]> Git Repo - linux.git/blob - arch/x86/include/asm/uv/uv_hub.h
Merge remote-tracking branch 'spi/for-5.14' into spi-linus
[linux.git] / arch / x86 / include / asm / uv / uv_hub.h
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
9  * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
10  */
11
12 #ifndef _ASM_X86_UV_UV_HUB_H
13 #define _ASM_X86_UV_UV_HUB_H
14
15 #ifdef CONFIG_X86_64
16 #include <linux/numa.h>
17 #include <linux/percpu.h>
18 #include <linux/timer.h>
19 #include <linux/io.h>
20 #include <linux/topology.h>
21 #include <asm/types.h>
22 #include <asm/percpu.h>
23 #include <asm/uv/uv.h>
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/bios.h>
26 #include <asm/irq_vectors.h>
27 #include <asm/io_apic.h>
28
29
30 /*
31  * Addressing Terminology
32  *
33  *      M       - The low M bits of a physical address represent the offset
34  *                into the blade local memory. RAM memory on a blade is physically
35  *                contiguous (although various IO spaces may punch holes in
36  *                it)..
37  *
38  *      N       - Number of bits in the node portion of a socket physical
39  *                address.
40  *
41  *      NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
42  *                routers always have low bit of 1, C/MBricks have low bit
43  *                equal to 0. Most addressing macros that target UV hub chips
44  *                right shift the NASID by 1 to exclude the always-zero bit.
45  *                NASIDs contain up to 15 bits.
46  *
47  *      GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
48  *                of nasids.
49  *
50  *      PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
51  *                of the nasid for socket usage.
52  *
53  *      GPA     - (global physical address) a socket physical address converted
54  *                so that it can be used by the GRU as a global address. Socket
55  *                physical addresses 1) need additional NASID (node) bits added
56  *                to the high end of the address, and 2) unaliased if the
57  *                partition does not have a physical address 0. In addition, on
58  *                UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
59  *
60  *
61  *  NumaLink Global Physical Address Format:
62  *  +--------------------------------+---------------------+
63  *  |00..000|      GNODE             |      NodeOffset     |
64  *  +--------------------------------+---------------------+
65  *          |<-------53 - M bits --->|<--------M bits ----->
66  *
67  *      M - number of node offset bits (35 .. 40)
68  *
69  *
70  *  Memory/UV-HUB Processor Socket Address Format:
71  *  +----------------+---------------+---------------------+
72  *  |00..000000000000|   PNODE       |      NodeOffset     |
73  *  +----------------+---------------+---------------------+
74  *                   <--- N bits --->|<--------M bits ----->
75  *
76  *      M - number of node offset bits (35 .. 40)
77  *      N - number of PNODE bits (0 .. 10)
78  *
79  *              Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
80  *              The actual values are configuration dependent and are set at
81  *              boot time. M & N values are set by the hardware/BIOS at boot.
82  *
83  *
84  * APICID format
85  *      NOTE!!!!!! This is the current format of the APICID. However, code
86  *      should assume that this will change in the future. Use functions
87  *      in this file for all APICID bit manipulations and conversion.
88  *
89  *              1111110000000000
90  *              5432109876543210
91  *              pppppppppplc0cch        Nehalem-EX (12 bits in hdw reg)
92  *              ppppppppplcc0cch        Westmere-EX (12 bits in hdw reg)
93  *              pppppppppppcccch        SandyBridge (15 bits in hdw reg)
94  *              sssssssssss
95  *
96  *                      p  = pnode bits
97  *                      l =  socket number on board
98  *                      c  = core
99  *                      h  = hyperthread
100  *                      s  = bits that are in the SOCKET_ID CSR
101  *
102  *      Note: Processor may support fewer bits in the APICID register. The ACPI
103  *            tables hold all 16 bits. Software needs to be aware of this.
104  *
105  *            Unless otherwise specified, all references to APICID refer to
106  *            the FULL value contained in ACPI tables, not the subset in the
107  *            processor APICID register.
108  */
109
110 /*
111  * Maximum number of bricks in all partitions and in all coherency domains.
