2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
34 #define DM_MSG_PREFIX "core"
37 * Cookies are numeric values sent with CHANGE and REMOVE
38 * uevents while resuming, removing or renaming the device.
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45 * dm_io into one list, and reuse bio->bi_private as the list head. Before
46 * ending this fs bio, we will recover its ->bi_private.
48 #define REQ_DM_POLL_LIST REQ_DRV
50 static const char *_name = DM_NAME;
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
55 static DEFINE_IDR(_minor_idr);
57 static DEFINE_SPINLOCK(_minor_lock);
59 static void do_deferred_remove(struct work_struct *w);
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63 static struct workqueue_struct *deferred_remove_workqueue;
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68 void dm_issue_global_event(void)
70 atomic_inc(&dm_global_event_nr);
71 wake_up(&dm_global_eventq);
75 * One of these is allocated (on-stack) per original bio.
82 unsigned sector_count;
83 bool submit_as_polled;
86 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
87 #define DM_IO_BIO_OFFSET \
88 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
90 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
92 return container_of(clone, struct dm_target_io, clone);
95 void *dm_per_bio_data(struct bio *bio, size_t data_size)
97 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
98 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
99 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
101 EXPORT_SYMBOL_GPL(dm_per_bio_data);
103 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
105 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
106 if (io->magic == DM_IO_MAGIC)
107 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
108 BUG_ON(io->magic != DM_TIO_MAGIC);
109 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
111 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
113 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
115 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
117 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
119 #define MINOR_ALLOCED ((void *)-1)
121 #define DM_NUMA_NODE NUMA_NO_NODE
122 static int dm_numa_node = DM_NUMA_NODE;
124 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
125 static int swap_bios = DEFAULT_SWAP_BIOS;
126 static int get_swap_bios(void)
128 int latch = READ_ONCE(swap_bios);
129 if (unlikely(latch <= 0))
130 latch = DEFAULT_SWAP_BIOS;
135 * For mempools pre-allocation at the table loading time.
137 struct dm_md_mempools {
139 struct bio_set io_bs;
142 struct table_device {
143 struct list_head list;
145 struct dm_dev dm_dev;
149 * Bio-based DM's mempools' reserved IOs set by the user.
151 #define RESERVED_BIO_BASED_IOS 16
152 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
154 static int __dm_get_module_param_int(int *module_param, int min, int max)
156 int param = READ_ONCE(*module_param);
157 int modified_param = 0;
158 bool modified = true;
161 modified_param = min;
162 else if (param > max)
163 modified_param = max;
168 (void)cmpxchg(module_param, param, modified_param);
169 param = modified_param;
175 unsigned __dm_get_module_param(unsigned *module_param,
176 unsigned def, unsigned max)
178 unsigned param = READ_ONCE(*module_param);
179 unsigned modified_param = 0;
182 modified_param = def;
183 else if (param > max)
184 modified_param = max;
186 if (modified_param) {
187 (void)cmpxchg(module_param, param, modified_param);
188 param = modified_param;
194 unsigned dm_get_reserved_bio_based_ios(void)
196 return __dm_get_module_param(&reserved_bio_based_ios,
197 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
199 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
201 static unsigned dm_get_numa_node(void)
203 return __dm_get_module_param_int(&dm_numa_node,
204 DM_NUMA_NODE, num_online_nodes() - 1);
207 static int __init local_init(void)
211 r = dm_uevent_init();
215 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
216 if (!deferred_remove_workqueue) {
218 goto out_uevent_exit;
222 r = register_blkdev(_major, _name);
224 goto out_free_workqueue;
232 destroy_workqueue(deferred_remove_workqueue);
239 static void local_exit(void)
241 flush_scheduled_work();
242 destroy_workqueue(deferred_remove_workqueue);
244 unregister_blkdev(_major, _name);
249 DMINFO("cleaned up");
252 static int (*_inits[])(void) __initdata = {
263 static void (*_exits[])(void) = {
274 static int __init dm_init(void)
276 const int count = ARRAY_SIZE(_inits);
279 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
280 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
281 " Duplicate IMA measurements will not be recorded in the IMA log.");
284 for (i = 0; i < count; i++) {
298 static void __exit dm_exit(void)
300 int i = ARRAY_SIZE(_exits);
306 * Should be empty by this point.
