]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/intel_engine_cs.c
Merge remote-tracking branch 'spi/for-5.14' into spi-linus
[linux.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5
6 #include <drm/drm_print.h>
7
8 #include "gem/i915_gem_context.h"
9
10 #include "i915_drv.h"
11
12 #include "intel_breadcrumbs.h"
13 #include "intel_context.h"
14 #include "intel_engine.h"
15 #include "intel_engine_pm.h"
16 #include "intel_engine_user.h"
17 #include "intel_execlists_submission.h"
18 #include "intel_gt.h"
19 #include "intel_gt_requests.h"
20 #include "intel_gt_pm.h"
21 #include "intel_lrc_reg.h"
22 #include "intel_reset.h"
23 #include "intel_ring.h"
24 #include "uc/intel_guc_submission.h"
25
26 /* Haswell does have the CXT_SIZE register however it does not appear to be
27  * valid. Now, docs explain in dwords what is in the context object. The full
28  * size is 70720 bytes, however, the power context and execlist context will
29  * never be saved (power context is stored elsewhere, and execlists don't work
30  * on HSW) - so the final size, including the extra state required for the
31  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
32  */
33 #define HSW_CXT_TOTAL_SIZE              (17 * PAGE_SIZE)
34
35 #define DEFAULT_LR_CONTEXT_RENDER_SIZE  (22 * PAGE_SIZE)
36 #define GEN8_LR_CONTEXT_RENDER_SIZE     (20 * PAGE_SIZE)
37 #define GEN9_LR_CONTEXT_RENDER_SIZE     (22 * PAGE_SIZE)
38 #define GEN10_LR_CONTEXT_RENDER_SIZE    (18 * PAGE_SIZE)
39 #define GEN11_LR_CONTEXT_RENDER_SIZE    (14 * PAGE_SIZE)
40
41 #define GEN8_LR_CONTEXT_OTHER_SIZE      ( 2 * PAGE_SIZE)
42
43 #define MAX_MMIO_BASES 3
44 struct engine_info {
45         unsigned int hw_id;
46         u8 class;
47         u8 instance;
48         /* mmio bases table *must* be sorted in reverse graphics_ver order */
49         struct engine_mmio_base {
50                 u32 graphics_ver : 8;
51                 u32 base : 24;
52         } mmio_bases[MAX_MMIO_BASES];
53 };
54
55 static const struct engine_info intel_engines[] = {
56         [RCS0] = {
57                 .hw_id = RCS0_HW,
58                 .class = RENDER_CLASS,
59                 .instance = 0,
60                 .mmio_bases = {
61                         { .graphics_ver = 1, .base = RENDER_RING_BASE }
62                 },
63         },
64         [BCS0] = {
65                 .hw_id = BCS0_HW,
66                 .class = COPY_ENGINE_CLASS,
67                 .instance = 0,
68                 .mmio_bases = {
69                         { .graphics_ver = 6, .base = BLT_RING_BASE }
70                 },
71         },
72         [VCS0] = {
73                 .hw_id = VCS0_HW,
74                 .class = VIDEO_DECODE_CLASS,
75                 .instance = 0,
76                 .mmio_bases = {
77                         { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
78                         { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
79                         { .graphics_ver = 4, .base = BSD_RING_BASE }
80                 },
81         },
82         [VCS1] = {
83                 .hw_id = VCS1_HW,
84                 .class = VIDEO_DECODE_CLASS,
85                 .instance = 1,
86                 .mmio_bases = {
87                         { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
88                         { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
89                 },
90         },
91         [VCS2] = {
92                 .hw_id = VCS2_HW,
93                 .class = VIDEO_DECODE_CLASS,
94                 .instance = 2,
95                 .mmio_bases = {
96                         { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
97                 },
98         },
99         [VCS3] = {
100                 .hw_id = VCS3_HW,
101                 .class = VIDEO_DECODE_CLASS,
102                 .instance = 3,
103                 .mmio_bases = {
104                         { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
105                 },
106         },
107         [VECS0] = {
108                 .hw_id = VECS0_HW,
109                 .class = VIDEO_ENHANCEMENT_CLASS,
110                 .instance = 0,
111                 .mmio_bases = {
112                         { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
113                         { .graphics_ver = 7, .base = VEBOX_RING_BASE }
114                 },
115         },
116         [VECS1] = {
117                 .hw_id = VECS1_HW,
118                 .class = VIDEO_ENHANCEMENT_CLASS,
119                 .instance = 1,
120                 .mmio_bases = {
121                         { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
122                 },
123         },
124 };
125
126 /**
127  * intel_engine_context_size() - return the size of the context for an engine
128  * @gt: the gt
129  * @class: engine class
130  *
131  * Each engine class may require a different amount of space for a context
132  * image.
133  *
134  * Return: size (in bytes) of an engine class specific context image
135  *
136  * Note: this size includes the HWSP, which is part of the context image
137  * in LRC mode, but does not include the "shared data page" used with
138  * GuC submission. The caller should account for this if using the GuC.
139  */
140 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
141 {
142         struct intel_uncore *uncore = gt->uncore;
143         u32 cxt_size;
144
145         BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
146
147         switch (class) {
148         case RENDER_CLASS:
149                 switch (GRAPHICS_VER(gt->i915)) {
150                 default:
151                         MISSING_CASE(GRAPHICS_VER(gt->i915));
152                         return DEFAULT_LR_CONTEXT_RENDER_SIZE;
153                 case 12:
154                 case 11:
155                         return GEN11_LR_CONTEXT_RENDER_SIZE;
156                 case 10:
157                         return GEN10_LR_CONTEXT_RENDER_SIZE;
158                 case 9:
159                         return GEN9_LR_CONTEXT_RENDER_SIZE;
160                 case 8:
161                         return GEN8_LR_CONTEXT_RENDER_SIZE;
162                 case 7:
163                         if (IS_HASWELL(gt->i915))
164                                 return HSW_CXT_TOTAL_SIZE;
165
166                         cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
167                         return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
168                                         PAGE_SIZE);
169                 case 6:
170                         cxt_size = intel_uncore_read(uncore, CXT_SIZE);
171                         return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
172                                         PAGE_SIZE);
173                 case 5:
174                 case 4:
175                         /*
176                          * There is a discrepancy here between the size reported
177                          * by the register and the size of the context layout
178                          * in the docs. Both are described as authorative!
179                          *
180                          * The discrepancy is on the order of a few cachelines,
181                          * but the total is under one page (4k), which is our
182                          * minimum allocation anyway so it should all come
183                          * out in the wash.
