1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) STMicroelectronics 2016
7 * Inspired by timer-stm32.c from Maxime Coquelin
8 * pwm-atmel.c from Bo Shen
11 #include <linux/mfd/stm32-timers.h>
12 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/pwm.h>
17 #define CCMR_CHANNEL_SHIFT 8
18 #define CCMR_CHANNEL_MASK 0xFF
19 #define MAX_BREAKINPUT 2
23 struct mutex lock; /* protect pwm config/enable */
25 struct regmap *regmap;
27 bool have_complementary_output;
28 u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
31 struct stm32_breakinput {
37 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
39 return container_of(chip, struct stm32_pwm, chip);
42 static u32 active_channels(struct stm32_pwm *dev)
46 regmap_read(dev->regmap, TIM_CCER, &ccer);
48 return ccer & TIM_CCER_CCXE;
51 static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
55 return regmap_write(dev->regmap, TIM_CCR1, value);
57 return regmap_write(dev->regmap, TIM_CCR2, value);
59 return regmap_write(dev->regmap, TIM_CCR3, value);
61 return regmap_write(dev->regmap, TIM_CCR4, value);
66 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
67 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
68 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
69 #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
72 * Capture using PWM input mode:
74 * TI[1, 2, 3 or 4]: ........._| |________|
81 * COUNTER: ______XXXXX . . . |_XXX
86 * CCR1/CCR3: tx..........t0...........t2
87 * CCR2/CCR4: tx..............t1.........
89 * DMA burst transfer: | |
91 * DMA buffer: { t0, tx } { t2, t1 }
94 * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
95 * + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
96 * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
97 * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
98 * + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
102 * - Duty cycle = t1 - t0
104 static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
105 unsigned long tmo_ms, u32 *raw_prd,
108 struct device *parent = priv->chip.dev->parent;
109 enum stm32_timers_dmas dma_id;
113 /* Ensure registers have been updated, enable counter and capture */
114 regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
115 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
117 /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
118 dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
119 ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
120 ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
121 regmap_update_bits(priv->regmap, TIM_CCER, ccen, ccen);
124 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
125 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
126 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
127 * or { CCR3, CCR4 }, { CCR3, CCR4 }
129 ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
134 /* Period: t2 - t0 (take care of counter overflow) */
135 if (priv->capture[0] <= priv->capture[2])
136 *raw_prd = priv->capture[2] - priv->capture[0];
138 *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
140 /* Duty cycle capture requires at least two capture units */
141 if (pwm->chip->npwm < 2)
143 else if (priv->capture[0] <= priv->capture[3])
144 *raw_dty = priv->capture[3] - priv->capture[0];
146 *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
148 if (*raw_dty > *raw_prd) {
150 * Race beetween PWM input and DMA: it may happen
151 * falling edge triggers new capture on TI2/4 before DMA
152 * had a chance to read CCR2/4. It means capture[1]
153 * contains period + duty_cycle. So, subtract period.
155 *raw_dty -= *raw_prd;
159 regmap_update_bits(priv->regmap, TIM_CCER, ccen, 0);
160 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
165 static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
166 struct pwm_capture *result, unsigned long tmo_ms)
168 struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
169 unsigned long long prd, div, dty;
171 unsigned int psc = 0, scale;
172 u32 raw_prd, raw_dty;
175 mutex_lock(&priv->lock);
177 if (active_channels(priv)) {
182 ret = clk_enable(priv->clk);
184 dev_err(priv->chip.dev, "failed to enable counter clock\n");
188 rate = clk_get_rate(priv->clk);
194 /* prescaler: fit timeout window provided by upper layer */
195 div = (unsigned long long)rate * (unsigned long long)tmo_ms;
196 do_div(div, MSEC_PER_SEC);
198 while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
201 do_div(div, psc + 1);
203 regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
204 regmap_write(priv->regmap, TIM_PSC, psc);
206 /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
207 regmap_update_bits(priv->regmap,
208 pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
209 TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
210 TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
211 TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
213 /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
214 regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
215 TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
216 TIM_CCER_CC2P : TIM_CCER_CC4P);
218 ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
223 * Got a capture. Try to improve accuracy at high rates:
224 * - decrease counter clock prescaler, scale up to max rate.
