1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
53 * 1. slab_mutex (Global Mutex)
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
56 * 4. slab_lock(slab) (Only on some arches)
57 * 5. object_map_lock (Only for debugging)
61 * The role of the slab_mutex is to protect the list of all the slabs
62 * and to synchronize major metadata changes to slab cache structures.
63 * Also synchronizes memory hotplug callbacks.
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
83 * slab is the one who can perform list operations on the slab. Other
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
119 * cpu_slab->lock local lock
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
140 * irq, preemption, migration considerations
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
156 * freed then the slab will show up again on the partial lists.
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
164 * slab->frozen The slab is frozen and exempt from list processing.
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
176 * freelist that allows lockless access to
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
181 * options set. This moves slab handling out of
182 * the fast path and disables lockless freelists.
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH() (true)
194 #define slub_get_cpu_ptr(var) \
199 #define slub_put_cpu_ptr(var) \
204 #define USE_LOCKLESS_FAST_PATH() (false)
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
210 #define __fastpath_inline
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
219 #endif /* CONFIG_SLUB_DEBUG */
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
224 unsigned int orig_size;
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 (s->flags & SLAB_KMALLOC));
239 void *fixup_red_left(struct kmem_cache *s, void *p)
241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 p += s->red_left_pad;
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 return !kmem_cache_debug(s);
257 * Issues still to be resolved:
259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
261 * - Variable sizing of the per node arrays
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
267 #ifndef CONFIG_SLUB_TINY
269 * Minimum number of partial slabs. These will be left on the partial
270 * lists even if they are empty. kmem_cache_shrink may reclaim them.
272 #define MIN_PARTIAL 5
275 * Maximum number of desirable partial slabs.
276 * The existence of more partial slabs makes kmem_cache_shrink
277 * sort the partial list by the number of objects in use.
279 #define MAX_PARTIAL 10
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 SLAB_POISON | SLAB_STORE_USER)
289 * These debug flags cannot use CMPXCHG because there might be consistency
290 * issues when checking or reading debug information
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
297 * Debugging flags that require metadata to be stored in the slab. These get
298 * disabled when slab_debug=O is used and a cache's min order increases with
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
304 #define OO_MASK ((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
307 /* Internal SLUB flags */
309 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
315 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
319 * Tracking user of a slab.
321 #define TRACK_ADDRS_COUNT 16
323 unsigned long addr; /* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 depot_stack_handle_t handle;
327 int cpu; /* Was running on cpu */
328 int pid; /* Pid context */
329 unsigned long when; /* When did the operation occur */
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
350 ALLOC_FASTPATH, /* Allocation from cpu slab */
351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
352 FREE_FASTPATH, /* Free to cpu slab */
353 FREE_SLOWPATH, /* Freeing not to cpu slab */
354 FREE_FROZEN, /* Freeing to frozen slab */
355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
361 FREE_SLAB, /* Slab freed to the page allocator */
362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 DEACTIVATE_BYPASS, /* Implicit deactivation */
369 ORDER_FALLBACK, /* Number of times fallback was necessary */
370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
379 #ifndef CONFIG_SLUB_TINY
381 * When changing the layout, make sure freelist and tid are still compatible
382 * with this_cpu_cmpxchg_double() alignment requirements.
384 struct kmem_cache_cpu {
387 void **freelist; /* Pointer to next available object */
388 unsigned long tid; /* Globally unique transaction id */
390 freelist_aba_t freelist_tid;
392 struct slab *slab; /* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 struct slab *partial; /* Partially allocated slabs */
396 local_lock_t lock; /* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 unsigned int stat[NR_SLUB_STAT_ITEMS];
401 #endif /* CONFIG_SLUB_TINY */
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
405 #ifdef CONFIG_SLUB_STATS
407 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 * avoid this_cpu_add()'s irq-disable overhead.
410 raw_cpu_inc(s->cpu_slab->stat[si]);
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
417 #ifdef CONFIG_SLUB_STATS
418 raw_cpu_add(s->cpu_slab->stat[si], v);
423 * The slab lists for all objects.
425 struct kmem_cache_node {
426 spinlock_t list_lock;
427 unsigned long nr_partial;
428 struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 atomic_long_t nr_slabs;
431 atomic_long_t total_objects;
432 struct list_head full;
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
438 return s->node[node];
442 * Iterator over all nodes. The body will be executed for each node that has
443 * a kmem_cache_node structure allocated (which is true for all online nodes)
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 for (__node = 0; __node < nr_node_ids; __node++) \
447 if ((__n = get_node(__s, __node)))
450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452 * differ during memory hotplug/hotremove operations.
453 * Protected by slab_mutex.
455 static nodemask_t slab_nodes;
457 #ifndef CONFIG_SLUB_TINY
459 * Workqueue used for flush_cpu_slab().
461 static struct workqueue_struct *flushwq;
464 /********************************************************************
465 * Core slab cache functions
466 *******************************************************************/
469 * freeptr_t represents a SLUB freelist pointer, which might be encoded
470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
472 typedef struct { unsigned long v; } freeptr_t;
475 * Returns freelist pointer (ptr). With hardening, this is obfuscated
476 * with an XOR of the address where the pointer is held and a per-cache
479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 void *ptr, unsigned long ptr_addr)
482 unsigned long encoded;
484 #ifdef CONFIG_SLAB_FREELIST_HARDENED
485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
487 encoded = (unsigned long)ptr;
489 return (freeptr_t){.v = encoded};
492 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 freeptr_t ptr, unsigned long ptr_addr)
497 #ifdef CONFIG_SLAB_FREELIST_HARDENED
498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
500 decoded = (void *)ptr.v;
505 static inline void *get_freepointer(struct kmem_cache *s, void *object)
507 unsigned long ptr_addr;
510 object = kasan_reset_tag(object);
511 ptr_addr = (unsigned long)object + s->offset;
512 p = *(freeptr_t *)(ptr_addr);
513 return freelist_ptr_decode(s, p, ptr_addr);
516 #ifndef CONFIG_SLUB_TINY
517 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
519 prefetchw(object + s->offset);
524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525 * pointer value in the case the current thread loses the race for the next
526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528 * KMSAN will still check all arguments of cmpxchg because of imperfect
529 * handling of inline assembly.
530 * To work around this problem, we apply __no_kmsan_checks to ensure that
531 * get_freepointer_safe() returns initialized memory.
534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
536 unsigned long freepointer_addr;
539 if (!debug_pagealloc_enabled_static())
540 return get_freepointer(s, object);
542 object = kasan_reset_tag(object);
543 freepointer_addr = (unsigned long)object + s->offset;
544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 return freelist_ptr_decode(s, p, freepointer_addr);
548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
550 unsigned long freeptr_addr = (unsigned long)object + s->offset;
552 #ifdef CONFIG_SLAB_FREELIST_HARDENED
553 BUG_ON(object == fp); /* naive detection of double free or corruption */
556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
561 * See comment in calculate_sizes().
563 static inline bool freeptr_outside_object(struct kmem_cache *s)
565 return s->offset >= s->inuse;
569 * Return offset of the end of info block which is inuse + free pointer if
570 * not overlapping with object.
572 static inline unsigned int get_info_end(struct kmem_cache *s)
574 if (freeptr_outside_object(s))
575 return s->inuse + sizeof(void *);
580 /* Loop over all objects in a slab */
581 #define for_each_object(__p, __s, __addr, __objects) \
582 for (__p = fixup_red_left(__s, __addr); \
583 __p < (__addr) + (__objects) * (__s)->size; \
586 static inline unsigned int order_objects(unsigned int order, unsigned int size)
588 return ((unsigned int)PAGE_SIZE << order) / size;
591 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
594 struct kmem_cache_order_objects x = {
595 (order << OO_SHIFT) + order_objects(order, size)
601 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
603 return x.x >> OO_SHIFT;
606 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
608 return x.x & OO_MASK;
611 #ifdef CONFIG_SLUB_CPU_PARTIAL
612 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
614 unsigned int nr_slabs;
616 s->cpu_partial = nr_objects;
619 * We take the number of objects but actually limit the number of
620 * slabs on the per cpu partial list, in order to limit excessive
621 * growth of the list. For simplicity we assume that the slabs will
624 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
625 s->cpu_partial_slabs = nr_slabs;
628 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
630 return s->cpu_partial_slabs;
634 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
642 #endif /* CONFIG_SLUB_CPU_PARTIAL */
645 * Per slab locking using the pagelock
647 static __always_inline void slab_lock(struct slab *slab)
649 bit_spin_lock(PG_locked, &slab->__page_flags);
652 static __always_inline void slab_unlock(struct slab *slab)
654 bit_spin_unlock(PG_locked, &slab->__page_flags);
658 __update_freelist_fast(struct slab *slab,
659 void *freelist_old, unsigned long counters_old,
660 void *freelist_new, unsigned long counters_new)
662 #ifdef system_has_freelist_aba
663 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
664 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
666 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
673 __update_freelist_slow(struct slab *slab,
674 void *freelist_old, unsigned long counters_old,
675 void *freelist_new, unsigned long counters_new)
680 if (slab->freelist == freelist_old &&
681 slab->counters == counters_old) {
682 slab->freelist = freelist_new;
683 slab->counters = counters_new;
692 * Interrupts must be disabled (for the fallback code to work right), typically
693 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
694 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
695 * allocation/ free operation in hardirq context. Therefore nothing can
696 * interrupt the operation.
698 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
699 void *freelist_old, unsigned long counters_old,
700 void *freelist_new, unsigned long counters_new,
705 if (USE_LOCKLESS_FAST_PATH())
706 lockdep_assert_irqs_disabled();
708 if (s->flags & __CMPXCHG_DOUBLE) {
709 ret = __update_freelist_fast(slab, freelist_old, counters_old,
710 freelist_new, counters_new);
712 ret = __update_freelist_slow(slab, freelist_old, counters_old,
713 freelist_new, counters_new);
719 stat(s, CMPXCHG_DOUBLE_FAIL);
721 #ifdef SLUB_DEBUG_CMPXCHG
722 pr_info("%s %s: cmpxchg double redo ", n, s->name);
728 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
729 void *freelist_old, unsigned long counters_old,
730 void *freelist_new, unsigned long counters_new,
735 if (s->flags & __CMPXCHG_DOUBLE) {
736 ret = __update_freelist_fast(slab, freelist_old, counters_old,
737 freelist_new, counters_new);
741 local_irq_save(flags);
742 ret = __update_freelist_slow(slab, freelist_old, counters_old,
743 freelist_new, counters_new);
744 local_irq_restore(flags);
750 stat(s, CMPXCHG_DOUBLE_FAIL);
752 #ifdef SLUB_DEBUG_CMPXCHG
753 pr_info("%s %s: cmpxchg double redo ", n, s->name);
759 #ifdef CONFIG_SLUB_DEBUG
760 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
761 static DEFINE_SPINLOCK(object_map_lock);
763 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
766 void *addr = slab_address(slab);
769 bitmap_zero(obj_map, slab->objects);
771 for (p = slab->freelist; p; p = get_freepointer(s, p))
772 set_bit(__obj_to_index(s, addr, p), obj_map);
775 #if IS_ENABLED(CONFIG_KUNIT)
776 static bool slab_add_kunit_errors(void)
778 struct kunit_resource *resource;
780 if (!kunit_get_current_test())
783 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
787 (*(int *)resource->data)++;
788 kunit_put_resource(resource);
792 static bool slab_in_kunit_test(void)
794 struct kunit_resource *resource;
796 if (!kunit_get_current_test())
799 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
803 kunit_put_resource(resource);
807 static inline bool slab_add_kunit_errors(void) { return false; }
808 static inline bool slab_in_kunit_test(void) { return false; }
811 static inline unsigned int size_from_object(struct kmem_cache *s)
813 if (s->flags & SLAB_RED_ZONE)
814 return s->size - s->red_left_pad;
819 static inline void *restore_red_left(struct kmem_cache *s, void *p)
821 if (s->flags & SLAB_RED_ZONE)
822 p -= s->red_left_pad;
830 #if defined(CONFIG_SLUB_DEBUG_ON)
831 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
833 static slab_flags_t slub_debug;
836 static char *slub_debug_string;
837 static int disable_higher_order_debug;
840 * slub is about to manipulate internal object metadata. This memory lies
841 * outside the range of the allocated object, so accessing it would normally
842 * be reported by kasan as a bounds error. metadata_access_enable() is used
843 * to tell kasan that these accesses are OK.
845 static inline void metadata_access_enable(void)
847 kasan_disable_current();
848 kmsan_disable_current();
851 static inline void metadata_access_disable(void)
853 kmsan_enable_current();
854 kasan_enable_current();
861 /* Verify that a pointer has an address that is valid within a slab page */
862 static inline int check_valid_pointer(struct kmem_cache *s,
863 struct slab *slab, void *object)
870 base = slab_address(slab);
871 object = kasan_reset_tag(object);
872 object = restore_red_left(s, object);
873 if (object < base || object >= base + slab->objects * s->size ||
874 (object - base) % s->size) {
881 static void print_section(char *level, char *text, u8 *addr,
884 metadata_access_enable();
885 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
886 16, 1, kasan_reset_tag((void *)addr), length, 1);
887 metadata_access_disable();
890 static struct track *get_track(struct kmem_cache *s, void *object,
891 enum track_item alloc)
895 p = object + get_info_end(s);
897 return kasan_reset_tag(p + alloc);
900 #ifdef CONFIG_STACKDEPOT
901 static noinline depot_stack_handle_t set_track_prepare(void)
903 depot_stack_handle_t handle;
904 unsigned long entries[TRACK_ADDRS_COUNT];
905 unsigned int nr_entries;
907 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
908 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
913 static inline depot_stack_handle_t set_track_prepare(void)
919 static void set_track_update(struct kmem_cache *s, void *object,
920 enum track_item alloc, unsigned long addr,
921 depot_stack_handle_t handle)
923 struct track *p = get_track(s, object, alloc);
925 #ifdef CONFIG_STACKDEPOT
929 p->cpu = smp_processor_id();
930 p->pid = current->pid;
934 static __always_inline void set_track(struct kmem_cache *s, void *object,
935 enum track_item alloc, unsigned long addr)
937 depot_stack_handle_t handle = set_track_prepare();
939 set_track_update(s, object, alloc, addr, handle);
942 static void init_tracking(struct kmem_cache *s, void *object)
946 if (!(s->flags & SLAB_STORE_USER))
949 p = get_track(s, object, TRACK_ALLOC);
950 memset(p, 0, 2*sizeof(struct track));
953 static void print_track(const char *s, struct track *t, unsigned long pr_time)
955 depot_stack_handle_t handle __maybe_unused;
960 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
961 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
962 #ifdef CONFIG_STACKDEPOT
963 handle = READ_ONCE(t->handle);
965 stack_depot_print(handle);
967 pr_err("object allocation/free stack trace missing\n");
971 void print_tracking(struct kmem_cache *s, void *object)
973 unsigned long pr_time = jiffies;
974 if (!(s->flags & SLAB_STORE_USER))
977 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
978 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
981 static void print_slab_info(const struct slab *slab)
983 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
984 slab, slab->objects, slab->inuse, slab->freelist,
985 &slab->__page_flags);
989 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
990 * family will round up the real request size to these fixed ones, so
991 * there could be an extra area than what is requested. Save the original
992 * request size in the meta data area, for better debug and sanity check.
994 static inline void set_orig_size(struct kmem_cache *s,
995 void *object, unsigned int orig_size)
997 void *p = kasan_reset_tag(object);
998 unsigned int kasan_meta_size;
1000 if (!slub_debug_orig_size(s))
1004 * KASAN can save its free meta data inside of the object at offset 0.
1005 * If this meta data size is larger than 'orig_size', it will overlap
1006 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
1007 * 'orig_size' to be as at least as big as KASAN's meta data.
1009 kasan_meta_size = kasan_metadata_size(s, true);
1010 if (kasan_meta_size > orig_size)
1011 orig_size = kasan_meta_size;
1013 p += get_info_end(s);
1014 p += sizeof(struct track) * 2;
1016 *(unsigned int *)p = orig_size;
1019 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1021 void *p = kasan_reset_tag(object);
1023 if (!slub_debug_orig_size(s))
1024 return s->object_size;
1026 p += get_info_end(s);
1027 p += sizeof(struct track) * 2;
1029 return *(unsigned int *)p;
1032 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1034 set_orig_size(s, (void *)object, s->object_size);
1037 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1039 struct va_format vaf;
1042 va_start(args, fmt);
1045 pr_err("=============================================================================\n");
1046 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1047 pr_err("-----------------------------------------------------------------------------\n\n");
1052 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1054 struct va_format vaf;
1057 if (slab_add_kunit_errors())
1060 va_start(args, fmt);
1063 pr_err("FIX %s: %pV\n", s->name, &vaf);
1067 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1069 unsigned int off; /* Offset of last byte */
1070 u8 *addr = slab_address(slab);
1072 print_tracking(s, p);
1074 print_slab_info(slab);
1076 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1077 p, p - addr, get_freepointer(s, p));
1079 if (s->flags & SLAB_RED_ZONE)
1080 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1082 else if (p > addr + 16)
1083 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1085 print_section(KERN_ERR, "Object ", p,
1086 min_t(unsigned int, s->object_size, PAGE_SIZE));
1087 if (s->flags & SLAB_RED_ZONE)
1088 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1089 s->inuse - s->object_size);
1091 off = get_info_end(s);
1093 if (s->flags & SLAB_STORE_USER)
1094 off += 2 * sizeof(struct track);
1096 if (slub_debug_orig_size(s))
1097 off += sizeof(unsigned int);
1099 off += kasan_metadata_size(s, false);
1101 if (off != size_from_object(s))
1102 /* Beginning of the filler is the free pointer */
1103 print_section(KERN_ERR, "Padding ", p + off,
1104 size_from_object(s) - off);
1109 static void object_err(struct kmem_cache *s, struct slab *slab,
1110 u8 *object, char *reason)
1112 if (slab_add_kunit_errors())
1115 slab_bug(s, "%s", reason);
1116 print_trailer(s, slab, object);
1117 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1120 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1121 void **freelist, void *nextfree)
1123 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1124 !check_valid_pointer(s, slab, nextfree) && freelist) {
1125 object_err(s, slab, *freelist, "Freechain corrupt");
1127 slab_fix(s, "Isolate corrupted freechain");
1134 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1135 const char *fmt, ...)