112  * This is the total number of bricks accessible in the numalink fabric. It
113  * includes all C & M bricks. Routers are NOT included.
114  *
115  * This value is also the value of the maximum number of non-router NASIDs
116  * in the numalink fabric.
117  *
118  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
119  */
120 #define UV_MAX_NUMALINK_BLADES  16384
121
122 /*
123  * Maximum number of C/Mbricks within a software SSI (hardware may support
124  * more).
125  */
126 #define UV_MAX_SSI_BLADES       256
127
128 /*
129  * The largest possible NASID of a C or M brick (+ 2)
130  */
131 #define UV_MAX_NASID_VALUE      (UV_MAX_NUMALINK_BLADES * 2)
132
133 /* GAM (globally addressed memory) range table */
134 struct uv_gam_range_s {
135         u32     limit;          /* PA bits 56:26 (GAM_RANGE_SHFT) */
136         u16     nasid;          /* node's global physical address */
137         s8      base;           /* entry index of node's base addr */
138         u8      reserved;
139 };
140
141 /*
142  * The following defines attributes of the HUB chip. These attributes are
143  * frequently referenced and are kept in a common per hub struct.
144  * After setup, the struct is read only, so it should be readily
145  * available in the L3 cache on the cpu socket for the node.
146  */
147 struct uv_hub_info_s {
148         unsigned int            hub_type;
149         unsigned char           hub_revision;
150         unsigned long           global_mmr_base;
151         unsigned long           global_mmr_shift;
152         unsigned long           gpa_mask;
153         unsigned short          *socket_to_node;
154         unsigned short          *socket_to_pnode;
155         unsigned short          *pnode_to_socket;
156         struct uv_gam_range_s   *gr_table;
157         unsigned short          min_socket;
158         unsigned short          min_pnode;
159         unsigned char           m_val;
160         unsigned char           n_val;
161         unsigned char           gr_table_len;
162         unsigned char           apic_pnode_shift;
163         unsigned char           gpa_shift;
164         unsigned char           nasid_shift;
165         unsigned char           m_shift;
166         unsigned char           n_lshift;
167         unsigned int            gnode_extra;
168         unsigned long           gnode_upper;
169         unsigned long           lowmem_remap_top;
170         unsigned long           lowmem_remap_base;
171         unsigned long           global_gru_base;
172         unsigned long           global_gru_shift;
173         unsigned short          pnode;
174         unsigned short          pnode_mask;
175         unsigned short          coherency_domain_number;
176         unsigned short          numa_blade_id;
177         unsigned short          nr_possible_cpus;
178         unsigned short          nr_online_cpus;
179         short                   memory_nid;
180 };
181
182 /* CPU specific info with a pointer to the hub common info struct */
183 struct uv_cpu_info_s {
184         void                    *p_uv_hub_info;
185         unsigned char           blade_cpu_id;
186         void                    *reserved;
187 };
188 DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
189
190 #define uv_cpu_info             this_cpu_ptr(&__uv_cpu_info)
191 #define uv_cpu_info_per(cpu)    (&per_cpu(__uv_cpu_info, cpu))
192
193 /* Node specific hub common info struct */
194 extern void **__uv_hub_info_list;
195 static inline struct uv_hub_info_s *uv_hub_info_list(int node)
196 {
197         return (struct uv_hub_info_s *)__uv_hub_info_list[node];
198 }
199
200 static inline struct uv_hub_info_s *_uv_hub_info(void)
201 {
202         return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
203 }
204 #define uv_hub_info     _uv_hub_info()
205
206 static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
207 {
208         return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
209 }
210
211 static inline int uv_hub_type(void)
212 {
213         return uv_hub_info->hub_type;
214 }
215
216 static inline __init void uv_hub_type_set(int uvmask)
217 {
218         uv_hub_info->hub_type = uvmask;
219 }
220
221
222 /*
223  * HUB revision ranges for each UV HUB architecture.
224  * This is a software convention - NOT the hardware revision numbers in
225  * the hub chip.
