleted refs and
3757 * unlink them if they were not already overwritten by other
3760 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3761 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3762 sctx->cur_ino, sctx->cur_inode_gen,
3763 cur->name, cur->name_len);
3767 ret = send_unlink(sctx, cur->full_path);
3771 ret = dup_ref(cur, &check_dirs);
3776 * If the inode is still orphan, unlink the orphan. This may
3777 * happen when a previous inode did overwrite the first ref
3778 * of this inode and no new refs were added for the current
3779 * inode. Unlinking does not mean that the inode is deleted in
3780 * all cases. There may still be links to this inode in other
3784 ret = send_unlink(sctx, valid_path);
3791 * We did collect all parent dirs where cur_inode was once located. We
3792 * now go through all these dirs and check if they are pending for
3793 * deletion and if it's finally possible to perform the rmdir now.
3794 * We also update the inode stats of the parent dirs here.
3796 list_for_each_entry(cur, &check_dirs, list) {
3798 * In case we had refs into dirs that were not processed yet,
3799 * we don't need to do the utime and rmdir logic for these dirs.
3800 * The dir will be processed later.
3802 if (cur->dir > sctx->cur_ino)
3805 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3809 if (ret == inode_state_did_create ||
3810 ret == inode_state_no_change) {
3811 /* TODO delayed utimes */
3812 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3815 } else if (ret == inode_state_did_delete &&
3816 cur->dir != last_dir_ino_rm) {
3817 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3822 ret = get_cur_path(sctx, cur->dir,
3823 cur->dir_gen, valid_path);
3826 ret = send_rmdir(sctx, valid_path);
3829 last_dir_ino_rm = cur->dir;
3837 __free_recorded_refs(&check_dirs);
3838 free_recorded_refs(sctx);
3839 fs_path_free(valid_path);
3843 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3844 struct fs_path *name, void *ctx, struct list_head *refs)
3847 struct send_ctx *sctx = ctx;
3851 p = fs_path_alloc();
3855 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3860 ret = get_cur_path(sctx, dir, gen, p);
3863 ret = fs_path_add_path(p, name);
3867 ret = __record_ref(refs, dir, gen, p);
3875 static int __record_new_ref(int num, u64 dir, int index,
3876 struct fs_path *name,
3879 struct send_ctx *sctx = ctx;
3880 return record_ref(sctx->send_root, num, dir, index, name,
3881 ctx, &sctx->new_refs);
3885 static int __record_deleted_ref(int num, u64 dir, int index,
3886 struct fs_path *name,
3889 struct send_ctx *sctx = ctx;
3890 return record_ref(sctx->parent_root, num, dir, index, name,
3891 ctx, &sctx->deleted_refs);
3894 static int record_new_ref(struct send_ctx *sctx)
3898 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3899 sctx->cmp_key, 0, __record_new_ref, sctx);
3908 static int record_deleted_ref(struct send_ctx *sctx)
3912 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3913 sctx->cmp_key, 0, __record_deleted_ref, sctx);
3922 struct find_ref_ctx {
3925 struct btrfs_root *root;
3926 struct fs_path *name;
3930 static int __find_iref(int num, u64 dir, int index,
3931 struct fs_path *name,
3934 struct find_ref_ctx *ctx = ctx_;
3938 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3939 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3941 * To avoid doing extra lookups we'll only do this if everything
3944 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3948 if (dir_gen != ctx->dir_gen)
3950 ctx->found_idx = num;
3956 static int find_iref(struct btrfs_root *root,
3957 struct btrfs_path *path,
3958 struct btrfs_key *key,
3959 u64 dir, u64 dir_gen, struct fs_path *name)
3962 struct find_ref_ctx ctx;
3966 ctx.dir_gen = dir_gen;
3970 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3974 if (ctx.found_idx == -1)
3977 return ctx.found_idx;
3980 static int __record_changed_new_ref(int num, u64 dir, int index,
3981 struct fs_path *name,
3986 struct send_ctx *sctx = ctx;
3988 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3993 ret = find_iref(sctx->parent_root, sctx->right_path,
3994 sctx->cmp_key, dir, dir_gen, name);
3996 ret = __record_new_ref(num, dir, index, name, sctx);
4003 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4004 struct fs_path *name,
4009 struct send_ctx *sctx = ctx;
4011 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4016 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4017 dir, dir_gen, name);
4019 ret = __record_deleted_ref(num, dir, index, name, sctx);
4026 static int record_changed_ref(struct send_ctx *sctx)
4030 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4031 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4034 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4035 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4045 * Record and process all refs at once. Needed when an inode changes the
4046 * generation number, which means that it was deleted and recreated.