1140 if (slab_add_kunit_errors())
1143 va_start(args, fmt);
1144 vsnprintf(buf, sizeof(buf), fmt, args);
1146 slab_bug(s, "%s", buf);
1147 print_slab_info(slab);
1149 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1152 static void init_object(struct kmem_cache *s, void *object, u8 val)
1154 u8 *p = kasan_reset_tag(object);
1155 unsigned int poison_size = s->object_size;
1157 if (s->flags & SLAB_RED_ZONE) {
1159 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1160 * the shadow makes it possible to distinguish uninit-value
1161 * from use-after-free.
1163 memset_no_sanitize_memory(p - s->red_left_pad, val,
1166 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1168 * Redzone the extra allocated space by kmalloc than
1169 * requested, and the poison size will be limited to
1170 * the original request size accordingly.
1172 poison_size = get_orig_size(s, object);
1176 if (s->flags & __OBJECT_POISON) {
1177 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1178 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1181 if (s->flags & SLAB_RED_ZONE)
1182 memset_no_sanitize_memory(p + poison_size, val,
1183 s->inuse - poison_size);
1186 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1187 void *from, void *to)
1189 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1190 memset(from, data, to - from);
1194 #define pad_check_attributes noinline __no_kmsan_checks
1196 #define pad_check_attributes
1199 static pad_check_attributes int
1200 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1201 u8 *object, char *what,
1202 u8 *start, unsigned int value, unsigned int bytes)
1206 u8 *addr = slab_address(slab);
1208 metadata_access_enable();
1209 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1210 metadata_access_disable();
1214 end = start + bytes;
1215 while (end > fault && end[-1] == value)
1218 if (slab_add_kunit_errors())
1219 goto skip_bug_print;
1221 slab_bug(s, "%s overwritten", what);
1222 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1223 fault, end - 1, fault - addr,
1227 restore_bytes(s, what, value, fault, end);
1235 * Bytes of the object to be managed.
1236 * If the freepointer may overlay the object then the free
1237 * pointer is at the middle of the object.
1239 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1242 * object + s->object_size
1243 * Padding to reach word boundary. This is also used for Redzoning.
1244 * Padding is extended by another word if Redzoning is enabled and
1245 * object_size == inuse.
1247 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1248 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1251 * Meta data starts here.
1253 * A. Free pointer (if we cannot overwrite object on free)
1254 * B. Tracking data for SLAB_STORE_USER
1255 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1256 * D. Padding to reach required alignment boundary or at minimum
1257 * one word if debugging is on to be able to detect writes
1258 * before the word boundary.
1260 * Padding is done using 0x5a (POISON_INUSE)
1263 * Nothing is used beyond s->size.
1265 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1266 * ignored. And therefore no slab options that rely on these boundaries
1267 * may be used with merged slabcaches.
1270 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1272 unsigned long off = get_info_end(s); /* The end of info */
1274 if (s->flags & SLAB_STORE_USER) {
1275 /* We also have user information there */
1276 off += 2 * sizeof(struct track);
1278 if (s->flags & SLAB_KMALLOC)
1279 off += sizeof(unsigned int);
1282 off += kasan_metadata_size(s, false);
1284 if (size_from_object(s) == off)
1287 return check_bytes_and_report(s, slab, p, "Object padding",
1288 p + off, POISON_INUSE, size_from_object(s) - off);
1291 /* Check the pad bytes at the end of a slab page */
1292 static pad_check_attributes void
1293 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1302 if (!(s->flags & SLAB_POISON))
1305 start = slab_address(slab);
1306 length = slab_size(slab);
1307 end = start + length;
1308 remainder = length % s->size;
1312 pad = end - remainder;
1313 metadata_access_enable();
1314 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1315 metadata_access_disable();
1318 while (end > fault && end[-1] == POISON_INUSE)
1321 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1322 fault, end - 1, fault - start);
1323 print_section(KERN_ERR, "Padding ", pad, remainder);
1325 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1328 static int check_object(struct kmem_cache *s, struct slab *slab,
1329 void *object, u8 val)
1332 u8 *endobject = object + s->object_size;
1333 unsigned int orig_size, kasan_meta_size;
1336 if (s->flags & SLAB_RED_ZONE) {
1337 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1338 object - s->red_left_pad, val, s->red_left_pad))
1341 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1342 endobject, val, s->inuse - s->object_size))
1345 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1346 orig_size = get_orig_size(s, object);
1348 if (s->object_size > orig_size &&
1349 !check_bytes_and_report(s, slab, object,
1350 "kmalloc Redzone", p + orig_size,
1351 val, s->object_size - orig_size)) {
1356 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1357 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1358 endobject, POISON_INUSE,
1359 s->inuse - s->object_size))
1364 if (s->flags & SLAB_POISON) {
1365 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1367 * KASAN can save its free meta data inside of the
1368 * object at offset 0. Thus, skip checking the part of
1369 * the redzone that overlaps with the meta data.
1371 kasan_meta_size = kasan_metadata_size(s, true);
1372 if (kasan_meta_size < s->object_size - 1 &&
1373 !check_bytes_and_report(s, slab, p, "Poison",
1374 p + kasan_meta_size, POISON_FREE,
1375 s->object_size - kasan_meta_size - 1))
1377 if (kasan_meta_size < s->object_size &&
1378 !check_bytes_and_report(s, slab, p, "End Poison",
1379 p + s->object_size - 1, POISON_END, 1))
1383 * check_pad_bytes cleans up on its own.
1385 if (!check_pad_bytes(s, slab, p))
1390 * Cannot check freepointer while object is allocated if
1391 * object and freepointer overlap.
1393 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1394 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1395 object_err(s, slab, p, "Freepointer corrupt");
1397 * No choice but to zap it and thus lose the remainder
1398 * of the free objects in this slab. May cause
1399 * another error because the object count is now wrong.
1401 set_freepointer(s, p, NULL);
1405 if (!ret && !slab_in_kunit_test()) {
1406 print_trailer(s, slab, object);
1407 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1413 static int check_slab(struct kmem_cache *s, struct slab *slab)
1417 if (!folio_test_slab(slab_folio(slab))) {
1418 slab_err(s, slab, "Not a valid slab page");
1422 maxobj = order_objects(slab_order(slab), s->size);
1423 if (slab->objects > maxobj) {
1424 slab_err(s, slab, "objects %u > max %u",
1425 slab->objects, maxobj);
1428 if (slab->inuse > slab->objects) {
1429 slab_err(s, slab, "inuse %u > max %u",
1430 slab->inuse, slab->objects);
1433 /* Slab_pad_check fixes things up after itself */
1434 slab_pad_check(s, slab);
1439 * Determine if a certain object in a slab is on the freelist. Must hold the
1440 * slab lock to guarantee that the chains are in a consistent state.
1442 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1446 void *object = NULL;
1449 fp = slab->freelist;
1450 while (fp && nr <= slab->objects) {
1453 if (!check_valid_pointer(s, slab, fp)) {
1455 object_err(s, slab, object,
1456 "Freechain corrupt");
1457 set_freepointer(s, object, NULL);
1459 slab_err(s, slab, "Freepointer corrupt");
1460 slab->freelist = NULL;
1461 slab->inuse = slab->objects;
1462 slab_fix(s, "Freelist cleared");
1468 fp = get_freepointer(s, object);
1472 max_objects = order_objects(slab_order(slab), s->size);
1473 if (max_objects > MAX_OBJS_PER_PAGE)
1474 max_objects = MAX_OBJS_PER_PAGE;
1476 if (slab->objects != max_objects) {
1477 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1478 slab->objects, max_objects);
1479 slab->objects = max_objects;
1480 slab_fix(s, "Number of objects adjusted");
1482 if (slab->inuse != slab->objects - nr) {
1483 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1484 slab->inuse, slab->objects - nr);
1485 slab->inuse = slab->objects - nr;
1486 slab_fix(s, "Object count adjusted");
1488 return search == NULL;
1491 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1494 if (s->flags & SLAB_TRACE) {
1495 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1497 alloc ? "alloc" : "free",
1498 object, slab->inuse,
1502 print_section(KERN_INFO, "Object ", (void *)object,
1510 * Tracking of fully allocated slabs for debugging purposes.
1512 static void add_full(struct kmem_cache *s,
1513 struct kmem_cache_node *n, struct slab *slab)
1515 if (!(s->flags & SLAB_STORE_USER))
1518 lockdep_assert_held(&n->list_lock);
1519 list_add(&slab->slab_list, &n->full);
1522 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1524 if (!(s->flags & SLAB_STORE_USER))
1527 lockdep_assert_held(&n->list_lock);
1528 list_del(&slab->slab_list);
1531 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1533 return atomic_long_read(&n->nr_slabs);
1536 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1538 struct kmem_cache_node *n = get_node(s, node);
1540 atomic_long_inc(&n->nr_slabs);
1541 atomic_long_add(objects, &n->total_objects);
1543 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1545 struct kmem_cache_node *n = get_node(s, node);
1547 atomic_long_dec(&n->nr_slabs);
1548 atomic_long_sub(objects, &n->total_objects);
1551 /* Object debug checks for alloc/free paths */
1552 static void setup_object_debug(struct kmem_cache *s, void *object)
1554 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1557 init_object(s, object, SLUB_RED_INACTIVE);
1558 init_tracking(s, object);
1562 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1564 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1567 metadata_access_enable();
1568 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1569 metadata_access_disable();
1572 static inline int alloc_consistency_checks(struct kmem_cache *s,
1573 struct slab *slab, void *object)
1575 if (!check_slab(s, slab))
1578 if (!check_valid_pointer(s, slab, object)) {
1579 object_err(s, slab, object, "Freelist Pointer check fails");
1583 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1589 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1590 struct slab *slab, void *object, int orig_size)
1592 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1593 if (!alloc_consistency_checks(s, slab, object))
1597 /* Success. Perform special debug activities for allocs */
1598 trace(s, slab, object, 1);
1599 set_orig_size(s, object, orig_size);
1600 init_object(s, object, SLUB_RED_ACTIVE);
1604 if (folio_test_slab(slab_folio(slab))) {
1606 * If this is a slab page then lets do the best we can
1607 * to avoid issues in the future. Marking all objects
1608 * as used avoids touching the remaining objects.
1610 slab_fix(s, "Marking all objects used");
1611 slab->inuse = slab->objects;
1612 slab->freelist = NULL;
1617 static inline int free_consistency_checks(struct kmem_cache *s,
1618 struct slab *slab, void *object, unsigned long addr)
1620 if (!check_valid_pointer(s, slab, object)) {
1621 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1625 if (on_freelist(s, slab, object)) {
1626 object_err(s, slab, object, "Object already free");
1630 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1633 if (unlikely(s != slab->slab_cache)) {
1634 if (!folio_test_slab(slab_folio(slab))) {
1635 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1637 } else if (!slab->slab_cache) {
1638 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1642 object_err(s, slab, object,
1643 "page slab pointer corrupt.");
1650 * Parse a block of slab_debug options. Blocks are delimited by ';'
1652 * @str: start of block
1653 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1654 * @slabs: return start of list of slabs, or NULL when there's no list
1655 * @init: assume this is initial parsing and not per-kmem-create parsing
1657 * returns the start of next block if there's any, or NULL
1660 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1662 bool higher_order_disable = false;
1664 /* Skip any completely empty blocks */
1665 while (*str && *str == ';')
1670 * No options but restriction on slabs. This means full
1671 * debugging for slabs matching a pattern.
1673 *flags = DEBUG_DEFAULT_FLAGS;
1678 /* Determine which debug features should be switched on */
1679 for (; *str && *str != ',' && *str != ';'; str++) {
1680 switch (tolower(*str)) {
1685 *flags |= SLAB_CONSISTENCY_CHECKS;
1688 *flags |= SLAB_RED_ZONE;
1691 *flags |= SLAB_POISON;
1694 *flags |= SLAB_STORE_USER;
1697 *flags |= SLAB_TRACE;
1700 *flags |= SLAB_FAILSLAB;
1704 * Avoid enabling debugging on caches if its minimum
1705 * order would increase as a result.
1707 higher_order_disable = true;
1711 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1720 /* Skip over the slab list */
1721 while (*str && *str != ';')
1724 /* Skip any completely empty blocks */
1725 while (*str && *str == ';')
1728 if (init && higher_order_disable)
1729 disable_higher_order_debug = 1;
1737 static int __init setup_slub_debug(char *str)
1740 slab_flags_t global_flags;
1743 bool global_slub_debug_changed = false;
1744 bool slab_list_specified = false;
1746 global_flags = DEBUG_DEFAULT_FLAGS;
1747 if (*str++ != '=' || !*str)
1749 * No options specified. Switch on full debugging.
1755 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1758 global_flags = flags;
1759 global_slub_debug_changed = true;
1761 slab_list_specified = true;
1762 if (flags & SLAB_STORE_USER)
1763 stack_depot_request_early_init();
1768 * For backwards compatibility, a single list of flags with list of
1769 * slabs means debugging is only changed for those slabs, so the global
1770 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1771 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1772 * long as there is no option specifying flags without a slab list.
1774 if (slab_list_specified) {
1775 if (!global_slub_debug_changed)
1776 global_flags = slub_debug;
1777 slub_debug_string = saved_str;
1780 slub_debug = global_flags;
1781 if (slub_debug & SLAB_STORE_USER)
1782 stack_depot_request_early_init();
1783 if (slub_debug != 0 || slub_debug_string)
1784 static_branch_enable(&slub_debug_enabled);
1786 static_branch_disable(&slub_debug_enabled);
1787 if ((static_branch_unlikely(&init_on_alloc) ||
1788 static_branch_unlikely(&init_on_free)) &&
1789 (slub_debug & SLAB_POISON))
1790 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1794 __setup("slab_debug", setup_slub_debug);
1795 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1798 * kmem_cache_flags - apply debugging options to the cache
1799 * @flags: flags to set
1800 * @name: name of the cache
1802 * Debug option(s) are applied to @flags. In addition to the debug
1803 * option(s), if a slab name (or multiple) is specified i.e.
1804 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1805 * then only the select slabs will receive the debug option(s).
1807 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1812 slab_flags_t block_flags;
1813 slab_flags_t slub_debug_local = slub_debug;
1815 if (flags & SLAB_NO_USER_FLAGS)
1819 * If the slab cache is for debugging (e.g. kmemleak) then
1820 * don't store user (stack trace) information by default,
1821 * but let the user enable it via the command line below.
1823 if (flags & SLAB_NOLEAKTRACE)
1824 slub_debug_local &= ~SLAB_STORE_USER;
1827 next_block = slub_debug_string;
1828 /* Go through all blocks of debug options, see if any matches our slab's name */
1829 while (next_block) {
1830 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1833 /* Found a block that has a slab list, search it */
1838 end = strchrnul(iter, ',');
1839 if (next_block && next_block < end)
1840 end = next_block - 1;
1842 glob = strnchr(iter, end - iter, '*');
1844 cmplen = glob - iter;
1846 cmplen = max_t(size_t, len, (end - iter));
1848 if (!strncmp(name, iter, cmplen)) {
1849 flags |= block_flags;
1853 if (!*end || *end == ';')
1859 return flags | slub_debug_local;
1861 #else /* !CONFIG_SLUB_DEBUG */
1862 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1864 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1866 static inline bool alloc_debug_processing(struct kmem_cache *s,
1867 struct slab *slab, void *object, int orig_size) { return true; }
1869 static inline bool free_debug_processing(struct kmem_cache *s,
1870 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1871 unsigned long addr, depot_stack_handle_t handle) { return true; }
1873 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1874 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1875 void *object, u8 val) { return 1; }
1876 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1877 static inline void set_track(struct kmem_cache *s, void *object,
1878 enum track_item alloc, unsigned long addr) {}
1879 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1880 struct slab *slab) {}
1881 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1882 struct slab *slab) {}
1883 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1887 #define slub_debug 0
1889 #define disable_higher_order_debug 0
1891 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1893 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1895 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1898 #ifndef CONFIG_SLUB_TINY
1899 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1900 void **freelist, void *nextfree)
1905 #endif /* CONFIG_SLUB_DEBUG */
1907 #ifdef CONFIG_SLAB_OBJ_EXT
1909 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1911 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1913 struct slabobj_ext *slab_exts;
1914 struct slab *obj_exts_slab;
1916 obj_exts_slab = virt_to_slab(obj_exts);
1917 slab_exts = slab_obj_exts(obj_exts_slab);
1919 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1920 obj_exts_slab, obj_exts);
1921 /* codetag should be NULL */
1922 WARN_ON(slab_exts[offs].ref.ct);
1923 set_codetag_empty(&slab_exts[offs].ref);
1927 static inline void mark_failed_objexts_alloc(struct slab *slab)
1929 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1932 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1933 struct slabobj_ext *vec, unsigned int objects)
1936 * If vector previously failed to allocate then we have live
1937 * objects with no tag reference. Mark all references in this
1938 * vector as empty to avoid warnings later on.
1940 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1943 for (i = 0; i < objects; i++)
1944 set_codetag_empty(&vec[i].ref);
1948 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1950 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1951 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1952 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1953 struct slabobj_ext *vec, unsigned int objects) {}
1955 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1958 * The allocated objcg pointers array is not accounted directly.
1959 * Moreover, it should not come from DMA buffer and is not readily
1960 * reclaimable. So those GFP bits should be masked off.
1962 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
1963 __GFP_ACCOUNT | __GFP_NOFAIL)
1965 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1966 gfp_t gfp, bool new_slab)
1968 unsigned int objects = objs_per_slab(s, slab);
1969 unsigned long new_exts;
1970 unsigned long old_exts;
1971 struct slabobj_ext *vec;
1973 gfp &= ~OBJCGS_CLEAR_MASK;
1974 /* Prevent recursive extension vector allocation */
1975 gfp |= __GFP_NO_OBJ_EXT;
1976 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1979 /* Mark vectors which failed to allocate */
1981 mark_failed_objexts_alloc(slab);
1986 new_exts = (unsigned long)vec;
1988 new_exts |= MEMCG_DATA_OBJEXTS;
1990 old_exts = READ_ONCE(slab->obj_exts);
1991 handle_failed_objexts_alloc(old_exts, vec, objects);
1994 * If the slab is brand new and nobody can yet access its
1995 * obj_exts, no synchronization is required and obj_exts can
1996 * be simply assigned.
1998 slab->obj_exts = new_exts;
1999 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2000 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2002 * If the slab is already in use, somebody can allocate and
2003 * assign slabobj_exts in parallel. In this case the existing
2004 * objcg vector should be reused.
2006 mark_objexts_empty(vec);
2011 kmemleak_not_leak(vec);
2015 static inline void free_slab_obj_exts(struct slab *slab)
2017 struct slabobj_ext *obj_exts;
2019 obj_exts = slab_obj_exts(slab);
2024 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2025 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2026 * warning if slab has extensions but the extension of an object is
2027 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2028 * the extension for obj_exts is expected to be NULL.