184                          */
185                         cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
186                         drm_dbg(&gt->i915->drm,
187                                 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
188                                 GRAPHICS_VER(gt->i915), cxt_size * 64,
189                                 cxt_size - 1);
190                         return round_up(cxt_size * 64, PAGE_SIZE);
191                 case 3:
192                 case 2:
193                 /* For the special day when i810 gets merged. */
194                 case 1:
195                         return 0;
196                 }
197                 break;
198         default:
199                 MISSING_CASE(class);
200                 fallthrough;
201         case VIDEO_DECODE_CLASS:
202         case VIDEO_ENHANCEMENT_CLASS:
203         case COPY_ENGINE_CLASS:
204                 if (GRAPHICS_VER(gt->i915) < 8)
205                         return 0;
206                 return GEN8_LR_CONTEXT_OTHER_SIZE;
207         }
208 }
209
210 static u32 __engine_mmio_base(struct drm_i915_private *i915,
211                               const struct engine_mmio_base *bases)
212 {
213         int i;
214
215         for (i = 0; i < MAX_MMIO_BASES; i++)
216                 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
217                         break;
218
219         GEM_BUG_ON(i == MAX_MMIO_BASES);
220         GEM_BUG_ON(!bases[i].base);
221
222         return bases[i].base;
223 }
224
225 static void __sprint_engine_name(struct intel_engine_cs *engine)
226 {
227         /*
228          * Before we know what the uABI name for this engine will be,
229          * we still would like to keep track of this engine in the debug logs.
230          * We throw in a ' here as a reminder that this isn't its final name.
231          */
232         GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
233                              intel_engine_class_repr(engine->class),
234                              engine->instance) >= sizeof(engine->name));
235 }
236
237 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
238 {
239         /*
240          * Though they added more rings on g4x/ilk, they did not add
241          * per-engine HWSTAM until gen6.
242          */
243         if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
244                 return;
245
246         if (GRAPHICS_VER(engine->i915) >= 3)
247                 ENGINE_WRITE(engine, RING_HWSTAM, mask);
248         else
249                 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
250 }
251
252 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
253 {
254         /* Mask off all writes into the unknown HWSP */
255         intel_engine_set_hwsp_writemask(engine, ~0u);
256 }
257
258 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
259 {
260         GEM_DEBUG_WARN_ON(iir);
261 }
262
263 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
264 {
265         const struct engine_info *info = &intel_engines[id];
266         struct drm_i915_private *i915 = gt->i915;
267         struct intel_engine_cs *engine;
268         u8 guc_class;
269
270         BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
271         BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
272
273         if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
274                 return -EINVAL;
275
276         if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
277                 return -EINVAL;
278
279         if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
280                 return -EINVAL;
281
282         if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
283                 return -EINVAL;
284
285         engine = kzalloc(sizeof(*engine), GFP_KERNEL);
286         if (!engine)
287                 return -ENOMEM;
288
289         BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
290
291         engine->id = id;
292         engine->legacy_idx = INVALID_ENGINE;
293         engine->mask = BIT(id);
294         engine->i915 = i915;
295         engine->gt = gt;
296         engine->uncore = gt->uncore;
297         engine->hw_id = info->hw_id;
298         guc_class = engine_class_to_guc_class(info->class);
299         engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
300         engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
301
302         engine->irq_handler = nop_irq_handler;
303
304         engine->class = info->class;
305         engine->instance = info->instance;
306         __sprint_engine_name(engine);
307
308         engine->props.heartbeat_interval_ms =
309                 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
310         engine->props.max_busywait_duration_ns =
311                 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
312         engine->props.preempt_timeout_ms =
313                 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
314         engine->props.stop_timeout_ms =
315                 CONFIG_DRM_I915_STOP_TIMEOUT;
316         engine->props.timeslice_duration_ms =
317                 CONFIG_DRM_I915_TIMESLICE_DURATION;
318
319         /* Override to uninterruptible for OpenCL workloads. */
320         if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
321                 engine->props.preempt_timeout_ms = 0;
322
323         engine->defaults = engine->props; /* never to change again */
324
325         engine->context_size = intel_engine_context_size(gt, engine->class);
326         if (WARN_ON(engine->context_size > BIT(20)))
327                 engine->context_size = 0;
328         if (engine->context_size)
329                 DRIVER_CAPS(i915)->has_logical_contexts = true;
330
331         /* Nothing to do here, execute in order of dependencies */
332         engine->schedule = NULL;
333
334         ewma__engine_latency_init(&engine->latency);
335         seqcount_init(&engine->stats.lock);
336
337         ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
338
339         /* Scrub mmio state on takeover */
340         intel_engine_sanitize_mmio(engine);
341
342         gt->engine_class[info->class][info->instance] = engine;
343         gt->engine[id] = engine;
344
345         return 0;
346 }
347
348 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
349 {
350         struct drm_i915_private *i915 = engine->i915;
351
352         if (engine->class == VIDEO_DECODE_CLASS) {
353                 /*
354                  * HEVC support is present on first engine instance
355                  * before Gen11 and on all instances afterwards.
356                  */
357                 if (GRAPHICS_VER(i915) >= 11 ||
358                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
359                         engine->uabi_capabilities |=
360                                 I915_VIDEO_CLASS_CAPABILITY_HEVC;
361
362                 /*
363                  * SFC block is present only on even logical engine
364                  * instances.
365                  */
366                 if ((GRAPHICS_VER(i915) >= 11 &&
367                      (engine->gt->info.vdbox_sfc_access &
368                       BIT(engine->instance))) ||
369                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
370                         engine->uabi_capabilities |=
371                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
372         } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
373                 if (GRAPHICS_VER(i915) >= 9)
374                         engine->uabi_capabilities |=
375                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
376         }
377 }
378
379 static void intel_setup_engine_capabilities(struct intel_gt *gt)
380 {
381         struct intel_engine_cs *engine;
382         enum intel_engine_id id;
383
384         for_each_engine(engine, gt, id)
385                 __setup_engine_capabilities(engine);
386 }
387
388 /**
389  * intel_engines_release() - free the resources allocated for Command Streamers
390  * @gt: pointer to struct intel_gt
391  */
392 void intel_engines_release(struct intel_gt *gt)
393 {
394         struct intel_engine_cs *engine;
395         enum intel_engine_id id;
396
397         /*
398          * Before we release the resources held by engine, we must be certain
399          * that the HW is no longer accessing them -- having the GPU scribble
400          * to or read from a page being used for something else causes no end
401          * of fun.
402          *
403          * The GPU should be reset by this point, but assume the worst just
404          * in case we aborted before completely initialising the engines.
405          */
406         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
407         if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
408                 __intel_gt_reset(gt, ALL_ENGINES);
409
410         /* Decouple the backend; but keep the layout for late GPU resets */
411         for_each_engine(engine, gt, id) {
412                 if (!engine->release)
413                         continue;
414
415                 intel_wakeref_wait_for_idle(&engine->wakeref);
416                 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
417
418                 engine->release(engine);
419                 engine->release = NULL;
420
421                 memset(&engine->reset, 0, sizeof(engine->reset));
422         }
423 }
424
425 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
426 {
427         if (!engine->request_pool)
428                 return;
429
430         kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
431 }
432
433 void intel_engines_free(struct intel_gt *gt)
434 {
435         struct intel_engine_cs *engine;
436         enum intel_engine_id id;
437
438         /* Free the requests! dma-resv keeps fences around for an eternity */
439         rcu_barrier();
440
441         for_each_engine(engine, gt, id) {
442                 intel_engine_free_request_pool(engine);
443                 kfree(engine);
444                 gt->engine[id] = NULL;
445         }
446 }
447
448 /*
449  * Determine which engines are fused off in our particular hardware.