308 idr_destroy(&_minor_idr);
312 * Block device functions
314 int dm_deleting_md(struct mapped_device *md)
316 return test_bit(DMF_DELETING, &md->flags);
319 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
321 struct mapped_device *md;
323 spin_lock(&_minor_lock);
325 md = bdev->bd_disk->private_data;
329 if (test_bit(DMF_FREEING, &md->flags) ||
330 dm_deleting_md(md)) {
336 atomic_inc(&md->open_count);
338 spin_unlock(&_minor_lock);
340 return md ? 0 : -ENXIO;
343 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
345 struct mapped_device *md;
347 spin_lock(&_minor_lock);
349 md = disk->private_data;
353 if (atomic_dec_and_test(&md->open_count) &&
354 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
355 queue_work(deferred_remove_workqueue, &deferred_remove_work);
359 spin_unlock(&_minor_lock);
362 int dm_open_count(struct mapped_device *md)
364 return atomic_read(&md->open_count);
368 * Guarantees nothing is using the device before it's deleted.
370 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
374 spin_lock(&_minor_lock);
376 if (dm_open_count(md)) {
379 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
380 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
383 set_bit(DMF_DELETING, &md->flags);
385 spin_unlock(&_minor_lock);
390 int dm_cancel_deferred_remove(struct mapped_device *md)
394 spin_lock(&_minor_lock);
396 if (test_bit(DMF_DELETING, &md->flags))
399 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
401 spin_unlock(&_minor_lock);
406 static void do_deferred_remove(struct work_struct *w)
408 dm_deferred_remove();
411 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
413 struct mapped_device *md = bdev->bd_disk->private_data;
415 return dm_get_geometry(md, geo);
418 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
419 struct block_device **bdev)
421 struct dm_target *tgt;
422 struct dm_table *map;
427 map = dm_get_live_table(md, srcu_idx);
428 if (!map || !dm_table_get_size(map))
431 /* We only support devices that have a single target */
432 if (dm_table_get_num_targets(map) != 1)
435 tgt = dm_table_get_target(map, 0);
436 if (!tgt->type->prepare_ioctl)
439 if (dm_suspended_md(md))
442 r = tgt->type->prepare_ioctl(tgt, bdev);
443 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
444 dm_put_live_table(md, *srcu_idx);
452 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
454 dm_put_live_table(md, srcu_idx);
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 unsigned int cmd, unsigned long arg)
460 struct mapped_device *md = bdev->bd_disk->private_data;
463 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
469 * Target determined this ioctl is being issued against a
470 * subset of the parent bdev; require extra privileges.
472 if (!capable(CAP_SYS_RAWIO)) {
474 "%s: sending ioctl %x to DM device without required privilege.",
481 if (!bdev->bd_disk->fops->ioctl)
484 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
486 dm_unprepare_ioctl(md, srcu_idx);
490 u64 dm_start_time_ns_from_clone(struct bio *bio)
492 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
494 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
496 static bool bio_is_flush_with_data(struct bio *bio)
498 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
501 static void dm_io_acct(bool end, struct mapped_device *md, struct bio *bio,
502 unsigned long start_time, struct dm_stats_aux *stats_aux)
504 bool is_flush_with_data;
505 unsigned int bi_size;
507 /* If REQ_PREFLUSH set save any payload but do not account it */
508 is_flush_with_data = bio_is_flush_with_data(bio);
509 if (is_flush_with_data) {
510 bi_size = bio->bi_iter.bi_size;
511 bio->bi_iter.bi_size = 0;
515 bio_start_io_acct_time(bio, start_time);
517 bio_end_io_acct(bio, start_time);
519 if (unlikely(dm_stats_used(&md->stats)))
520 dm_stats_account_io(&md->stats, bio_data_dir(bio),
521 bio->bi_iter.bi_sector, bio_sectors(bio),
522 end, start_time, stats_aux);
524 /* Restore bio's payload so it does get accounted upon requeue */
525 if (is_flush_with_data)
526 bio->bi_iter.bi_size = bi_size;
529 static void __dm_start_io_acct(struct dm_io *io, struct bio *bio)
531 dm_io_acct(false, io->md, bio, io->start_time, &io->stats_aux);
534 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
536 /* Must account IO to DM device in terms of orig_bio */
537 struct bio *bio = io->orig_bio;
540 * Ensure IO accounting is only ever started once.
541 * Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO.