4048 static int process_all_refs(struct send_ctx *sctx,
4049 enum btrfs_compare_tree_result cmd)
4052 struct btrfs_root *root;
4053 struct btrfs_path *path;
4054 struct btrfs_key key;
4055 struct btrfs_key found_key;
4056 struct extent_buffer *eb;
4058 iterate_inode_ref_t cb;
4059 int pending_move = 0;
4061 path = alloc_path_for_send();
4065 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4066 root = sctx->send_root;
4067 cb = __record_new_ref;
4068 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4069 root = sctx->parent_root;
4070 cb = __record_deleted_ref;
4072 btrfs_err(sctx->send_root->fs_info,
4073 "Wrong command %d in process_all_refs", cmd);
4078 key.objectid = sctx->cmp_key->objectid;
4079 key.type = BTRFS_INODE_REF_KEY;
4081 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4086 eb = path->nodes[0];
4087 slot = path->slots[0];
4088 if (slot >= btrfs_header_nritems(eb)) {
4089 ret = btrfs_next_leaf(root, path);
4097 btrfs_item_key_to_cpu(eb, &found_key, slot);
4099 if (found_key.objectid != key.objectid ||
4100 (found_key.type != BTRFS_INODE_REF_KEY &&
4101 found_key.type != BTRFS_INODE_EXTREF_KEY))
4104 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4110 btrfs_release_path(path);
4112 ret = process_recorded_refs(sctx, &pending_move);
4113 /* Only applicable to an incremental send. */
4114 ASSERT(pending_move == 0);
4117 btrfs_free_path(path);
4121 static int send_set_xattr(struct send_ctx *sctx,
4122 struct fs_path *path,
4123 const char *name, int name_len,
4124 const char *data, int data_len)
4128 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4132 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4133 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4134 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4136 ret = send_cmd(sctx);
4143 static int send_remove_xattr(struct send_ctx *sctx,
4144 struct fs_path *path,
4145 const char *name, int name_len)
4149 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4153 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4154 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4156 ret = send_cmd(sctx);
4163 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4164 const char *name, int name_len,
4165 const char *data, int data_len,
4169 struct send_ctx *sctx = ctx;
4171 posix_acl_xattr_header dummy_acl;
4173 p = fs_path_alloc();
4178 * This hack is needed because empty acl's are stored as zero byte
4179 * data in xattrs. Problem with that is, that receiving these zero byte
4180 * acl's will fail later. To fix this, we send a dummy acl list that
4181 * only contains the version number and no entries.
4183 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4184 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4185 if (data_len == 0) {
4186 dummy_acl.a_version =
4187 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4188 data = (char *)&dummy_acl;
4189 data_len = sizeof(dummy_acl);
4193 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4197 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4204 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4205 const char *name, int name_len,
4206 const char *data, int data_len,
4210 struct send_ctx *sctx = ctx;
4213 p = fs_path_alloc();
4217 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4221 ret = send_remove_xattr(sctx, p, name, name_len);
4228 static int process_new_xattr(struct send_ctx *sctx)
4232 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4233 sctx->cmp_key, __process_new_xattr, sctx);
4238 static int process_deleted_xattr(struct send_ctx *sctx)
4242 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4243 sctx->cmp_key, __process_deleted_xattr, sctx);
4248 struct find_xattr_ctx {
4256 static int __find_xattr(int num, struct btrfs_key *di_key,
4257 const char *name, int name_len,
4258 const char *data, int data_len,
4259 u8 type, void *vctx)
4261 struct find_xattr_ctx *ctx = vctx;
4263 if (name_len == ctx->name_len &&
4264 strncmp(name, ctx->name, name_len) == 0) {
4265 ctx->found_idx = num;
4266 ctx->found_data_len = data_len;
4267 ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4268 if (!ctx->found_data)
4275 static int find_xattr(struct btrfs_root *root,
4276 struct btrfs_path *path,
4277 struct btrfs_key *key,
4278 const char *name, int name_len,
4279 char **data, int *data_len)
4282 struct find_xattr_ctx ctx;
4285 ctx.name_len = name_len;
4287 ctx.found_data = NULL;
4288 ctx.found_data_len = 0;
4290 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4294 if (ctx.found_idx == -1)
4297 *data = ctx.found_data;
4298 *data_len = ctx.found_data_len;
4300 kfree(ctx.found_data);
4302 return ctx.found_idx;
4306 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4307 const char *name, int name_len,
4308 const char *data, int data_len,
4312 struct send_ctx *sctx = ctx;
4313 char *found_data = NULL;
4314 int found_data_len = 0;
4316 ret = find_xattr(sctx->parent_root, sctx->right_path,
4317 sctx->cmp_key, name, name_len, &found_data,
4319 if (ret == -ENOENT) {
4320 ret = __process_new_xattr(num, di_key, name, name_len, data,
4321 data_len, type, ctx);
4322 } else if (ret >= 0) {
4323 if (data_len != found_data_len ||
4324 memcmp(data, found_data, data_len)) {
4325 ret = __process_new_xattr(num, di_key, name, name_len,
4326 data, data_len, type, ctx);
4336 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4337 const char *name, int name_len,
4338 const char *data, int data_len,
4342 struct send_ctx *sctx = ctx;
4344 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4345 name, name_len, NULL, NULL);
4347 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4348 data_len, type, ctx);
4355 static int process_changed_xattr(struct send_ctx *sctx)
4359 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4360 sctx->cmp_key, __process_changed_new_xattr, sctx);
4363 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4364 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4370 static int process_all_new_xattrs(struct send_ctx *sctx)
4373 struct btrfs_root *root;
4374 struct btrfs_path *path;
4375 struct btrfs_key key;
4376 struct btrfs_key found_key;
4377 struct extent_buffer *eb;
4380 path = alloc_path_for_send();
4384 root = sctx->send_root;
4386 key.objectid = sctx->cmp_key->objectid;
4387 key.type = BTRFS_XATTR_ITEM_KEY;
4389 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4394 eb = path->nodes[0];
4395 slot = path->slots[0];
4396 if (slot >= btrfs_header_nritems(eb)) {
4397 ret = btrfs_next_leaf(root, path);
4400 } else if (ret > 0) {
4407 btrfs_item_key_to_cpu(eb, &found_key, slot);
4408 if (found_key.objectid != key.objectid ||
4409 found_key.type != key.type) {
4414 ret = iterate_dir_item(root, path, &found_key,
4415 __process_new_xattr, sctx);
4423 btrfs_free_path(path);
4427 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4429 struct btrfs_root *root = sctx->send_root;
4430 struct btrfs_fs_info *fs_info = root->fs_info;
4431 struct inode *inode;
4434 struct btrfs_key key;
4435 pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4437 unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4440 key.objectid = sctx->cur_ino;
4441 key.type = BTRFS_INODE_ITEM_KEY;
4444 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4446 return PTR_ERR(inode);
4448 if (offset + len > i_size_read(inode)) {
4449 if (offset > i_size_read(inode))
4452 len = offset - i_size_read(inode);
4457 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4459 /* initial readahead */
4460 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4461 file_ra_state_init(&sctx->ra, inode->i_mapping);
4462 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4463 last_index - index + 1);
4465 while (index <= last_index) {
4466 unsigned cur_len = min_t(unsigned, len,
4467 PAGE_CACHE_SIZE - pg_offset);
4468 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4474 if (!PageUptodate(page)) {
4475 btrfs_readpage(NULL, page);
4477 if (!PageUptodate(page)) {
4479 page_cache_release(page);
4486 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4489 page_cache_release(page);
4501 * Read some bytes from the current inode/file and send a write command to
4504 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4508 ssize_t num_read = 0;
4510 p = fs_path_alloc();
4514 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4516 num_read = fill_read_buf(sctx, offset, len);
4517 if (num_read <= 0) {
4523 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4527 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4531 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4532 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4533 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4535 ret = send_cmd(sctx);
4546 * Send a clone command to user space.