450  * Note that we have a catch-22 situation where we need to be able to access
451  * the blitter forcewake domain to read the engine fuses, but at the same time
452  * we need to know which engines are available on the system to know which
453  * forcewake domains are present. We solve this by intializing the forcewake
454  * domains based on the full engine mask in the platform capabilities before
455  * calling this function and pruning the domains for fused-off engines
456  * afterwards.
457  */
458 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
459 {
460         struct drm_i915_private *i915 = gt->i915;
461         struct intel_gt_info *info = &gt->info;
462         struct intel_uncore *uncore = gt->uncore;
463         unsigned int logical_vdbox = 0;
464         unsigned int i;
465         u32 media_fuse;
466         u16 vdbox_mask;
467         u16 vebox_mask;
468
469         info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
470
471         if (GRAPHICS_VER(i915) < 11)
472                 return info->engine_mask;
473
474         media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
475
476         vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
477         vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
478                       GEN11_GT_VEBOX_DISABLE_SHIFT;
479
480         for (i = 0; i < I915_MAX_VCS; i++) {
481                 if (!HAS_ENGINE(gt, _VCS(i))) {
482                         vdbox_mask &= ~BIT(i);
483                         continue;
484                 }
485
486                 if (!(BIT(i) & vdbox_mask)) {
487                         info->engine_mask &= ~BIT(_VCS(i));
488                         drm_dbg(&i915->drm, "vcs%u fused off\n", i);
489                         continue;
490                 }
491
492                 /*
493                  * In Gen11, only even numbered logical VDBOXes are
494                  * hooked up to an SFC (Scaler & Format Converter) unit.
495                  * In TGL each VDBOX has access to an SFC.
496                  */
497                 if (GRAPHICS_VER(i915) >= 12 || logical_vdbox++ % 2 == 0)
498                         gt->info.vdbox_sfc_access |= BIT(i);
499         }
500         drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
501                 vdbox_mask, VDBOX_MASK(gt));
502         GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
503
504         for (i = 0; i < I915_MAX_VECS; i++) {
505                 if (!HAS_ENGINE(gt, _VECS(i))) {
506                         vebox_mask &= ~BIT(i);
507                         continue;
508                 }
509
510                 if (!(BIT(i) & vebox_mask)) {
511                         info->engine_mask &= ~BIT(_VECS(i));
512                         drm_dbg(&i915->drm, "vecs%u fused off\n", i);
513                 }
514         }
515         drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
516                 vebox_mask, VEBOX_MASK(gt));
517         GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
518
519         return info->engine_mask;
520 }
521
522 /**
523  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
524  * @gt: pointer to struct intel_gt
525  *
526  * Return: non-zero if the initialization failed.
527  */
528 int intel_engines_init_mmio(struct intel_gt *gt)
529 {
530         struct drm_i915_private *i915 = gt->i915;
531         const unsigned int engine_mask = init_engine_mask(gt);
532         unsigned int mask = 0;
533         unsigned int i;
534         int err;
535
536         drm_WARN_ON(&i915->drm, engine_mask == 0);
537         drm_WARN_ON(&i915->drm, engine_mask &
538                     GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
539
540         if (i915_inject_probe_failure(i915))
541                 return -ENODEV;
542
543         for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
544                 if (!HAS_ENGINE(gt, i))
545                         continue;
546
547                 err = intel_engine_setup(gt, i);
548                 if (err)
549                         goto cleanup;
550
551                 mask |= BIT(i);
552         }
553
554         /*
555          * Catch failures to update intel_engines table when the new engines
556          * are added to the driver by a warning and disabling the forgotten
557          * engines.
558          */
559         if (drm_WARN_ON(&i915->drm, mask != engine_mask))
560                 gt->info.engine_mask = mask;
561
562         gt->info.num_engines = hweight32(mask);
563
564         intel_gt_check_and_clear_faults(gt);
565
566         intel_setup_engine_capabilities(gt);
567
568         intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
569
570         return 0;
571
572 cleanup:
573         intel_engines_free(gt);
574         return err;
575 }
576
577 void intel_engine_init_execlists(struct intel_engine_cs *engine)
578 {
579         struct intel_engine_execlists * const execlists = &engine->execlists;
580
581         execlists->port_mask = 1;
582         GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
583         GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
584
585         memset(execlists->pending, 0, sizeof(execlists->pending));
586         execlists->active =
587                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
588
589         execlists->queue_priority_hint = INT_MIN;
590         execlists->queue = RB_ROOT_CACHED;
591 }
592
593 static void cleanup_status_page(struct intel_engine_cs *engine)
594 {
595         struct i915_vma *vma;
596
597         /* Prevent writes into HWSP after returning the page to the system */
598         intel_engine_set_hwsp_writemask(engine, ~0u);
599
600         vma = fetch_and_zero(&engine->status_page.vma);
601         if (!vma)
602                 return;
603
604         if (!HWS_NEEDS_PHYSICAL(engine->i915))
605                 i915_vma_unpin(vma);
606
607         i915_gem_object_unpin_map(vma->obj);
608         i915_gem_object_put(vma->obj);
609 }
610
611 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
612                                 struct i915_gem_ww_ctx *ww,
613                                 struct i915_vma *vma)
614 {
615         unsigned int flags;
616
617         if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
618                 /*
619                  * On g33, we cannot place HWS above 256MiB, so
620                  * restrict its pinning to the low mappable arena.
621                  * Though this restriction is not documented for
622                  * gen4, gen5, or byt, they also behave similarly
623                  * and hang if the HWS is placed at the top of the
624                  * GTT. To generalise, it appears that all !llc
625                  * platforms have issues with us placing the HWS
626                  * above the mappable region (even though we never
627                  * actually map it).
628                  */
629                 flags = PIN_MAPPABLE;
630         else
631                 flags = PIN_HIGH;
632
633         return i915_ggtt_pin(vma, ww, 0, flags);
634 }
635
636 static int init_status_page(struct intel_engine_cs *engine)
637 {
638         struct drm_i915_gem_object *obj;
639         struct i915_gem_ww_ctx ww;
640         struct i915_vma *vma;
641         void *vaddr;
642         int ret;
643
644         INIT_LIST_HEAD(&engine->status_page.timelines);
645
646         /*
647          * Though the HWS register does support 36bit addresses, historically
648          * we have had hangs and corruption reported due to wild writes if
649          * the HWS is placed above 4G. We only allow objects to be allocated
650          * in GFP_DMA32 for i965, and no earlier physical address users had
651          * access to more than 4G.