544 likely(!dm_tio_flagged(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO))) {
545 if (WARN_ON_ONCE(dm_io_flagged(io, DM_IO_ACCOUNTED)))
547 dm_io_set_flag(io, DM_IO_ACCOUNTED);
550 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
552 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
553 spin_lock_irqsave(&io->lock, flags);
554 dm_io_set_flag(io, DM_IO_ACCOUNTED);
555 spin_unlock_irqrestore(&io->lock, flags);
558 __dm_start_io_acct(io, bio);
561 static void dm_end_io_acct(struct dm_io *io, struct bio *bio)
563 dm_io_acct(true, io->md, bio, io->start_time, &io->stats_aux);
566 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
569 struct dm_target_io *tio;
572 clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs);
574 tio = clone_to_tio(clone);
576 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
579 io = container_of(tio, struct dm_io, tio);
580 io->magic = DM_IO_MAGIC;
582 atomic_set(&io->io_count, 1);
583 this_cpu_inc(*md->pending_io);
586 io->map_task = current;
587 spin_lock_init(&io->lock);
588 io->start_time = jiffies;
591 dm_stats_record_start(&md->stats, &io->stats_aux);
596 static void free_io(struct dm_io *io)
598 bio_put(&io->tio.clone);
601 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
602 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
604 struct dm_target_io *tio;
607 if (!ci->io->tio.io) {
608 /* the dm_target_io embedded in ci->io is available */
610 /* alloc_io() already initialized embedded clone */
613 clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio,
614 gfp_mask, &ci->io->md->bs);
618 /* REQ_DM_POLL_LIST shouldn't be inherited */
619 clone->bi_opf &= ~REQ_DM_POLL_LIST;
621 tio = clone_to_tio(clone);
622 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
625 tio->magic = DM_TIO_MAGIC;
628 tio->target_bio_nr = target_bio_nr;
633 clone->bi_iter.bi_size = to_bytes(*len);
634 if (bio_integrity(clone))
635 bio_integrity_trim(clone);
641 static void free_tio(struct bio *clone)
643 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
649 * Add the bio to the list of deferred io.
651 static void queue_io(struct mapped_device *md, struct bio *bio)
655 spin_lock_irqsave(&md->deferred_lock, flags);
656 bio_list_add(&md->deferred, bio);
657 spin_unlock_irqrestore(&md->deferred_lock, flags);
658 queue_work(md->wq, &md->work);
662 * Everyone (including functions in this file), should use this
663 * function to access the md->map field, and make sure they call
664 * dm_put_live_table() when finished.
666 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
668 *srcu_idx = srcu_read_lock(&md->io_barrier);
670 return srcu_dereference(md->map, &md->io_barrier);
673 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
675 srcu_read_unlock(&md->io_barrier, srcu_idx);
678 void dm_sync_table(struct mapped_device *md)
680 synchronize_srcu(&md->io_barrier);
681 synchronize_rcu_expedited();
685 * A fast alternative to dm_get_live_table/dm_put_live_table.
686 * The caller must not block between these two functions.
688 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
691 return rcu_dereference(md->map);
694 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
699 static char *_dm_claim_ptr = "I belong to device-mapper";
702 * Open a table device so we can use it as a map destination.
704 static int open_table_device(struct table_device *td, dev_t dev,
705 struct mapped_device *md)
707 struct block_device *bdev;
711 BUG_ON(td->dm_dev.bdev);
713 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
715 return PTR_ERR(bdev);
717 r = bd_link_disk_holder(bdev, dm_disk(md));
719 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
723 td->dm_dev.bdev = bdev;
724 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
729 * Close a table device that we've been using.
731 static void close_table_device(struct table_device *td, struct mapped_device *md)
733 if (!td->dm_dev.bdev)
736 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
737 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
738 put_dax(td->dm_dev.dax_dev);
739 td->dm_dev.bdev = NULL;
740 td->dm_dev.dax_dev = NULL;
743 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
746 struct table_device *td;
748 list_for_each_entry(td, l, list)
749 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
755 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
756 struct dm_dev **result)
759 struct table_device *td;
761 mutex_lock(&md->table_devices_lock);
762 td = find_table_device(&md->table_devices, dev, mode);
764 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
766 mutex_unlock(&md->table_devices_lock);
770 td->dm_dev.mode = mode;
771 td->dm_dev.bdev = NULL;
773 if ((r = open_table_device(td, dev, md))) {
774 mutex_unlock(&md->table_devices_lock);
779 format_dev_t(td->dm_dev.name, dev);
781 refcount_set(&td->count, 1);
782 list_add(&td->list, &md->table_devices);
784 refcount_inc(&td->count);
786 mutex_unlock(&md->table_devices_lock);
788 *result = &td->dm_dev;
792 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
794 struct table_device *td = container_of(d, struct table_device, dm_dev);
796 mutex_lock(&md->table_devices_lock);
797 if (refcount_dec_and_test(&td->count)) {
798 close_table_device(td, md);
802 mutex_unlock(&md->table_devices_lock);
805 static void free_table_devices(struct list_head *devices)
807 struct list_head *tmp, *next;
809 list_for_each_safe(tmp, next, devices) {
810 struct table_device *td = list_entry(tmp, struct table_device, list);
812 DMWARN("dm_destroy: %s still exists with %d references",
813 td->dm_dev.name, refcount_read(&td->count));
819 * Get the geometry associated with a dm device
821 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
829 * Set the geometry of a device.