4548 static int send_clone(struct send_ctx *sctx,
4549 u64 offset, u32 len,
4550 struct clone_root *clone_root)
4556 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4557 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4558 clone_root->root->objectid, clone_root->ino,
4559 clone_root->offset);
4561 p = fs_path_alloc();
4565 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4569 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4573 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4574 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4575 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4577 if (clone_root->root == sctx->send_root) {
4578 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4579 &gen, NULL, NULL, NULL, NULL);
4582 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4584 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4589 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4590 clone_root->root->root_item.uuid);
4591 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4592 le64_to_cpu(clone_root->root->root_item.ctransid));
4593 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4594 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4595 clone_root->offset);
4597 ret = send_cmd(sctx);
4606 * Send an update extent command to user space.
4608 static int send_update_extent(struct send_ctx *sctx,
4609 u64 offset, u32 len)
4614 p = fs_path_alloc();
4618 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4622 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4626 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4627 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4628 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4630 ret = send_cmd(sctx);
4638 static int send_hole(struct send_ctx *sctx, u64 end)
4640 struct fs_path *p = NULL;
4641 u64 offset = sctx->cur_inode_last_extent;
4645 p = fs_path_alloc();
4648 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4650 goto tlv_put_failure;
4651 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4652 while (offset < end) {
4653 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4655 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4658 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4659 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4660 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4661 ret = send_cmd(sctx);
4671 static int send_write_or_clone(struct send_ctx *sctx,
4672 struct btrfs_path *path,
4673 struct btrfs_key *key,
4674 struct clone_root *clone_root)
4677 struct btrfs_file_extent_item *ei;
4678 u64 offset = key->offset;
4683 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4685 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4686 struct btrfs_file_extent_item);
4687 type = btrfs_file_extent_type(path->nodes[0], ei);
4688 if (type == BTRFS_FILE_EXTENT_INLINE) {
4689 len = btrfs_file_extent_inline_len(path->nodes[0],
4690 path->slots[0], ei);
4692 * it is possible the inline item won't cover the whole page,
4693 * but there may be items after this page. Make
4694 * sure to send the whole thing
4696 len = PAGE_CACHE_ALIGN(len);
4698 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4701 if (offset + len > sctx->cur_inode_size)
4702 len = sctx->cur_inode_size - offset;
4708 if (clone_root && IS_ALIGNED(offset + len, bs)) {
4709 ret = send_clone(sctx, offset, len, clone_root);
4710 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4711 ret = send_update_extent(sctx, offset, len);
4715 if (l > BTRFS_SEND_READ_SIZE)
4716 l = BTRFS_SEND_READ_SIZE;
4717 ret = send_write(sctx, pos + offset, l);
4730 static int is_extent_unchanged(struct send_ctx *sctx,
4731 struct btrfs_path *left_path,
4732 struct btrfs_key *ekey)
4735 struct btrfs_key key;
4736 struct btrfs_path *path = NULL;
4737 struct extent_buffer *eb;
4739 struct btrfs_key found_key;
4740 struct btrfs_file_extent_item *ei;
4745 u64 left_offset_fixed;
4753 path = alloc_path_for_send();
4757 eb = left_path->nodes[0];
4758 slot = left_path->slots[0];
4759 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4760 left_type = btrfs_file_extent_type(eb, ei);
4762 if (left_type != BTRFS_FILE_EXTENT_REG) {
4766 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4767 left_len = btrfs_file_extent_num_bytes(eb, ei);
4768 left_offset = btrfs_file_extent_offset(eb, ei);
4769 left_gen = btrfs_file_extent_generation(eb, ei);
4772 * Following comments will refer to these graphics. L is the left
4773 * extents which we are checking at the moment. 1-8 are the right
4774 * extents that we iterate.
4777 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4780 * |--1--|-2b-|...(same as above)
4782 * Alternative situation. Happens on files where extents got split.
4784 * |-----------7-----------|-6-|
4786 * Alternative situation. Happens on files which got larger.
4789 * Nothing follows after 8.
4792 key.objectid = ekey->objectid;
4793 key.type = BTRFS_EXTENT_DATA_KEY;
4794 key.offset = ekey->offset;
4795 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4804 * Handle special case where the right side has no extents at all.
4806 eb = path->nodes[0];
4807 slot = path->slots[0];
4808 btrfs_item_key_to_cpu(eb, &found_key, slot);
4809 if (found_key.objectid != key.objectid ||
4810 found_key.type != key.type) {
4811 /* If we're a hole then just pretend nothing changed */
4812 ret = (left_disknr) ? 0 : 1;
4817 * We're now on 2a, 2b or 7.