226  */
227 #define UV2_HUB_REVISION_BASE           3
228 #define UV3_HUB_REVISION_BASE           5
229 #define UV4_HUB_REVISION_BASE           7
230 #define UV4A_HUB_REVISION_BASE          8       /* UV4 (fixed) rev 2 */
231 #define UV5_HUB_REVISION_BASE           9
232
233 static inline int is_uv(int uvmask) { return uv_hub_type() & uvmask; }
234 static inline int is_uv1_hub(void) { return 0; }
235 static inline int is_uv2_hub(void) { return is_uv(UV2); }
236 static inline int is_uv3_hub(void) { return is_uv(UV3); }
237 static inline int is_uv4a_hub(void) { return is_uv(UV4A); }
238 static inline int is_uv4_hub(void) { return is_uv(UV4); }
239 static inline int is_uv5_hub(void) { return is_uv(UV5); }
240
241 /*
242  * UV4A is a revision of UV4.  So on UV4A, both is_uv4_hub() and
243  * is_uv4a_hub() return true, While on UV4, only is_uv4_hub()
244  * returns true.  So to get true results, first test if is UV4A,
245  * then test if is UV4.
246  */
247
248 /* UVX class: UV2,3,4 */
249 static inline int is_uvx_hub(void) { return is_uv(UVX); }
250
251 /* UVY class: UV5,..? */
252 static inline int is_uvy_hub(void) { return is_uv(UVY); }
253
254 /* Any UV Hubbed System */
255 static inline int is_uv_hub(void) { return is_uv(UV_ANY); }
256
257 union uvh_apicid {
258     unsigned long       v;
259     struct uvh_apicid_s {
260         unsigned long   local_apic_mask  : 24;
261         unsigned long   local_apic_shift :  5;
262         unsigned long   unused1          :  3;
263         unsigned long   pnode_mask       : 24;
264         unsigned long   pnode_shift      :  5;
265         unsigned long   unused2          :  3;
266     } s;
267 };
268
269 /*
270  * Local & Global MMR space macros.
271  *      Note: macros are intended to be used ONLY by inline functions
272  *      in this file - not by other kernel code.
273  *              n -  NASID (full 15-bit global nasid)
274  *              g -  GNODE (full 15-bit global nasid, right shifted 1)
275  *              p -  PNODE (local part of nsids, right shifted 1)
276  */
277 #define UV_NASID_TO_PNODE(n)            \
278                 (((n) >> uv_hub_info->nasid_shift) & uv_hub_info->pnode_mask)
279 #define UV_PNODE_TO_GNODE(p)            ((p) |uv_hub_info->gnode_extra)
280 #define UV_PNODE_TO_NASID(p)            \
281                 (UV_PNODE_TO_GNODE(p) << uv_hub_info->nasid_shift)
282
283 #define UV2_LOCAL_MMR_BASE              0xfa000000UL
284 #define UV2_GLOBAL_MMR32_BASE           0xfc000000UL
285 #define UV2_LOCAL_MMR_SIZE              (32UL * 1024 * 1024)
286 #define UV2_GLOBAL_MMR32_SIZE           (32UL * 1024 * 1024)
287
288 #define UV3_LOCAL_MMR_BASE              0xfa000000UL
289 #define UV3_GLOBAL_MMR32_BASE           0xfc000000UL
290 #define UV3_LOCAL_MMR_SIZE              (32UL * 1024 * 1024)
291 #define UV3_GLOBAL_MMR32_SIZE           (32UL * 1024 * 1024)
292
293 #define UV4_LOCAL_MMR_BASE              0xfa000000UL
294 #define UV4_GLOBAL_MMR32_BASE           0
295 #define UV4_LOCAL_MMR_SIZE              (32UL * 1024 * 1024)
296 #define UV4_GLOBAL_MMR32_SIZE           0
297
298 #define UV5_LOCAL_MMR_BASE              0xfa000000UL
299 #define UV5_GLOBAL_MMR32_BASE           0
300 #define UV5_LOCAL_MMR_SIZE              (32UL * 1024 * 1024)
301 #define UV5_GLOBAL_MMR32_SIZE           0
302
303 #define UV_LOCAL_MMR_BASE               (                               \
304                                         is_uv(UV2) ? UV2_LOCAL_MMR_BASE : \
305                                         is_uv(UV3) ? UV3_LOCAL_MMR_BASE : \
306                                         is_uv(UV4) ? UV4_LOCAL_MMR_BASE : \