2030 mark_objexts_empty(obj_exts);
2035 static inline bool need_slab_obj_ext(void)
2037 if (mem_alloc_profiling_enabled())
2041 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2042 * inside memcg_slab_post_alloc_hook. No other users for now.
2047 #else /* CONFIG_SLAB_OBJ_EXT */
2049 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2050 gfp_t gfp, bool new_slab)
2055 static inline void free_slab_obj_exts(struct slab *slab)
2059 static inline bool need_slab_obj_ext(void)
2064 #endif /* CONFIG_SLAB_OBJ_EXT */
2066 #ifdef CONFIG_MEM_ALLOC_PROFILING
2068 static inline struct slabobj_ext *
2069 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2076 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2079 if (flags & __GFP_NO_OBJ_EXT)
2082 slab = virt_to_slab(p);
2083 if (!slab_obj_exts(slab) &&
2084 WARN(alloc_slab_obj_exts(slab, s, flags, false),
2085 "%s, %s: Failed to create slab extension vector!\n",
2089 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2093 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2095 if (need_slab_obj_ext()) {
2096 struct slabobj_ext *obj_exts;
2098 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2100 * Currently obj_exts is used only for allocation profiling.
2101 * If other users appear then mem_alloc_profiling_enabled()
2102 * check should be added before alloc_tag_add().
2104 if (likely(obj_exts))
2105 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2110 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2113 struct slabobj_ext *obj_exts;
2116 if (!mem_alloc_profiling_enabled())
2119 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2120 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2123 obj_exts = slab_obj_exts(slab);
2127 for (i = 0; i < objects; i++) {
2128 unsigned int off = obj_to_index(s, slab, p[i]);
2130 alloc_tag_sub(&obj_exts[off].ref, s->size);
2134 #else /* CONFIG_MEM_ALLOC_PROFILING */
2137 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2142 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2147 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2152 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2154 static __fastpath_inline
2155 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2156 gfp_t flags, size_t size, void **p)
2158 if (likely(!memcg_kmem_online()))
2161 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2164 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2167 if (likely(size == 1)) {
2168 memcg_alloc_abort_single(s, *p);
2171 kmem_cache_free_bulk(s, size, p);
2177 static __fastpath_inline
2178 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2181 struct slabobj_ext *obj_exts;
2183 if (!memcg_kmem_online())
2186 obj_exts = slab_obj_exts(slab);
2187 if (likely(!obj_exts))
2190 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2192 #else /* CONFIG_MEMCG */
2193 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2194 struct list_lru *lru,
2195 gfp_t flags, size_t size,
2201 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2202 void **p, int objects)
2205 #endif /* CONFIG_MEMCG */
2208 * Hooks for other subsystems that check memory allocations. In a typical
2209 * production configuration these hooks all should produce no code at all.
2211 * Returns true if freeing of the object can proceed, false if its reuse
2212 * was delayed by KASAN quarantine, or it was returned to KFENCE.
2214 static __always_inline
2215 bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2217 kmemleak_free_recursive(x, s->flags);
2218 kmsan_slab_free(s, x);
2220 debug_check_no_locks_freed(x, s->object_size);
2222 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2223 debug_check_no_obj_freed(x, s->object_size);
2225 /* Use KCSAN to help debug racy use-after-free. */
2226 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2227 __kcsan_check_access(x, s->object_size,
2228 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2234 * As memory initialization might be integrated into KASAN,
2235 * kasan_slab_free and initialization memset's must be
2236 * kept together to avoid discrepancies in behavior.
2238 * The initialization memset's clear the object and the metadata,
2239 * but don't touch the SLAB redzone.
2241 * The object's freepointer is also avoided if stored outside the
2244 if (unlikely(init)) {
2248 inuse = get_info_end(s);
2249 if (!kasan_has_integrated_init())
2250 memset(kasan_reset_tag(x), 0, s->object_size);
2251 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2252 memset((char *)kasan_reset_tag(x) + inuse, 0,
2253 s->size - inuse - rsize);
2255 /* KASAN might put x into memory quarantine, delaying its reuse. */
2256 return !kasan_slab_free(s, x, init);
2259 static __fastpath_inline
2260 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2266 void *old_tail = *tail;
2269 if (is_kfence_address(next)) {
2270 slab_free_hook(s, next, false);
2274 /* Head and tail of the reconstructed freelist */
2278 init = slab_want_init_on_free(s);
2282 next = get_freepointer(s, object);
2284 /* If object's reuse doesn't have to be delayed */
2285 if (likely(slab_free_hook(s, object, init))) {
2286 /* Move object to the new freelist */
2287 set_freepointer(s, object, *head);
2293 * Adjust the reconstructed freelist depth
2294 * accordingly if object's reuse is delayed.
2298 } while (object != old_tail);
2300 return *head != NULL;
2303 static void *setup_object(struct kmem_cache *s, void *object)
2305 setup_object_debug(s, object);
2306 object = kasan_init_slab_obj(s, object);
2307 if (unlikely(s->ctor)) {
2308 kasan_unpoison_new_object(s, object);
2310 kasan_poison_new_object(s, object);
2316 * Slab allocation and freeing
2318 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2319 struct kmem_cache_order_objects oo)
2321 struct folio *folio;
2323 unsigned int order = oo_order(oo);
2325 folio = (struct folio *)alloc_pages_node(node, flags, order);
2329 slab = folio_slab(folio);
2330 __folio_set_slab(folio);
2331 /* Make the flag visible before any changes to folio->mapping */
2333 if (folio_is_pfmemalloc(folio))
2334 slab_set_pfmemalloc(slab);
2339 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2340 /* Pre-initialize the random sequence cache */
2341 static int init_cache_random_seq(struct kmem_cache *s)
2343 unsigned int count = oo_objects(s->oo);
2346 /* Bailout if already initialised */
2350 err = cache_random_seq_create(s, count, GFP_KERNEL);
2352 pr_err("SLUB: Unable to initialize free list for %s\n",
2357 /* Transform to an offset on the set of pages */
2358 if (s->random_seq) {
2361 for (i = 0; i < count; i++)
2362 s->random_seq[i] *= s->size;
2367 /* Initialize each random sequence freelist per cache */
2368 static void __init init_freelist_randomization(void)
2370 struct kmem_cache *s;
2372 mutex_lock(&slab_mutex);
2374 list_for_each_entry(s, &slab_caches, list)
2375 init_cache_random_seq(s);
2377 mutex_unlock(&slab_mutex);
2380 /* Get the next entry on the pre-computed freelist randomized */
2381 static void *next_freelist_entry(struct kmem_cache *s,
2382 unsigned long *pos, void *start,
2383 unsigned long page_limit,
2384 unsigned long freelist_count)
2389 * If the target page allocation failed, the number of objects on the
2390 * page might be smaller than the usual size defined by the cache.
2393 idx = s->random_seq[*pos];
2395 if (*pos >= freelist_count)
2397 } while (unlikely(idx >= page_limit));
2399 return (char *)start + idx;
2402 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2403 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2408 unsigned long idx, pos, page_limit, freelist_count;
2410 if (slab->objects < 2 || !s->random_seq)
2413 freelist_count = oo_objects(s->oo);
2414 pos = get_random_u32_below(freelist_count);
2416 page_limit = slab->objects * s->size;
2417 start = fixup_red_left(s, slab_address(slab));
2419 /* First entry is used as the base of the freelist */
2420 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2421 cur = setup_object(s, cur);
2422 slab->freelist = cur;
2424 for (idx = 1; idx < slab->objects; idx++) {
2425 next = next_freelist_entry(s, &pos, start, page_limit,
2427 next = setup_object(s, next);
2428 set_freepointer(s, cur, next);
2431 set_freepointer(s, cur, NULL);
2436 static inline int init_cache_random_seq(struct kmem_cache *s)
2440 static inline void init_freelist_randomization(void) { }
2441 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2445 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2447 static __always_inline void account_slab(struct slab *slab, int order,
2448 struct kmem_cache *s, gfp_t gfp)
2450 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2451 alloc_slab_obj_exts(slab, s, gfp, true);
2453 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2454 PAGE_SIZE << order);
2457 static __always_inline void unaccount_slab(struct slab *slab, int order,
2458 struct kmem_cache *s)
2460 if (memcg_kmem_online() || need_slab_obj_ext())
2461 free_slab_obj_exts(slab);
2463 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2464 -(PAGE_SIZE << order));
2467 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2470 struct kmem_cache_order_objects oo = s->oo;
2472 void *start, *p, *next;
2476 flags &= gfp_allowed_mask;
2478 flags |= s->allocflags;
2481 * Let the initial higher-order allocation fail under memory pressure
2482 * so we fall-back to the minimum order allocation.
2484 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2485 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2486 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2488 slab = alloc_slab_page(alloc_gfp, node, oo);
2489 if (unlikely(!slab)) {
2493 * Allocation may have failed due to fragmentation.
2494 * Try a lower order alloc if possible
2496 slab = alloc_slab_page(alloc_gfp, node, oo);
2497 if (unlikely(!slab))
2499 stat(s, ORDER_FALLBACK);
2502 slab->objects = oo_objects(oo);
2506 account_slab(slab, oo_order(oo), s, flags);
2508 slab->slab_cache = s;
2510 kasan_poison_slab(slab);
2512 start = slab_address(slab);
2514 setup_slab_debug(s, slab, start);
2516 shuffle = shuffle_freelist(s, slab);
2519 start = fixup_red_left(s, start);
2520 start = setup_object(s, start);
2521 slab->freelist = start;
2522 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2524 next = setup_object(s, next);
2525 set_freepointer(s, p, next);
2528 set_freepointer(s, p, NULL);
2534 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2536 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2537 flags = kmalloc_fix_flags(flags);
2539 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2541 return allocate_slab(s,
2542 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2545 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2547 struct folio *folio = slab_folio(slab);
2548 int order = folio_order(folio);
2549 int pages = 1 << order;
2551 __slab_clear_pfmemalloc(slab);
2552 folio->mapping = NULL;
2553 /* Make the mapping reset visible before clearing the flag */
2555 __folio_clear_slab(folio);
2556 mm_account_reclaimed_pages(pages);
2557 unaccount_slab(slab, order, s);
2558 __free_pages(&folio->page, order);
2561 static void rcu_free_slab(struct rcu_head *h)
2563 struct slab *slab = container_of(h, struct slab, rcu_head);
2565 __free_slab(slab->slab_cache, slab);
2568 static void free_slab(struct kmem_cache *s, struct slab *slab)
2570 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2573 slab_pad_check(s, slab);
2574 for_each_object(p, s, slab_address(slab), slab->objects)
2575 check_object(s, slab, p, SLUB_RED_INACTIVE);
2578 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2579 call_rcu(&slab->rcu_head, rcu_free_slab);
2581 __free_slab(s, slab);
2584 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2586 dec_slabs_node(s, slab_nid(slab), slab->objects);
2591 * SLUB reuses PG_workingset bit to keep track of whether it's on
2592 * the per-node partial list.
2594 static inline bool slab_test_node_partial(const struct slab *slab)
2596 return folio_test_workingset(slab_folio(slab));
2599 static inline void slab_set_node_partial(struct slab *slab)
2601 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2604 static inline void slab_clear_node_partial(struct slab *slab)
2606 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2610 * Management of partially allocated slabs.
2613 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2616 if (tail == DEACTIVATE_TO_TAIL)
2617 list_add_tail(&slab->slab_list, &n->partial);
2619 list_add(&slab->slab_list, &n->partial);
2620 slab_set_node_partial(slab);
2623 static inline void add_partial(struct kmem_cache_node *n,
2624 struct slab *slab, int tail)
2626 lockdep_assert_held(&n->list_lock);
2627 __add_partial(n, slab, tail);
2630 static inline void remove_partial(struct kmem_cache_node *n,
2633 lockdep_assert_held(&n->list_lock);
2634 list_del(&slab->slab_list);
2635 slab_clear_node_partial(slab);
2640 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2641 * slab from the n->partial list. Remove only a single object from the slab, do
2642 * the alloc_debug_processing() checks and leave the slab on the list, or move
2643 * it to full list if it was the last free object.
2645 static void *alloc_single_from_partial(struct kmem_cache *s,
2646 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2650 lockdep_assert_held(&n->list_lock);
2652 object = slab->freelist;
2653 slab->freelist = get_freepointer(s, object);
2656 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2657 remove_partial(n, slab);
2661 if (slab->inuse == slab->objects) {
2662 remove_partial(n, slab);
2663 add_full(s, n, slab);
2670 * Called only for kmem_cache_debug() caches to allocate from a freshly
2671 * allocated slab. Allocate a single object instead of whole freelist
2672 * and put the slab to the partial (or full) list.
2674 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2675 struct slab *slab, int orig_size)
2677 int nid = slab_nid(slab);
2678 struct kmem_cache_node *n = get_node(s, nid);
2679 unsigned long flags;
2683 object = slab->freelist;
2684 slab->freelist = get_freepointer(s, object);
2687 if (!alloc_debug_processing(s, slab, object, orig_size))
2689 * It's not really expected that this would fail on a
2690 * freshly allocated slab, but a concurrent memory
2691 * corruption in theory could cause that.
2695 spin_lock_irqsave(&n->list_lock, flags);
2697 if (slab->inuse == slab->objects)
2698 add_full(s, n, slab);
2700 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2702 inc_slabs_node(s, nid, slab->objects);
2703 spin_unlock_irqrestore(&n->list_lock, flags);
2708 #ifdef CONFIG_SLUB_CPU_PARTIAL
2709 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2711 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2714 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2717 * Try to allocate a partial slab from a specific node.
2719 static struct slab *get_partial_node(struct kmem_cache *s,
2720 struct kmem_cache_node *n,
2721 struct partial_context *pc)
2723 struct slab *slab, *slab2, *partial = NULL;
2724 unsigned long flags;
2725 unsigned int partial_slabs = 0;
2728 * Racy check. If we mistakenly see no partial slabs then we
2729 * just allocate an empty slab. If we mistakenly try to get a
2730 * partial slab and there is none available then get_partial()
2733 if (!n || !n->nr_partial)
2736 spin_lock_irqsave(&n->list_lock, flags);
2737 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2738 if (!pfmemalloc_match(slab, pc->flags))
2741 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2742 void *object = alloc_single_from_partial(s, n, slab,
2746 pc->object = object;
2752 remove_partial(n, slab);
2756 stat(s, ALLOC_FROM_PARTIAL);
2758 if ((slub_get_cpu_partial(s) == 0)) {
2762 put_cpu_partial(s, slab, 0);
2763 stat(s, CPU_PARTIAL_NODE);
2765 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2770 spin_unlock_irqrestore(&n->list_lock, flags);
2775 * Get a slab from somewhere. Search in increasing NUMA distances.
2777 static struct slab *get_any_partial(struct kmem_cache *s,
2778 struct partial_context *pc)
2781 struct zonelist *zonelist;
2784 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2786 unsigned int cpuset_mems_cookie;
2789 * The defrag ratio allows a configuration of the tradeoffs between
2790 * inter node defragmentation and node local allocations. A lower
2791 * defrag_ratio increases the tendency to do local allocations
2792 * instead of attempting to obtain partial slabs from other nodes.
2794 * If the defrag_ratio is set to 0 then kmalloc() always
2795 * returns node local objects. If the ratio is higher then kmalloc()
2796 * may return off node objects because partial slabs are obtained
2797 * from other nodes and filled up.
2799 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2800 * (which makes defrag_ratio = 1000) then every (well almost)
2801 * allocation will first attempt to defrag slab caches on other nodes.
2802 * This means scanning over all nodes to look for partial slabs which
2803 * may be expensive if we do it every time we are trying to find a slab
2804 * with available objects.
2806 if (!s->remote_node_defrag_ratio ||
2807 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2811 cpuset_mems_cookie = read_mems_allowed_begin();
2812 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2813 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2814 struct kmem_cache_node *n;
2816 n = get_node(s, zone_to_nid(zone));
2818 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2819 n->nr_partial > s->min_partial) {
2820 slab = get_partial_node(s, n, pc);
2823 * Don't check read_mems_allowed_retry()
2824 * here - if mems_allowed was updated in
2825 * parallel, that was a harmless race
2826 * between allocation and the cpuset
2833 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2834 #endif /* CONFIG_NUMA */
2839 * Get a partial slab, lock it and return it.
2841 static struct slab *get_partial(struct kmem_cache *s, int node,
2842 struct partial_context *pc)
2845 int searchnode = node;
2847 if (node == NUMA_NO_NODE)
2848 searchnode = numa_mem_id();
2850 slab = get_partial_node(s, get_node(s, searchnode), pc);
2851 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2854 return get_any_partial(s, pc);
2857 #ifndef CONFIG_SLUB_TINY
2859 #ifdef CONFIG_PREEMPTION
2861 * Calculate the next globally unique transaction for disambiguation
2862 * during cmpxchg. The transactions start with the cpu number and are then
2863 * incremented by CONFIG_NR_CPUS.
2865 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2868 * No preemption supported therefore also no need to check for
2872 #endif /* CONFIG_PREEMPTION */
2874 static inline unsigned long next_tid(unsigned long tid)
2876 return tid + TID_STEP;
2879 #ifdef SLUB_DEBUG_CMPXCHG
2880 static inline unsigned int tid_to_cpu(unsigned long tid)
2882 return tid % TID_STEP;
2885 static inline unsigned long tid_to_event(unsigned long tid)
2887 return tid / TID_STEP;
2891 static inline unsigned int init_tid(int cpu)
2896 static inline void note_cmpxchg_failure(const char *n,
2897 const struct kmem_cache *s, unsigned long tid)
2899 #ifdef SLUB_DEBUG_CMPXCHG
2900 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2902 pr_info("%s %s: cmpxchg redo ", n, s->name);
2904 #ifdef CONFIG_PREEMPTION
2905 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2906 pr_warn("due to cpu change %d -> %d\n",
2907 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2910 if (tid_to_event(tid) != tid_to_event(actual_tid))
2911 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2912 tid_to_event(tid), tid_to_event(actual_tid));
2914 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2915 actual_tid, tid, next_tid(tid));
2917 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2920 static void init_kmem_cache_cpus(struct kmem_cache *s)
2923 struct kmem_cache_cpu *c;
2925 for_each_possible_cpu(cpu) {
2926 c = per_cpu_ptr(s->cpu_slab, cpu);
2927 local_lock_init(&c->lock);
2928 c->tid = init_tid(cpu);
2933 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2934 * unfreezes the slabs and puts it on the proper list.