4820 while (key.offset < ekey->offset + left_len) {
4821 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4822 right_type = btrfs_file_extent_type(eb, ei);
4823 if (right_type != BTRFS_FILE_EXTENT_REG) {
4828 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4829 right_len = btrfs_file_extent_num_bytes(eb, ei);
4830 right_offset = btrfs_file_extent_offset(eb, ei);
4831 right_gen = btrfs_file_extent_generation(eb, ei);
4834 * Are we at extent 8? If yes, we know the extent is changed.
4835 * This may only happen on the first iteration.
4837 if (found_key.offset + right_len <= ekey->offset) {
4838 /* If we're a hole just pretend nothing changed */
4839 ret = (left_disknr) ? 0 : 1;
4843 left_offset_fixed = left_offset;
4844 if (key.offset < ekey->offset) {
4845 /* Fix the right offset for 2a and 7. */
4846 right_offset += ekey->offset - key.offset;
4848 /* Fix the left offset for all behind 2a and 2b */
4849 left_offset_fixed += key.offset - ekey->offset;
4853 * Check if we have the same extent.
4855 if (left_disknr != right_disknr ||
4856 left_offset_fixed != right_offset ||
4857 left_gen != right_gen) {
4863 * Go to the next extent.
4865 ret = btrfs_next_item(sctx->parent_root, path);
4869 eb = path->nodes[0];
4870 slot = path->slots[0];
4871 btrfs_item_key_to_cpu(eb, &found_key, slot);
4873 if (ret || found_key.objectid != key.objectid ||
4874 found_key.type != key.type) {
4875 key.offset += right_len;
4878 if (found_key.offset != key.offset + right_len) {
4886 * We're now behind the left extent (treat as unchanged) or at the end
4887 * of the right side (treat as changed).
4889 if (key.offset >= ekey->offset + left_len)
4896 btrfs_free_path(path);
4900 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4902 struct btrfs_path *path;
4903 struct btrfs_root *root = sctx->send_root;
4904 struct btrfs_file_extent_item *fi;
4905 struct btrfs_key key;
4910 path = alloc_path_for_send();
4914 sctx->cur_inode_last_extent = 0;
4916 key.objectid = sctx->cur_ino;
4917 key.type = BTRFS_EXTENT_DATA_KEY;
4918 key.offset = offset;
4919 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4923 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4924 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4927 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4928 struct btrfs_file_extent_item);
4929 type = btrfs_file_extent_type(path->nodes[0], fi);
4930 if (type == BTRFS_FILE_EXTENT_INLINE) {
4931 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4932 path->slots[0], fi);
4933 extent_end = ALIGN(key.offset + size,
4934 sctx->send_root->sectorsize);
4936 extent_end = key.offset +
4937 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4939 sctx->cur_inode_last_extent = extent_end;
4941 btrfs_free_path(path);
4945 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4946 struct btrfs_key *key)
4948 struct btrfs_file_extent_item *fi;
4953 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4956 if (sctx->cur_inode_last_extent == (u64)-1) {
4957 ret = get_last_extent(sctx, key->offset - 1);
4962 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4963 struct btrfs_file_extent_item);
4964 type = btrfs_file_extent_type(path->nodes[0], fi);
4965 if (type == BTRFS_FILE_EXTENT_INLINE) {
4966 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4967 path->slots[0], fi);
4968 extent_end = ALIGN(key->offset + size,
4969 sctx->send_root->sectorsize);
4971 extent_end = key->offset +
4972 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4975 if (path->slots[0] == 0 &&
4976 sctx->cur_inode_last_extent < key->offset) {
4978 * We might have skipped entire leafs that contained only
4979 * file extent items for our current inode. These leafs have
4980 * a generation number smaller (older) than the one in the
4981 * current leaf and the leaf our last extent came from, and
4982 * are located between these 2 leafs.
4984 ret = get_last_extent(sctx, key->offset - 1);
4989 if (sctx->cur_inode_last_extent < key->offset)
4990 ret = send_hole(sctx, key->offset);
4991 sctx->cur_inode_last_extent = extent_end;
4995 static int process_extent(struct send_ctx *sctx,
4996 struct btrfs_path *path,
4997 struct btrfs_key *key)
4999 struct clone_root *found_clone = NULL;
5002 if (S_ISLNK(sctx->cur_inode_mode))
5005 if (sctx->parent_root && !sctx->cur_inode_new) {
5006 ret = is_extent_unchanged(sctx, path, key);
5014 struct btrfs_file_extent_item *ei;
5017 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5018 struct btrfs_file_extent_item);
5019 type = btrfs_file_extent_type(path->nodes[0], ei);
5020 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5021 type == BTRFS_FILE_EXTENT_REG) {
5023 * The send spec does not have a prealloc command yet,
5024 * so just leave a hole for prealloc'ed extents until
5025 * we have enough commands queued up to justify rev'ing
5028 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5033 /* Have a hole, just skip it. */
5034 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5041 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5042 sctx->cur_inode_size, &found_clone);
5043 if (ret != -ENOENT && ret < 0)
5046 ret = send_write_or_clone(sctx, path, key, found_clone);
5050 ret = maybe_send_hole(sctx, path, key);
5055 static int process_all_extents(struct send_ctx *sctx)
5058 struct btrfs_root *root;
5059 struct btrfs_path *path;
5060 struct btrfs_key key;
5061 struct btrfs_key found_key;
5062 struct extent_buffer *eb;
5065 root = sctx->send_root;
5066 path = alloc_path_for_send();
5070 key.objectid = sctx->cmp_key->objectid;
5071 key.type = BTRFS_EXTENT_DATA_KEY;
5073 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5078 eb = path->nodes[0];
5079 slot = path->slots[0];
5081 if (slot >= btrfs_header_nritems(eb)) {
5082 ret = btrfs_next_leaf(root, path);
5085 } else if (ret > 0) {
5092 btrfs_item_key_to_cpu(eb, &found_key, slot);
5094 if (found_key.objectid != key.objectid ||
5095 found_key.type != key.type) {
5100 ret = process_extent(sctx, path, &found_key);
5108 btrfs_free_path(path);
5112 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5114 int *refs_processed)
5118 if (sctx->cur_ino == 0)
5120 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5121 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5123 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5126 ret = process_recorded_refs(sctx, pending_move);
5130 *refs_processed = 1;
5135 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5146 int pending_move = 0;
5147 int refs_processed = 0;
5149 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5155 * We have processed the refs and thus need to advance send_progress.