652          */
653         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
654         if (IS_ERR(obj)) {
655                 drm_err(&engine->i915->drm,
656                         "Failed to allocate status page\n");
657                 return PTR_ERR(obj);
658         }
659
660         i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
661
662         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
663         if (IS_ERR(vma)) {
664                 ret = PTR_ERR(vma);
665                 goto err_put;
666         }
667
668         i915_gem_ww_ctx_init(&ww, true);
669 retry:
670         ret = i915_gem_object_lock(obj, &ww);
671         if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
672                 ret = pin_ggtt_status_page(engine, &ww, vma);
673         if (ret)
674                 goto err;
675
676         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
677         if (IS_ERR(vaddr)) {
678                 ret = PTR_ERR(vaddr);
679                 goto err_unpin;
680         }
681
682         engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
683         engine->status_page.vma = vma;
684
685 err_unpin:
686         if (ret)
687                 i915_vma_unpin(vma);
688 err:
689         if (ret == -EDEADLK) {
690                 ret = i915_gem_ww_ctx_backoff(&ww);
691                 if (!ret)
692                         goto retry;
693         }
694         i915_gem_ww_ctx_fini(&ww);
695 err_put:
696         if (ret)
697                 i915_gem_object_put(obj);
698         return ret;
699 }
700
701 static int engine_setup_common(struct intel_engine_cs *engine)
702 {
703         int err;
704
705         init_llist_head(&engine->barrier_tasks);
706
707         err = init_status_page(engine);
708         if (err)
709                 return err;
710
711         engine->breadcrumbs = intel_breadcrumbs_create(engine);
712         if (!engine->breadcrumbs) {
713                 err = -ENOMEM;
714                 goto err_status;
715         }
716
717         err = intel_engine_init_cmd_parser(engine);
718         if (err)
719                 goto err_cmd_parser;
720
721         intel_engine_init_active(engine, ENGINE_PHYSICAL);
722         intel_engine_init_execlists(engine);
723         intel_engine_init__pm(engine);
724         intel_engine_init_retire(engine);
725
726         /* Use the whole device by default */
727         engine->sseu =
728                 intel_sseu_from_device_info(&engine->gt->info.sseu);
729
730         intel_engine_init_workarounds(engine);
731         intel_engine_init_whitelist(engine);
732         intel_engine_init_ctx_wa(engine);
733
734         if (GRAPHICS_VER(engine->i915) >= 12)
735                 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
736
737         return 0;
738
739 err_cmd_parser:
740         intel_breadcrumbs_free(engine->breadcrumbs);
741 err_status:
742         cleanup_status_page(engine);
743         return err;
744 }
745
746 struct measure_breadcrumb {
747         struct i915_request rq;
748         struct intel_ring ring;
749         u32 cs[2048];
750 };
751
752 static int measure_breadcrumb_dw(struct intel_context *ce)
753 {
754         struct intel_engine_cs *engine = ce->engine;
755         struct measure_breadcrumb *frame;
756         int dw;
757
758         GEM_BUG_ON(!engine->gt->scratch);
759
760         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
761         if (!frame)
762                 return -ENOMEM;
763
764         frame->rq.engine = engine;
765         frame->rq.context = ce;
766         rcu_assign_pointer(frame->rq.timeline, ce->timeline);
767         frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
768
769         frame->ring.vaddr = frame->cs;
770         frame->ring.size = sizeof(frame->cs);
771         frame->ring.wrap =
772                 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
773         frame->ring.effective_size = frame->ring.size;
774         intel_ring_update_space(&frame->ring);
775         frame->rq.ring = &frame->ring;
776
777         mutex_lock(&ce->timeline->mutex);
778         spin_lock_irq(&engine->active.lock);
779
780         dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
781
782         spin_unlock_irq(&engine->active.lock);
783         mutex_unlock(&ce->timeline->mutex);
784
785         GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
786
787         kfree(frame);
788         return dw;
789 }
790
791 void
792 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
793 {
794         INIT_LIST_HEAD(&engine->active.requests);
795         INIT_LIST_HEAD(&engine->active.hold);
796
797         spin_lock_init(&engine->active.lock);
798         lockdep_set_subclass(&engine->active.lock, subclass);
799
800         /*
801          * Due to an interesting quirk in lockdep's internal debug tracking,
802          * after setting a subclass we must ensure the lock is used. Otherwise,
803          * nr_unused_locks is incremented once too often.
804          */
805 #ifdef CONFIG_DEBUG_LOCK_ALLOC
806         local_irq_disable();
807         lock_map_acquire(&engine->active.lock.dep_map);
808         lock_map_release(&engine->active.lock.dep_map);
809         local_irq_enable();
810 #endif
811 }
812
813 static struct intel_context *
814 create_pinned_context(struct intel_engine_cs *engine,
815                       unsigned int hwsp,
816                       struct lock_class_key *key,
817                       const char *name)
818 {
819         struct intel_context *ce;
820         int err;
821
822         ce = intel_context_create(engine);
823         if (IS_ERR(ce))
824                 return ce;
825
826         __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
827         ce->timeline = page_pack_bits(NULL, hwsp);
828
829         err = intel_context_pin(ce); /* perma-pin so it is always available */
830         if (err) {
831                 intel_context_put(ce);
832                 return ERR_PTR(err);
833         }
834
835         /*
836          * Give our perma-pinned kernel timelines a separate lockdep class,
837          * so that we can use them from within the normal user timelines
838          * should we need to inject GPU operations during their request
839          * construction.
840          */
841         lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
842
843         return ce;
844 }
845
846 static void destroy_pinned_context(struct intel_context *ce)
847 {
848         struct intel_engine_cs *engine = ce->engine;
849         struct i915_vma *hwsp = engine->status_page.vma;
850
851         GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
852
853         mutex_lock(&hwsp->vm->mutex);
854         list_del(&ce->timeline->engine_link);
855         mutex_unlock(&hwsp->vm->mutex);
856
857         intel_context_unpin(ce);
858         intel_context_put(ce);
859 }
860
861 static struct intel_context *
862 create_kernel_context(struct intel_engine_cs *engine)
863 {
864         static struct lock_class_key kernel;
865
866         return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
867                                      &kernel, "kernel_context");
868 }
869
870 /**
871  * intel_engines_init_common - initialize cengine state which might require hw access
872  * @engine: Engine to initialize.
873  *
874  * Initializes @engine@ structure members shared between legacy and execlists
875  * submission modes which do require hardware access.
876  *
877  * Typcally done at later stages of submission mode specific engine setup.
878  *
879  * Returns zero on success or an error code on failure.
880  */
881 static int engine_init_common(struct intel_engine_cs *engine)
882 {
883         struct intel_context *ce;
884         int ret;
885
886         engine->set_default_submission(engine);
887
888         /*
889          * We may need to do things with the shrinker which
890          * require us to immediately switch back to the default
891          * context. This can cause a problem as pinning the
892          * default context also requires GTT space which may not
893          * be available. To avoid this we always pin the default
894          * context.
895          */
896         ce = create_kernel_context(engine);
897         if (IS_ERR(ce))
898                 return PTR_ERR(ce);
899
900         ret = measure_breadcrumb_dw(ce);
901         if (ret < 0)
902                 goto err_context;
903
904         engine->emit_fini_breadcrumb_dw = ret;
905         engine->kernel_context = ce;
906
907         return 0;
908
909 err_context:
910         destroy_pinned_context(ce);
911         return ret;
912 }
913
914 int intel_engines_init(struct intel_gt *gt)
915 {
916         int (*setup)(struct intel_engine_cs *engine);
917         struct intel_engine_cs *engine;
918         enum intel_engine_id id;
919         int err;
920
921         if (intel_uc_uses_guc_submission(&gt->uc)) {
922                 gt->submission_method = INTEL_SUBMISSION_GUC;
923                 setup = intel_guc_submission_setup;
924         } else if (HAS_EXECLISTS(gt->i915)) {
925                 gt->submission_method = INTEL_SUBMISSION_ELSP;
926                 setup = intel_execlists_submission_setup;
927         } else {
928                 gt->submission_method = INTEL_SUBMISSION_RING;
929                 setup = intel_ring_submission_setup;
930         }
931
932         for_each_engine(engine, gt, id) {
933                 err = engine_setup_common(engine);
934                 if (err)
935                         return err;
936
937                 err = setup(engine);
938                 if (err)
939                         return err;
940
941                 err = engine_init_common(engine);
942                 if (err)
943                         return err;
944
945                 intel_engine_add_user(engine);
946         }
947
948         return 0;
949 }
950
951 /**
952  * intel_engines_cleanup_common - cleans up the engine state created by
953  *                                the common initiailizers.