2935 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2938 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2941 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2943 void *nextfree, *freelist_iter, *freelist_tail;
2944 int tail = DEACTIVATE_TO_HEAD;
2945 unsigned long flags = 0;
2949 if (READ_ONCE(slab->freelist)) {
2950 stat(s, DEACTIVATE_REMOTE_FREES);
2951 tail = DEACTIVATE_TO_TAIL;
2955 * Stage one: Count the objects on cpu's freelist as free_delta and
2956 * remember the last object in freelist_tail for later splicing.
2958 freelist_tail = NULL;
2959 freelist_iter = freelist;
2960 while (freelist_iter) {
2961 nextfree = get_freepointer(s, freelist_iter);
2964 * If 'nextfree' is invalid, it is possible that the object at
2965 * 'freelist_iter' is already corrupted. So isolate all objects
2966 * starting at 'freelist_iter' by skipping them.
2968 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2971 freelist_tail = freelist_iter;
2974 freelist_iter = nextfree;
2978 * Stage two: Unfreeze the slab while splicing the per-cpu
2979 * freelist to the head of slab's freelist.
2982 old.freelist = READ_ONCE(slab->freelist);
2983 old.counters = READ_ONCE(slab->counters);
2984 VM_BUG_ON(!old.frozen);
2986 /* Determine target state of the slab */
2987 new.counters = old.counters;
2989 if (freelist_tail) {
2990 new.inuse -= free_delta;
2991 set_freepointer(s, freelist_tail, old.freelist);
2992 new.freelist = freelist;
2994 new.freelist = old.freelist;
2996 } while (!slab_update_freelist(s, slab,
2997 old.freelist, old.counters,
2998 new.freelist, new.counters,
2999 "unfreezing slab"));
3002 * Stage three: Manipulate the slab list based on the updated state.
3004 if (!new.inuse && n->nr_partial >= s->min_partial) {
3005 stat(s, DEACTIVATE_EMPTY);
3006 discard_slab(s, slab);
3008 } else if (new.freelist) {
3009 spin_lock_irqsave(&n->list_lock, flags);
3010 add_partial(n, slab, tail);
3011 spin_unlock_irqrestore(&n->list_lock, flags);
3014 stat(s, DEACTIVATE_FULL);
3018 #ifdef CONFIG_SLUB_CPU_PARTIAL
3019 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3021 struct kmem_cache_node *n = NULL, *n2 = NULL;
3022 struct slab *slab, *slab_to_discard = NULL;
3023 unsigned long flags = 0;
3025 while (partial_slab) {
3026 slab = partial_slab;
3027 partial_slab = slab->next;
3029 n2 = get_node(s, slab_nid(slab));
3032 spin_unlock_irqrestore(&n->list_lock, flags);
3035 spin_lock_irqsave(&n->list_lock, flags);
3038 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3039 slab->next = slab_to_discard;
3040 slab_to_discard = slab;
3042 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3043 stat(s, FREE_ADD_PARTIAL);
3048 spin_unlock_irqrestore(&n->list_lock, flags);
3050 while (slab_to_discard) {
3051 slab = slab_to_discard;
3052 slab_to_discard = slab_to_discard->next;
3054 stat(s, DEACTIVATE_EMPTY);
3055 discard_slab(s, slab);
3061 * Put all the cpu partial slabs to the node partial list.
3063 static void put_partials(struct kmem_cache *s)
3065 struct slab *partial_slab;
3066 unsigned long flags;
3068 local_lock_irqsave(&s->cpu_slab->lock, flags);
3069 partial_slab = this_cpu_read(s->cpu_slab->partial);
3070 this_cpu_write(s->cpu_slab->partial, NULL);
3071 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3074 __put_partials(s, partial_slab);
3077 static void put_partials_cpu(struct kmem_cache *s,
3078 struct kmem_cache_cpu *c)
3080 struct slab *partial_slab;
3082 partial_slab = slub_percpu_partial(c);
3086 __put_partials(s, partial_slab);
3090 * Put a slab into a partial slab slot if available.
3092 * If we did not find a slot then simply move all the partials to the
3093 * per node partial list.
3095 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3097 struct slab *oldslab;
3098 struct slab *slab_to_put = NULL;
3099 unsigned long flags;
3102 local_lock_irqsave(&s->cpu_slab->lock, flags);
3104 oldslab = this_cpu_read(s->cpu_slab->partial);
3107 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3109 * Partial array is full. Move the existing set to the
3110 * per node partial list. Postpone the actual unfreezing
3111 * outside of the critical section.
3113 slab_to_put = oldslab;
3116 slabs = oldslab->slabs;
3122 slab->slabs = slabs;
3123 slab->next = oldslab;
3125 this_cpu_write(s->cpu_slab->partial, slab);
3127 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3130 __put_partials(s, slab_to_put);
3131 stat(s, CPU_PARTIAL_DRAIN);
3135 #else /* CONFIG_SLUB_CPU_PARTIAL */
3137 static inline void put_partials(struct kmem_cache *s) { }
3138 static inline void put_partials_cpu(struct kmem_cache *s,
3139 struct kmem_cache_cpu *c) { }
3141 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3143 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3145 unsigned long flags;
3149 local_lock_irqsave(&s->cpu_slab->lock, flags);
3152 freelist = c->freelist;
3156 c->tid = next_tid(c->tid);
3158 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3161 deactivate_slab(s, slab, freelist);
3162 stat(s, CPUSLAB_FLUSH);
3166 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3168 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3169 void *freelist = c->freelist;
3170 struct slab *slab = c->slab;
3174 c->tid = next_tid(c->tid);
3177 deactivate_slab(s, slab, freelist);
3178 stat(s, CPUSLAB_FLUSH);
3181 put_partials_cpu(s, c);
3184 struct slub_flush_work {
3185 struct work_struct work;
3186 struct kmem_cache *s;
3193 * Called from CPU work handler with migration disabled.
3195 static void flush_cpu_slab(struct work_struct *w)
3197 struct kmem_cache *s;
3198 struct kmem_cache_cpu *c;
3199 struct slub_flush_work *sfw;
3201 sfw = container_of(w, struct slub_flush_work, work);
3204 c = this_cpu_ptr(s->cpu_slab);
3212 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3214 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3216 return c->slab || slub_percpu_partial(c);
3219 static DEFINE_MUTEX(flush_lock);
3220 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3222 static void flush_all_cpus_locked(struct kmem_cache *s)
3224 struct slub_flush_work *sfw;
3227 lockdep_assert_cpus_held();
3228 mutex_lock(&flush_lock);
3230 for_each_online_cpu(cpu) {
3231 sfw = &per_cpu(slub_flush, cpu);
3232 if (!has_cpu_slab(cpu, s)) {
3236 INIT_WORK(&sfw->work, flush_cpu_slab);
3239 queue_work_on(cpu, flushwq, &sfw->work);
3242 for_each_online_cpu(cpu) {
3243 sfw = &per_cpu(slub_flush, cpu);
3246 flush_work(&sfw->work);
3249 mutex_unlock(&flush_lock);
3252 static void flush_all(struct kmem_cache *s)
3255 flush_all_cpus_locked(s);
3260 * Use the cpu notifier to insure that the cpu slabs are flushed when
3263 static int slub_cpu_dead(unsigned int cpu)
3265 struct kmem_cache *s;
3267 mutex_lock(&slab_mutex);
3268 list_for_each_entry(s, &slab_caches, list)
3269 __flush_cpu_slab(s, cpu);
3270 mutex_unlock(&slab_mutex);
3274 #else /* CONFIG_SLUB_TINY */
3275 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3276 static inline void flush_all(struct kmem_cache *s) { }
3277 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3278 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3279 #endif /* CONFIG_SLUB_TINY */
3282 * Check if the objects in a per cpu structure fit numa
3283 * locality expectations.
3285 static inline int node_match(struct slab *slab, int node)
3288 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3294 #ifdef CONFIG_SLUB_DEBUG
3295 static int count_free(struct slab *slab)
3297 return slab->objects - slab->inuse;
3300 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3302 return atomic_long_read(&n->total_objects);
3305 /* Supports checking bulk free of a constructed freelist */
3306 static inline bool free_debug_processing(struct kmem_cache *s,
3307 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3308 unsigned long addr, depot_stack_handle_t handle)
3310 bool checks_ok = false;
3311 void *object = head;
3314 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3315 if (!check_slab(s, slab))
3319 if (slab->inuse < *bulk_cnt) {
3320 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3321 slab->inuse, *bulk_cnt);
3327 if (++cnt > *bulk_cnt)
3330 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3331 if (!free_consistency_checks(s, slab, object, addr))
3335 if (s->flags & SLAB_STORE_USER)
3336 set_track_update(s, object, TRACK_FREE, addr, handle);
3337 trace(s, slab, object, 0);
3338 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3339 init_object(s, object, SLUB_RED_INACTIVE);
3341 /* Reached end of constructed freelist yet? */
3342 if (object != tail) {
3343 object = get_freepointer(s, object);
3349 if (cnt != *bulk_cnt) {
3350 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3358 slab_fix(s, "Object at 0x%p not freed", object);
3362 #endif /* CONFIG_SLUB_DEBUG */
3364 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3365 static unsigned long count_partial(struct kmem_cache_node *n,
3366 int (*get_count)(struct slab *))
3368 unsigned long flags;
3369 unsigned long x = 0;
3372 spin_lock_irqsave(&n->list_lock, flags);
3373 list_for_each_entry(slab, &n->partial, slab_list)
3374 x += get_count(slab);
3375 spin_unlock_irqrestore(&n->list_lock, flags);
3378 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3380 #ifdef CONFIG_SLUB_DEBUG
3381 #define MAX_PARTIAL_TO_SCAN 10000
3383 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3385 unsigned long flags;
3386 unsigned long x = 0;
3389 spin_lock_irqsave(&n->list_lock, flags);
3390 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3391 list_for_each_entry(slab, &n->partial, slab_list)
3392 x += slab->objects - slab->inuse;
3395 * For a long list, approximate the total count of objects in
3396 * it to meet the limit on the number of slabs to scan.
3397 * Scan from both the list's head and tail for better accuracy.
3399 unsigned long scanned = 0;
3401 list_for_each_entry(slab, &n->partial, slab_list) {
3402 x += slab->objects - slab->inuse;
3403 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3406 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3407 x += slab->objects - slab->inuse;
3408 if (++scanned == MAX_PARTIAL_TO_SCAN)
3411 x = mult_frac(x, n->nr_partial, scanned);
3412 x = min(x, node_nr_objs(n));
3414 spin_unlock_irqrestore(&n->list_lock, flags);
3418 static noinline void
3419 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3421 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3422 DEFAULT_RATELIMIT_BURST);
3424 struct kmem_cache_node *n;
3426 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3429 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3430 nid, gfpflags, &gfpflags);
3431 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3432 s->name, s->object_size, s->size, oo_order(s->oo),
3435 if (oo_order(s->min) > get_order(s->object_size))
3436 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
3439 for_each_kmem_cache_node(s, node, n) {
3440 unsigned long nr_slabs;
3441 unsigned long nr_objs;
3442 unsigned long nr_free;
3444 nr_free = count_partial_free_approx(n);
3445 nr_slabs = node_nr_slabs(n);
3446 nr_objs = node_nr_objs(n);
3448 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3449 node, nr_slabs, nr_objs, nr_free);
3452 #else /* CONFIG_SLUB_DEBUG */
3454 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3457 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3459 if (unlikely(slab_test_pfmemalloc(slab)))
3460 return gfp_pfmemalloc_allowed(gfpflags);
3465 #ifndef CONFIG_SLUB_TINY
3467 __update_cpu_freelist_fast(struct kmem_cache *s,
3468 void *freelist_old, void *freelist_new,
3471 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3472 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3474 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3475 &old.full, new.full);
3479 * Check the slab->freelist and either transfer the freelist to the
3480 * per cpu freelist or deactivate the slab.
3482 * The slab is still frozen if the return value is not NULL.
3484 * If this function returns NULL then the slab has been unfrozen.
3486 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3489 unsigned long counters;
3492 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3495 freelist = slab->freelist;
3496 counters = slab->counters;
3498 new.counters = counters;
3500 new.inuse = slab->objects;
3501 new.frozen = freelist != NULL;
3503 } while (!__slab_update_freelist(s, slab,
3512 * Freeze the partial slab and return the pointer to the freelist.
3514 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3517 unsigned long counters;
3521 freelist = slab->freelist;
3522 counters = slab->counters;
3524 new.counters = counters;
3525 VM_BUG_ON(new.frozen);
3527 new.inuse = slab->objects;
3530 } while (!slab_update_freelist(s, slab,
3539 * Slow path. The lockless freelist is empty or we need to perform
3542 * Processing is still very fast if new objects have been freed to the
3543 * regular freelist. In that case we simply take over the regular freelist
3544 * as the lockless freelist and zap the regular freelist.
3546 * If that is not working then we fall back to the partial lists. We take the
3547 * first element of the freelist as the object to allocate now and move the
3548 * rest of the freelist to the lockless freelist.
3550 * And if we were unable to get a new slab from the partial slab lists then
3551 * we need to allocate a new slab. This is the slowest path since it involves
3552 * a call to the page allocator and the setup of a new slab.
3554 * Version of __slab_alloc to use when we know that preemption is
3555 * already disabled (which is the case for bulk allocation).
3557 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3558 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3562 unsigned long flags;
3563 struct partial_context pc;
3564 bool try_thisnode = true;
3566 stat(s, ALLOC_SLOWPATH);
3570 slab = READ_ONCE(c->slab);
3573 * if the node is not online or has no normal memory, just
3574 * ignore the node constraint
3576 if (unlikely(node != NUMA_NO_NODE &&
3577 !node_isset(node, slab_nodes)))
3578 node = NUMA_NO_NODE;
3582 if (unlikely(!node_match(slab, node))) {
3584 * same as above but node_match() being false already
3585 * implies node != NUMA_NO_NODE
3587 if (!node_isset(node, slab_nodes)) {
3588 node = NUMA_NO_NODE;
3590 stat(s, ALLOC_NODE_MISMATCH);
3591 goto deactivate_slab;
3596 * By rights, we should be searching for a slab page that was
3597 * PFMEMALLOC but right now, we are losing the pfmemalloc
3598 * information when the page leaves the per-cpu allocator
3600 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3601 goto deactivate_slab;
3603 /* must check again c->slab in case we got preempted and it changed */
3604 local_lock_irqsave(&s->cpu_slab->lock, flags);
3605 if (unlikely(slab != c->slab)) {
3606 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3609 freelist = c->freelist;
3613 freelist = get_freelist(s, slab);
3617 c->tid = next_tid(c->tid);
3618 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3619 stat(s, DEACTIVATE_BYPASS);
3623 stat(s, ALLOC_REFILL);
3627 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3630 * freelist is pointing to the list of objects to be used.
3631 * slab is pointing to the slab from which the objects are obtained.
3632 * That slab must be frozen for per cpu allocations to work.
3634 VM_BUG_ON(!c->slab->frozen);
3635 c->freelist = get_freepointer(s, freelist);
3636 c->tid = next_tid(c->tid);
3637 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3642 local_lock_irqsave(&s->cpu_slab->lock, flags);
3643 if (slab != c->slab) {
3644 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3647 freelist = c->freelist;
3650 c->tid = next_tid(c->tid);
3651 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3652 deactivate_slab(s, slab, freelist);
3656 #ifdef CONFIG_SLUB_CPU_PARTIAL
3657 while (slub_percpu_partial(c)) {
3658 local_lock_irqsave(&s->cpu_slab->lock, flags);
3659 if (unlikely(c->slab)) {
3660 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3663 if (unlikely(!slub_percpu_partial(c))) {
3664 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3665 /* we were preempted and partial list got empty */
3669 slab = slub_percpu_partial(c);
3670 slub_set_percpu_partial(c, slab);
3672 if (likely(node_match(slab, node) &&
3673 pfmemalloc_match(slab, gfpflags))) {
3675 freelist = get_freelist(s, slab);
3676 VM_BUG_ON(!freelist);
3677 stat(s, CPU_PARTIAL_ALLOC);
3681 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3684 __put_partials(s, slab);
3690 pc.flags = gfpflags;
3692 * When a preferred node is indicated but no __GFP_THISNODE
3694 * 1) try to get a partial slab from target node only by having
3695 * __GFP_THISNODE in pc.flags for get_partial()
3696 * 2) if 1) failed, try to allocate a new slab from target node with
3697 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3698 * 3) if 2) failed, retry with original gfpflags which will allow
3699 * get_partial() try partial lists of other nodes before potentially
3700 * allocating new page from other nodes
3702 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3704 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3706 pc.orig_size = orig_size;
3707 slab = get_partial(s, node, &pc);
3709 if (kmem_cache_debug(s)) {
3710 freelist = pc.object;
3712 * For debug caches here we had to go through
3713 * alloc_single_from_partial() so just store the
3714 * tracking info and return the object.
3716 if (s->flags & SLAB_STORE_USER)
3717 set_track(s, freelist, TRACK_ALLOC, addr);
3722 freelist = freeze_slab(s, slab);
3723 goto retry_load_slab;
3726 slub_put_cpu_ptr(s->cpu_slab);
3727 slab = new_slab(s, pc.flags, node);
3728 c = slub_get_cpu_ptr(s->cpu_slab);
3730 if (unlikely(!slab)) {
3731 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3733 try_thisnode = false;
3736 slab_out_of_memory(s, gfpflags, node);
3740 stat(s, ALLOC_SLAB);
3742 if (kmem_cache_debug(s)) {
3743 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3745 if (unlikely(!freelist))
3748 if (s->flags & SLAB_STORE_USER)
3749 set_track(s, freelist, TRACK_ALLOC, addr);
3755 * No other reference to the slab yet so we can
3756 * muck around with it freely without cmpxchg
3758 freelist = slab->freelist;
3759 slab->freelist = NULL;
3760 slab->inuse = slab->objects;
3763 inc_slabs_node(s, slab_nid(slab), slab->objects);
3765 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3767 * For !pfmemalloc_match() case we don't load freelist so that
3768 * we don't make further mismatched allocations easier.