227 u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
229 scale = max_arr / min(max_arr, raw_prd);
231 scale = priv->max_arr; /* bellow resolution, use max scale */
234 if (psc && scale > 1) {
235 /* 2nd measure with new scale */
237 regmap_write(priv->regmap, TIM_PSC, psc);
238 ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd,
244 prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
245 result->period = DIV_ROUND_UP_ULL(prd, rate);
246 dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
247 result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
249 regmap_write(priv->regmap, TIM_CCER, 0);
250 regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
251 regmap_write(priv->regmap, TIM_PSC, 0);
253 clk_disable(priv->clk);
255 mutex_unlock(&priv->lock);
260 static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
261 int duty_ns, int period_ns)
263 unsigned long long prd, div, dty;
264 unsigned int prescaler = 0;
265 u32 ccmr, mask, shift;
267 /* Period and prescaler values depends on clock rate */
268 div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
270 do_div(div, NSEC_PER_SEC);
273 while (div > priv->max_arr) {
276 do_div(div, prescaler + 1);
281 if (prescaler > MAX_TIM_PSC)
285 * All channels share the same prescaler and counter so when two
286 * channels are active at the same time we can't change them
288 if (active_channels(priv) & ~(1 << ch * 4)) {
291 regmap_read(priv->regmap, TIM_PSC, &psc);
292 regmap_read(priv->regmap, TIM_ARR, &arr);
294 if ((psc != prescaler) || (arr != prd - 1))
298 regmap_write(priv->regmap, TIM_PSC, prescaler);
299 regmap_write(priv->regmap, TIM_ARR, prd - 1);
300 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
302 /* Calculate the duty cycles */
304 do_div(dty, period_ns);
306 write_ccrx(priv, ch, dty);
308 /* Configure output mode */
309 shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
310 ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
311 mask = CCMR_CHANNEL_MASK << shift;
314 regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
316 regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
318 regmap_update_bits(priv->regmap, TIM_BDTR,
319 TIM_BDTR_MOE | TIM_BDTR_AOE,
320 TIM_BDTR_MOE | TIM_BDTR_AOE);
325 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
326 enum pwm_polarity polarity)
330 mask = TIM_CCER_CC1P << (ch * 4);
331 if (priv->have_complementary_output)
332 mask |= TIM_CCER_CC1NP << (ch * 4);
334 regmap_update_bits(priv->regmap, TIM_CCER, mask,
335 polarity == PWM_POLARITY_NORMAL ? 0 : mask);
340 static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
345 ret = clk_enable(priv->clk);
350 mask = TIM_CCER_CC1E << (ch * 4);
351 if (priv->have_complementary_output)
352 mask |= TIM_CCER_CC1NE << (ch * 4);
354 regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
356 /* Make sure that registers are updated */
357 regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
359 /* Enable controller */
360 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
365 static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
369 /* Disable channel */
370 mask = TIM_CCER_CC1E << (ch * 4);
371 if (priv->have_complementary_output)
372 mask |= TIM_CCER_CC1NE << (ch * 4);
374 regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
376 /* When all channels are disabled, we can disable the controller */
377 if (!active_channels(priv))
378 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
380 clk_disable(priv->clk);
383 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
384 struct pwm_state *state)
387 struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
390 enabled = pwm->state.enabled;
392 if (enabled && !state->enabled) {
393 stm32_pwm_disable(priv, pwm->hwpwm);
397 if (state->polarity != pwm->state.polarity)
398 stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
400 ret = stm32_pwm_config(priv, pwm->hwpwm,
401 state->duty_cycle, state->period);
405 if (!enabled && state->enabled)
406 ret = stm32_pwm_enable(priv, pwm->hwpwm);
411 static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
412 struct pwm_state *state)