954  * @engine: Engine to cleanup.
955  *
956  * This cleans up everything created by the common helpers.
957  */
958 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
959 {
960         GEM_BUG_ON(!list_empty(&engine->active.requests));
961         tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
962
963         intel_breadcrumbs_free(engine->breadcrumbs);
964
965         intel_engine_fini_retire(engine);
966         intel_engine_cleanup_cmd_parser(engine);
967
968         if (engine->default_state)
969                 fput(engine->default_state);
970
971         if (engine->kernel_context)
972                 destroy_pinned_context(engine->kernel_context);
973
974         GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
975         cleanup_status_page(engine);
976
977         intel_wa_list_free(&engine->ctx_wa_list);
978         intel_wa_list_free(&engine->wa_list);
979         intel_wa_list_free(&engine->whitelist);
980 }
981
982 /**
983  * intel_engine_resume - re-initializes the HW state of the engine
984  * @engine: Engine to resume.
985  *
986  * Returns zero on success or an error code on failure.
987  */
988 int intel_engine_resume(struct intel_engine_cs *engine)
989 {
990         intel_engine_apply_workarounds(engine);
991         intel_engine_apply_whitelist(engine);
992
993         return engine->resume(engine);
994 }
995
996 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
997 {
998         struct drm_i915_private *i915 = engine->i915;
999
1000         u64 acthd;
1001
1002         if (GRAPHICS_VER(i915) >= 8)
1003                 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1004         else if (GRAPHICS_VER(i915) >= 4)
1005                 acthd = ENGINE_READ(engine, RING_ACTHD);
1006         else
1007                 acthd = ENGINE_READ(engine, ACTHD);
1008
1009         return acthd;
1010 }
1011
1012 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1013 {
1014         u64 bbaddr;
1015
1016         if (GRAPHICS_VER(engine->i915) >= 8)
1017                 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1018         else
1019                 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1020
1021         return bbaddr;
1022 }
1023
1024 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1025 {
1026         if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1027                 return 0;
1028
1029         /*
1030          * If we are doing a normal GPU reset, we can take our time and allow
1031          * the engine to quiesce. We've stopped submission to the engine, and
1032          * if we wait long enough an innocent context should complete and
1033          * leave the engine idle. So they should not be caught unaware by
1034          * the forthcoming GPU reset (which usually follows the stop_cs)!
1035          */
1036         return READ_ONCE(engine->props.stop_timeout_ms);
1037 }
1038
1039 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1040                                   int fast_timeout_us,
1041                                   int slow_timeout_ms)
1042 {
1043         struct intel_uncore *uncore = engine->uncore;
1044         const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1045         int err;
1046
1047         intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1048         err = __intel_wait_for_register_fw(engine->uncore, mode,
1049                                            MODE_IDLE, MODE_IDLE,
1050                                            fast_timeout_us,
1051                                            slow_timeout_ms,
1052                                            NULL);
1053
1054         /* A final mmio read to let GPU writes be hopefully flushed to memory */
1055         intel_uncore_posting_read_fw(uncore, mode);
1056         return err;
1057 }
1058
1059 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1060 {
1061         int err = 0;
1062
1063         if (GRAPHICS_VER(engine->i915) < 3)
1064                 return -ENODEV;
1065
1066         ENGINE_TRACE(engine, "\n");
1067         if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1068                 ENGINE_TRACE(engine,
1069                              "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1070                              ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1071                              ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1072
1073                 /*
1074                  * Sometimes we observe that the idle flag is not
1075                  * set even though the ring is empty. So double
1076                  * check before giving up.
1077                  */
1078                 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1079                     (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1080                         err = -ETIMEDOUT;
1081         }
1082
1083         return err;
1084 }
1085
1086 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1087 {
1088         ENGINE_TRACE(engine, "\n");
1089
1090         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1091 }
1092
1093 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
1094 {
1095         switch (type) {
1096         case I915_CACHE_NONE: return " uncached";
1097         case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
1098         case I915_CACHE_L3_LLC: return " L3+LLC";
1099         case I915_CACHE_WT: return " WT";
1100         default: return "";
1101         }
1102 }
1103
1104 static u32
1105 read_subslice_reg(const struct intel_engine_cs *engine,
1106                   int slice, int subslice, i915_reg_t reg)
1107 {
1108         struct drm_i915_private *i915 = engine->i915;
1109         struct intel_uncore *uncore = engine->uncore;
1110         u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1111         enum forcewake_domains fw_domains;
1112
1113         if (GRAPHICS_VER(i915) >= 11) {
1114                 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1115                 mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1116         } else {
1117                 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1118                 mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1119         }
1120
1121         fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1122                                                     FW_REG_READ);
1123         fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1124                                                      GEN8_MCR_SELECTOR,
1125                                                      FW_REG_READ | FW_REG_WRITE);
1126
1127         spin_lock_irq(&uncore->lock);
1128         intel_uncore_forcewake_get__locked(uncore, fw_domains);
1129
1130         old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1131
1132         mcr &= ~mcr_mask;
1133         mcr |= mcr_ss;
1134         intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1135
1136         val = intel_uncore_read_fw(uncore, reg);
1137
1138         mcr &= ~mcr_mask;
1139         mcr |= old_mcr & mcr_mask;
1140
1141         intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1142
1143         intel_uncore_forcewake_put__locked(uncore, fw_domains);
1144         spin_unlock_irq(&uncore->lock);
1145
1146         return val;
1147 }
1148
1149 /* NB: please notice the memset */
1150 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1151                                struct intel_instdone *instdone)
1152 {
1153         struct drm_i915_private *i915 = engine->i915;
1154         const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1155         struct intel_uncore *uncore = engine->uncore;