307                                         is_uv(UV5) ? UV5_LOCAL_MMR_BASE : \
308                                         0)
309
310 #define UV_GLOBAL_MMR32_BASE            (                               \
311                                         is_uv(UV2) ? UV2_GLOBAL_MMR32_BASE : \
312                                         is_uv(UV3) ? UV3_GLOBAL_MMR32_BASE : \
313                                         is_uv(UV4) ? UV4_GLOBAL_MMR32_BASE : \
314                                         is_uv(UV5) ? UV5_GLOBAL_MMR32_BASE : \
315                                         0)
316
317 #define UV_LOCAL_MMR_SIZE               (                               \
318                                         is_uv(UV2) ? UV2_LOCAL_MMR_SIZE : \
319                                         is_uv(UV3) ? UV3_LOCAL_MMR_SIZE : \
320                                         is_uv(UV4) ? UV4_LOCAL_MMR_SIZE : \
321                                         is_uv(UV5) ? UV5_LOCAL_MMR_SIZE : \
322                                         0)
323
324 #define UV_GLOBAL_MMR32_SIZE            (                               \
325                                         is_uv(UV2) ? UV2_GLOBAL_MMR32_SIZE : \
326                                         is_uv(UV3) ? UV3_GLOBAL_MMR32_SIZE : \
327                                         is_uv(UV4) ? UV4_GLOBAL_MMR32_SIZE : \
328                                         is_uv(UV5) ? UV5_GLOBAL_MMR32_SIZE : \
329                                         0)
330
331 #define UV_GLOBAL_MMR64_BASE            (uv_hub_info->global_mmr_base)
332
333 #define UV_GLOBAL_GRU_MMR_BASE          0x4000000
334
335 #define UV_GLOBAL_MMR32_PNODE_SHIFT     15
336 #define _UV_GLOBAL_MMR64_PNODE_SHIFT    26
337 #define UV_GLOBAL_MMR64_PNODE_SHIFT     (uv_hub_info->global_mmr_shift)
338
339 #define UV_GLOBAL_MMR32_PNODE_BITS(p)   ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
340
341 #define UV_GLOBAL_MMR64_PNODE_BITS(p)                                   \
342         (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
343
344 #define UVH_APICID              0x002D0E00L
345 #define UV_APIC_PNODE_SHIFT     6
346
347 /* Local Bus from cpu's perspective */
348 #define LOCAL_BUS_BASE          0x1c00000
349 #define LOCAL_BUS_SIZE          (4 * 1024 * 1024)
350
351 /*
352  * System Controller Interface Reg
353  *
354  * Note there are NO leds on a UV system.  This register is only
355  * used by the system controller to monitor system-wide operation.
356  * There are 64 regs per node.  With Nehalem cpus (2 cores per node,
357  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
358  * a node.
359  *
360  * The window is located at top of ACPI MMR space
361  */
362 #define SCIR_WINDOW_COUNT       64
363 #define SCIR_LOCAL_MMR_BASE     (LOCAL_BUS_BASE + \
364                                  LOCAL_BUS_SIZE - \
365                                  SCIR_WINDOW_COUNT)
366
367 #define SCIR_CPU_HEARTBEAT      0x01    /* timer interrupt */
368 #define SCIR_CPU_ACTIVITY       0x02    /* not idle */
369 #define SCIR_CPU_HB_INTERVAL    (HZ)    /* once per second */
370
371 /* Loop through all installed blades */
372 #define for_each_possible_blade(bid)            \
373         for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
374
375 /*
376  * Macros for converting between kernel virtual addresses, socket local physical
377  * addresses, and UV global physical addresses.
378  *      Note: use the standard __pa() & __va() macros for converting
379  *            between socket virtual and socket physical addresses.
