1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
6 #ifndef __GENERATING_BOUNDS_H
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
25 /* Free memory management - zoned buddy allocator. */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
36 * coalesce naturally under reasonable reclaim pressure and those which
39 #define PAGE_ALLOC_COSTLY_ORDER 3
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
63 #ifdef CONFIG_MEMORY_ISOLATION
64 MIGRATE_ISOLATE, /* can't allocate from here */
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
73 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
76 # define is_migrate_cma(migratetype) false
77 # define is_migrate_cma_page(_page) false
80 static inline bool is_migrate_movable(int mt)
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
85 #define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
89 extern int page_group_by_mobility_disabled;
91 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
93 #define get_pageblock_migratetype(page) \
94 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
97 struct list_head free_list[MIGRATE_TYPES];
98 unsigned long nr_free;
101 static inline struct page *get_page_from_free_area(struct free_area *area,
104 return list_first_entry_or_null(&area->free_list[migratetype],
108 static inline bool free_area_empty(struct free_area *area, int migratetype)
110 return list_empty(&area->free_list[migratetype]);
116 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
117 * So add a wild amount of padding here to ensure that they fall into separate
118 * cachelines. There are very few zone structures in the machine, so space
119 * consumption is not a concern here.
121 #if defined(CONFIG_SMP)
122 struct zone_padding {
124 } ____cacheline_internodealigned_in_smp;
125 #define ZONE_PADDING(name) struct zone_padding name;
127 #define ZONE_PADDING(name)
131 enum numa_stat_item {
132 NUMA_HIT, /* allocated in intended node */
133 NUMA_MISS, /* allocated in non intended node */
134 NUMA_FOREIGN, /* was intended here, hit elsewhere */
135 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
136 NUMA_LOCAL, /* allocation from local node */
137 NUMA_OTHER, /* allocation from other node */
138 NR_VM_NUMA_STAT_ITEMS
141 #define NR_VM_NUMA_STAT_ITEMS 0
144 enum zone_stat_item {
145 /* First 128 byte cacheline (assuming 64 bit words) */
147 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
148 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
150 NR_ZONE_INACTIVE_FILE,
153 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
154 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
155 NR_PAGETABLE, /* used for pagetables */
156 /* Second 128 byte cacheline */
158 #if IS_ENABLED(CONFIG_ZSMALLOC)
159 NR_ZSPAGES, /* allocated in zsmalloc */
162 NR_VM_ZONE_STAT_ITEMS };
164 enum node_stat_item {
166 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
167 NR_ACTIVE_ANON, /* " " " " " */
168 NR_INACTIVE_FILE, /* " " " " " */
169 NR_ACTIVE_FILE, /* " " " " " */
170 NR_UNEVICTABLE, /* " " " " " */
171 NR_SLAB_RECLAIMABLE_B,
172 NR_SLAB_UNRECLAIMABLE_B,
173 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
174 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
176 WORKINGSET_REFAULT_BASE,
177 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
178 WORKINGSET_REFAULT_FILE,
179 WORKINGSET_ACTIVATE_BASE,
180 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
181 WORKINGSET_ACTIVATE_FILE,
182 WORKINGSET_RESTORE_BASE,
183 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
184 WORKINGSET_RESTORE_FILE,
185 WORKINGSET_NODERECLAIM,
186 NR_ANON_MAPPED, /* Mapped anonymous pages */
187 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
188 only modified from process context */
192 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
193 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
200 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
201 NR_DIRTIED, /* page dirtyings since bootup */
202 NR_WRITTEN, /* page writings since bootup */
203 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
204 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
205 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
206 NR_KERNEL_STACK_KB, /* measured in KiB */
207 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
208 NR_KERNEL_SCS_KB, /* measured in KiB */
210 NR_VM_NODE_STAT_ITEMS
214 * Returns true if the value is measured in bytes (most vmstat values are
215 * measured in pages). This defines the API part, the internal representation
216 * might be different.
218 static __always_inline bool vmstat_item_in_bytes(int idx)
221 * Global and per-node slab counters track slab pages.