1156         u32 mmio_base = engine->mmio_base;
1157         int slice;
1158         int subslice;
1159
1160         memset(instdone, 0, sizeof(*instdone));
1161
1162         switch (GRAPHICS_VER(i915)) {
1163         default:
1164                 instdone->instdone =
1165                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1166
1167                 if (engine->id != RCS0)
1168                         break;
1169
1170                 instdone->slice_common =
1171                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1172                 if (GRAPHICS_VER(i915) >= 12) {
1173                         instdone->slice_common_extra[0] =
1174                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1175                         instdone->slice_common_extra[1] =
1176                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1177                 }
1178                 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1179                         instdone->sampler[slice][subslice] =
1180                                 read_subslice_reg(engine, slice, subslice,
1181                                                   GEN7_SAMPLER_INSTDONE);
1182                         instdone->row[slice][subslice] =
1183                                 read_subslice_reg(engine, slice, subslice,
1184                                                   GEN7_ROW_INSTDONE);
1185                 }
1186                 break;
1187         case 7:
1188                 instdone->instdone =
1189                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1190
1191                 if (engine->id != RCS0)
1192                         break;
1193
1194                 instdone->slice_common =
1195                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1196                 instdone->sampler[0][0] =
1197                         intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1198                 instdone->row[0][0] =
1199                         intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1200
1201                 break;
1202         case 6:
1203         case 5:
1204         case 4:
1205                 instdone->instdone =
1206                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1207                 if (engine->id == RCS0)
1208                         /* HACK: Using the wrong struct member */
1209                         instdone->slice_common =
1210                                 intel_uncore_read(uncore, GEN4_INSTDONE1);
1211                 break;
1212         case 3:
1213         case 2:
1214                 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1215                 break;
1216         }
1217 }
1218
1219 static bool ring_is_idle(struct intel_engine_cs *engine)
1220 {
1221         bool idle = true;
1222
1223         if (I915_SELFTEST_ONLY(!engine->mmio_base))
1224                 return true;
1225
1226         if (!intel_engine_pm_get_if_awake(engine))
1227                 return true;
1228
1229         /* First check that no commands are left in the ring */
1230         if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1231             (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1232                 idle = false;
1233
1234         /* No bit for gen2, so assume the CS parser is idle */
1235         if (GRAPHICS_VER(engine->i915) > 2 &&
1236             !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1237                 idle = false;
1238
1239         intel_engine_pm_put(engine);
1240
1241         return idle;
1242 }
1243
1244 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1245 {
1246         struct tasklet_struct *t = &engine->execlists.tasklet;
1247
1248         if (!t->callback)
1249                 return;
1250
1251         local_bh_disable();
1252         if (tasklet_trylock(t)) {
1253                 /* Must wait for any GPU reset in progress. */
1254                 if (__tasklet_is_enabled(t))
1255                         t->callback(t);
1256                 tasklet_unlock(t);
1257         }
1258         local_bh_enable();
1259
1260         /* Synchronise and wait for the tasklet on another CPU */
1261         if (sync)
1262                 tasklet_unlock_wait(t);
1263 }
1264
1265 /**
1266  * intel_engine_is_idle() - Report if the engine has finished process all work
1267  * @engine: the intel_engine_cs
1268  *
1269  * Return true if there are no requests pending, nothing left to be submitted
1270  * to hardware, and that the engine is idle.
1271  */
1272 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1273 {
1274         /* More white lies, if wedged, hw state is inconsistent */
1275         if (intel_gt_is_wedged(engine->gt))
1276                 return true;
1277
1278         if (!intel_engine_pm_is_awake(engine))
1279                 return true;
1280
1281         /* Waiting to drain ELSP? */
1282         intel_synchronize_hardirq(engine->i915);
1283         intel_engine_flush_submission(engine);
1284
1285         /* ELSP is empty, but there are ready requests? E.g. after reset */
1286         if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1287                 return false;
1288
1289         /* Ring stopped? */
1290         return ring_is_idle(engine);
1291 }
1292
1293 bool intel_engines_are_idle(struct intel_gt *gt)
1294 {
1295         struct intel_engine_cs *engine;
1296         enum intel_engine_id id;
1297
1298         /*
1299          * If the driver is wedged, HW state may be very inconsistent and
1300          * report that it is still busy, even though we have stopped using it.
1301          */
1302         if (intel_gt_is_wedged(gt))
1303                 return true;
1304
1305         /* Already parked (and passed an idleness test); must still be idle */
1306         if (!READ_ONCE(gt->awake))
1307                 return true;
1308
1309         for_each_engine(engine, gt, id) {
1310                 if (!intel_engine_is_idle(engine))
1311                         return false;
1312         }
1313
1314         return true;
1315 }
1316
1317 void intel_engines_reset_default_submission(struct intel_gt *gt)
1318 {
1319         struct intel_engine_cs *engine;
1320         enum intel_engine_id id;
1321
1322         for_each_engine(engine, gt, id) {
1323                 if (engine->sanitize)
1324                         engine->sanitize(engine);
1325
1326                 engine->set_default_submission(engine);
1327         }
1328 }
1329
1330 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1331 {
1332         switch (GRAPHICS_VER(engine->i915)) {
1333         case 2:
1334                 return false; /* uses physical not virtual addresses */
1335         case 3:
1336                 /* maybe only uses physical not virtual addresses */
1337                 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1338         case 4:
1339                 return !IS_I965G(engine->i915); /* who knows! */
1340         case 6:
1341                 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1342         default:
1343                 return true;
1344         }
1345 }
1346
1347 static struct intel_timeline *get_timeline(struct i915_request *rq)
1348 {
1349         struct intel_timeline *tl;
1350
1351         /*
1352          * Even though we are holding the engine->active.lock here, there
1353          * is no control over the submission queue per-se and we are
1354          * inspecting the active state at a random point in time, with an
1355          * unknown queue. Play safe and make sure the timeline remains valid.
1356          * (Only being used for pretty printing, one extra kref shouldn't
1357          * cause a camel stampede!)