380  */
381
382 /* global bits offset - number of local address bits in gpa for this UV arch */
383 static inline unsigned int uv_gpa_shift(void)
384 {
385         return uv_hub_info->gpa_shift;
386 }
387 #define _uv_gpa_shift
388
389 /* Find node that has the address range that contains global address  */
390 static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
391 {
392         struct uv_gam_range_s *gr = uv_hub_info->gr_table;
393         unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
394         int i, num = uv_hub_info->gr_table_len;
395
396         if (gr) {
397                 for (i = 0; i < num; i++, gr++) {
398                         if (pal < gr->limit)
399                                 return gr;
400                 }
401         }
402         pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
403         BUG();
404 }
405
406 /* Return base address of node that contains global address  */
407 static inline unsigned long uv_gam_range_base(unsigned long pa)
408 {
409         struct uv_gam_range_s *gr = uv_gam_range(pa);
410         int base = gr->base;
411
412         if (base < 0)
413                 return 0UL;
414
415         return uv_hub_info->gr_table[base].limit;
416 }
417
418 /* socket phys RAM --> UV global NASID (UV4+) */
419 static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
420 {
421         return uv_gam_range(paddr)->nasid;
422 }
423 #define _uv_soc_phys_ram_to_nasid
424
425 /* socket virtual --> UV global NASID (UV4+) */
426 static inline unsigned long uv_gpa_nasid(void *v)
427 {
428         return uv_soc_phys_ram_to_nasid(__pa(v));
429 }
430
431 /* socket phys RAM --> UV global physical address */
432 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
433 {
434         unsigned int m_val = uv_hub_info->m_val;
435
436         if (paddr < uv_hub_info->lowmem_remap_top)
437                 paddr |= uv_hub_info->lowmem_remap_base;
438
439         if (m_val) {
440                 paddr |= uv_hub_info->gnode_upper;
441                 paddr = ((paddr << uv_hub_info->m_shift)
442                                                 >> uv_hub_info->m_shift) |
443                         ((paddr >> uv_hub_info->m_val)
444                                                 << uv_hub_info->n_lshift);
445         } else {
446                 paddr |= uv_soc_phys_ram_to_nasid(paddr)
447                                                 << uv_hub_info->gpa_shift;
448         }
449         return paddr;
450 }
451
452 /* socket virtual --> UV global physical address */
453 static inline unsigned long uv_gpa(void *v)
454 {
455         return uv_soc_phys_ram_to_gpa(__pa(v));
456 }
457
458 /* Top two bits indicate the requested address is in MMR space.  */
459 static inline int
460 uv_gpa_in_mmr_space(unsigned long gpa)
461 {
462         return (gpa >> 62) == 0x3UL;
463 }
464
465 /* UV global physical address --> socket phys RAM */
466 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
467 {
468         unsigned long paddr;
469         unsigned long remap_base = uv_hub_info->lowmem_remap_base;
470         unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
471         unsigned int m_val = uv_hub_info->m_val;
472
473         if (m_val)
474                 gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
475                         ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
476
477         paddr = gpa & uv_hub_info->gpa_mask;
478         if (paddr >= remap_base && paddr < remap_base + remap_top)
479                 paddr -= remap_base;
480         return paddr;
481 }
482
483 /* gpa -> gnode */
484 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
485 {
486         unsigned int n_lshift = uv_hub_info->n_lshift;
487
488         if (n_lshift)
489                 return gpa >> n_lshift;
490
491         return uv_gam_range(gpa)->nasid >> 1;
492 }
493
494 /* gpa -> pnode */
495 static inline int uv_gpa_to_pnode(unsigned long gpa)
496 {
497         return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
498 }
499
500 /* gpa -> node offset */
501 static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
502 {
503         unsigned int m_shift = uv_hub_info->m_shift;
504
505         if (m_shift)
506                 return (gpa << m_shift) >> m_shift;
507
508         return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
509 }
510
511 /* Convert socket to node */
512 static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
513 {
514         return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
515 }
516
517 static inline int uv_socket_to_node(int socket)
518 {
519         return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
520 }
521
522 /* pnode, offset --> socket virtual */
523 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
524 {
525         unsigned int m_val = uv_hub_info->m_val;
526         unsigned long base;
527         unsigned short sockid, node, *p2s;
528
529         if (m_val)
530                 return __va(((unsigned long)pnode << m_val) | offset);
531
532         p2s = uv_hub_info->pnode_to_socket;
533         sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
534         node = uv_socket_to_node(sockid);
535
536         /* limit address of previous socket is our base, except node 0 is 0 */
537         if (!node)
538                 return __va((unsigned long)offset);
539
540         base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
541         return __va(base << UV_GAM_RANGE_SHFT | offset);
542 }
543
544 /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
545 static inline int uv_apicid_to_pnode(int apicid)
546 {
547         int pnode = apicid >> uv_hub_info->apic_pnode_shift;
548         unsigned short *s2pn = uv_hub_info->socket_to_pnode;
549
550         return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
551 }
552
553 /*
554  * Access global MMRs using the low memory MMR32 space. This region supports
555  * faster MMR access but not all MMRs are accessible in this space.