3770 deactivate_slab(s, slab, get_freepointer(s, freelist));
3776 local_lock_irqsave(&s->cpu_slab->lock, flags);
3777 if (unlikely(c->slab)) {
3778 void *flush_freelist = c->freelist;
3779 struct slab *flush_slab = c->slab;
3783 c->tid = next_tid(c->tid);
3785 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3787 deactivate_slab(s, flush_slab, flush_freelist);
3789 stat(s, CPUSLAB_FLUSH);
3791 goto retry_load_slab;
3799 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3800 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3803 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3804 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3808 #ifdef CONFIG_PREEMPT_COUNT
3810 * We may have been preempted and rescheduled on a different
3811 * cpu before disabling preemption. Need to reload cpu area
3814 c = slub_get_cpu_ptr(s->cpu_slab);
3817 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3818 #ifdef CONFIG_PREEMPT_COUNT
3819 slub_put_cpu_ptr(s->cpu_slab);
3824 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3825 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3827 struct kmem_cache_cpu *c;
3834 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3835 * enabled. We may switch back and forth between cpus while
3836 * reading from one cpu area. That does not matter as long
3837 * as we end up on the original cpu again when doing the cmpxchg.
3839 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3840 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3841 * the tid. If we are preempted and switched to another cpu between the
3842 * two reads, it's OK as the two are still associated with the same cpu
3843 * and cmpxchg later will validate the cpu.
3845 c = raw_cpu_ptr(s->cpu_slab);
3846 tid = READ_ONCE(c->tid);
3849 * Irqless object alloc/free algorithm used here depends on sequence
3850 * of fetching cpu_slab's data. tid should be fetched before anything
3851 * on c to guarantee that object and slab associated with previous tid
3852 * won't be used with current tid. If we fetch tid first, object and
3853 * slab could be one associated with next tid and our alloc/free
3854 * request will be failed. In this case, we will retry. So, no problem.
3859 * The transaction ids are globally unique per cpu and per operation on
3860 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3861 * occurs on the right processor and that there was no operation on the
3862 * linked list in between.
3865 object = c->freelist;
3868 if (!USE_LOCKLESS_FAST_PATH() ||
3869 unlikely(!object || !slab || !node_match(slab, node))) {
3870 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3872 void *next_object = get_freepointer_safe(s, object);
3875 * The cmpxchg will only match if there was no additional
3876 * operation and if we are on the right processor.
3878 * The cmpxchg does the following atomically (without lock
3880 * 1. Relocate first pointer to the current per cpu area.
3881 * 2. Verify that tid and freelist have not been changed
3882 * 3. If they were not changed replace tid and freelist
3884 * Since this is without lock semantics the protection is only
3885 * against code executing on this cpu *not* from access by
3888 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3889 note_cmpxchg_failure("slab_alloc", s, tid);
3892 prefetch_freepointer(s, next_object);
3893 stat(s, ALLOC_FASTPATH);
3898 #else /* CONFIG_SLUB_TINY */
3899 static void *__slab_alloc_node(struct kmem_cache *s,
3900 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3902 struct partial_context pc;
3906 pc.flags = gfpflags;
3907 pc.orig_size = orig_size;
3908 slab = get_partial(s, node, &pc);
3913 slab = new_slab(s, gfpflags, node);
3914 if (unlikely(!slab)) {
3915 slab_out_of_memory(s, gfpflags, node);
3919 object = alloc_single_from_new_slab(s, slab, orig_size);
3923 #endif /* CONFIG_SLUB_TINY */
3926 * If the object has been wiped upon free, make sure it's fully initialized by
3927 * zeroing out freelist pointer.
3929 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3932 if (unlikely(slab_want_init_on_free(s)) && obj &&
3933 !freeptr_outside_object(s))
3934 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3938 static __fastpath_inline
3939 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
3941 flags &= gfp_allowed_mask;
3945 if (unlikely(should_failslab(s, flags)))
3951 static __fastpath_inline
3952 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3953 gfp_t flags, size_t size, void **p, bool init,
3954 unsigned int orig_size)
3956 unsigned int zero_size = s->object_size;
3957 bool kasan_init = init;
3959 gfp_t init_flags = flags & gfp_allowed_mask;
3962 * For kmalloc object, the allocated memory size(object_size) is likely
3963 * larger than the requested size(orig_size). If redzone check is
3964 * enabled for the extra space, don't zero it, as it will be redzoned
3965 * soon. The redzone operation for this extra space could be seen as a
3966 * replacement of current poisoning under certain debug option, and
3967 * won't break other sanity checks.
3969 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3970 (s->flags & SLAB_KMALLOC))
3971 zero_size = orig_size;
3974 * When slab_debug is enabled, avoid memory initialization integrated
3975 * into KASAN and instead zero out the memory via the memset below with
3976 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3977 * cause false-positive reports. This does not lead to a performance
3978 * penalty on production builds, as slab_debug is not intended to be
3981 if (__slub_debug_enabled())
3985 * As memory initialization might be integrated into KASAN,
3986 * kasan_slab_alloc and initialization memset must be
3987 * kept together to avoid discrepancies in behavior.
3989 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3991 for (i = 0; i < size; i++) {
3992 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3993 if (p[i] && init && (!kasan_init ||
3994 !kasan_has_integrated_init()))
3995 memset(p[i], 0, zero_size);
3996 kmemleak_alloc_recursive(p[i], s->object_size, 1,
3997 s->flags, init_flags);
3998 kmsan_slab_alloc(s, p[i], init_flags);
3999 alloc_tagging_slab_alloc_hook(s, p[i], flags);
4002 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4006 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4007 * have the fastpath folded into their functions. So no function call
4008 * overhead for requests that can be satisfied on the fastpath.
4010 * The fastpath works by first checking if the lockless freelist can be used.
4011 * If not then __slab_alloc is called for slow processing.
4013 * Otherwise we can simply pick the next object from the lockless free list.
4015 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4016 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4021 s = slab_pre_alloc_hook(s, gfpflags);
4025 object = kfence_alloc(s, orig_size, gfpflags);
4026 if (unlikely(object))
4029 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4031 maybe_wipe_obj_freeptr(s, object);
4032 init = slab_want_init_on_alloc(gfpflags, s);
4036 * When init equals 'true', like for kzalloc() family, only
4037 * @orig_size bytes might be zeroed instead of s->object_size
4038 * In case this fails due to memcg_slab_post_alloc_hook(),
4039 * object is set to NULL
4041 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4046 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4048 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4051 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4055 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4057 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4060 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4063 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4067 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4070 * kmem_cache_alloc_node - Allocate an object on the specified node
4071 * @s: The cache to allocate from.
4072 * @gfpflags: See kmalloc().
4073 * @node: node number of the target node.
4075 * Identical to kmem_cache_alloc but it will allocate memory on the given
4076 * node, which can improve the performance for cpu bound structures.
4078 * Fallback to other node is possible if __GFP_THISNODE is not set.
4080 * Return: pointer to the new object or %NULL in case of error
4082 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4084 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4086 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4090 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4093 * To avoid unnecessary overhead, we pass through large allocation requests
4094 * directly to the page allocator. We use __GFP_COMP, because we will need to
4095 * know the allocation order to free the pages properly in kfree.
4097 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4099 struct folio *folio;
4101 unsigned int order = get_order(size);
4103 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4104 flags = kmalloc_fix_flags(flags);
4106 flags |= __GFP_COMP;
4107 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4109 ptr = folio_address(folio);
4110 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4111 PAGE_SIZE << order);
4114 ptr = kasan_kmalloc_large(ptr, size, flags);
4115 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4116 kmemleak_alloc(ptr, size, 1, flags);
4117 kmsan_kmalloc_large(ptr, size, flags);
4122 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4124 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4126 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4127 flags, NUMA_NO_NODE);
4130 EXPORT_SYMBOL(__kmalloc_large_noprof);
4132 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4134 void *ret = ___kmalloc_large_node(size, flags, node);
4136 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4140 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4142 static __always_inline
4143 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4144 unsigned long caller)
4146 struct kmem_cache *s;
4149 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4150 ret = __kmalloc_large_node_noprof(size, flags, node);
4151 trace_kmalloc(caller, ret, size,
4152 PAGE_SIZE << get_order(size), flags, node);
4156 if (unlikely(!size))
4157 return ZERO_SIZE_PTR;
4159 s = kmalloc_slab(size, b, flags, caller);
4161 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4162 ret = kasan_kmalloc(s, ret, size, flags);
4163 trace_kmalloc(caller, ret, size, s->size, flags, node);
4166 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4168 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4170 EXPORT_SYMBOL(__kmalloc_node_noprof);
4172 void *__kmalloc_noprof(size_t size, gfp_t flags)
4174 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4176 EXPORT_SYMBOL(__kmalloc_noprof);
4178 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4179 int node, unsigned long caller)
4181 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4184 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4186 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4188 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4191 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4193 ret = kasan_kmalloc(s, ret, size, gfpflags);
4196 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4198 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4199 int node, size_t size)
4201 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4203 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4205 ret = kasan_kmalloc(s, ret, size, gfpflags);
4208 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4210 static noinline void free_to_partial_list(
4211 struct kmem_cache *s, struct slab *slab,
4212 void *head, void *tail, int bulk_cnt,
4215 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4216 struct slab *slab_free = NULL;
4218 unsigned long flags;
4219 depot_stack_handle_t handle = 0;
4221 if (s->flags & SLAB_STORE_USER)
4222 handle = set_track_prepare();
4224 spin_lock_irqsave(&n->list_lock, flags);
4226 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4227 void *prior = slab->freelist;
4229 /* Perform the actual freeing while we still hold the locks */
4231 set_freepointer(s, tail, prior);
4232 slab->freelist = head;
4235 * If the slab is empty, and node's partial list is full,
4236 * it should be discarded anyway no matter it's on full or
4239 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4243 /* was on full list */
4244 remove_full(s, n, slab);
4246 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4247 stat(s, FREE_ADD_PARTIAL);
4249 } else if (slab_free) {
4250 remove_partial(n, slab);
4251 stat(s, FREE_REMOVE_PARTIAL);
4257 * Update the counters while still holding n->list_lock to
4258 * prevent spurious validation warnings
4260 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4263 spin_unlock_irqrestore(&n->list_lock, flags);
4267 free_slab(s, slab_free);
4272 * Slow path handling. This may still be called frequently since objects
4273 * have a longer lifetime than the cpu slabs in most processing loads.
4275 * So we still attempt to reduce cache line usage. Just take the slab
4276 * lock and free the item. If there is no additional partial slab
4277 * handling required then we can return immediately.
4279 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4280 void *head, void *tail, int cnt,
4287 unsigned long counters;
4288 struct kmem_cache_node *n = NULL;
4289 unsigned long flags;
4290 bool on_node_partial;
4292 stat(s, FREE_SLOWPATH);
4294 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4295 free_to_partial_list(s, slab, head, tail, cnt, addr);
4301 spin_unlock_irqrestore(&n->list_lock, flags);
4304 prior = slab->freelist;
4305 counters = slab->counters;
4306 set_freepointer(s, tail, prior);
4307 new.counters = counters;
4308 was_frozen = new.frozen;
4310 if ((!new.inuse || !prior) && !was_frozen) {
4311 /* Needs to be taken off a list */
4312 if (!kmem_cache_has_cpu_partial(s) || prior) {
4314 n = get_node(s, slab_nid(slab));
4316 * Speculatively acquire the list_lock.
4317 * If the cmpxchg does not succeed then we may
4318 * drop the list_lock without any processing.
4320 * Otherwise the list_lock will synchronize with
4321 * other processors updating the list of slabs.
4323 spin_lock_irqsave(&n->list_lock, flags);
4325 on_node_partial = slab_test_node_partial(slab);
4329 } while (!slab_update_freelist(s, slab,
4336 if (likely(was_frozen)) {
4338 * The list lock was not taken therefore no list
4339 * activity can be necessary.
4341 stat(s, FREE_FROZEN);
4342 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4344 * If we started with a full slab then put it onto the
4345 * per cpu partial list.
4347 put_cpu_partial(s, slab, 1);
4348 stat(s, CPU_PARTIAL_FREE);
4355 * This slab was partially empty but not on the per-node partial list,
4356 * in which case we shouldn't manipulate its list, just return.
4358 if (prior && !on_node_partial) {
4359 spin_unlock_irqrestore(&n->list_lock, flags);
4363 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4367 * Objects left in the slab. If it was not on the partial list before
4370 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4371 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4372 stat(s, FREE_ADD_PARTIAL);
4374 spin_unlock_irqrestore(&n->list_lock, flags);
4380 * Slab on the partial list.
4382 remove_partial(n, slab);
4383 stat(s, FREE_REMOVE_PARTIAL);
4386 spin_unlock_irqrestore(&n->list_lock, flags);
4388 discard_slab(s, slab);
4391 #ifndef CONFIG_SLUB_TINY
4393 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4394 * can perform fastpath freeing without additional function calls.
4396 * The fastpath is only possible if we are freeing to the current cpu slab
4397 * of this processor. This typically the case if we have just allocated
4400 * If fastpath is not possible then fall back to __slab_free where we deal
4401 * with all sorts of special processing.
4403 * Bulk free of a freelist with several objects (all pointing to the
4404 * same slab) possible by specifying head and tail ptr, plus objects
4405 * count (cnt). Bulk free indicated by tail pointer being set.
4407 static __always_inline void do_slab_free(struct kmem_cache *s,
4408 struct slab *slab, void *head, void *tail,
4409 int cnt, unsigned long addr)
4411 struct kmem_cache_cpu *c;
4417 * Determine the currently cpus per cpu slab.
4418 * The cpu may change afterward. However that does not matter since
4419 * data is retrieved via this pointer. If we are on the same cpu
4420 * during the cmpxchg then the free will succeed.
4422 c = raw_cpu_ptr(s->cpu_slab);
4423 tid = READ_ONCE(c->tid);
4425 /* Same with comment on barrier() in __slab_alloc_node() */
4428 if (unlikely(slab != c->slab)) {
4429 __slab_free(s, slab, head, tail, cnt, addr);
4433 if (USE_LOCKLESS_FAST_PATH()) {
4434 freelist = READ_ONCE(c->freelist);
4436 set_freepointer(s, tail, freelist);
4438 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4439 note_cmpxchg_failure("slab_free", s, tid);
4443 /* Update the free list under the local lock */
4444 local_lock(&s->cpu_slab->lock);
4445 c = this_cpu_ptr(s->cpu_slab);
4446 if (unlikely(slab != c->slab)) {
4447 local_unlock(&s->cpu_slab->lock);
4451 freelist = c->freelist;
4453 set_freepointer(s, tail, freelist);
4455 c->tid = next_tid(tid);
4457 local_unlock(&s->cpu_slab->lock);
4459 stat_add(s, FREE_FASTPATH, cnt);
4461 #else /* CONFIG_SLUB_TINY */
4462 static void do_slab_free(struct kmem_cache *s,
4463 struct slab *slab, void *head, void *tail,
4464 int cnt, unsigned long addr)
4466 __slab_free(s, slab, head, tail, cnt, addr);
4468 #endif /* CONFIG_SLUB_TINY */
4470 static __fastpath_inline
4471 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4474 memcg_slab_free_hook(s, slab, &object, 1);
4475 alloc_tagging_slab_free_hook(s, slab, &object, 1);
4477 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4478 do_slab_free(s, slab, object, object, 1, addr);
4482 /* Do not inline the rare memcg charging failed path into the allocation path */
4484 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4486 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4487 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4491 static __fastpath_inline
4492 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4493 void *tail, void **p, int cnt, unsigned long addr)
4495 memcg_slab_free_hook(s, slab, p, cnt);
4496 alloc_tagging_slab_free_hook(s, slab, p, cnt);
4498 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4499 * to remove objects, whose reuse must be delayed.
4501 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4502 do_slab_free(s, slab, head, tail, cnt, addr);
4505 #ifdef CONFIG_KASAN_GENERIC
4506 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4508 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4512 static inline struct kmem_cache *virt_to_cache(const void *obj)
4516 slab = virt_to_slab(obj);
4517 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4519 return slab->slab_cache;
4522 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4524 struct kmem_cache *cachep;
4526 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4527 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4530 cachep = virt_to_cache(x);
4531 if (WARN(cachep && cachep != s,
4532 "%s: Wrong slab cache. %s but object is from %s\n",
4533 __func__, s->name, cachep->name))
4534 print_tracking(cachep, x);
4539 * kmem_cache_free - Deallocate an object
4540 * @s: The cache the allocation was from.
4541 * @x: The previously allocated object.
4543 * Free an object which was previously allocated from this
4546 void kmem_cache_free(struct kmem_cache *s, void *x)
4548 s = cache_from_obj(s, x);
4551 trace_kmem_cache_free(_RET_IP_, x, s);
4552 slab_free(s, virt_to_slab(x), x, _RET_IP_);
4554 EXPORT_SYMBOL(kmem_cache_free);
4556 static void free_large_kmalloc(struct folio *folio, void *object)
4558 unsigned int order = folio_order(folio);
4560 if (WARN_ON_ONCE(order == 0))
4561 pr_warn_once("object pointer: 0x%p\n", object);
4563 kmemleak_free(object);
4564 kasan_kfree_large(object);
4565 kmsan_kfree_large(object);
4567 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4568 -(PAGE_SIZE << order));
4573 * kfree - free previously allocated memory
4574 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4576 * If @object is NULL, no operation is performed.
4578 void kfree(const void *object)
4580 struct folio *folio;
4582 struct kmem_cache *s;
4583 void *x = (void *)object;
4585 trace_kfree(_RET_IP_, object);
4587 if (unlikely(ZERO_OR_NULL_PTR(object)))
4590 folio = virt_to_folio(object);
4591 if (unlikely(!folio_test_slab(folio))) {
4592 free_large_kmalloc(folio, (void *)object);
4596 slab = folio_slab(folio);
4597 s = slab->slab_cache;
4598 slab_free(s, slab, x, _RET_IP_);
4600 EXPORT_SYMBOL(kfree);
4602 struct detached_freelist {
4607 struct kmem_cache *s;
4611 * This function progressively scans the array with free objects (with
4612 * a limited look ahead) and extract objects belonging to the same
4613 * slab. It builds a detached freelist directly within the given
4614 * slab/objects. This can happen without any need for
4615 * synchronization, because the objects are owned by running process.
4616 * The freelist is build up as a single linked list in the objects.
4617 * The idea is, that this detached freelist can then be bulk
4618 * transferred to the real freelist(s), but only requiring a single
4619 * synchronization primitive. Look ahead in the array is limited due
4620 * to performance reasons.