1358          */
1359         rcu_read_lock();
1360         tl = rcu_dereference(rq->timeline);
1361         if (!kref_get_unless_zero(&tl->kref))
1362                 tl = NULL;
1363         rcu_read_unlock();
1364
1365         return tl;
1366 }
1367
1368 static int print_ring(char *buf, int sz, struct i915_request *rq)
1369 {
1370         int len = 0;
1371
1372         if (!i915_request_signaled(rq)) {
1373                 struct intel_timeline *tl = get_timeline(rq);
1374
1375                 len = scnprintf(buf, sz,
1376                                 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1377                                 i915_ggtt_offset(rq->ring->vma),
1378                                 tl ? tl->hwsp_offset : 0,
1379                                 hwsp_seqno(rq),
1380                                 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1381                                                       1000 * 1000));
1382
1383                 if (tl)
1384                         intel_timeline_put(tl);
1385         }
1386
1387         return len;
1388 }
1389
1390 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1391 {
1392         const size_t rowsize = 8 * sizeof(u32);
1393         const void *prev = NULL;
1394         bool skip = false;
1395         size_t pos;
1396
1397         for (pos = 0; pos < len; pos += rowsize) {
1398                 char line[128];
1399
1400                 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1401                         if (!skip) {
1402                                 drm_printf(m, "*\n");
1403                                 skip = true;
1404                         }
1405                         continue;
1406                 }
1407
1408                 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1409                                                 rowsize, sizeof(u32),
1410                                                 line, sizeof(line),
1411                                                 false) >= sizeof(line));
1412                 drm_printf(m, "[%04zx] %s\n", pos, line);
1413
1414                 prev = buf + pos;
1415                 skip = false;
1416         }
1417 }
1418
1419 static const char *repr_timer(const struct timer_list *t)
1420 {
1421         if (!READ_ONCE(t->expires))
1422                 return "inactive";
1423
1424         if (timer_pending(t))
1425                 return "active";
1426
1427         return "expired";
1428 }
1429
1430 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1431                                          struct drm_printer *m)
1432 {
1433         struct drm_i915_private *dev_priv = engine->i915;
1434         struct intel_engine_execlists * const execlists = &engine->execlists;
1435         u64 addr;
1436
1437         if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1438                 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1439         if (HAS_EXECLISTS(dev_priv)) {
1440                 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1441                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1442                 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1443                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1444         }
1445         drm_printf(m, "\tRING_START: 0x%08x\n",
1446                    ENGINE_READ(engine, RING_START));
1447         drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1448                    ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1449         drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1450                    ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1451         drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1452                    ENGINE_READ(engine, RING_CTL),
1453                    ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1454         if (GRAPHICS_VER(engine->i915) > 2) {
1455                 drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1456                            ENGINE_READ(engine, RING_MI_MODE),
1457                            ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1458         }
1459
1460         if (GRAPHICS_VER(dev_priv) >= 6) {
1461                 drm_printf(m, "\tRING_IMR:   0x%08x\n",
1462                            ENGINE_READ(engine, RING_IMR));
1463                 drm_printf(m, "\tRING_ESR:   0x%08x\n",
1464                            ENGINE_READ(engine, RING_ESR));
1465                 drm_printf(m, "\tRING_EMR:   0x%08x\n",
1466                            ENGINE_READ(engine, RING_EMR));
1467                 drm_printf(m, "\tRING_EIR:   0x%08x\n",
1468                            ENGINE_READ(engine, RING_EIR));
1469         }
1470
1471         addr = intel_engine_get_active_head(engine);
1472         drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1473                    upper_32_bits(addr), lower_32_bits(addr));
1474         addr = intel_engine_get_last_batch_head(engine);
1475         drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1476                    upper_32_bits(addr), lower_32_bits(addr));
1477         if (GRAPHICS_VER(dev_priv) >= 8)
1478                 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1479         else if (GRAPHICS_VER(dev_priv) >= 4)
1480                 addr = ENGINE_READ(engine, RING_DMA_FADD);
1481         else
1482                 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1483         drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1484                    upper_32_bits(addr), lower_32_bits(addr));
1485         if (GRAPHICS_VER(dev_priv) >= 4) {
1486                 drm_printf(m, "\tIPEIR: 0x%08x\n",
1487                            ENGINE_READ(engine, RING_IPEIR));
1488                 drm_printf(m, "\tIPEHR: 0x%08x\n",
1489                            ENGINE_READ(engine, RING_IPEHR));
1490         } else {
1491                 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1492                 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1493         }
1494
1495         if (intel_engine_uses_guc(engine)) {
1496                 /* nothing to print yet */
1497         } else if (HAS_EXECLISTS(dev_priv)) {
1498                 struct i915_request * const *port, *rq;
1499                 const u32 *hws =
1500                         &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1501                 const u8 num_entries = execlists->csb_size;
1502                 unsigned int idx;
1503                 u8 read, write;
1504
1505                 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1506                            yesno(test_bit(TASKLET_STATE_SCHED,
1507                                           &engine->execlists.tasklet.state)),
1508                            enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1509                            repr_timer(&engine->execlists.preempt),
1510                            repr_timer(&engine->execlists.timer));
1511
1512                 read = execlists->csb_head;
1513                 write = READ_ONCE(*execlists->csb_write);
1514
1515                 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1516                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1517                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1518                            read, write, num_entries);
1519
1520                 if (read >= num_entries)
1521                         read = 0;
1522                 if (write >= num_entries)
1523                         write = 0;
1524                 if (read > write)
1525                         write += num_entries;
1526                 while (read < write) {
1527                         idx = ++read % num_entries;
1528                         drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1529                                    idx, hws[idx * 2], hws[idx * 2 + 1]);
1530                 }
1531
1532                 execlists_active_lock_bh(execlists);
1533                 rcu_read_lock();
1534                 for (port = execlists->active; (rq = *port); port++) {
1535                         char hdr[160];
1536                         int len;
1537
1538                         len = scnprintf(hdr, sizeof(hdr),
1539                                         "\t\tActive[%d]:  ccid:%08x%s%s, ",
1540                                         (int)(port - execlists->active),
1541                                         rq->context->lrc.ccid,
1542                                         intel_context_is_closed(rq->context) ? "!" : "",
1543                                         intel_context_is_banned(rq->context) ? "*" : "");
1544                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1545                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1546                         i915_request_show(m, rq, hdr, 0);
1547                 }
1548                 for (port = execlists->pending; (rq = *port); port++) {
1549                         char hdr[160];
1550                         int len;
1551
1552                         len = scnprintf(hdr, sizeof(hdr),
1553                                         "\t\tPending[%d]: ccid:%08x%s%s, ",
1554                                         (int)(port - execlists->pending),
1555                                         rq->context->lrc.ccid,
1556                                         intel_context_is_closed(rq->context) ? "!" : "",
1557                                         intel_context_is_banned(rq->context) ? "*" : "");
1558                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1559                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1560                         i915_request_show(m, rq, hdr, 0);
1561                 }
1562                 rcu_read_unlock();
1563                 execlists_active_unlock_bh(execlists);
1564         } else if (GRAPHICS_VER(dev_priv) > 6) {
1565                 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1566                            ENGINE_READ(engine, RING_PP_DIR_BASE));
1567                 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1568                            ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1569                 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1570                            ENGINE_READ(engine, RING_PP_DIR_DCLV));
1571         }
1572 }
1573
1574 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1575 {
1576         void *ring;
1577         int size;
1578
1579         drm_printf(m,
1580                    "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1581                    rq->head, rq->postfix, rq->tail,
1582                    rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1583                    rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1584
1585         size = rq->tail - rq->head;
1586         if (rq->tail < rq->head)
1587                 size += rq->ring->size;
1588
1589         ring = kmalloc(size, GFP_ATOMIC);
1590         if (ring) {
1591                 const void *vaddr = rq->ring->vaddr;
1592                 unsigned int head = rq->head;
1593                 unsigned int len = 0;
1594
1595                 if (rq->tail < head) {
1596                         len = rq->ring->size - head;
1597                         memcpy(ring, vaddr + head, len);
1598                         head = 0;
1599                 }
1600                 memcpy(ring + len, vaddr + head, size - len);
1601
1602                 hexdump(m, ring, size);
1603                 kfree(ring);
1604         }
1605 }
1606
1607 static unsigned long list_count(struct list_head *list)
1608 {
1609         struct list_head *pos;
1610         unsigned long count = 0;
1611
1612         list_for_each(pos, list)
1613                 count++;
1614
1615         return count;
1616 }
1617
1618 static unsigned long read_ul(void *p, size_t x)
1619 {
1620         return *(unsigned long *)(p + x);
1621 }
1622
1623 static void print_properties(struct intel_engine_cs *engine,
1624                              struct drm_printer *m)
1625 {
1626         static const struct pmap {
1627                 size_t offset;
1628                 const char *name;
1629         } props[] = {
1630 #define P(x) { \
1631         .offset = offsetof(typeof(engine->props), x), \
1632         .name = #x \
1633 }
1634                 P(heartbeat_interval_ms),
1635                 P(max_busywait_duration_ns),
1636                 P(preempt_timeout_ms),
1637                 P(stop_timeout_ms),
1638                 P(timeslice_duration_ms),
1639
1640                 {},
1641 #undef P
1642         };
1643         const struct pmap *p;
1644
1645         drm_printf(m, "\tProperties:\n");
1646         for (p = props; p->name; p++)
1647                 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
1648                            p->name,
1649                            read_ul(&engine->props, p->offset),
1650                            read_ul(&engine->defaults, p->offset));
1651 }
1652
1653 void intel_engine_dump(struct intel_engine_cs *engine,
1654                        struct drm_printer *m,
1655                        const char *header, ...)