831 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
833 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
835 if (geo->start > sz) {
836 DMWARN("Start sector is beyond the geometry limits.");
845 static int __noflush_suspending(struct mapped_device *md)
847 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
850 static void dm_io_complete(struct dm_io *io)
852 blk_status_t io_error;
853 struct mapped_device *md = io->md;
854 struct bio *bio = io->orig_bio;
856 if (io->status == BLK_STS_DM_REQUEUE) {
859 * Target requested pushing back the I/O.
861 spin_lock_irqsave(&md->deferred_lock, flags);
862 if (__noflush_suspending(md) &&
863 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
864 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
865 bio_list_add_head(&md->deferred, bio);
868 * noflush suspend was interrupted or this is
869 * a write to a zoned target.
871 io->status = BLK_STS_IOERR;
873 spin_unlock_irqrestore(&md->deferred_lock, flags);
876 io_error = io->status;
877 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
878 dm_end_io_acct(io, bio);
879 else if (!io_error) {
881 * Must handle target that DM_MAPIO_SUBMITTED only to
882 * then bio_endio() rather than dm_submit_bio_remap()
884 __dm_start_io_acct(io, bio);
885 dm_end_io_acct(io, bio);
889 this_cpu_dec(*md->pending_io);
891 /* nudge anyone waiting on suspend queue */
892 if (unlikely(wq_has_sleeper(&md->wait)))
895 if (io_error == BLK_STS_DM_REQUEUE) {
897 * Upper layer won't help us poll split bio, io->orig_bio
898 * may only reflect a subset of the pre-split original,
899 * so clear REQ_POLLED in case of requeue
901 bio->bi_opf &= ~REQ_POLLED;
905 if (bio_is_flush_with_data(bio)) {
907 * Preflush done for flush with data, reissue
908 * without REQ_PREFLUSH.
910 bio->bi_opf &= ~REQ_PREFLUSH;
913 /* done with normal IO or empty flush */
915 bio->bi_status = io_error;
920 static inline bool dm_tio_is_normal(struct dm_target_io *tio)
922 return (dm_tio_flagged(tio, DM_TIO_INSIDE_DM_IO) &&
923 !dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
927 * Decrements the number of outstanding ios that a bio has been
928 * cloned into, completing the original io if necc.
930 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
932 /* Push-back supersedes any I/O errors */
933 if (unlikely(error)) {
935 spin_lock_irqsave(&io->lock, flags);
936 if (!(io->status == BLK_STS_DM_REQUEUE &&
937 __noflush_suspending(io->md)))
939 spin_unlock_irqrestore(&io->lock, flags);
942 if (atomic_dec_and_test(&io->io_count))
946 void disable_discard(struct mapped_device *md)
948 struct queue_limits *limits = dm_get_queue_limits(md);
950 /* device doesn't really support DISCARD, disable it */
951 limits->max_discard_sectors = 0;
952 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
955 void disable_write_zeroes(struct mapped_device *md)
957 struct queue_limits *limits = dm_get_queue_limits(md);
959 /* device doesn't really support WRITE ZEROES, disable it */
960 limits->max_write_zeroes_sectors = 0;
963 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
965 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
968 static void clone_endio(struct bio *bio)
970 blk_status_t error = bio->bi_status;
971 struct dm_target_io *tio = clone_to_tio(bio);
972 struct dm_io *io = tio->io;
973 struct mapped_device *md = tio->io->md;
974 dm_endio_fn endio = tio->ti->type->end_io;
975 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
977 if (unlikely(error == BLK_STS_TARGET)) {
978 if (bio_op(bio) == REQ_OP_DISCARD &&
979 !q->limits.max_discard_sectors)
981 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
982 !q->limits.max_write_zeroes_sectors)
983 disable_write_zeroes(md);
986 if (blk_queue_is_zoned(q))
987 dm_zone_endio(io, bio);
990 int r = endio(tio->ti, bio, &error);
992 case DM_ENDIO_REQUEUE:
994 * Requeuing writes to a sequential zone of a zoned
995 * target will break the sequential write pattern:
998 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
999 error = BLK_STS_IOERR;
1001 error = BLK_STS_DM_REQUEUE;
1005 case DM_ENDIO_INCOMPLETE:
1006 /* The target will handle the io */
1009 DMWARN("unimplemented target endio return value: %d", r);
1014 if (unlikely(swap_bios_limit(tio->ti, bio))) {
1015 struct mapped_device *md = io->md;
1016 up(&md->swap_bios_semaphore);
1020 dm_io_dec_pending(io, error);
1024 * Return maximum size of I/O possible at the supplied sector up to the current
1027 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1028 sector_t target_offset)
1030 return ti->len - target_offset;
1033 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1035 sector_t target_offset = dm_target_offset(ti, sector);
1036 sector_t len = max_io_len_target_boundary(ti, target_offset);
1040 * Does the target need to split IO even further?