222 * It's expected that changes are multiples of PAGE_SIZE.
223 * Internally values are stored in pages.
225 * Per-memcg and per-lruvec counters track memory, consumed
226 * by individual slab objects. These counters are actually
229 return (idx == NR_SLAB_RECLAIMABLE_B ||
230 idx == NR_SLAB_UNRECLAIMABLE_B);
234 * We do arithmetic on the LRU lists in various places in the code,
235 * so it is important to keep the active lists LRU_ACTIVE higher in
236 * the array than the corresponding inactive lists, and to keep
237 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
239 * This has to be kept in sync with the statistics in zone_stat_item
240 * above and the descriptions in vmstat_text in mm/vmstat.c
247 LRU_INACTIVE_ANON = LRU_BASE,
248 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
249 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
250 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
255 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
257 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
259 static inline bool is_file_lru(enum lru_list lru)
261 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
264 static inline bool is_active_lru(enum lru_list lru)
266 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
270 LRUVEC_CONGESTED, /* lruvec has many dirty pages
271 * backed by a congested BDI
276 struct list_head lists[NR_LRU_LISTS];
278 * These track the cost of reclaiming one LRU - file or anon -
279 * over the other. As the observed cost of reclaiming one LRU
280 * increases, the reclaim scan balance tips toward the other.
282 unsigned long anon_cost;
283 unsigned long file_cost;
284 /* Non-resident age, driven by LRU movement */
285 atomic_long_t nonresident_age;
286 /* Refaults at the time of last reclaim cycle, anon=0, file=1 */
287 unsigned long refaults[2];
288 /* Various lruvec state flags (enum lruvec_flags) */
291 struct pglist_data *pgdat;
295 /* Isolate unmapped pages */
296 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
297 /* Isolate for asynchronous migration */
298 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
299 /* Isolate unevictable pages */
300 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
302 /* LRU Isolation modes. */
303 typedef unsigned __bitwise isolate_mode_t;
305 enum zone_watermarks {
312 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
313 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
314 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
315 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
317 struct per_cpu_pages {
318 int count; /* number of pages in the list */
319 int high; /* high watermark, emptying needed */
320 int batch; /* chunk size for buddy add/remove */
322 /* Lists of pages, one per migrate type stored on the pcp-lists */
323 struct list_head lists[MIGRATE_PCPTYPES];
326 struct per_cpu_pageset {
327 struct per_cpu_pages pcp;
330 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
334 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
338 struct per_cpu_nodestat {
340 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
343 #endif /* !__GENERATING_BOUNDS.H */
347 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
348 * to DMA to all of the addressable memory (ZONE_NORMAL).
349 * On architectures where this area covers the whole 32 bit address
350 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
351 * DMA addressing constraints. This distinction is important as a 32bit
352 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
353 * platforms may need both zones as they support peripherals with
354 * different DMA addressing limitations.
358 * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
359 * rest of the lower 4G.
361 * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
362 * the specific device.
364 * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
367 * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
368 * depending on the specific device.
370 * - s390 uses ZONE_DMA fixed to the lower 2G.
372 * - ia64 and riscv only use ZONE_DMA32.
374 * - parisc uses neither.
376 #ifdef CONFIG_ZONE_DMA
379 #ifdef CONFIG_ZONE_DMA32
383 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
384 * performed on pages in ZONE_NORMAL if the DMA devices support
385 * transfers to all addressable memory.