414 struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
417 /* protect common prescaler for all active channels */
418 mutex_lock(&priv->lock);
419 ret = stm32_pwm_apply(chip, pwm, state);
420 mutex_unlock(&priv->lock);
425 static const struct pwm_ops stm32pwm_ops = {
426 .owner = THIS_MODULE,
427 .apply = stm32_pwm_apply_locked,
428 #if IS_ENABLED(CONFIG_DMA_ENGINE)
429 .capture = stm32_pwm_capture,
433 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
434 int index, int level, int filter)
436 u32 bke = (index == 0) ? TIM_BDTR_BKE : TIM_BDTR_BK2E;
437 int shift = (index == 0) ? TIM_BDTR_BKF_SHIFT : TIM_BDTR_BK2F_SHIFT;
438 u32 mask = (index == 0) ? TIM_BDTR_BKE | TIM_BDTR_BKP | TIM_BDTR_BKF
439 : TIM_BDTR_BK2E | TIM_BDTR_BK2P | TIM_BDTR_BK2F;
443 * The both bits could be set since only one will be wrote
447 bdtr |= TIM_BDTR_BKP | TIM_BDTR_BK2P;
449 bdtr |= (filter & TIM_BDTR_BKF_MASK) << shift;
451 regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
453 regmap_read(priv->regmap, TIM_BDTR, &bdtr);
455 return (bdtr & bke) ? 0 : -EINVAL;
458 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv,
459 struct device_node *np)
461 struct stm32_breakinput breakinput[MAX_BREAKINPUT];
462 int nb, ret, i, array_size;
464 nb = of_property_count_elems_of_size(np, "st,breakinput",
465 sizeof(struct stm32_breakinput));
468 * Because "st,breakinput" parameter is optional do not make probe
469 * failed if it doesn't exist.
474 if (nb > MAX_BREAKINPUT)
477 array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
478 ret = of_property_read_u32_array(np, "st,breakinput",
479 (u32 *)breakinput, array_size);
483 for (i = 0; i < nb && !ret; i++) {
484 ret = stm32_pwm_set_breakinput(priv,
487 breakinput[i].filter);
493 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
498 * If complementary bit doesn't exist writing 1 will have no
499 * effect so we can detect it.
501 regmap_update_bits(priv->regmap,
502 TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
503 regmap_read(priv->regmap, TIM_CCER, &ccer);
504 regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
506 priv->have_complementary_output = (ccer != 0);
509 static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
515 * If channels enable bits don't exist writing 1 will have no
516 * effect so we can detect and count them.
518 regmap_update_bits(priv->regmap,
519 TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
520 regmap_read(priv->regmap, TIM_CCER, &ccer);
521 regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
523 if (ccer & TIM_CCER_CC1E)
526 if (ccer & TIM_CCER_CC2E)
529 if (ccer & TIM_CCER_CC3E)
532 if (ccer & TIM_CCER_CC4E)
538 static int stm32_pwm_probe(struct platform_device *pdev)
540 struct device *dev = &pdev->dev;
541 struct device_node *np = dev->of_node;
542 struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
543 struct stm32_pwm *priv;
546 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
550 mutex_init(&priv->lock);
551 priv->regmap = ddata->regmap;
552 priv->clk = ddata->clk;
553 priv->max_arr = ddata->max_arr;
555 if (!priv->regmap || !priv->clk)
558 ret = stm32_pwm_apply_breakinputs(priv, np);
562 stm32_pwm_detect_complementary(priv);
564 priv->chip.base = -1;
565 priv->chip.dev = dev;
566 priv->chip.ops = &stm32pwm_ops;
567 priv->chip.npwm = stm32_pwm_detect_channels(priv);
569 ret = pwmchip_add(&priv->chip);
573 platform_set_drvdata(pdev, priv);
578 static int stm32_pwm_remove(struct platform_device *pdev)
580 struct stm32_pwm *priv = platform_get_drvdata(pdev);
583 for (i = 0; i < priv->chip.npwm; i++)
584 pwm_disable(&priv->chip.pwms[i]);
586 pwmchip_remove(&priv->chip);
591 static const struct of_device_id stm32_pwm_of_match[] = {
592 { .compatible = "st,stm32-pwm", },
595 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
597 static struct platform_driver stm32_pwm_driver = {
598 .probe = stm32_pwm_probe,
599 .remove = stm32_pwm_remove,
602 .of_match_table = stm32_pwm_of_match,
605 module_platform_driver(stm32_pwm_driver);
607 MODULE_ALIAS("platform:stm32-pwm");
608 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
609 MODULE_LICENSE("GPL v2");