1041 * - varied (per target) IO splitting is a tenet of DM; this
1042 * explains why stacked chunk_sectors based splitting via
1043 * blk_max_size_offset() isn't possible here. So pass in
1044 * ti->max_io_len to override stacked chunk_sectors.
1046 if (ti->max_io_len) {
1047 max_len = blk_max_size_offset(ti->table->md->queue,
1048 target_offset, ti->max_io_len);
1056 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1058 if (len > UINT_MAX) {
1059 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1060 (unsigned long long)len, UINT_MAX);
1061 ti->error = "Maximum size of target IO is too large";
1065 ti->max_io_len = (uint32_t) len;
1069 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1071 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1072 sector_t sector, int *srcu_idx)
1073 __acquires(md->io_barrier)
1075 struct dm_table *map;
1076 struct dm_target *ti;
1078 map = dm_get_live_table(md, srcu_idx);
1082 ti = dm_table_find_target(map, sector);
1089 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1090 long nr_pages, void **kaddr, pfn_t *pfn)
1092 struct mapped_device *md = dax_get_private(dax_dev);
1093 sector_t sector = pgoff * PAGE_SECTORS;
1094 struct dm_target *ti;
1095 long len, ret = -EIO;
1098 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1102 if (!ti->type->direct_access)
1104 len = max_io_len(ti, sector) / PAGE_SECTORS;
1107 nr_pages = min(len, nr_pages);
1108 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1111 dm_put_live_table(md, srcu_idx);
1116 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1119 struct mapped_device *md = dax_get_private(dax_dev);
1120 sector_t sector = pgoff * PAGE_SECTORS;
1121 struct dm_target *ti;
1125 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1129 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1131 * ->zero_page_range() is mandatory dax operation. If we are
1132 * here, something is wrong.
1136 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1138 dm_put_live_table(md, srcu_idx);
1144 * A target may call dm_accept_partial_bio only from the map routine. It is
1145 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1146 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1147 * __send_duplicate_bios().
1149 * dm_accept_partial_bio informs the dm that the target only wants to process
1150 * additional n_sectors sectors of the bio and the rest of the data should be
1151 * sent in a next bio.
1153 * A diagram that explains the arithmetics:
1154 * +--------------------+---------------+-------+
1156 * +--------------------+---------------+-------+
1158 * <-------------- *tio->len_ptr --------------->
1159 * <------- bi_size ------->
1162 * Region 1 was already iterated over with bio_advance or similar function.
1163 * (it may be empty if the target doesn't use bio_advance)
1164 * Region 2 is the remaining bio size that the target wants to process.
1165 * (it may be empty if region 1 is non-empty, although there is no reason
1167 * The target requires that region 3 is to be sent in the next bio.
1169 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1170 * the partially processed part (the sum of regions 1+2) must be the same for all
1171 * copies of the bio.
1173 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1175 struct dm_target_io *tio = clone_to_tio(bio);
1176 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1178 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1179 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1180 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1181 BUG_ON(bi_size > *tio->len_ptr);
1182 BUG_ON(n_sectors > bi_size);
1184 *tio->len_ptr -= bi_size - n_sectors;
1185 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1187 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1189 static inline void __dm_submit_bio_remap(struct bio *clone,
1190 dev_t dev, sector_t old_sector)
1192 trace_block_bio_remap(clone, dev, old_sector);
1193 submit_bio_noacct(clone);
1197 * @clone: clone bio that DM core passed to target's .map function
1198 * @tgt_clone: clone of @clone bio that target needs submitted
1200 * Targets should use this interface to submit bios they take
1201 * ownership of when returning DM_MAPIO_SUBMITTED.