388 #ifdef CONFIG_HIGHMEM
390 * A memory area that is only addressable by the kernel through
391 * mapping portions into its own address space. This is for example
392 * used by i386 to allow the kernel to address the memory beyond
393 * 900MB. The kernel will set up special mappings (page
394 * table entries on i386) for each page that the kernel needs to
400 #ifdef CONFIG_ZONE_DEVICE
407 #ifndef __GENERATING_BOUNDS_H
410 /* Read-mostly fields */
412 /* zone watermarks, access with *_wmark_pages(zone) macros */
413 unsigned long _watermark[NR_WMARK];
414 unsigned long watermark_boost;
416 unsigned long nr_reserved_highatomic;
419 * We don't know if the memory that we're going to allocate will be
420 * freeable or/and it will be released eventually, so to avoid totally
421 * wasting several GB of ram we must reserve some of the lower zone
422 * memory (otherwise we risk to run OOM on the lower zones despite
423 * there being tons of freeable ram on the higher zones). This array is
424 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
427 long lowmem_reserve[MAX_NR_ZONES];
432 struct pglist_data *zone_pgdat;
433 struct per_cpu_pageset __percpu *pageset;
435 #ifndef CONFIG_SPARSEMEM
437 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
438 * In SPARSEMEM, this map is stored in struct mem_section
440 unsigned long *pageblock_flags;
441 #endif /* CONFIG_SPARSEMEM */
443 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
444 unsigned long zone_start_pfn;
447 * spanned_pages is the total pages spanned by the zone, including
448 * holes, which is calculated as:
449 * spanned_pages = zone_end_pfn - zone_start_pfn;
451 * present_pages is physical pages existing within the zone, which
453 * present_pages = spanned_pages - absent_pages(pages in holes);
455 * managed_pages is present pages managed by the buddy system, which
456 * is calculated as (reserved_pages includes pages allocated by the
457 * bootmem allocator):
458 * managed_pages = present_pages - reserved_pages;
460 * So present_pages may be used by memory hotplug or memory power
461 * management logic to figure out unmanaged pages by checking
462 * (present_pages - managed_pages). And managed_pages should be used
463 * by page allocator and vm scanner to calculate all kinds of watermarks
468 * zone_start_pfn and spanned_pages are protected by span_seqlock.
469 * It is a seqlock because it has to be read outside of zone->lock,
470 * and it is done in the main allocator path. But, it is written
471 * quite infrequently.
473 * The span_seq lock is declared along with zone->lock because it is
474 * frequently read in proximity to zone->lock. It's good to
475 * give them a chance of being in the same cacheline.
477 * Write access to present_pages at runtime should be protected by
478 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
479 * present_pages should get_online_mems() to get a stable value.
481 atomic_long_t managed_pages;
482 unsigned long spanned_pages;
483 unsigned long present_pages;
487 #ifdef CONFIG_MEMORY_ISOLATION
489 * Number of isolated pageblock. It is used to solve incorrect
490 * freepage counting problem due to racy retrieving migratetype
491 * of pageblock. Protected by zone->lock.
493 unsigned long nr_isolate_pageblock;
496 #ifdef CONFIG_MEMORY_HOTPLUG
497 /* see spanned/present_pages for more description */
498 seqlock_t span_seqlock;
503 /* Write-intensive fields used from the page allocator */
506 /* free areas of different sizes */
507 struct free_area free_area[MAX_ORDER];
509 /* zone flags, see below */
512 /* Primarily protects free_area */
515 /* Write-intensive fields used by compaction and vmstats. */
519 * When free pages are below this point, additional steps are taken
520 * when reading the number of free pages to avoid per-cpu counter
521 * drift allowing watermarks to be breached
523 unsigned long percpu_drift_mark;
525 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
526 /* pfn where compaction free scanner should start */
527 unsigned long compact_cached_free_pfn;
528 /* pfn where async and sync compaction migration scanner should start */
529 unsigned long compact_cached_migrate_pfn[2];
530 unsigned long compact_init_migrate_pfn;
531 unsigned long compact_init_free_pfn;
534 #ifdef CONFIG_COMPACTION
536 * On compaction failure, 1<<compact_defer_shift compactions
537 * are skipped before trying again. The number attempted since
538 * last failure is tracked with compact_considered.
539 * compact_order_failed is the minimum compaction failed order.
541 unsigned int compact_considered;
542 unsigned int compact_defer_shift;
543 int compact_order_failed;
546 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
547 /* Set to true when the PG_migrate_skip bits should be cleared */
548 bool compact_blockskip_flush;
554 /* Zone statistics */
555 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
556 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
557 } ____cacheline_internodealigned_in_smp;
560 PGDAT_DIRTY, /* reclaim scanning has recently found
561 * many dirty file pages at the tail
564 PGDAT_WRITEBACK, /* reclaim scanning has recently found
565 * many pages under writeback
567 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
571 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
572 * Cleared when kswapd is woken.