556  */
557 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
558 {
559         return __va(UV_GLOBAL_MMR32_BASE |
560                        UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
561 }
562
563 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
564 {
565         writeq(val, uv_global_mmr32_address(pnode, offset));
566 }
567
568 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
569 {
570         return readq(uv_global_mmr32_address(pnode, offset));
571 }
572
573 /*
574  * Access Global MMR space using the MMR space located at the top of physical
575  * memory.
576  */
577 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
578 {
579         return __va(UV_GLOBAL_MMR64_BASE |
580                     UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
581 }
582
583 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
584 {
585         writeq(val, uv_global_mmr64_address(pnode, offset));
586 }
587
588 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
589 {
590         return readq(uv_global_mmr64_address(pnode, offset));
591 }
592
593 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
594 {
595         writeb(val, uv_global_mmr64_address(pnode, offset));
596 }
597
598 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
599 {
600         return readb(uv_global_mmr64_address(pnode, offset));
601 }
602
603 /*
604  * Access hub local MMRs. Faster than using global space but only local MMRs
605  * are accessible.
606  */
607 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
608 {
609         return __va(UV_LOCAL_MMR_BASE | offset);
610 }
611
612 static inline unsigned long uv_read_local_mmr(unsigned long offset)
613 {
614         return readq(uv_local_mmr_address(offset));
615 }
616
617 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
618 {
619         writeq(val, uv_local_mmr_address(offset));
620 }
621
622 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
623 {
624         return readb(uv_local_mmr_address(offset));
625 }
626
627 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
628 {
629         writeb(val, uv_local_mmr_address(offset));
630 }
631
632 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
633 static inline int uv_blade_processor_id(void)
634 {
635         return uv_cpu_info->blade_cpu_id;
636 }
637
638 /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
639 static inline int uv_cpu_blade_processor_id(int cpu)
640 {
641         return uv_cpu_info_per(cpu)->blade_cpu_id;
642 }
643
644 /* Blade number to Node number (UV2..UV4 is 1:1) */
645 static inline int uv_blade_to_node(int blade)
646 {
647         return blade;
648 }
649
650 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
651 static inline int uv_numa_blade_id(void)
652 {
653         return uv_hub_info->numa_blade_id;
654 }
655
656 /*
657  * Convert linux node number to the UV blade number.
658  * .. Currently for UV2 thru UV4 the node and the blade are identical.
659  * .. If this changes then you MUST check references to this function!