5156 * Now, calls to get_cur_xxx will take the updated refs of the current
5157 * inode into account.
5159 * On the other hand, if our current inode is a directory and couldn't
5160 * be moved/renamed because its parent was renamed/moved too and it has
5161 * a higher inode number, we can only move/rename our current inode
5162 * after we moved/renamed its parent. Therefore in this case operate on
5163 * the old path (pre move/rename) of our current inode, and the
5164 * move/rename will be performed later.
5166 if (refs_processed && !pending_move)
5167 sctx->send_progress = sctx->cur_ino + 1;
5169 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5171 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5174 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5175 &left_mode, &left_uid, &left_gid, NULL);
5179 if (!sctx->parent_root || sctx->cur_inode_new) {
5181 if (!S_ISLNK(sctx->cur_inode_mode))
5184 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5185 NULL, NULL, &right_mode, &right_uid,
5190 if (left_uid != right_uid || left_gid != right_gid)
5192 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5196 if (S_ISREG(sctx->cur_inode_mode)) {
5197 if (need_send_hole(sctx)) {
5198 if (sctx->cur_inode_last_extent == (u64)-1 ||
5199 sctx->cur_inode_last_extent <
5200 sctx->cur_inode_size) {
5201 ret = get_last_extent(sctx, (u64)-1);
5205 if (sctx->cur_inode_last_extent <
5206 sctx->cur_inode_size) {
5207 ret = send_hole(sctx, sctx->cur_inode_size);
5212 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5213 sctx->cur_inode_size);
5219 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5220 left_uid, left_gid);
5225 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5232 * If other directory inodes depended on our current directory
5233 * inode's move/rename, now do their move/rename operations.
5235 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5236 ret = apply_children_dir_moves(sctx);
5240 * Need to send that every time, no matter if it actually
5241 * changed between the two trees as we have done changes to
5242 * the inode before. If our inode is a directory and it's
5243 * waiting to be moved/renamed, we will send its utimes when
5244 * it's moved/renamed, therefore we don't need to do it here.
5246 sctx->send_progress = sctx->cur_ino + 1;
5247 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5256 static int changed_inode(struct send_ctx *sctx,
5257 enum btrfs_compare_tree_result result)
5260 struct btrfs_key *key = sctx->cmp_key;
5261 struct btrfs_inode_item *left_ii = NULL;
5262 struct btrfs_inode_item *right_ii = NULL;
5266 sctx->cur_ino = key->objectid;
5267 sctx->cur_inode_new_gen = 0;
5268 sctx->cur_inode_last_extent = (u64)-1;
5271 * Set send_progress to current inode. This will tell all get_cur_xxx
5272 * functions that the current inode's refs are not updated yet. Later,
5273 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5275 sctx->send_progress = sctx->cur_ino;
5277 if (result == BTRFS_COMPARE_TREE_NEW ||
5278 result == BTRFS_COMPARE_TREE_CHANGED) {
5279 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5280 sctx->left_path->slots[0],
5281 struct btrfs_inode_item);
5282 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5285 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5286 sctx->right_path->slots[0],
5287 struct btrfs_inode_item);
5288 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5291 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5292 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5293 sctx->right_path->slots[0],
5294 struct btrfs_inode_item);
5296 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5300 * The cur_ino = root dir case is special here. We can't treat
5301 * the inode as deleted+reused because it would generate a
5302 * stream that tries to delete/mkdir the root dir.
5304 if (left_gen != right_gen &&
5305 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5306 sctx->cur_inode_new_gen = 1;
5309 if (result == BTRFS_COMPARE_TREE_NEW) {
5310 sctx->cur_inode_gen = left_gen;
5311 sctx->cur_inode_new = 1;
5312 sctx->cur_inode_deleted = 0;
5313 sctx->cur_inode_size = btrfs_inode_size(
5314 sctx->left_path->nodes[0], left_ii);
5315 sctx->cur_inode_mode = btrfs_inode_mode(
5316 sctx->left_path->nodes[0], left_ii);
5317 sctx->cur_inode_rdev = btrfs_inode_rdev(
5318 sctx->left_path->nodes[0], left_ii);
5319 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5320 ret = send_create_inode_if_needed(sctx);
5321 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5322 sctx->cur_inode_gen = right_gen;
5323 sctx->cur_inode_new = 0;
5324 sctx->cur_inode_deleted = 1;
5325 sctx->cur_inode_size = btrfs_inode_size(
5326 sctx->right_path->nodes[0], right_ii);
5327 sctx->cur_inode_mode = btrfs_inode_mode(
5328 sctx->right_path->nodes[0], right_ii);
5329 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5331 * We need to do some special handling in case the inode was
5332 * reported as changed with a changed generation number. This
5333 * means that the original inode was deleted and new inode
5334 * reused the same inum. So we have to treat the old inode as
5335 * deleted and the new one as new.