4623 int build_detached_freelist(struct kmem_cache *s, size_t size,
4624 void **p, struct detached_freelist *df)
4628 struct folio *folio;
4632 folio = virt_to_folio(object);
4634 /* Handle kalloc'ed objects */
4635 if (unlikely(!folio_test_slab(folio))) {
4636 free_large_kmalloc(folio, object);
4640 /* Derive kmem_cache from object */
4641 df->slab = folio_slab(folio);
4642 df->s = df->slab->slab_cache;
4644 df->slab = folio_slab(folio);
4645 df->s = cache_from_obj(s, object); /* Support for memcg */
4648 /* Start new detached freelist */
4650 df->freelist = object;
4653 if (is_kfence_address(object))
4656 set_freepointer(df->s, object, NULL);
4661 /* df->slab is always set at this point */
4662 if (df->slab == virt_to_slab(object)) {
4663 /* Opportunity build freelist */
4664 set_freepointer(df->s, object, df->freelist);
4665 df->freelist = object;
4669 swap(p[size], p[same]);
4673 /* Limit look ahead search */
4682 * Internal bulk free of objects that were not initialised by the post alloc
4683 * hooks and thus should not be processed by the free hooks
4685 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4691 struct detached_freelist df;
4693 size = build_detached_freelist(s, size, p, &df);
4697 if (kfence_free(df.freelist))
4700 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4702 } while (likely(size));
4705 /* Note that interrupts must be enabled when calling this function. */
4706 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4712 struct detached_freelist df;
4714 size = build_detached_freelist(s, size, p, &df);
4718 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4720 } while (likely(size));
4722 EXPORT_SYMBOL(kmem_cache_free_bulk);
4724 #ifndef CONFIG_SLUB_TINY
4726 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4729 struct kmem_cache_cpu *c;
4730 unsigned long irqflags;
4734 * Drain objects in the per cpu slab, while disabling local
4735 * IRQs, which protects against PREEMPT and interrupts
4736 * handlers invoking normal fastpath.
4738 c = slub_get_cpu_ptr(s->cpu_slab);
4739 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4741 for (i = 0; i < size; i++) {
4742 void *object = kfence_alloc(s, s->object_size, flags);
4744 if (unlikely(object)) {
4749 object = c->freelist;
4750 if (unlikely(!object)) {
4752 * We may have removed an object from c->freelist using
4753 * the fastpath in the previous iteration; in that case,
4754 * c->tid has not been bumped yet.
4755 * Since ___slab_alloc() may reenable interrupts while
4756 * allocating memory, we should bump c->tid now.
4758 c->tid = next_tid(c->tid);
4760 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4763 * Invoking slow path likely have side-effect
4764 * of re-populating per CPU c->freelist
4766 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4767 _RET_IP_, c, s->object_size);
4768 if (unlikely(!p[i]))
4771 c = this_cpu_ptr(s->cpu_slab);
4772 maybe_wipe_obj_freeptr(s, p[i]);
4774 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4776 continue; /* goto for-loop */
4778 c->freelist = get_freepointer(s, object);
4780 maybe_wipe_obj_freeptr(s, p[i]);
4781 stat(s, ALLOC_FASTPATH);
4783 c->tid = next_tid(c->tid);
4784 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4785 slub_put_cpu_ptr(s->cpu_slab);
4790 slub_put_cpu_ptr(s->cpu_slab);
4791 __kmem_cache_free_bulk(s, i, p);
4795 #else /* CONFIG_SLUB_TINY */
4796 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4797 size_t size, void **p)
4801 for (i = 0; i < size; i++) {
4802 void *object = kfence_alloc(s, s->object_size, flags);
4804 if (unlikely(object)) {
4809 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4810 _RET_IP_, s->object_size);
4811 if (unlikely(!p[i]))
4814 maybe_wipe_obj_freeptr(s, p[i]);
4820 __kmem_cache_free_bulk(s, i, p);
4823 #endif /* CONFIG_SLUB_TINY */
4825 /* Note that interrupts must be enabled when calling this function. */
4826 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4834 s = slab_pre_alloc_hook(s, flags);
4838 i = __kmem_cache_alloc_bulk(s, flags, size, p);
4839 if (unlikely(i == 0))
4843 * memcg and kmem_cache debug support and memory initialization.
4844 * Done outside of the IRQ disabled fastpath loop.
4846 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4847 slab_want_init_on_alloc(flags, s), s->object_size))) {
4852 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
4856 * Object placement in a slab is made very easy because we always start at
4857 * offset 0. If we tune the size of the object to the alignment then we can
4858 * get the required alignment by putting one properly sized object after
4861 * Notice that the allocation order determines the sizes of the per cpu
4862 * caches. Each processor has always one slab available for allocations.
4863 * Increasing the allocation order reduces the number of times that slabs
4864 * must be moved on and off the partial lists and is therefore a factor in
4869 * Minimum / Maximum order of slab pages. This influences locking overhead
4870 * and slab fragmentation. A higher order reduces the number of partial slabs
4871 * and increases the number of allocations possible without having to
4872 * take the list_lock.
4874 static unsigned int slub_min_order;
4875 static unsigned int slub_max_order =
4876 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4877 static unsigned int slub_min_objects;
4880 * Calculate the order of allocation given an slab object size.
4882 * The order of allocation has significant impact on performance and other
4883 * system components. Generally order 0 allocations should be preferred since
4884 * order 0 does not cause fragmentation in the page allocator. Larger objects
4885 * be problematic to put into order 0 slabs because there may be too much
4886 * unused space left. We go to a higher order if more than 1/16th of the slab
4889 * In order to reach satisfactory performance we must ensure that a minimum
4890 * number of objects is in one slab. Otherwise we may generate too much
4891 * activity on the partial lists which requires taking the list_lock. This is
4892 * less a concern for large slabs though which are rarely used.
4894 * slab_max_order specifies the order where we begin to stop considering the
4895 * number of objects in a slab as critical. If we reach slab_max_order then
4896 * we try to keep the page order as low as possible. So we accept more waste
4897 * of space in favor of a small page order.
4899 * Higher order allocations also allow the placement of more objects in a
4900 * slab and thereby reduce object handling overhead. If the user has
4901 * requested a higher minimum order then we start with that one instead of
4902 * the smallest order which will fit the object.
4904 static inline unsigned int calc_slab_order(unsigned int size,
4905 unsigned int min_order, unsigned int max_order,
4906 unsigned int fract_leftover)
4910 for (order = min_order; order <= max_order; order++) {
4912 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4915 rem = slab_size % size;
4917 if (rem <= slab_size / fract_leftover)
4924 static inline int calculate_order(unsigned int size)
4927 unsigned int min_objects;
4928 unsigned int max_objects;
4929 unsigned int min_order;
4931 min_objects = slub_min_objects;
4934 * Some architectures will only update present cpus when
4935 * onlining them, so don't trust the number if it's just 1. But
4936 * we also don't want to use nr_cpu_ids always, as on some other
4937 * architectures, there can be many possible cpus, but never
4938 * onlined. Here we compromise between trying to avoid too high
4939 * order on systems that appear larger than they are, and too
4940 * low order on systems that appear smaller than they are.
4942 unsigned int nr_cpus = num_present_cpus();
4944 nr_cpus = nr_cpu_ids;
4945 min_objects = 4 * (fls(nr_cpus) + 1);
4947 /* min_objects can't be 0 because get_order(0) is undefined */
4948 max_objects = max(order_objects(slub_max_order, size), 1U);
4949 min_objects = min(min_objects, max_objects);
4951 min_order = max_t(unsigned int, slub_min_order,
4952 get_order(min_objects * size));
4953 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4954 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4957 * Attempt to find best configuration for a slab. This works by first
4958 * attempting to generate a layout with the best possible configuration
4959 * and backing off gradually.
4961 * We start with accepting at most 1/16 waste and try to find the
4962 * smallest order from min_objects-derived/slab_min_order up to
4963 * slab_max_order that will satisfy the constraint. Note that increasing
4964 * the order can only result in same or less fractional waste, not more.
4966 * If that fails, we increase the acceptable fraction of waste and try
4967 * again. The last iteration with fraction of 1/2 would effectively
4968 * accept any waste and give us the order determined by min_objects, as
4969 * long as at least single object fits within slab_max_order.
4971 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4972 order = calc_slab_order(size, min_order, slub_max_order,
4974 if (order <= slub_max_order)
4979 * Doh this slab cannot be placed using slab_max_order.
4981 order = get_order(size);
4982 if (order <= MAX_PAGE_ORDER)
4988 init_kmem_cache_node(struct kmem_cache_node *n)
4991 spin_lock_init(&n->list_lock);
4992 INIT_LIST_HEAD(&n->partial);
4993 #ifdef CONFIG_SLUB_DEBUG
4994 atomic_long_set(&n->nr_slabs, 0);
4995 atomic_long_set(&n->total_objects, 0);
4996 INIT_LIST_HEAD(&n->full);
5000 #ifndef CONFIG_SLUB_TINY
5001 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5003 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5004 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5005 sizeof(struct kmem_cache_cpu));
5008 * Must align to double word boundary for the double cmpxchg
5009 * instructions to work; see __pcpu_double_call_return_bool().
5011 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5012 2 * sizeof(void *));
5017 init_kmem_cache_cpus(s);
5022 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5026 #endif /* CONFIG_SLUB_TINY */
5028 static struct kmem_cache *kmem_cache_node;
5031 * No kmalloc_node yet so do it by hand. We know that this is the first
5032 * slab on the node for this slabcache. There are no concurrent accesses
5035 * Note that this function only works on the kmem_cache_node
5036 * when allocating for the kmem_cache_node. This is used for bootstrapping
5037 * memory on a fresh node that has no slab structures yet.
5039 static void early_kmem_cache_node_alloc(int node)
5042 struct kmem_cache_node *n;
5044 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5046 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5049 if (slab_nid(slab) != node) {
5050 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5051 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5056 #ifdef CONFIG_SLUB_DEBUG
5057 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5059 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5060 slab->freelist = get_freepointer(kmem_cache_node, n);
5062 kmem_cache_node->node[node] = n;
5063 init_kmem_cache_node(n);
5064 inc_slabs_node(kmem_cache_node, node, slab->objects);
5067 * No locks need to be taken here as it has just been
5068 * initialized and there is no concurrent access.
5070 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
5073 static void free_kmem_cache_nodes(struct kmem_cache *s)
5076 struct kmem_cache_node *n;
5078 for_each_kmem_cache_node(s, node, n) {
5079 s->node[node] = NULL;
5080 kmem_cache_free(kmem_cache_node, n);
5084 void __kmem_cache_release(struct kmem_cache *s)
5086 cache_random_seq_destroy(s);
5087 #ifndef CONFIG_SLUB_TINY
5088 free_percpu(s->cpu_slab);
5090 free_kmem_cache_nodes(s);
5093 static int init_kmem_cache_nodes(struct kmem_cache *s)
5097 for_each_node_mask(node, slab_nodes) {
5098 struct kmem_cache_node *n;
5100 if (slab_state == DOWN) {
5101 early_kmem_cache_node_alloc(node);
5104 n = kmem_cache_alloc_node(kmem_cache_node,
5108 free_kmem_cache_nodes(s);
5112 init_kmem_cache_node(n);
5118 static void set_cpu_partial(struct kmem_cache *s)
5120 #ifdef CONFIG_SLUB_CPU_PARTIAL
5121 unsigned int nr_objects;
5124 * cpu_partial determined the maximum number of objects kept in the
5125 * per cpu partial lists of a processor.
5127 * Per cpu partial lists mainly contain slabs that just have one
5128 * object freed. If they are used for allocation then they can be
5129 * filled up again with minimal effort. The slab will never hit the
5130 * per node partial lists and therefore no locking will be required.
5132 * For backwards compatibility reasons, this is determined as number
5133 * of objects, even though we now limit maximum number of pages, see
5134 * slub_set_cpu_partial()
5136 if (!kmem_cache_has_cpu_partial(s))
5138 else if (s->size >= PAGE_SIZE)
5140 else if (s->size >= 1024)
5142 else if (s->size >= 256)
5147 slub_set_cpu_partial(s, nr_objects);
5152 * calculate_sizes() determines the order and the distribution of data within
5155 static int calculate_sizes(struct kmem_cache *s)
5157 slab_flags_t flags = s->flags;
5158 unsigned int size = s->object_size;
5162 * Round up object size to the next word boundary. We can only
5163 * place the free pointer at word boundaries and this determines
5164 * the possible location of the free pointer.
5166 size = ALIGN(size, sizeof(void *));
5168 #ifdef CONFIG_SLUB_DEBUG
5170 * Determine if we can poison the object itself. If the user of
5171 * the slab may touch the object after free or before allocation
5172 * then we should never poison the object itself.
5174 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5176 s->flags |= __OBJECT_POISON;
5178 s->flags &= ~__OBJECT_POISON;
5182 * If we are Redzoning then check if there is some space between the
5183 * end of the object and the free pointer. If not then add an
5184 * additional word to have some bytes to store Redzone information.
5186 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5187 size += sizeof(void *);
5191 * With that we have determined the number of bytes in actual use
5192 * by the object and redzoning.
5196 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || s->ctor ||
5197 ((flags & SLAB_RED_ZONE) &&
5198 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5200 * Relocate free pointer after the object if it is not
5201 * permitted to overwrite the first word of the object on
5204 * This is the case if we do RCU, have a constructor or
5205 * destructor, are poisoning the objects, or are
5206 * redzoning an object smaller than sizeof(void *) or are
5207 * redzoning an object with slub_debug_orig_size() enabled,
5208 * in which case the right redzone may be extended.
5210 * The assumption that s->offset >= s->inuse means free
5211 * pointer is outside of the object is used in the
5212 * freeptr_outside_object() function. If that is no
5213 * longer true, the function needs to be modified.
5216 size += sizeof(void *);
5219 * Store freelist pointer near middle of object to keep
5220 * it away from the edges of the object to avoid small
5221 * sized over/underflows from neighboring allocations.
5223 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5226 #ifdef CONFIG_SLUB_DEBUG
5227 if (flags & SLAB_STORE_USER) {
5229 * Need to store information about allocs and frees after
5232 size += 2 * sizeof(struct track);
5234 /* Save the original kmalloc request size */
5235 if (flags & SLAB_KMALLOC)
5236 size += sizeof(unsigned int);
5240 kasan_cache_create(s, &size, &s->flags);
5241 #ifdef CONFIG_SLUB_DEBUG
5242 if (flags & SLAB_RED_ZONE) {
5244 * Add some empty padding so that we can catch
5245 * overwrites from earlier objects rather than let
5246 * tracking information or the free pointer be
5247 * corrupted if a user writes before the start
5250 size += sizeof(void *);
5252 s->red_left_pad = sizeof(void *);
5253 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5254 size += s->red_left_pad;
5259 * SLUB stores one object immediately after another beginning from
5260 * offset 0. In order to align the objects we have to simply size
5261 * each object to conform to the alignment.
5263 size = ALIGN(size, s->align);
5265 s->reciprocal_size = reciprocal_value(size);
5266 order = calculate_order(size);
5271 s->allocflags = __GFP_COMP;
5273 if (s->flags & SLAB_CACHE_DMA)
5274 s->allocflags |= GFP_DMA;
5276 if (s->flags & SLAB_CACHE_DMA32)
5277 s->allocflags |= GFP_DMA32;
5279 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5280 s->allocflags |= __GFP_RECLAIMABLE;
5283 * Determine the number of objects per slab
5285 s->oo = oo_make(order, size);
5286 s->min = oo_make(get_order(size), size);
5288 return !!oo_objects(s->oo);
5291 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5293 s->flags = kmem_cache_flags(flags, s->name);
5294 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5295 s->random = get_random_long();
5298 if (!calculate_sizes(s))
5300 if (disable_higher_order_debug) {
5302 * Disable debugging flags that store metadata if the min slab
5305 if (get_order(s->size) > get_order(s->object_size)) {
5306 s->flags &= ~DEBUG_METADATA_FLAGS;
5308 if (!calculate_sizes(s))
5313 #ifdef system_has_freelist_aba
5314 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5315 /* Enable fast mode */
5316 s->flags |= __CMPXCHG_DOUBLE;
5321 * The larger the object size is, the more slabs we want on the partial
5322 * list to avoid pounding the page allocator excessively.
5324 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5325 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5330 s->remote_node_defrag_ratio = 1000;
5333 /* Initialize the pre-computed randomized freelist if slab is up */
5334 if (slab_state >= UP) {
5335 if (init_cache_random_seq(s))
5339 if (!init_kmem_cache_nodes(s))
5342 if (alloc_kmem_cache_cpus(s))
5346 __kmem_cache_release(s);
5350 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5353 #ifdef CONFIG_SLUB_DEBUG
5354 void *addr = slab_address(slab);
5357 slab_err(s, slab, text, s->name);
5359 spin_lock(&object_map_lock);
5360 __fill_map(object_map, s, slab);
5362 for_each_object(p, s, addr, slab->objects) {
5364 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5365 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5366 print_tracking(s, p);
5369 spin_unlock(&object_map_lock);
5374 * Attempt to free all partial slabs on a node.
5375 * This is called from __kmem_cache_shutdown(). We must take list_lock
5376 * because sysfs file might still access partial list after the shutdowning.
5378 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5381 struct slab *slab, *h;
5383 BUG_ON(irqs_disabled());
5384 spin_lock_irq(&n->list_lock);
5385 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5387 remove_partial(n, slab);
5388 list_add(&slab->slab_list, &discard);
5390 list_slab_objects(s, slab,
5391 "Objects remaining in %s on __kmem_cache_shutdown()");
5394 spin_unlock_irq(&n->list_lock);
5396 list_for_each_entry_safe(slab, h, &discard, slab_list)
5397 discard_slab(s, slab);
5400 bool __kmem_cache_empty(struct kmem_cache *s)
5403 struct kmem_cache_node *n;
5405 for_each_kmem_cache_node(s, node, n)
5406 if (n->nr_partial || node_nr_slabs(n))
5412 * Release all resources used by a slab cache.