576 static inline unsigned long zone_managed_pages(struct zone *zone)
578 return (unsigned long)atomic_long_read(&zone->managed_pages);
581 static inline unsigned long zone_end_pfn(const struct zone *zone)
583 return zone->zone_start_pfn + zone->spanned_pages;
586 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
588 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
591 static inline bool zone_is_initialized(struct zone *zone)
593 return zone->initialized;
596 static inline bool zone_is_empty(struct zone *zone)
598 return zone->spanned_pages == 0;
602 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
603 * intersection with the given zone
605 static inline bool zone_intersects(struct zone *zone,
606 unsigned long start_pfn, unsigned long nr_pages)
608 if (zone_is_empty(zone))
610 if (start_pfn >= zone_end_pfn(zone) ||
611 start_pfn + nr_pages <= zone->zone_start_pfn)
618 * The "priority" of VM scanning is how much of the queues we will scan in one
619 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
620 * queues ("queue_length >> 12") during an aging round.
622 #define DEF_PRIORITY 12
624 /* Maximum number of zones on a zonelist */
625 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
628 ZONELIST_FALLBACK, /* zonelist with fallback */
631 * The NUMA zonelists are doubled because we need zonelists that
632 * restrict the allocations to a single node for __GFP_THISNODE.
634 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
640 * This struct contains information about a zone in a zonelist. It is stored
641 * here to avoid dereferences into large structures and lookups of tables
644 struct zone *zone; /* Pointer to actual zone */
645 int zone_idx; /* zone_idx(zoneref->zone) */
649 * One allocation request operates on a zonelist. A zonelist
650 * is a list of zones, the first one is the 'goal' of the
651 * allocation, the other zones are fallback zones, in decreasing
654 * To speed the reading of the zonelist, the zonerefs contain the zone index
655 * of the entry being read. Helper functions to access information given
656 * a struct zoneref are
658 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
659 * zonelist_zone_idx() - Return the index of the zone for an entry
660 * zonelist_node_idx() - Return the index of the node for an entry
663 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
666 #ifndef CONFIG_DISCONTIGMEM
667 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
668 extern struct page *mem_map;
671 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
672 struct deferred_split {
673 spinlock_t split_queue_lock;
674 struct list_head split_queue;
675 unsigned long split_queue_len;
680 * On NUMA machines, each NUMA node would have a pg_data_t to describe
681 * it's memory layout. On UMA machines there is a single pglist_data which
682 * describes the whole memory.
684 * Memory statistics and page replacement data structures are maintained on a
687 typedef struct pglist_data {
689 * node_zones contains just the zones for THIS node. Not all of the
690 * zones may be populated, but it is the full list. It is referenced by
691 * this node's node_zonelists as well as other node's node_zonelists.
693 struct zone node_zones[MAX_NR_ZONES];
696 * node_zonelists contains references to all zones in all nodes.
697 * Generally the first zones will be references to this node's
700 struct zonelist node_zonelists[MAX_ZONELISTS];
702 int nr_zones; /* number of populated zones in this node */
703 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
704 struct page *node_mem_map;
705 #ifdef CONFIG_PAGE_EXTENSION
706 struct page_ext *node_page_ext;
709 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
711 * Must be held any time you expect node_start_pfn,
712 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
713 * Also synchronizes pgdat->first_deferred_pfn during deferred page
716 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
717 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
718 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
720 * Nests above zone->lock and zone->span_seqlock
722 spinlock_t node_size_lock;
724 unsigned long node_start_pfn;
725 unsigned long node_present_pages; /* total number of physical pages */
726 unsigned long node_spanned_pages; /* total size of physical page
727 range, including holes */
729 wait_queue_head_t kswapd_wait;
730 wait_queue_head_t pfmemalloc_wait;
731 struct task_struct *kswapd; /* Protected by
732 mem_hotplug_begin/end() */
734 enum zone_type kswapd_highest_zoneidx;
736 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
738 #ifdef CONFIG_COMPACTION
739 int kcompactd_max_order;
740 enum zone_type kcompactd_highest_zoneidx;
741 wait_queue_head_t kcompactd_wait;
742 struct task_struct *kcompactd;
745 * This is a per-node reserve of pages that are not available
746 * to userspace allocations.