5337 if (sctx->cur_inode_new_gen) {
5339 * First, process the inode as if it was deleted.
5341 sctx->cur_inode_gen = right_gen;
5342 sctx->cur_inode_new = 0;
5343 sctx->cur_inode_deleted = 1;
5344 sctx->cur_inode_size = btrfs_inode_size(
5345 sctx->right_path->nodes[0], right_ii);
5346 sctx->cur_inode_mode = btrfs_inode_mode(
5347 sctx->right_path->nodes[0], right_ii);
5348 ret = process_all_refs(sctx,
5349 BTRFS_COMPARE_TREE_DELETED);
5354 * Now process the inode as if it was new.
5356 sctx->cur_inode_gen = left_gen;
5357 sctx->cur_inode_new = 1;
5358 sctx->cur_inode_deleted = 0;
5359 sctx->cur_inode_size = btrfs_inode_size(
5360 sctx->left_path->nodes[0], left_ii);
5361 sctx->cur_inode_mode = btrfs_inode_mode(
5362 sctx->left_path->nodes[0], left_ii);
5363 sctx->cur_inode_rdev = btrfs_inode_rdev(
5364 sctx->left_path->nodes[0], left_ii);
5365 ret = send_create_inode_if_needed(sctx);
5369 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5373 * Advance send_progress now as we did not get into
5374 * process_recorded_refs_if_needed in the new_gen case.
5376 sctx->send_progress = sctx->cur_ino + 1;
5379 * Now process all extents and xattrs of the inode as if
5380 * they were all new.
5382 ret = process_all_extents(sctx);
5385 ret = process_all_new_xattrs(sctx);
5389 sctx->cur_inode_gen = left_gen;
5390 sctx->cur_inode_new = 0;
5391 sctx->cur_inode_new_gen = 0;
5392 sctx->cur_inode_deleted = 0;
5393 sctx->cur_inode_size = btrfs_inode_size(
5394 sctx->left_path->nodes[0], left_ii);
5395 sctx->cur_inode_mode = btrfs_inode_mode(
5396 sctx->left_path->nodes[0], left_ii);
5405 * We have to process new refs before deleted refs, but compare_trees gives us
5406 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5407 * first and later process them in process_recorded_refs.
5408 * For the cur_inode_new_gen case, we skip recording completely because
5409 * changed_inode did already initiate processing of refs. The reason for this is
5410 * that in this case, compare_tree actually compares the refs of 2 different
5411 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5412 * refs of the right tree as deleted and all refs of the left tree as new.
5414 static int changed_ref(struct send_ctx *sctx,
5415 enum btrfs_compare_tree_result result)
5419 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5421 if (!sctx->cur_inode_new_gen &&
5422 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5423 if (result == BTRFS_COMPARE_TREE_NEW)
5424 ret = record_new_ref(sctx);
5425 else if (result == BTRFS_COMPARE_TREE_DELETED)
5426 ret = record_deleted_ref(sctx);
5427 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5428 ret = record_changed_ref(sctx);
5435 * Process new/deleted/changed xattrs. We skip processing in the
5436 * cur_inode_new_gen case because changed_inode did already initiate processing
5437 * of xattrs. The reason is the same as in changed_ref
5439 static int changed_xattr(struct send_ctx *sctx,
5440 enum btrfs_compare_tree_result result)
5444 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5446 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5447 if (result == BTRFS_COMPARE_TREE_NEW)
5448 ret = process_new_xattr(sctx);
5449 else if (result == BTRFS_COMPARE_TREE_DELETED)
5450 ret = process_deleted_xattr(sctx);
5451 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5452 ret = process_changed_xattr(sctx);
5459 * Process new/deleted/changed extents. We skip processing in the
5460 * cur_inode_new_gen case because changed_inode did already initiate processing
5461 * of extents. The reason is the same as in changed_ref
5463 static int changed_extent(struct send_ctx *sctx,
5464 enum btrfs_compare_tree_result result)
5468 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5470 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5471 if (result != BTRFS_COMPARE_TREE_DELETED)
5472 ret = process_extent(sctx, sctx->left_path,
5479 static int dir_changed(struct send_ctx *sctx, u64 dir)
5481 u64 orig_gen, new_gen;
5484 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5489 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5494 return (orig_gen != new_gen) ? 1 : 0;
5497 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5498 struct btrfs_key *key)
5500 struct btrfs_inode_extref *extref;
5501 struct extent_buffer *leaf;
5502 u64 dirid = 0, last_dirid = 0;
5509 /* Easy case, just check this one dirid */
5510 if (key->type == BTRFS_INODE_REF_KEY) {
5511 dirid = key->offset;
5513 ret = dir_changed(sctx, dirid);
5517 leaf = path->nodes[0];
5518 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5519 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5520 while (cur_offset < item_size) {
5521 extref = (struct btrfs_inode_extref *)(ptr +
5523 dirid = btrfs_inode_extref_parent(leaf, extref);
5524 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5525 cur_offset += ref_name_len + sizeof(*extref);
5526 if (dirid == last_dirid)
5528 ret = dir_changed(sctx, dirid);
5538 * Updates compare related fields in sctx and simply forwards to the actual
5539 * changed_xxx functions.