1203 * Target should also enable ti->accounts_remapped_io
1205 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1207 struct dm_target_io *tio = clone_to_tio(clone);
1208 struct dm_io *io = tio->io;
1210 WARN_ON_ONCE(!tio->ti->accounts_remapped_io);
1212 /* establish bio that will get submitted */
1217 * Account io->origin_bio to DM dev on behalf of target
1218 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1220 if (io->map_task == current) {
1221 /* Still in target's map function */
1222 dm_io_set_flag(io, DM_IO_START_ACCT);
1225 * Called by another thread, managed by DM target,
1226 * wait for dm_split_and_process_bio() to store
1229 while (unlikely(!smp_load_acquire(&io->orig_bio)))
1231 dm_start_io_acct(io, clone);
1234 __dm_submit_bio_remap(tgt_clone, disk_devt(io->md->disk),
1237 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1239 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1241 mutex_lock(&md->swap_bios_lock);
1242 while (latch < md->swap_bios) {
1244 down(&md->swap_bios_semaphore);
1247 while (latch > md->swap_bios) {
1249 up(&md->swap_bios_semaphore);
1252 mutex_unlock(&md->swap_bios_lock);
1255 static void __map_bio(struct bio *clone)
1257 struct dm_target_io *tio = clone_to_tio(clone);
1259 struct dm_io *io = tio->io;
1260 struct dm_target *ti = tio->ti;
1262 clone->bi_end_io = clone_endio;
1267 dm_io_inc_pending(io);
1268 tio->old_sector = clone->bi_iter.bi_sector;
1270 if (unlikely(swap_bios_limit(ti, clone))) {
1271 struct mapped_device *md = io->md;
1272 int latch = get_swap_bios();
1273 if (unlikely(latch != md->swap_bios))
1274 __set_swap_bios_limit(md, latch);
1275 down(&md->swap_bios_semaphore);
1279 * Check if the IO needs a special mapping due to zone append emulation
1280 * on zoned target. In this case, dm_zone_map_bio() calls the target
1283 if (dm_emulate_zone_append(io->md))
1284 r = dm_zone_map_bio(tio);
1286 r = ti->type->map(ti, clone);
1289 case DM_MAPIO_SUBMITTED:
1290 /* target has assumed ownership of this io */
1291 if (!ti->accounts_remapped_io)
1292 dm_io_set_flag(io, DM_IO_START_ACCT);
1294 case DM_MAPIO_REMAPPED:
1296 * the bio has been remapped so dispatch it, but defer
1297 * dm_start_io_acct() until after possible bio_split().
1299 __dm_submit_bio_remap(clone, disk_devt(io->md->disk),
1301 dm_io_set_flag(io, DM_IO_START_ACCT);
1304 case DM_MAPIO_REQUEUE:
1305 if (unlikely(swap_bios_limit(ti, clone)))
1306 up(&io->md->swap_bios_semaphore);
1308 if (r == DM_MAPIO_KILL)
1309 dm_io_dec_pending(io, BLK_STS_IOERR);
1311 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1314 DMWARN("unimplemented target map return value: %d", r);
1319 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1320 struct dm_target *ti, unsigned num_bios,
1326 for (try = 0; try < 2; try++) {
1330 mutex_lock(&ci->io->md->table_devices_lock);
1331 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1332 bio = alloc_tio(ci, ti, bio_nr, len,
1333 try ? GFP_NOIO : GFP_NOWAIT);
1337 bio_list_add(blist, bio);
1340 mutex_unlock(&ci->io->md->table_devices_lock);
1341 if (bio_nr == num_bios)
1344 while ((bio = bio_list_pop(blist)))
1349 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1350 unsigned num_bios, unsigned *len)
1352 struct bio_list blist = BIO_EMPTY_LIST;
1359 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1360 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1364 alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1365 while ((clone = bio_list_pop(&blist))) {
1366 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1373 static void __send_empty_flush(struct clone_info *ci)
1375 unsigned target_nr = 0;
1376 struct dm_target *ti;
1377 struct bio flush_bio;
1380 * Use an on-stack bio for this, it's safe since we don't
1381 * need to reference it after submit. It's just used as
1382 * the basis for the clone(s).
1384 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1385 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1387 ci->bio = &flush_bio;
1388 ci->sector_count = 0;
1390 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1391 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1393 bio_uninit(ci->bio);
1396 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1401 len = min_t(sector_t, ci->sector_count,
1402 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1405 * dm_accept_partial_bio cannot be used with duplicate bios,
1406 * so update clone_info cursor before __send_duplicate_bios().
1409 ci->sector_count -= len;
1411 __send_duplicate_bios(ci, ti, num_bios, &len);
1414 static bool is_abnormal_io(struct bio *bio)
1418 switch (bio_op(bio)) {
1419 case REQ_OP_DISCARD:
1420 case REQ_OP_SECURE_ERASE:
1421 case REQ_OP_WRITE_ZEROES:
1429 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1432 unsigned num_bios = 0;
1434 switch (bio_op(ci->bio)) {
1435 case REQ_OP_DISCARD:
1436 num_bios = ti->num_discard_bios;
1438 case REQ_OP_SECURE_ERASE:
1439 num_bios = ti->num_secure_erase_bios;
1441 case REQ_OP_WRITE_ZEROES:
1442 num_bios = ti->num_write_zeroes_bios;
1449 * Even though the device advertised support for this type of
1450 * request, that does not mean every target supports it, and
1451 * reconfiguration might also have changed that since the
1452 * check was performed.