748 unsigned long totalreserve_pages;
752 * node reclaim becomes active if more unmapped pages exist.
754 unsigned long min_unmapped_pages;
755 unsigned long min_slab_pages;
756 #endif /* CONFIG_NUMA */
758 /* Write-intensive fields used by page reclaim */
762 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
764 * If memory initialisation on large machines is deferred then this
765 * is the first PFN that needs to be initialised.
767 unsigned long first_deferred_pfn;
768 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
771 struct deferred_split deferred_split_queue;
774 /* Fields commonly accessed by the page reclaim scanner */
777 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
779 * Use mem_cgroup_lruvec() to look up lruvecs.
781 struct lruvec __lruvec;
787 /* Per-node vmstats */
788 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
789 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
792 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
793 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
794 #ifdef CONFIG_FLAT_NODE_MEM_MAP
795 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
797 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
799 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
801 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
802 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
804 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
806 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
809 static inline bool pgdat_is_empty(pg_data_t *pgdat)
811 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
814 #include <linux/memory_hotplug.h>
816 void build_all_zonelists(pg_data_t *pgdat);
817 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
818 enum zone_type highest_zoneidx);
819 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
820 int highest_zoneidx, unsigned int alloc_flags,
822 bool zone_watermark_ok(struct zone *z, unsigned int order,
823 unsigned long mark, int highest_zoneidx,
824 unsigned int alloc_flags);
825 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
826 unsigned long mark, int highest_zoneidx);
828 * Memory initialization context, use to differentiate memory added by
829 * the platform statically or via memory hotplug interface.
831 enum meminit_context {
836 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
839 extern void lruvec_init(struct lruvec *lruvec);
841 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
844 return lruvec->pgdat;
846 return container_of(lruvec, struct pglist_data, __lruvec);
850 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
852 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
853 int local_memory_node(int node_id);
855 static inline int local_memory_node(int node_id) { return node_id; };
859 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
861 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
864 * Returns true if a zone has pages managed by the buddy allocator.
865 * All the reclaim decisions have to use this function rather than
866 * populated_zone(). If the whole zone is reserved then we can easily
867 * end up with populated_zone() && !managed_zone().
869 static inline bool managed_zone(struct zone *zone)
871 return zone_managed_pages(zone);
874 /* Returns true if a zone has memory */
875 static inline bool populated_zone(struct zone *zone)
877 return zone->present_pages;
881 static inline int zone_to_nid(struct zone *zone)
886 static inline void zone_set_nid(struct zone *zone, int nid)
891 static inline int zone_to_nid(struct zone *zone)
896 static inline void zone_set_nid(struct zone *zone, int nid) {}
899 extern int movable_zone;
901 #ifdef CONFIG_HIGHMEM
902 static inline int zone_movable_is_highmem(void)
904 #ifdef CONFIG_NEED_MULTIPLE_NODES
905 return movable_zone == ZONE_HIGHMEM;
907 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
912 static inline int is_highmem_idx(enum zone_type idx)
914 #ifdef CONFIG_HIGHMEM
915 return (idx == ZONE_HIGHMEM ||
916 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
923 * is_highmem - helper function to quickly check if a struct zone is a
924 * highmem zone or not. This is an attempt to keep references
925 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
926 * @zone - pointer to struct zone variable
928 static inline int is_highmem(struct zone *zone)
930 #ifdef CONFIG_HIGHMEM
931 return is_highmem_idx(zone_idx(zone));
937 /* These two functions are used to setup the per zone pages min values */
940 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
942 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
944 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
945 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
947 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
948 void *, size_t *, loff_t *);
949 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