5414 int __kmem_cache_shutdown(struct kmem_cache *s)
5417 struct kmem_cache_node *n;
5419 flush_all_cpus_locked(s);
5420 /* Attempt to free all objects */
5421 for_each_kmem_cache_node(s, node, n) {
5423 if (n->nr_partial || node_nr_slabs(n))
5429 #ifdef CONFIG_PRINTK
5430 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5433 int __maybe_unused i;
5437 struct kmem_cache *s = slab->slab_cache;
5438 struct track __maybe_unused *trackp;
5440 kpp->kp_ptr = object;
5441 kpp->kp_slab = slab;
5442 kpp->kp_slab_cache = s;
5443 base = slab_address(slab);
5444 objp0 = kasan_reset_tag(object);
5445 #ifdef CONFIG_SLUB_DEBUG
5446 objp = restore_red_left(s, objp0);
5450 objnr = obj_to_index(s, slab, objp);
5451 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5452 objp = base + s->size * objnr;
5453 kpp->kp_objp = objp;
5454 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5455 || (objp - base) % s->size) ||
5456 !(s->flags & SLAB_STORE_USER))
5458 #ifdef CONFIG_SLUB_DEBUG
5459 objp = fixup_red_left(s, objp);
5460 trackp = get_track(s, objp, TRACK_ALLOC);
5461 kpp->kp_ret = (void *)trackp->addr;
5462 #ifdef CONFIG_STACKDEPOT
5464 depot_stack_handle_t handle;
5465 unsigned long *entries;
5466 unsigned int nr_entries;
5468 handle = READ_ONCE(trackp->handle);
5470 nr_entries = stack_depot_fetch(handle, &entries);
5471 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5472 kpp->kp_stack[i] = (void *)entries[i];
5475 trackp = get_track(s, objp, TRACK_FREE);
5476 handle = READ_ONCE(trackp->handle);
5478 nr_entries = stack_depot_fetch(handle, &entries);
5479 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5480 kpp->kp_free_stack[i] = (void *)entries[i];
5488 /********************************************************************
5490 *******************************************************************/
5492 static int __init setup_slub_min_order(char *str)
5494 get_option(&str, (int *)&slub_min_order);
5496 if (slub_min_order > slub_max_order)
5497 slub_max_order = slub_min_order;
5502 __setup("slab_min_order=", setup_slub_min_order);
5503 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5506 static int __init setup_slub_max_order(char *str)
5508 get_option(&str, (int *)&slub_max_order);
5509 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5511 if (slub_min_order > slub_max_order)
5512 slub_min_order = slub_max_order;
5517 __setup("slab_max_order=", setup_slub_max_order);
5518 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5520 static int __init setup_slub_min_objects(char *str)
5522 get_option(&str, (int *)&slub_min_objects);
5527 __setup("slab_min_objects=", setup_slub_min_objects);
5528 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5530 #ifdef CONFIG_HARDENED_USERCOPY
5532 * Rejects incorrectly sized objects and objects that are to be copied
5533 * to/from userspace but do not fall entirely within the containing slab
5534 * cache's usercopy region.
5536 * Returns NULL if check passes, otherwise const char * to name of cache
5537 * to indicate an error.
5539 void __check_heap_object(const void *ptr, unsigned long n,
5540 const struct slab *slab, bool to_user)
5542 struct kmem_cache *s;
5543 unsigned int offset;
5544 bool is_kfence = is_kfence_address(ptr);
5546 ptr = kasan_reset_tag(ptr);
5548 /* Find object and usable object size. */
5549 s = slab->slab_cache;
5551 /* Reject impossible pointers. */
5552 if (ptr < slab_address(slab))
5553 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5556 /* Find offset within object. */
5558 offset = ptr - kfence_object_start(ptr);
5560 offset = (ptr - slab_address(slab)) % s->size;
5562 /* Adjust for redzone and reject if within the redzone. */
5563 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5564 if (offset < s->red_left_pad)
5565 usercopy_abort("SLUB object in left red zone",
5566 s->name, to_user, offset, n);
5567 offset -= s->red_left_pad;
5570 /* Allow address range falling entirely within usercopy region. */
5571 if (offset >= s->useroffset &&
5572 offset - s->useroffset <= s->usersize &&
5573 n <= s->useroffset - offset + s->usersize)
5576 usercopy_abort("SLUB object", s->name, to_user, offset, n);
5578 #endif /* CONFIG_HARDENED_USERCOPY */
5580 #define SHRINK_PROMOTE_MAX 32
5583 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5584 * up most to the head of the partial lists. New allocations will then
5585 * fill those up and thus they can be removed from the partial lists.
5587 * The slabs with the least items are placed last. This results in them
5588 * being allocated from last increasing the chance that the last objects
5589 * are freed in them.
5591 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5595 struct kmem_cache_node *n;
5598 struct list_head discard;
5599 struct list_head promote[SHRINK_PROMOTE_MAX];
5600 unsigned long flags;
5603 for_each_kmem_cache_node(s, node, n) {
5604 INIT_LIST_HEAD(&discard);
5605 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5606 INIT_LIST_HEAD(promote + i);
5608 spin_lock_irqsave(&n->list_lock, flags);
5611 * Build lists of slabs to discard or promote.
5613 * Note that concurrent frees may occur while we hold the
5614 * list_lock. slab->inuse here is the upper limit.
5616 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5617 int free = slab->objects - slab->inuse;
5619 /* Do not reread slab->inuse */
5622 /* We do not keep full slabs on the list */
5625 if (free == slab->objects) {
5626 list_move(&slab->slab_list, &discard);
5627 slab_clear_node_partial(slab);
5629 dec_slabs_node(s, node, slab->objects);
5630 } else if (free <= SHRINK_PROMOTE_MAX)
5631 list_move(&slab->slab_list, promote + free - 1);
5635 * Promote the slabs filled up most to the head of the
5638 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5639 list_splice(promote + i, &n->partial);
5641 spin_unlock_irqrestore(&n->list_lock, flags);
5643 /* Release empty slabs */
5644 list_for_each_entry_safe(slab, t, &discard, slab_list)
5647 if (node_nr_slabs(n))
5654 int __kmem_cache_shrink(struct kmem_cache *s)
5657 return __kmem_cache_do_shrink(s);
5660 static int slab_mem_going_offline_callback(void *arg)
5662 struct kmem_cache *s;
5664 mutex_lock(&slab_mutex);
5665 list_for_each_entry(s, &slab_caches, list) {
5666 flush_all_cpus_locked(s);
5667 __kmem_cache_do_shrink(s);
5669 mutex_unlock(&slab_mutex);
5674 static void slab_mem_offline_callback(void *arg)
5676 struct memory_notify *marg = arg;
5679 offline_node = marg->status_change_nid_normal;
5682 * If the node still has available memory. we need kmem_cache_node
5685 if (offline_node < 0)
5688 mutex_lock(&slab_mutex);
5689 node_clear(offline_node, slab_nodes);
5691 * We no longer free kmem_cache_node structures here, as it would be
5692 * racy with all get_node() users, and infeasible to protect them with
5695 mutex_unlock(&slab_mutex);
5698 static int slab_mem_going_online_callback(void *arg)
5700 struct kmem_cache_node *n;
5701 struct kmem_cache *s;
5702 struct memory_notify *marg = arg;
5703 int nid = marg->status_change_nid_normal;
5707 * If the node's memory is already available, then kmem_cache_node is
5708 * already created. Nothing to do.
5714 * We are bringing a node online. No memory is available yet. We must
5715 * allocate a kmem_cache_node structure in order to bring the node
5718 mutex_lock(&slab_mutex);
5719 list_for_each_entry(s, &slab_caches, list) {
5721 * The structure may already exist if the node was previously
5722 * onlined and offlined.
5724 if (get_node(s, nid))
5727 * XXX: kmem_cache_alloc_node will fallback to other nodes
5728 * since memory is not yet available from the node that
5731 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5736 init_kmem_cache_node(n);
5740 * Any cache created after this point will also have kmem_cache_node
5741 * initialized for the new node.
5743 node_set(nid, slab_nodes);
5745 mutex_unlock(&slab_mutex);
5749 static int slab_memory_callback(struct notifier_block *self,
5750 unsigned long action, void *arg)
5755 case MEM_GOING_ONLINE:
5756 ret = slab_mem_going_online_callback(arg);
5758 case MEM_GOING_OFFLINE:
5759 ret = slab_mem_going_offline_callback(arg);
5762 case MEM_CANCEL_ONLINE:
5763 slab_mem_offline_callback(arg);
5766 case MEM_CANCEL_OFFLINE:
5770 ret = notifier_from_errno(ret);
5776 /********************************************************************
5777 * Basic setup of slabs
5778 *******************************************************************/
5781 * Used for early kmem_cache structures that were allocated using
5782 * the page allocator. Allocate them properly then fix up the pointers
5783 * that may be pointing to the wrong kmem_cache structure.
5786 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5789 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5790 struct kmem_cache_node *n;
5792 memcpy(s, static_cache, kmem_cache->object_size);
5795 * This runs very early, and only the boot processor is supposed to be
5796 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5799 __flush_cpu_slab(s, smp_processor_id());
5800 for_each_kmem_cache_node(s, node, n) {
5803 list_for_each_entry(p, &n->partial, slab_list)
5806 #ifdef CONFIG_SLUB_DEBUG
5807 list_for_each_entry(p, &n->full, slab_list)
5811 list_add(&s->list, &slab_caches);
5815 void __init kmem_cache_init(void)
5817 static __initdata struct kmem_cache boot_kmem_cache,
5818 boot_kmem_cache_node;
5821 if (debug_guardpage_minorder())
5824 /* Print slub debugging pointers without hashing */
5825 if (__slub_debug_enabled())
5826 no_hash_pointers_enable(NULL);
5828 kmem_cache_node = &boot_kmem_cache_node;
5829 kmem_cache = &boot_kmem_cache;
5832 * Initialize the nodemask for which we will allocate per node
5833 * structures. Here we don't need taking slab_mutex yet.
5835 for_each_node_state(node, N_NORMAL_MEMORY)
5836 node_set(node, slab_nodes);
5838 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5839 sizeof(struct kmem_cache_node),
5840 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5842 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5844 /* Able to allocate the per node structures */
5845 slab_state = PARTIAL;
5847 create_boot_cache(kmem_cache, "kmem_cache",
5848 offsetof(struct kmem_cache, node) +
5849 nr_node_ids * sizeof(struct kmem_cache_node *),
5850 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5852 kmem_cache = bootstrap(&boot_kmem_cache);
5853 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5855 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5856 setup_kmalloc_cache_index_table();
5857 create_kmalloc_caches();
5859 /* Setup random freelists for each cache */
5860 init_freelist_randomization();
5862 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5865 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5867 slub_min_order, slub_max_order, slub_min_objects,
5868 nr_cpu_ids, nr_node_ids);
5871 void __init kmem_cache_init_late(void)
5873 #ifndef CONFIG_SLUB_TINY
5874 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5880 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5881 slab_flags_t flags, void (*ctor)(void *))
5883 struct kmem_cache *s;
5885 s = find_mergeable(size, align, flags, name, ctor);
5887 if (sysfs_slab_alias(s, name))
5893 * Adjust the object sizes so that we clear
5894 * the complete object on kzalloc.
5896 s->object_size = max(s->object_size, size);
5897 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5903 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5907 err = kmem_cache_open(s, flags);
5911 /* Mutex is not taken during early boot */
5912 if (slab_state <= UP)
5915 err = sysfs_slab_add(s);
5917 __kmem_cache_release(s);
5921 if (s->flags & SLAB_STORE_USER)
5922 debugfs_slab_add(s);
5927 #ifdef SLAB_SUPPORTS_SYSFS
5928 static int count_inuse(struct slab *slab)
5933 static int count_total(struct slab *slab)
5935 return slab->objects;
5939 #ifdef CONFIG_SLUB_DEBUG
5940 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5941 unsigned long *obj_map)
5944 void *addr = slab_address(slab);
5946 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5949 /* Now we know that a valid freelist exists */
5950 __fill_map(obj_map, s, slab);
5951 for_each_object(p, s, addr, slab->objects) {
5952 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5953 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5955 if (!check_object(s, slab, p, val))
5960 static int validate_slab_node(struct kmem_cache *s,
5961 struct kmem_cache_node *n, unsigned long *obj_map)
5963 unsigned long count = 0;
5965 unsigned long flags;
5967 spin_lock_irqsave(&n->list_lock, flags);
5969 list_for_each_entry(slab, &n->partial, slab_list) {
5970 validate_slab(s, slab, obj_map);
5973 if (count != n->nr_partial) {
5974 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5975 s->name, count, n->nr_partial);
5976 slab_add_kunit_errors();
5979 if (!(s->flags & SLAB_STORE_USER))
5982 list_for_each_entry(slab, &n->full, slab_list) {
5983 validate_slab(s, slab, obj_map);
5986 if (count != node_nr_slabs(n)) {
5987 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5988 s->name, count, node_nr_slabs(n));
5989 slab_add_kunit_errors();
5993 spin_unlock_irqrestore(&n->list_lock, flags);
5997 long validate_slab_cache(struct kmem_cache *s)
6000 unsigned long count = 0;
6001 struct kmem_cache_node *n;
6002 unsigned long *obj_map;
6004 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6009 for_each_kmem_cache_node(s, node, n)
6010 count += validate_slab_node(s, n, obj_map);
6012 bitmap_free(obj_map);
6016 EXPORT_SYMBOL(validate_slab_cache);
6018 #ifdef CONFIG_DEBUG_FS
6020 * Generate lists of code addresses where slabcache objects are allocated
6025 depot_stack_handle_t handle;
6026 unsigned long count;
6028 unsigned long waste;
6034 DECLARE_BITMAP(cpus, NR_CPUS);
6040 unsigned long count;
6041 struct location *loc;
6045 static struct dentry *slab_debugfs_root;
6047 static void free_loc_track(struct loc_track *t)
6050 free_pages((unsigned long)t->loc,
6051 get_order(sizeof(struct location) * t->max));
6054 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6059 order = get_order(sizeof(struct location) * max);
6061 l = (void *)__get_free_pages(flags, order);
6066 memcpy(l, t->loc, sizeof(struct location) * t->count);
6074 static int add_location(struct loc_track *t, struct kmem_cache *s,
6075 const struct track *track,
6076 unsigned int orig_size)
6078 long start, end, pos;
6080 unsigned long caddr, chandle, cwaste;
6081 unsigned long age = jiffies - track->when;
6082 depot_stack_handle_t handle = 0;
6083 unsigned int waste = s->object_size - orig_size;
6085 #ifdef CONFIG_STACKDEPOT
6086 handle = READ_ONCE(track->handle);
6092 pos = start + (end - start + 1) / 2;
6095 * There is nothing at "end". If we end up there
6096 * we need to add something to before end.
6103 chandle = l->handle;
6105 if ((track->addr == caddr) && (handle == chandle) &&
6106 (waste == cwaste)) {
6111 if (age < l->min_time)
6113 if (age > l->max_time)
6116 if (track->pid < l->min_pid)
6117 l->min_pid = track->pid;
6118 if (track->pid > l->max_pid)
6119 l->max_pid = track->pid;
6121 cpumask_set_cpu(track->cpu,
6122 to_cpumask(l->cpus));
6124 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6128 if (track->addr < caddr)
6130 else if (track->addr == caddr && handle < chandle)
6132 else if (track->addr == caddr && handle == chandle &&
6140 * Not found. Insert new tracking element.
6142 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6148 (t->count - pos) * sizeof(struct location));
6151 l->addr = track->addr;
6155 l->min_pid = track->pid;
6156 l->max_pid = track->pid;
6159 cpumask_clear(to_cpumask(l->cpus));
6160 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6161 nodes_clear(l->nodes);
6162 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6166 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6167 struct slab *slab, enum track_item alloc,
6168 unsigned long *obj_map)
6170 void *addr = slab_address(slab);
6171 bool is_alloc = (alloc == TRACK_ALLOC);
6174 __fill_map(obj_map, s, slab);
6176 for_each_object(p, s, addr, slab->objects)
6177 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6178 add_location(t, s, get_track(s, p, alloc),
6179 is_alloc ? get_orig_size(s, p) :
6182 #endif /* CONFIG_DEBUG_FS */
6183 #endif /* CONFIG_SLUB_DEBUG */
6185 #ifdef SLAB_SUPPORTS_SYSFS
6186 enum slab_stat_type {
6187 SL_ALL, /* All slabs */
6188 SL_PARTIAL, /* Only partially allocated slabs */
6189 SL_CPU, /* Only slabs used for cpu caches */
6190 SL_OBJECTS, /* Determine allocated objects not slabs */
6191 SL_TOTAL /* Determine object capacity not slabs */
6194 #define SO_ALL (1 << SL_ALL)
6195 #define SO_PARTIAL (1 << SL_PARTIAL)
6196 #define SO_CPU (1 << SL_CPU)
6197 #define SO_OBJECTS (1 << SL_OBJECTS)
6198 #define SO_TOTAL (1 << SL_TOTAL)
6200 static ssize_t show_slab_objects(struct kmem_cache *s,
6201 char *buf, unsigned long flags)
6203 unsigned long total = 0;
6206 unsigned long *nodes;
6209 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6213 if (flags & SO_CPU) {
6216 for_each_possible_cpu(cpu) {
6217 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6222 slab = READ_ONCE(c->slab);
6226 node = slab_nid(slab);
6227 if (flags & SO_TOTAL)
6229 else if (flags & SO_OBJECTS)
6237 #ifdef CONFIG_SLUB_CPU_PARTIAL
6238 slab = slub_percpu_partial_read_once(c);
6240 node = slab_nid(slab);
6241 if (flags & SO_TOTAL)
6243 else if (flags & SO_OBJECTS)
6246 x = data_race(slab->slabs);
6255 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6256 * already held which will conflict with an existing lock order:
6258 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6260 * We don't really need mem_hotplug_lock (to hold off
6261 * slab_mem_going_offline_callback) here because slab's memory hot
6262 * unplug code doesn't destroy the kmem_cache->node[] data.