1455 *result = -EOPNOTSUPP;
1457 __send_changing_extent_only(ci, ti, num_bios);
1464 * Reuse ->bi_private as hlist head for storing all dm_io instances
1465 * associated with this bio, and this bio's bi_private needs to be
1466 * stored in dm_io->data before the reuse.
1468 * bio->bi_private is owned by fs or upper layer, so block layer won't
1469 * touch it after splitting. Meantime it won't be changed by anyone after
1470 * bio is submitted. So this reuse is safe.
1472 static inline struct hlist_head *dm_get_bio_hlist_head(struct bio *bio)
1474 return (struct hlist_head *)&bio->bi_private;
1477 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1479 struct hlist_head *head = dm_get_bio_hlist_head(bio);
1481 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1482 bio->bi_opf |= REQ_DM_POLL_LIST;
1484 * Save .bi_private into dm_io, so that we can reuse
1485 * .bi_private as hlist head for storing dm_io list
1487 io->data = bio->bi_private;
1489 INIT_HLIST_HEAD(head);
1491 /* tell block layer to poll for completion */
1492 bio->bi_cookie = ~BLK_QC_T_NONE;
1495 * bio recursed due to split, reuse original poll list,
1496 * and save bio->bi_private too.
1498 io->data = hlist_entry(head->first, struct dm_io, node)->data;
1501 hlist_add_head(&io->node, head);
1505 * Select the correct strategy for processing a non-flush bio.
1507 static int __split_and_process_bio(struct clone_info *ci)
1510 struct dm_target *ti;
1514 ti = dm_table_find_target(ci->map, ci->sector);
1518 if (__process_abnormal_io(ci, ti, &r))
1522 * Only support bio polling for normal IO, and the target io is
1523 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1525 ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1527 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1528 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1532 ci->sector_count -= len;
1537 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1538 struct dm_table *map, struct bio *bio)
1541 ci->io = alloc_io(md, bio);
1543 ci->submit_as_polled = false;
1544 ci->sector = bio->bi_iter.bi_sector;
1545 ci->sector_count = bio_sectors(bio);
1547 /* Shouldn't happen but sector_count was being set to 0 so... */
1548 if (WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1549 ci->sector_count = 0;
1553 * Entry point to split a bio into clones and submit them to the targets.
1555 static void dm_split_and_process_bio(struct mapped_device *md,
1556 struct dm_table *map, struct bio *bio)
1558 struct clone_info ci;
1559 struct bio *orig_bio = NULL;
1562 init_clone_info(&ci, md, map, bio);
1564 if (bio->bi_opf & REQ_PREFLUSH) {
1565 __send_empty_flush(&ci);
1566 /* dm_io_complete submits any data associated with flush */
1570 error = __split_and_process_bio(&ci);
1571 ci.io->map_task = NULL;
1572 if (error || !ci.sector_count)
1576 * Remainder must be passed to submit_bio_noacct() so it gets handled
1577 * *after* bios already submitted have been completely processed.
1578 * We take a clone of the original to store in ci.io->orig_bio to be
1579 * used by dm_end_io_acct() and for dm_io_complete() to use for
1580 * completion handling.
1582 orig_bio = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1583 GFP_NOIO, &md->queue->bio_split);
1584 bio_chain(orig_bio, bio);
1585 trace_block_split(orig_bio, bio->bi_iter.bi_sector);
1586 submit_bio_noacct(bio);
1590 smp_store_release(&ci.io->orig_bio, orig_bio);
1591 if (dm_io_flagged(ci.io, DM_IO_START_ACCT))
1592 dm_start_io_acct(ci.io, NULL);
1595 * Drop the extra reference count for non-POLLED bio, and hold one
1596 * reference for POLLED bio, which will be released in dm_poll_bio
1598 * Add every dm_io instance into the hlist_head which is stored in
1599 * bio->bi_private, so that dm_poll_bio can poll them all.
1601 if (error || !ci.submit_as_polled)
1602 dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1604 dm_queue_poll_io(bio, ci.io);
1607 static void dm_submit_bio(struct bio *bio)
1609 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1611 struct dm_table *map;
1613 map = dm_get_live_table(md, &srcu_idx);
1615 /* If suspended, or map not yet available, queue this IO for later */
1616 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1618 if (bio->bi_opf & REQ_NOWAIT)
1619 bio_wouldblock_error(bio);
1620 else if (bio->bi_opf & REQ_RAHEAD)
1628 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1629 * otherwise associated queue_limits won't be imposed.