1656 {
1657         struct i915_gpu_error * const error = &engine->i915->gpu_error;
1658         struct i915_request *rq;
1659         intel_wakeref_t wakeref;
1660         unsigned long flags;
1661         ktime_t dummy;
1662
1663         if (header) {
1664                 va_list ap;
1665
1666                 va_start(ap, header);
1667                 drm_vprintf(m, header, &ap);
1668                 va_end(ap);
1669         }
1670
1671         if (intel_gt_is_wedged(engine->gt))
1672                 drm_printf(m, "*** WEDGED ***\n");
1673
1674         drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1675         drm_printf(m, "\tBarriers?: %s\n",
1676                    yesno(!llist_empty(&engine->barrier_tasks)));
1677         drm_printf(m, "\tLatency: %luus\n",
1678                    ewma__engine_latency_read(&engine->latency));
1679         if (intel_engine_supports_stats(engine))
1680                 drm_printf(m, "\tRuntime: %llums\n",
1681                            ktime_to_ms(intel_engine_get_busy_time(engine,
1682                                                                   &dummy)));
1683         drm_printf(m, "\tForcewake: %x domains, %d active\n",
1684                    engine->fw_domain, READ_ONCE(engine->fw_active));
1685
1686         rcu_read_lock();
1687         rq = READ_ONCE(engine->heartbeat.systole);
1688         if (rq)
1689                 drm_printf(m, "\tHeartbeat: %d ms ago\n",
1690                            jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1691         rcu_read_unlock();
1692         drm_printf(m, "\tReset count: %d (global %d)\n",
1693                    i915_reset_engine_count(error, engine),
1694                    i915_reset_count(error));
1695         print_properties(engine, m);
1696
1697         drm_printf(m, "\tRequests:\n");
1698
1699         spin_lock_irqsave(&engine->active.lock, flags);
1700         rq = intel_engine_find_active_request(engine);
1701         if (rq) {
1702                 struct intel_timeline *tl = get_timeline(rq);
1703
1704                 i915_request_show(m, rq, "\t\tactive ", 0);
1705
1706                 drm_printf(m, "\t\tring->start:  0x%08x\n",
1707                            i915_ggtt_offset(rq->ring->vma));
1708                 drm_printf(m, "\t\tring->head:   0x%08x\n",
1709                            rq->ring->head);
1710                 drm_printf(m, "\t\tring->tail:   0x%08x\n",
1711                            rq->ring->tail);
1712                 drm_printf(m, "\t\tring->emit:   0x%08x\n",
1713                            rq->ring->emit);
1714                 drm_printf(m, "\t\tring->space:  0x%08x\n",
1715                            rq->ring->space);
1716
1717                 if (tl) {
1718                         drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1719                                    tl->hwsp_offset);
1720                         intel_timeline_put(tl);
1721                 }
1722
1723                 print_request_ring(m, rq);
1724
1725                 if (rq->context->lrc_reg_state) {
1726                         drm_printf(m, "Logical Ring Context:\n");
1727                         hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1728                 }
1729         }
1730         drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1731         spin_unlock_irqrestore(&engine->active.lock, flags);
1732
1733         drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1734         wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1735         if (wakeref) {
1736                 intel_engine_print_registers(engine, m);
1737                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1738         } else {
1739                 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1740         }
1741
1742         intel_execlists_show_requests(engine, m, i915_request_show, 8);
1743
1744         drm_printf(m, "HWSP:\n");
1745         hexdump(m, engine->status_page.addr, PAGE_SIZE);
1746
1747         drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1748
1749         intel_engine_print_breadcrumbs(engine, m);
1750 }
1751
1752 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
1753                                             ktime_t *now)
1754 {
1755         ktime_t total = engine->stats.total;
1756
1757         /*
1758          * If the engine is executing something at the moment
1759          * add it to the total.
1760          */
1761         *now = ktime_get();
1762         if (READ_ONCE(engine->stats.active))
1763                 total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1764
1765         return total;
1766 }
1767
1768 /**
1769  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1770  * @engine: engine to report on
1771  * @now: monotonic timestamp of sampling
1772  *
1773  * Returns accumulated time @engine was busy since engine stats were enabled.
1774  */
1775 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1776 {
1777         unsigned int seq;
1778         ktime_t total;
1779
1780         do {
1781                 seq = read_seqcount_begin(&engine->stats.lock);
1782                 total = __intel_engine_get_busy_time(engine, now);
1783         } while (read_seqcount_retry(&engine->stats.lock, seq));
1784
1785         return total;
1786 }
1787
1788 static bool match_ring(struct i915_request *rq)
1789 {
1790         u32 ring = ENGINE_READ(rq->engine, RING_START);
1791
1792         return ring == i915_ggtt_offset(rq->ring->vma);
1793 }
1794
1795 struct i915_request *
1796 intel_engine_find_active_request(struct intel_engine_cs *engine)
1797 {
1798         struct i915_request *request, *active = NULL;
1799
1800         /*
1801          * We are called by the error capture, reset and to dump engine
1802          * state at random points in time. In particular, note that neither is
1803          * crucially ordered with an interrupt. After a hang, the GPU is dead
1804          * and we assume that no more writes can happen (we waited long enough
1805          * for all writes that were in transaction to be flushed) - adding an
1806          * extra delay for a recent interrupt is pointless. Hence, we do
1807          * not need an engine->irq_seqno_barrier() before the seqno reads.
1808          * At all other times, we must assume the GPU is still running, but
1809          * we only care about the snapshot of this moment.
1810          */
1811         lockdep_assert_held(&engine->active.lock);
1812
1813         rcu_read_lock();
1814         request = execlists_active(&engine->execlists);
1815         if (request) {
1816                 struct intel_timeline *tl = request->context->timeline;
1817
1818                 list_for_each_entry_from_reverse(request, &tl->requests, link) {
1819                         if (__i915_request_is_complete(request))
1820                                 break;
1821
1822                         active = request;
1823                 }
1824         }
1825         rcu_read_unlock();
1826         if (active)
1827                 return active;
1828
1829         list_for_each_entry(request, &engine->active.requests, sched.link) {
1830                 if (__i915_request_is_complete(request))
1831                         continue;
1832
1833                 if (!__i915_request_has_started(request))
1834                         continue;
1835
1836                 /* More than one preemptible request may match! */
1837                 if (!match_ring(request))
1838                         continue;
1839
1840                 active = request;
1841                 break;
1842         }
1843
1844         return active;
1845 }
1846
1847 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1848 #include "mock_engine.c"
1849 #include "selftest_engine.c"
1850 #include "selftest_engine_cs.c"
1851 #endif
This page took 0.142638 seconds and 4 git commands to generate.