660  */
661 static inline int uv_node_to_blade_id(int nid)
662 {
663         return nid;
664 }
665
666 /* Convert a CPU number to the UV blade number */
667 static inline int uv_cpu_to_blade_id(int cpu)
668 {
669         return uv_node_to_blade_id(cpu_to_node(cpu));
670 }
671
672 /* Convert a blade id to the PNODE of the blade */
673 static inline int uv_blade_to_pnode(int bid)
674 {
675         return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
676 }
677
678 /* Nid of memory node on blade. -1 if no blade-local memory */
679 static inline int uv_blade_to_memory_nid(int bid)
680 {
681         return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
682 }
683
684 /* Determine the number of possible cpus on a blade */
685 static inline int uv_blade_nr_possible_cpus(int bid)
686 {
687         return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
688 }
689
690 /* Determine the number of online cpus on a blade */
691 static inline int uv_blade_nr_online_cpus(int bid)
692 {
693         return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
694 }
695
696 /* Convert a cpu id to the PNODE of the blade containing the cpu */
697 static inline int uv_cpu_to_pnode(int cpu)
698 {
699         return uv_cpu_hub_info(cpu)->pnode;
700 }
701
702 /* Convert a linux node number to the PNODE of the blade */
703 static inline int uv_node_to_pnode(int nid)
704 {
705         return uv_hub_info_list(nid)->pnode;
706 }
707
708 /* Maximum possible number of blades */
709 extern short uv_possible_blades;
710 static inline int uv_num_possible_blades(void)
711 {
712         return uv_possible_blades;
713 }
714
715 /* Per Hub NMI support */
716 extern void uv_nmi_setup(void);
717 extern void uv_nmi_setup_hubless(void);
718
719 /* BIOS/Kernel flags exchange MMR */
720 #define UVH_BIOS_KERNEL_MMR             UVH_SCRATCH5
721 #define UVH_BIOS_KERNEL_MMR_ALIAS       UVH_SCRATCH5_ALIAS
722 #define UVH_BIOS_KERNEL_MMR_ALIAS_2     UVH_SCRATCH5_ALIAS_2
723
724 /* TSC sync valid, set by BIOS */
725 #define UVH_TSC_SYNC_MMR        UVH_BIOS_KERNEL_MMR
726 #define UVH_TSC_SYNC_SHIFT      10
727 #define UVH_TSC_SYNC_SHIFT_UV2K 16      /* UV2/3k have different bits */
728 #define UVH_TSC_SYNC_MASK       3       /* 0011 */
729 #define UVH_TSC_SYNC_VALID      3       /* 0011 */
730 #define UVH_TSC_SYNC_UNKNOWN    0       /* 0000 */
731
732 /* BMC sets a bit this MMR non-zero before sending an NMI */
733 #define UVH_NMI_MMR             UVH_BIOS_KERNEL_MMR
734 #define UVH_NMI_MMR_CLEAR       UVH_BIOS_KERNEL_MMR_ALIAS
735 #define UVH_NMI_MMR_SHIFT       63
736 #define UVH_NMI_MMR_TYPE        "SCRATCH5"
737
738 struct uv_hub_nmi_s {
739         raw_spinlock_t  nmi_lock;
740         atomic_t        in_nmi;         /* flag this node in UV NMI IRQ */
741         atomic_t        cpu_owner;      /* last locker of this struct */
742         atomic_t        read_mmr_count; /* count of MMR reads */
743         atomic_t        nmi_count;      /* count of true UV NMIs */
744         unsigned long   nmi_value;      /* last value read from NMI MMR */
745         bool            hub_present;    /* false means UV hubless system */
746         bool            pch_owner;      /* indicates this hub owns PCH */
747 };
748
749 struct uv_cpu_nmi_s {
750         struct uv_hub_nmi_s     *hub;
751         int                     state;
752         int                     pinging;
753         int                     queries;
754         int                     pings;
755 };
756
757 DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
758
759 #define uv_hub_nmi                      this_cpu_read(uv_cpu_nmi.hub)
760 #define uv_cpu_nmi_per(cpu)             (per_cpu(uv_cpu_nmi, cpu))
761 #define uv_hub_nmi_per(cpu)             (uv_cpu_nmi_per(cpu).hub)
762
763 /* uv_cpu_nmi_states */
764 #define UV_NMI_STATE_OUT                0
765 #define UV_NMI_STATE_IN                 1
766 #define UV_NMI_STATE_DUMP               2
767 #define UV_NMI_STATE_DUMP_DONE          3
768
769 /*
770  * Get the minimum revision number of the hub chips within the partition.
771  * (See UVx_HUB_REVISION_BASE above for specific values.)
772  */
773 static inline int uv_get_min_hub_revision_id(void)
774 {
775         return uv_hub_info->hub_revision;
776 }
777
778 #endif /* CONFIG_X86_64 */
779 #endif /* _ASM_X86_UV_UV_HUB_H */
This page took 0.076312 seconds and 4 git commands to generate.