5541 static int changed_cb(struct btrfs_root *left_root,
5542 struct btrfs_root *right_root,
5543 struct btrfs_path *left_path,
5544 struct btrfs_path *right_path,
5545 struct btrfs_key *key,
5546 enum btrfs_compare_tree_result result,
5550 struct send_ctx *sctx = ctx;
5552 if (result == BTRFS_COMPARE_TREE_SAME) {
5553 if (key->type == BTRFS_INODE_REF_KEY ||
5554 key->type == BTRFS_INODE_EXTREF_KEY) {
5555 ret = compare_refs(sctx, left_path, key);
5560 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5561 return maybe_send_hole(sctx, left_path, key);
5565 result = BTRFS_COMPARE_TREE_CHANGED;
5569 sctx->left_path = left_path;
5570 sctx->right_path = right_path;
5571 sctx->cmp_key = key;
5573 ret = finish_inode_if_needed(sctx, 0);
5577 /* Ignore non-FS objects */
5578 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5579 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5582 if (key->type == BTRFS_INODE_ITEM_KEY)
5583 ret = changed_inode(sctx, result);
5584 else if (key->type == BTRFS_INODE_REF_KEY ||
5585 key->type == BTRFS_INODE_EXTREF_KEY)
5586 ret = changed_ref(sctx, result);
5587 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5588 ret = changed_xattr(sctx, result);
5589 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5590 ret = changed_extent(sctx, result);
5596 static int full_send_tree(struct send_ctx *sctx)
5599 struct btrfs_root *send_root = sctx->send_root;
5600 struct btrfs_key key;
5601 struct btrfs_key found_key;
5602 struct btrfs_path *path;
5603 struct extent_buffer *eb;
5606 path = alloc_path_for_send();
5610 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5611 key.type = BTRFS_INODE_ITEM_KEY;
5614 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5621 eb = path->nodes[0];
5622 slot = path->slots[0];
5623 btrfs_item_key_to_cpu(eb, &found_key, slot);
5625 ret = changed_cb(send_root, NULL, path, NULL,
5626 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5630 key.objectid = found_key.objectid;
5631 key.type = found_key.type;
5632 key.offset = found_key.offset + 1;
5634 ret = btrfs_next_item(send_root, path);
5644 ret = finish_inode_if_needed(sctx, 1);
5647 btrfs_free_path(path);
5651 static int send_subvol(struct send_ctx *sctx)
5655 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5656 ret = send_header(sctx);
5661 ret = send_subvol_begin(sctx);
5665 if (sctx->parent_root) {
5666 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5670 ret = finish_inode_if_needed(sctx, 1);
5674 ret = full_send_tree(sctx);
5680 free_recorded_refs(sctx);
5685 * If orphan cleanup did remove any orphans from a root, it means the tree
5686 * was modified and therefore the commit root is not the same as the current
5687 * root anymore. This is a problem, because send uses the commit root and
5688 * therefore can see inode items that don't exist in the current root anymore,
5689 * and for example make calls to btrfs_iget, which will do tree lookups based
5690 * on the current root and not on the commit root. Those lookups will fail,
5691 * returning a -ESTALE error, and making send fail with that error. So make
5692 * sure a send does not see any orphans we have just removed, and that it will
5693 * see the same inodes regardless of whether a transaction commit happened
5694 * before it started (meaning that the commit root will be the same as the
5695 * current root) or not.
5697 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5700 struct btrfs_trans_handle *trans = NULL;
5703 if (sctx->parent_root &&
5704 sctx->parent_root->node != sctx->parent_root->commit_root)
5707 for (i = 0; i < sctx->clone_roots_cnt; i++)
5708 if (sctx->clone_roots[i].root->node !=
5709 sctx->clone_roots[i].root->commit_root)
5713 return btrfs_end_transaction(trans, sctx->send_root);
5718 /* Use any root, all fs roots will get their commit roots updated. */
5720 trans = btrfs_join_transaction(sctx->send_root);
5722 return PTR_ERR(trans);
5726 return btrfs_commit_transaction(trans, sctx->send_root);
5729 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5731 spin_lock(&root->root_item_lock);
5732 root->send_in_progress--;
5734 * Not much left to do, we don't know why it's unbalanced and
5735 * can't blindly reset it to 0.
5737 if (root->send_in_progress < 0)
5738 btrfs_err(root->fs_info,
5739 "send_in_progres unbalanced %d root %llu",
5740 root->send_in_progress, root->root_key.objectid);
5741 spin_unlock(&root->root_item_lock);
5744 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5747 struct btrfs_root *send_root;
5748 struct btrfs_root *clone_root;
5749 struct btrfs_fs_info *fs_info;
5750 struct btrfs_ioctl_send_args *arg = NULL;
5751 struct btrfs_key key;
5752 struct send_ctx *sctx = NULL;
5754 u64 *clone_sources_tmp = NULL;
5755 int clone_sources_to_rollback = 0;
5756 int sort_clone_roots = 0;
5759 if (!capable(CAP_SYS_ADMIN))
5762 send_root = BTRFS_I(file_inode(mnt_file))->root;
5763 fs_info = send_root->fs_info;
5766 * The subvolume must remain read-only during send, protect against
5767 * making it RW. This also protects against deletion.
5769 spin_lock(&send_root->root_item_lock);
5770 send_root->send_in_progress++;
5771 spin_unlock(&send_root->root_item_lock);
5774 * This is done when we lookup the root, it should already be complete
5775 * by the time we get here.