950 void *, size_t *, loff_t *);
951 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
952 void *, size_t *, loff_t *);
953 int numa_zonelist_order_handler(struct ctl_table *, int,
954 void *, size_t *, loff_t *);
955 extern int percpu_pagelist_fraction;
956 extern char numa_zonelist_order[];
957 #define NUMA_ZONELIST_ORDER_LEN 16
959 #ifndef CONFIG_NEED_MULTIPLE_NODES
961 extern struct pglist_data contig_page_data;
962 #define NODE_DATA(nid) (&contig_page_data)
963 #define NODE_MEM_MAP(nid) mem_map
965 #else /* CONFIG_NEED_MULTIPLE_NODES */
967 #include <asm/mmzone.h>
969 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
971 extern struct pglist_data *first_online_pgdat(void);
972 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
973 extern struct zone *next_zone(struct zone *zone);
976 * for_each_online_pgdat - helper macro to iterate over all online nodes
977 * @pgdat - pointer to a pg_data_t variable
979 #define for_each_online_pgdat(pgdat) \
980 for (pgdat = first_online_pgdat(); \
982 pgdat = next_online_pgdat(pgdat))
984 * for_each_zone - helper macro to iterate over all memory zones
985 * @zone - pointer to struct zone variable
987 * The user only needs to declare the zone variable, for_each_zone
990 #define for_each_zone(zone) \
991 for (zone = (first_online_pgdat())->node_zones; \
993 zone = next_zone(zone))
995 #define for_each_populated_zone(zone) \
996 for (zone = (first_online_pgdat())->node_zones; \
998 zone = next_zone(zone)) \
999 if (!populated_zone(zone)) \
1000 ; /* do nothing */ \
1003 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1005 return zoneref->zone;
1008 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1010 return zoneref->zone_idx;
1013 static inline int zonelist_node_idx(struct zoneref *zoneref)
1015 return zone_to_nid(zoneref->zone);
1018 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1019 enum zone_type highest_zoneidx,
1023 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1024 * @z - The cursor used as a starting point for the search
1025 * @highest_zoneidx - The zone index of the highest zone to return
1026 * @nodes - An optional nodemask to filter the zonelist with
1028 * This function returns the next zone at or below a given zone index that is
1029 * within the allowed nodemask using a cursor as the starting point for the
1030 * search. The zoneref returned is a cursor that represents the current zone
1031 * being examined. It should be advanced by one before calling
1032 * next_zones_zonelist again.
1034 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1035 enum zone_type highest_zoneidx,
1038 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1040 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1044 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1045 * @zonelist - The zonelist to search for a suitable zone
1046 * @highest_zoneidx - The zone index of the highest zone to return
1047 * @nodes - An optional nodemask to filter the zonelist with
1048 * @return - Zoneref pointer for the first suitable zone found (see below)
1050 * This function returns the first zone at or below a given zone index that is
1051 * within the allowed nodemask. The zoneref returned is a cursor that can be
1052 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1053 * one before calling.
1055 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1056 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1057 * update due to cpuset modification.
1059 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1060 enum zone_type highest_zoneidx,
1063 return next_zones_zonelist(zonelist->_zonerefs,
1064 highest_zoneidx, nodes);
1068 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1069 * @zone - The current zone in the iterator
1070 * @z - The current pointer within zonelist->_zonerefs being iterated
1071 * @zlist - The zonelist being iterated
1072 * @highidx - The zone index of the highest zone to return
1073 * @nodemask - Nodemask allowed by the allocator
1075 * This iterator iterates though all zones at or below a given zone index and
1076 * within a given nodemask
1078 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1079 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1081 z = next_zones_zonelist(++z, highidx, nodemask), \
1082 zone = zonelist_zone(z))
1084 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1085 for (zone = z->zone; \
1087 z = next_zones_zonelist(++z, highidx, nodemask), \
1088 zone = zonelist_zone(z))
1092 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1093 * @zone - The current zone in the iterator
1094 * @z - The current pointer within zonelist->zones being iterated
1095 * @zlist - The zonelist being iterated
1096 * @highidx - The zone index of the highest zone to return
1098 * This iterator iterates though all zones at or below a given zone index.