6265 #ifdef CONFIG_SLUB_DEBUG
6266 if (flags & SO_ALL) {
6267 struct kmem_cache_node *n;
6269 for_each_kmem_cache_node(s, node, n) {
6271 if (flags & SO_TOTAL)
6272 x = node_nr_objs(n);
6273 else if (flags & SO_OBJECTS)
6274 x = node_nr_objs(n) - count_partial(n, count_free);
6276 x = node_nr_slabs(n);
6283 if (flags & SO_PARTIAL) {
6284 struct kmem_cache_node *n;
6286 for_each_kmem_cache_node(s, node, n) {
6287 if (flags & SO_TOTAL)
6288 x = count_partial(n, count_total);
6289 else if (flags & SO_OBJECTS)
6290 x = count_partial(n, count_inuse);
6298 len += sysfs_emit_at(buf, len, "%lu", total);
6300 for (node = 0; node < nr_node_ids; node++) {
6302 len += sysfs_emit_at(buf, len, " N%d=%lu",
6306 len += sysfs_emit_at(buf, len, "\n");
6312 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6313 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6315 struct slab_attribute {
6316 struct attribute attr;
6317 ssize_t (*show)(struct kmem_cache *s, char *buf);
6318 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6321 #define SLAB_ATTR_RO(_name) \
6322 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6324 #define SLAB_ATTR(_name) \
6325 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6327 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6329 return sysfs_emit(buf, "%u\n", s->size);
6331 SLAB_ATTR_RO(slab_size);
6333 static ssize_t align_show(struct kmem_cache *s, char *buf)
6335 return sysfs_emit(buf, "%u\n", s->align);
6337 SLAB_ATTR_RO(align);
6339 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6341 return sysfs_emit(buf, "%u\n", s->object_size);
6343 SLAB_ATTR_RO(object_size);
6345 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6347 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6349 SLAB_ATTR_RO(objs_per_slab);
6351 static ssize_t order_show(struct kmem_cache *s, char *buf)
6353 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6355 SLAB_ATTR_RO(order);
6357 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6359 return sysfs_emit(buf, "%lu\n", s->min_partial);
6362 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6368 err = kstrtoul(buf, 10, &min);
6372 s->min_partial = min;
6375 SLAB_ATTR(min_partial);
6377 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6379 unsigned int nr_partial = 0;
6380 #ifdef CONFIG_SLUB_CPU_PARTIAL
6381 nr_partial = s->cpu_partial;
6384 return sysfs_emit(buf, "%u\n", nr_partial);
6387 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6390 unsigned int objects;
6393 err = kstrtouint(buf, 10, &objects);
6396 if (objects && !kmem_cache_has_cpu_partial(s))
6399 slub_set_cpu_partial(s, objects);
6403 SLAB_ATTR(cpu_partial);
6405 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6409 return sysfs_emit(buf, "%pS\n", s->ctor);
6413 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6415 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6417 SLAB_ATTR_RO(aliases);
6419 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6421 return show_slab_objects(s, buf, SO_PARTIAL);
6423 SLAB_ATTR_RO(partial);
6425 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6427 return show_slab_objects(s, buf, SO_CPU);
6429 SLAB_ATTR_RO(cpu_slabs);
6431 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6433 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6435 SLAB_ATTR_RO(objects_partial);
6437 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6441 int cpu __maybe_unused;
6444 #ifdef CONFIG_SLUB_CPU_PARTIAL
6445 for_each_online_cpu(cpu) {
6448 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6451 slabs += data_race(slab->slabs);
6455 /* Approximate half-full slabs, see slub_set_cpu_partial() */
6456 objects = (slabs * oo_objects(s->oo)) / 2;
6457 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6459 #ifdef CONFIG_SLUB_CPU_PARTIAL
6460 for_each_online_cpu(cpu) {
6463 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6465 slabs = data_race(slab->slabs);
6466 objects = (slabs * oo_objects(s->oo)) / 2;
6467 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6468 cpu, objects, slabs);
6472 len += sysfs_emit_at(buf, len, "\n");
6476 SLAB_ATTR_RO(slabs_cpu_partial);
6478 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6480 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6482 SLAB_ATTR_RO(reclaim_account);
6484 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6486 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6488 SLAB_ATTR_RO(hwcache_align);
6490 #ifdef CONFIG_ZONE_DMA
6491 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6493 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6495 SLAB_ATTR_RO(cache_dma);
6498 #ifdef CONFIG_HARDENED_USERCOPY
6499 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6501 return sysfs_emit(buf, "%u\n", s->usersize);
6503 SLAB_ATTR_RO(usersize);
6506 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6508 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6510 SLAB_ATTR_RO(destroy_by_rcu);
6512 #ifdef CONFIG_SLUB_DEBUG
6513 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6515 return show_slab_objects(s, buf, SO_ALL);
6517 SLAB_ATTR_RO(slabs);
6519 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6521 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6523 SLAB_ATTR_RO(total_objects);
6525 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6527 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6529 SLAB_ATTR_RO(objects);
6531 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6533 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6535 SLAB_ATTR_RO(sanity_checks);
6537 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6539 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6541 SLAB_ATTR_RO(trace);
6543 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6545 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6548 SLAB_ATTR_RO(red_zone);
6550 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6552 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6555 SLAB_ATTR_RO(poison);
6557 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6559 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6562 SLAB_ATTR_RO(store_user);
6564 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6569 static ssize_t validate_store(struct kmem_cache *s,
6570 const char *buf, size_t length)
6574 if (buf[0] == '1' && kmem_cache_debug(s)) {
6575 ret = validate_slab_cache(s);
6581 SLAB_ATTR(validate);
6583 #endif /* CONFIG_SLUB_DEBUG */
6585 #ifdef CONFIG_FAILSLAB
6586 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6588 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6591 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6594 if (s->refcount > 1)
6598 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6600 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6604 SLAB_ATTR(failslab);
6607 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6612 static ssize_t shrink_store(struct kmem_cache *s,
6613 const char *buf, size_t length)
6616 kmem_cache_shrink(s);
6624 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6626 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6629 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6630 const char *buf, size_t length)
6635 err = kstrtouint(buf, 10, &ratio);
6641 s->remote_node_defrag_ratio = ratio * 10;
6645 SLAB_ATTR(remote_node_defrag_ratio);
6648 #ifdef CONFIG_SLUB_STATS
6649 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6651 unsigned long sum = 0;
6654 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6659 for_each_online_cpu(cpu) {
6660 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6666 len += sysfs_emit_at(buf, len, "%lu", sum);
6669 for_each_online_cpu(cpu) {
6671 len += sysfs_emit_at(buf, len, " C%d=%u",
6676 len += sysfs_emit_at(buf, len, "\n");
6681 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6685 for_each_online_cpu(cpu)
6686 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6689 #define STAT_ATTR(si, text) \
6690 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
6692 return show_stat(s, buf, si); \
6694 static ssize_t text##_store(struct kmem_cache *s, \
6695 const char *buf, size_t length) \
6697 if (buf[0] != '0') \
6699 clear_stat(s, si); \
6704 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6705 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6706 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6707 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6708 STAT_ATTR(FREE_FROZEN, free_frozen);
6709 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6710 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6711 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6712 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6713 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6714 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6715 STAT_ATTR(FREE_SLAB, free_slab);
6716 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6717 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6718 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6719 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6720 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6721 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6722 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6723 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6724 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6725 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6726 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6727 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6728 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6729 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6730 #endif /* CONFIG_SLUB_STATS */
6732 #ifdef CONFIG_KFENCE
6733 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6735 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6738 static ssize_t skip_kfence_store(struct kmem_cache *s,
6739 const char *buf, size_t length)
6744 s->flags &= ~SLAB_SKIP_KFENCE;
6745 else if (buf[0] == '1')
6746 s->flags |= SLAB_SKIP_KFENCE;
6752 SLAB_ATTR(skip_kfence);
6755 static struct attribute *slab_attrs[] = {
6756 &slab_size_attr.attr,
6757 &object_size_attr.attr,
6758 &objs_per_slab_attr.attr,
6760 &min_partial_attr.attr,
6761 &cpu_partial_attr.attr,
6762 &objects_partial_attr.attr,
6764 &cpu_slabs_attr.attr,
6768 &hwcache_align_attr.attr,
6769 &reclaim_account_attr.attr,
6770 &destroy_by_rcu_attr.attr,
6772 &slabs_cpu_partial_attr.attr,
6773 #ifdef CONFIG_SLUB_DEBUG
6774 &total_objects_attr.attr,
6777 &sanity_checks_attr.attr,
6779 &red_zone_attr.attr,
6781 &store_user_attr.attr,
6782 &validate_attr.attr,
6784 #ifdef CONFIG_ZONE_DMA
6785 &cache_dma_attr.attr,
6788 &remote_node_defrag_ratio_attr.attr,
6790 #ifdef CONFIG_SLUB_STATS
6791 &alloc_fastpath_attr.attr,
6792 &alloc_slowpath_attr.attr,
6793 &free_fastpath_attr.attr,
6794 &free_slowpath_attr.attr,
6795 &free_frozen_attr.attr,
6796 &free_add_partial_attr.attr,
6797 &free_remove_partial_attr.attr,
6798 &alloc_from_partial_attr.attr,
6799 &alloc_slab_attr.attr,
6800 &alloc_refill_attr.attr,
6801 &alloc_node_mismatch_attr.attr,
6802 &free_slab_attr.attr,
6803 &cpuslab_flush_attr.attr,
6804 &deactivate_full_attr.attr,
6805 &deactivate_empty_attr.attr,
6806 &deactivate_to_head_attr.attr,
6807 &deactivate_to_tail_attr.attr,
6808 &deactivate_remote_frees_attr.attr,
6809 &deactivate_bypass_attr.attr,
6810 &order_fallback_attr.attr,
6811 &cmpxchg_double_fail_attr.attr,
6812 &cmpxchg_double_cpu_fail_attr.attr,
6813 &cpu_partial_alloc_attr.attr,
6814 &cpu_partial_free_attr.attr,
6815 &cpu_partial_node_attr.attr,
6816 &cpu_partial_drain_attr.attr,
6818 #ifdef CONFIG_FAILSLAB
6819 &failslab_attr.attr,
6821 #ifdef CONFIG_HARDENED_USERCOPY
6822 &usersize_attr.attr,
6824 #ifdef CONFIG_KFENCE
6825 &skip_kfence_attr.attr,
6831 static const struct attribute_group slab_attr_group = {
6832 .attrs = slab_attrs,
6835 static ssize_t slab_attr_show(struct kobject *kobj,
6836 struct attribute *attr,
6839 struct slab_attribute *attribute;
6840 struct kmem_cache *s;
6842 attribute = to_slab_attr(attr);
6845 if (!attribute->show)
6848 return attribute->show(s, buf);
6851 static ssize_t slab_attr_store(struct kobject *kobj,
6852 struct attribute *attr,
6853 const char *buf, size_t len)
6855 struct slab_attribute *attribute;
6856 struct kmem_cache *s;
6858 attribute = to_slab_attr(attr);
6861 if (!attribute->store)
6864 return attribute->store(s, buf, len);
6867 static void kmem_cache_release(struct kobject *k)
6869 slab_kmem_cache_release(to_slab(k));
6872 static const struct sysfs_ops slab_sysfs_ops = {
6873 .show = slab_attr_show,
6874 .store = slab_attr_store,
6877 static const struct kobj_type slab_ktype = {
6878 .sysfs_ops = &slab_sysfs_ops,
6879 .release = kmem_cache_release,
6882 static struct kset *slab_kset;
6884 static inline struct kset *cache_kset(struct kmem_cache *s)
6889 #define ID_STR_LENGTH 32
6891 /* Create a unique string id for a slab cache:
6893 * Format :[flags-]size
6895 static char *create_unique_id(struct kmem_cache *s)
6897 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6901 return ERR_PTR(-ENOMEM);
6905 * First flags affecting slabcache operations. We will only
6906 * get here for aliasable slabs so we do not need to support
6907 * too many flags. The flags here must cover all flags that
6908 * are matched during merging to guarantee that the id is
6911 if (s->flags & SLAB_CACHE_DMA)
6913 if (s->flags & SLAB_CACHE_DMA32)
6915 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6917 if (s->flags & SLAB_CONSISTENCY_CHECKS)
6919 if (s->flags & SLAB_ACCOUNT)
6923 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6925 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6927 return ERR_PTR(-EINVAL);
6929 kmsan_unpoison_memory(name, p - name);
6933 static int sysfs_slab_add(struct kmem_cache *s)
6937 struct kset *kset = cache_kset(s);
6938 int unmergeable = slab_unmergeable(s);
6940 if (!unmergeable && disable_higher_order_debug &&
6941 (slub_debug & DEBUG_METADATA_FLAGS))
6946 * Slabcache can never be merged so we can use the name proper.
6947 * This is typically the case for debug situations. In that
6948 * case we can catch duplicate names easily.
6950 sysfs_remove_link(&slab_kset->kobj, s->name);
6954 * Create a unique name for the slab as a target
6957 name = create_unique_id(s);
6959 return PTR_ERR(name);
6962 s->kobj.kset = kset;
6963 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6967 err = sysfs_create_group(&s->kobj, &slab_attr_group);
6972 /* Setup first alias */
6973 sysfs_slab_alias(s, s->name);
6980 kobject_del(&s->kobj);
6984 void sysfs_slab_unlink(struct kmem_cache *s)
6986 kobject_del(&s->kobj);
6989 void sysfs_slab_release(struct kmem_cache *s)
6991 kobject_put(&s->kobj);
6995 * Need to buffer aliases during bootup until sysfs becomes
6996 * available lest we lose that information.
6998 struct saved_alias {
6999 struct kmem_cache *s;
7001 struct saved_alias *next;
7004 static struct saved_alias *alias_list;
7006 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7008 struct saved_alias *al;
7010 if (slab_state == FULL) {
7012 * If we have a leftover link then remove it.
7014 sysfs_remove_link(&slab_kset->kobj, name);
7015 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7018 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7024 al->next = alias_list;
7026 kmsan_unpoison_memory(al, sizeof(*al));
7030 static int __init slab_sysfs_init(void)
7032 struct kmem_cache *s;
7035 mutex_lock(&slab_mutex);
7037 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7039 mutex_unlock(&slab_mutex);
7040 pr_err("Cannot register slab subsystem.\n");
7046 list_for_each_entry(s, &slab_caches, list) {
7047 err = sysfs_slab_add(s);
7049 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7053 while (alias_list) {
7054 struct saved_alias *al = alias_list;
7056 alias_list = alias_list->next;
7057 err = sysfs_slab_alias(al->s, al->name);
7059 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7064 mutex_unlock(&slab_mutex);
7067 late_initcall(slab_sysfs_init);
7068 #endif /* SLAB_SUPPORTS_SYSFS */
7070 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7071 static int slab_debugfs_show(struct seq_file *seq, void *v)
7073 struct loc_track *t = seq->private;
7077 idx = (unsigned long) t->idx;
7078 if (idx < t->count) {
7081 seq_printf(seq, "%7ld ", l->count);
7084 seq_printf(seq, "%pS", (void *)l->addr);
7086 seq_puts(seq, "<not-available>");
7089 seq_printf(seq, " waste=%lu/%lu",
7090 l->count * l->waste, l->waste);
7092 if (l->sum_time != l->min_time) {
7093 seq_printf(seq, " age=%ld/%llu/%ld",
7094 l->min_time, div_u64(l->sum_time, l->count),
7097 seq_printf(seq, " age=%ld", l->min_time);
7099 if (l->min_pid != l->max_pid)
7100 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7102 seq_printf(seq, " pid=%ld",
7105 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7106 seq_printf(seq, " cpus=%*pbl",
7107 cpumask_pr_args(to_cpumask(l->cpus)));
7109 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7110 seq_printf(seq, " nodes=%*pbl",
7111 nodemask_pr_args(&l->nodes));
7113 #ifdef CONFIG_STACKDEPOT
7115 depot_stack_handle_t handle;
7116 unsigned long *entries;
7117 unsigned int nr_entries, j;
7119 handle = READ_ONCE(l->handle);
7121 nr_entries = stack_depot_fetch(handle, &entries);
7122 seq_puts(seq, "\n");
7123 for (j = 0; j < nr_entries; j++)
7124 seq_printf(seq, " %pS\n", (void *)entries[j]);
7128 seq_puts(seq, "\n");
7131 if (!idx && !t->count)
7132 seq_puts(seq, "No data\n");
7137 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7141 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7143 struct loc_track *t = seq->private;
7146 if (*ppos <= t->count)
7152 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7154 struct location *loc1 = (struct location *)a;
7155 struct location *loc2 = (struct location *)b;
7157 if (loc1->count > loc2->count)
7163 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7165 struct loc_track *t = seq->private;
7171 static const struct seq_operations slab_debugfs_sops = {
7172 .start = slab_debugfs_start,
7173 .next = slab_debugfs_next,
7174 .stop = slab_debugfs_stop,
7175 .show = slab_debugfs_show,
7178 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7181 struct kmem_cache_node *n;
7182 enum track_item alloc;
7184 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7185 sizeof(struct loc_track));
7186 struct kmem_cache *s = file_inode(filep)->i_private;
7187 unsigned long *obj_map;
7192 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7194 seq_release_private(inode, filep);
7198 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7199 alloc = TRACK_ALLOC;
7203 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7204 bitmap_free(obj_map);
7205 seq_release_private(inode, filep);
7209 for_each_kmem_cache_node(s, node, n) {
7210 unsigned long flags;
7213 if (!node_nr_slabs(n))
7216 spin_lock_irqsave(&n->list_lock, flags);
7217 list_for_each_entry(slab, &n->partial, slab_list)
7218 process_slab(t, s, slab, alloc, obj_map);
7219 list_for_each_entry(slab, &n->full, slab_list)
7220 process_slab(t, s, slab, alloc, obj_map);
7221 spin_unlock_irqrestore(&n->list_lock, flags);
7224 /* Sort locations by count */
7225 sort_r(t->loc, t->count, sizeof(struct location),
7226 cmp_loc_by_count, NULL, NULL);
7228 bitmap_free(obj_map);
7232 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7234 struct seq_file *seq = file->private_data;
7235 struct loc_track *t = seq->private;
7238 return seq_release_private(inode, file);
7241 static const struct file_operations slab_debugfs_fops = {
7242 .open = slab_debug_trace_open,
7244 .llseek = seq_lseek,
7245 .release = slab_debug_trace_release,
7248 static void debugfs_slab_add(struct kmem_cache *s)
7250 struct dentry *slab_cache_dir;
7252 if (unlikely(!slab_debugfs_root))
7255 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7257 debugfs_create_file("alloc_traces", 0400,
7258 slab_cache_dir, s, &slab_debugfs_fops);
7260 debugfs_create_file("free_traces", 0400,
7261 slab_cache_dir, s, &slab_debugfs_fops);
7264 void debugfs_slab_release(struct kmem_cache *s)
7266 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7269 static int __init slab_debugfs_init(void)
7271 struct kmem_cache *s;
7273 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7275 list_for_each_entry(s, &slab_caches, list)
7276 if (s->flags & SLAB_STORE_USER)
7277 debugfs_slab_add(s);
7282 __initcall(slab_debugfs_init);
7285 * The /proc/slabinfo ABI
7287 #ifdef CONFIG_SLUB_DEBUG
7288 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7290 unsigned long nr_slabs = 0;
7291 unsigned long nr_objs = 0;
7292 unsigned long nr_free = 0;
7294 struct kmem_cache_node *n;
7296 for_each_kmem_cache_node(s, node, n) {
7297 nr_slabs += node_nr_slabs(n);
7298 nr_objs += node_nr_objs(n);
7299 nr_free += count_partial_free_approx(n);
7302 sinfo->active_objs = nr_objs - nr_free;
7303 sinfo->num_objs = nr_objs;
7304 sinfo->active_slabs = nr_slabs;
7305 sinfo->num_slabs = nr_slabs;
7306 sinfo->objects_per_slab = oo_objects(s->oo);
7307 sinfo->cache_order = oo_order(s->oo);
7309 #endif /* CONFIG_SLUB_DEBUG */