5777 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5780 * Userspace tools do the checks and warn the user if it's
5783 if (!btrfs_root_readonly(send_root)) {
5788 arg = memdup_user(arg_, sizeof(*arg));
5795 if (!access_ok(VERIFY_READ, arg->clone_sources,
5796 sizeof(*arg->clone_sources) *
5797 arg->clone_sources_count)) {
5802 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5807 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5813 INIT_LIST_HEAD(&sctx->new_refs);
5814 INIT_LIST_HEAD(&sctx->deleted_refs);
5815 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5816 INIT_LIST_HEAD(&sctx->name_cache_list);
5818 sctx->flags = arg->flags;
5820 sctx->send_filp = fget(arg->send_fd);
5821 if (!sctx->send_filp) {
5826 sctx->send_root = send_root;
5828 * Unlikely but possible, if the subvolume is marked for deletion but
5829 * is slow to remove the directory entry, send can still be started
5831 if (btrfs_root_dead(sctx->send_root)) {
5836 sctx->clone_roots_cnt = arg->clone_sources_count;
5838 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5839 sctx->send_buf = vmalloc(sctx->send_max_size);
5840 if (!sctx->send_buf) {
5845 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5846 if (!sctx->read_buf) {
5851 sctx->pending_dir_moves = RB_ROOT;
5852 sctx->waiting_dir_moves = RB_ROOT;
5853 sctx->orphan_dirs = RB_ROOT;
5855 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5856 (arg->clone_sources_count + 1));
5857 if (!sctx->clone_roots) {
5862 if (arg->clone_sources_count) {
5863 clone_sources_tmp = vmalloc(arg->clone_sources_count *
5864 sizeof(*arg->clone_sources));
5865 if (!clone_sources_tmp) {
5870 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5871 arg->clone_sources_count *
5872 sizeof(*arg->clone_sources));
5878 for (i = 0; i < arg->clone_sources_count; i++) {
5879 key.objectid = clone_sources_tmp[i];
5880 key.type = BTRFS_ROOT_ITEM_KEY;
5881 key.offset = (u64)-1;
5883 index = srcu_read_lock(&fs_info->subvol_srcu);
5885 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5886 if (IS_ERR(clone_root)) {
5887 srcu_read_unlock(&fs_info->subvol_srcu, index);
5888 ret = PTR_ERR(clone_root);
5891 spin_lock(&clone_root->root_item_lock);
5892 if (!btrfs_root_readonly(clone_root) ||
5893 btrfs_root_dead(clone_root)) {
5894 spin_unlock(&clone_root->root_item_lock);
5895 srcu_read_unlock(&fs_info->subvol_srcu, index);
5899 clone_root->send_in_progress++;
5900 spin_unlock(&clone_root->root_item_lock);
5901 srcu_read_unlock(&fs_info->subvol_srcu, index);
5903 sctx->clone_roots[i].root = clone_root;
5904 clone_sources_to_rollback = i + 1;
5906 vfree(clone_sources_tmp);
5907 clone_sources_tmp = NULL;
5910 if (arg->parent_root) {
5911 key.objectid = arg->parent_root;
5912 key.type = BTRFS_ROOT_ITEM_KEY;
5913 key.offset = (u64)-1;
5915 index = srcu_read_lock(&fs_info->subvol_srcu);
5917 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5918 if (IS_ERR(sctx->parent_root)) {
5919 srcu_read_unlock(&fs_info->subvol_srcu, index);
5920 ret = PTR_ERR(sctx->parent_root);
5924 spin_lock(&sctx->parent_root->root_item_lock);
5925 sctx->parent_root->send_in_progress++;
5926 if (!btrfs_root_readonly(sctx->parent_root) ||
5927 btrfs_root_dead(sctx->parent_root)) {
5928 spin_unlock(&sctx->parent_root->root_item_lock);
5929 srcu_read_unlock(&fs_info->subvol_srcu, index);
5933 spin_unlock(&sctx->parent_root->root_item_lock);
5935 srcu_read_unlock(&fs_info->subvol_srcu, index);
5939 * Clones from send_root are allowed, but only if the clone source
5940 * is behind the current send position. This is checked while searching
5941 * for possible clone sources.
5943 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5945 /* We do a bsearch later */
5946 sort(sctx->clone_roots, sctx->clone_roots_cnt,
5947 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5949 sort_clone_roots = 1;
5951 ret = ensure_commit_roots_uptodate(sctx);
5955 current->journal_info = BTRFS_SEND_TRANS_STUB;
5956 ret = send_subvol(sctx);
5957 current->journal_info = NULL;
5961 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5962 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5965 ret = send_cmd(sctx);
5971 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5972 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5974 struct pending_dir_move *pm;
5976 n = rb_first(&sctx->pending_dir_moves);
5977 pm = rb_entry(n, struct pending_dir_move, node);
5978 while (!list_empty(&pm->list)) {
5979 struct pending_dir_move *pm2;
5981 pm2 = list_first_entry(&pm->list,
5982 struct pending_dir_move, list);
5983 free_pending_move(sctx, pm2);
5985 free_pending_move(sctx, pm);
5988 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5989 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5991 struct waiting_dir_move *dm;
5993 n = rb_first(&sctx->waiting_dir_moves);
5994 dm = rb_entry(n, struct waiting_dir_move, node);
5995 rb_erase(&dm->node, &sctx->waiting_dir_moves);
5999 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6000 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6002 struct orphan_dir_info *odi;
6004 n = rb_first(&sctx->orphan_dirs);
6005 odi = rb_entry(n, struct orphan_dir_info, node);
6006 free_orphan_dir_info(sctx, odi);
6009 if (sort_clone_roots) {
6010 for (i = 0; i < sctx->clone_roots_cnt; i++)
6011 btrfs_root_dec_send_in_progress(
6012 sctx->clone_roots[i].root);
6014 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6015 btrfs_root_dec_send_in_progress(
6016 sctx->clone_roots[i].root);
6018 btrfs_root_dec_send_in_progress(send_root);
6020 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6021 btrfs_root_dec_send_in_progress(sctx->parent_root);
6024 vfree(clone_sources_tmp);
6027 if (sctx->send_filp)
6028 fput(sctx->send_filp);
6030 vfree(sctx->clone_roots);
6031 vfree(sctx->send_buf);
6032 vfree(sctx->read_buf);
6034 name_cache_free(sctx);