1100 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1101 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1103 #ifdef CONFIG_SPARSEMEM
1104 #include <asm/sparsemem.h>
1107 #ifdef CONFIG_FLATMEM
1108 #define pfn_to_nid(pfn) (0)
1111 #ifdef CONFIG_SPARSEMEM
1114 * SECTION_SHIFT #bits space required to store a section #
1116 * PA_SECTION_SHIFT physical address to/from section number
1117 * PFN_SECTION_SHIFT pfn to/from section number
1119 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1120 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1122 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1124 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1125 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1127 #define SECTION_BLOCKFLAGS_BITS \
1128 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1130 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1131 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1134 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1136 return pfn >> PFN_SECTION_SHIFT;
1138 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1140 return sec << PFN_SECTION_SHIFT;
1143 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1144 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1146 #define SUBSECTION_SHIFT 21
1147 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1149 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1150 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1151 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1153 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1154 #error Subsection size exceeds section size
1156 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1159 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1160 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1162 struct mem_section_usage {
1163 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1164 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1166 /* See declaration of similar field in struct zone */
1167 unsigned long pageblock_flags[0];
1170 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1174 struct mem_section {
1176 * This is, logically, a pointer to an array of struct
1177 * pages. However, it is stored with some other magic.
1178 * (see sparse.c::sparse_init_one_section())
1180 * Additionally during early boot we encode node id of
1181 * the location of the section here to guide allocation.
1182 * (see sparse.c::memory_present())
1184 * Making it a UL at least makes someone do a cast
1185 * before using it wrong.
1187 unsigned long section_mem_map;
1189 struct mem_section_usage *usage;
1190 #ifdef CONFIG_PAGE_EXTENSION
1192 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1193 * section. (see page_ext.h about this.)
1195 struct page_ext *page_ext;
1199 * WARNING: mem_section must be a power-of-2 in size for the
1200 * calculation and use of SECTION_ROOT_MASK to make sense.
1204 #ifdef CONFIG_SPARSEMEM_EXTREME
1205 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1207 #define SECTIONS_PER_ROOT 1
1210 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1211 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1212 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1214 #ifdef CONFIG_SPARSEMEM_EXTREME
1215 extern struct mem_section **mem_section;
1217 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1220 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1222 return ms->usage->pageblock_flags;
1225 static inline struct mem_section *__nr_to_section(unsigned long nr)
1227 #ifdef CONFIG_SPARSEMEM_EXTREME
1231 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1233 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1235 extern unsigned long __section_nr(struct mem_section *ms);
1236 extern size_t mem_section_usage_size(void);
1239 * We use the lower bits of the mem_map pointer to store
1240 * a little bit of information. The pointer is calculated
1241 * as mem_map - section_nr_to_pfn(pnum). The result is
1242 * aligned to the minimum alignment of the two values:
1243 * 1. All mem_map arrays are page-aligned.
1244 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1245 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1246 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1247 * worst combination is powerpc with 256k pages,
1248 * which results in PFN_SECTION_SHIFT equal 6.
1249 * To sum it up, at least 6 bits are available.
1251 #define SECTION_MARKED_PRESENT (1UL<<0)
1252 #define SECTION_HAS_MEM_MAP (1UL<<1)
1253 #define SECTION_IS_ONLINE (1UL<<2)
1254 #define SECTION_IS_EARLY (1UL<<3)
1255 #define SECTION_MAP_LAST_BIT (1UL<<4)
1256 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1257 #define SECTION_NID_SHIFT 3
1259 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1261 unsigned long map = section->section_mem_map;
1262 map &= SECTION_MAP_MASK;
1263 return (struct page *)map;
1266 static inline int present_section(struct mem_section *section)
1268 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1271 static inline int present_section_nr(unsigned long nr)
1273 return present_section(__nr_to_section(nr));
1276 static inline int valid_section(struct mem_section *section)
1278 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1281 static inline int early_section(struct mem_section *section)
1283 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1286 static inline int valid_section_nr(unsigned long nr)
1288 return valid_section(__nr_to_section(nr));
1291 static inline int online_section(struct mem_section *section)
1293 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1296 static inline int online_section_nr(unsigned long nr)
1298 return online_section(__nr_to_section(nr));
1301 #ifdef CONFIG_MEMORY_HOTPLUG
1302 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1303 #ifdef CONFIG_MEMORY_HOTREMOVE
1304 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1308 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1310 return __nr_to_section(pfn_to_section_nr(pfn));
1313 extern unsigned long __highest_present_section_nr;
1315 static inline int subsection_map_index(unsigned long pfn)
1317 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1320 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1321 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1323 int idx = subsection_map_index(pfn);
1325 return test_bit(idx, ms->usage->subsection_map);
1328 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1334 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1335 static inline int pfn_valid(unsigned long pfn)
1337 struct mem_section *ms;
1339 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1341 ms = __nr_to_section(pfn_to_section_nr(pfn));
1342 if (!valid_section(ms))
1345 * Traditionally early sections always returned pfn_valid() for
1346 * the entire section-sized span.
1348 return early_section(ms) || pfn_section_valid(ms, pfn);
1352 static inline int pfn_in_present_section(unsigned long pfn)
1354 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1356 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1359 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1361 while (++section_nr <= __highest_present_section_nr) {
1362 if (present_section_nr(section_nr))
1370 * These are _only_ used during initialisation, therefore they
1371 * can use __initdata ... They could have names to indicate
1375 #define pfn_to_nid(pfn) \
1377 unsigned long __pfn_to_nid_pfn = (pfn); \
1378 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1381 #define pfn_to_nid(pfn) (0)
1384 #define early_pfn_valid(pfn) pfn_valid(pfn)
1385 void sparse_init(void);
1387 #define sparse_init() do {} while (0)
1388 #define sparse_index_init(_sec, _nid) do {} while (0)
1389 #define pfn_in_present_section pfn_valid
1390 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1391 #endif /* CONFIG_SPARSEMEM */
1394 * During memory init memblocks map pfns to nids. The search is expensive and
1395 * this caches recent lookups. The implementation of __early_pfn_to_nid
1396 * may treat start/end as pfns or sections.
1398 struct mminit_pfnnid_cache {
1399 unsigned long last_start;
1400 unsigned long last_end;
1404 #ifndef early_pfn_valid
1405 #define early_pfn_valid(pfn) (1)
1409 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1410 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1411 * pfn_valid_within() should be used in this case; we optimise this away
1412 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1414 #ifdef CONFIG_HOLES_IN_ZONE
1415 #define pfn_valid_within(pfn) pfn_valid(pfn)
1417 #define pfn_valid_within(pfn) (1)
1420 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1422 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1423 * associated with it or not. This means that a struct page exists for this
1424 * pfn. The caller cannot assume the page is fully initialized in general.
1425 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1426 * will ensure the struct page is fully online and initialized. Special pages
1427 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1429 * In FLATMEM, it is expected that holes always have valid memmap as long as
1430 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1431 * that a valid section has a memmap for the entire section.
1433 * However, an ARM, and maybe other embedded architectures in the future
1434 * free memmap backing holes to save memory on the assumption the memmap is
1435 * never used. The page_zone linkages are then broken even though pfn_valid()
1436 * returns true. A walker of the full memmap must then do this additional
1437 * check to ensure the memmap they are looking at is sane by making sure
1438 * the zone and PFN linkages are still valid. This is expensive, but walkers
1439 * of the full memmap are extremely rare.
1441 bool memmap_valid_within(unsigned long pfn,
1442 struct page *page, struct zone *zone);
1444 static inline bool memmap_valid_within(unsigned long pfn,
1445 struct page *page, struct zone *zone)
1449 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1451 #endif /* !__GENERATING_BOUNDS.H */
1452 #endif /* !__ASSEMBLY__ */
1453 #endif /* _LINUX_MMZONE_H */