1631 if (is_abnormal_io(bio))
1632 blk_queue_split(&bio);
1634 dm_split_and_process_bio(md, map, bio);
1636 dm_put_live_table(md, srcu_idx);
1639 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1642 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1644 /* don't poll if the mapped io is done */
1645 if (atomic_read(&io->io_count) > 1)
1646 bio_poll(&io->tio.clone, iob, flags);
1648 /* bio_poll holds the last reference */
1649 return atomic_read(&io->io_count) == 1;
1652 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1655 struct hlist_head *head = dm_get_bio_hlist_head(bio);
1656 struct hlist_head tmp = HLIST_HEAD_INIT;
1657 struct hlist_node *next;
1660 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1661 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1664 WARN_ON_ONCE(hlist_empty(head));
1666 hlist_move_list(head, &tmp);
1669 * Restore .bi_private before possibly completing dm_io.
1671 * bio_poll() is only possible once @bio has been completely
1672 * submitted via submit_bio_noacct()'s depth-first submission.
1673 * So there is no dm_queue_poll_io() race associated with
1674 * clearing REQ_DM_POLL_LIST here.
1676 bio->bi_opf &= ~REQ_DM_POLL_LIST;
1677 bio->bi_private = hlist_entry(tmp.first, struct dm_io, node)->data;
1679 hlist_for_each_entry_safe(io, next, &tmp, node) {
1680 if (dm_poll_dm_io(io, iob, flags)) {
1681 hlist_del_init(&io->node);
1683 * clone_endio() has already occurred, so passing
1684 * error as 0 here doesn't override io->status
1686 dm_io_dec_pending(io, 0);
1691 if (!hlist_empty(&tmp)) {
1692 bio->bi_opf |= REQ_DM_POLL_LIST;
1693 /* Reset bio->bi_private to dm_io list head */
1694 hlist_move_list(&tmp, head);
1700 /*-----------------------------------------------------------------
1701 * An IDR is used to keep track of allocated minor numbers.
1702 *---------------------------------------------------------------*/
1703 static void free_minor(int minor)
1705 spin_lock(&_minor_lock);
1706 idr_remove(&_minor_idr, minor);
1707 spin_unlock(&_minor_lock);
1711 * See if the device with a specific minor # is free.
1713 static int specific_minor(int minor)
1717 if (minor >= (1 << MINORBITS))
1720 idr_preload(GFP_KERNEL);
1721 spin_lock(&_minor_lock);
1723 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1725 spin_unlock(&_minor_lock);
1728 return r == -ENOSPC ? -EBUSY : r;
1732 static int next_free_minor(int *minor)
1736 idr_preload(GFP_KERNEL);
1737 spin_lock(&_minor_lock);
1739 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1741 spin_unlock(&_minor_lock);
1749 static const struct block_device_operations dm_blk_dops;
1750 static const struct block_device_operations dm_rq_blk_dops;
1751 static const struct dax_operations dm_dax_ops;
1753 static void dm_wq_work(struct work_struct *work);
1755 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1756 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1758 dm_destroy_crypto_profile(q->crypto_profile);
1761 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1763 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1766 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1768 static void cleanup_mapped_device(struct mapped_device *md)
1771 destroy_workqueue(md->wq);
1772 bioset_exit(&md->bs);
1773 bioset_exit(&md->io_bs);
1776 dax_remove_host(md->disk);
1777 kill_dax(md->dax_dev);
1778 put_dax(md->dax_dev);
1782 dm_cleanup_zoned_dev(md);
1784 spin_lock(&_minor_lock);
1785 md->disk->private_data = NULL;
1786 spin_unlock(&_minor_lock);
1787 if (dm_get_md_type(md) != DM_TYPE_NONE) {
1789 del_gendisk(md->disk);
1791 dm_queue_destroy_crypto_profile(md->queue);
1792 blk_cleanup_disk(md->disk);
1795 if (md->pending_io) {
1796 free_percpu(md->pending_io);
1797 md->pending_io = NULL;
1800 cleanup_srcu_struct(&md->io_barrier);
1802 mutex_destroy(&md->suspend_lock);
1803 mutex_destroy(&md->type_lock);
1804 mutex_destroy(&md->table_devices_lock);
1805 mutex_destroy(&md->swap_bios_lock);
1807 dm_mq_cleanup_mapped_device(md);
1811 * Allocate and initialise a blank device with a given minor.
1813 static struct mapped_device *alloc_dev(int minor)
1815 int r, numa_node_id = dm_get_numa_node();
1816 struct mapped_device *md;
1819 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1821 DMWARN("unable to allocate device, out of memory.");
1825 if (!try_module_get(THIS_MODULE))
1826 goto bad_module_get;
1828 /* get a minor number for the dev */
1829 if (minor == DM_ANY_MINOR)
1830 r = next_free_minor(&minor);
1832 r = specific_minor(minor);
1836 r = init_srcu_struct(&md->io_barrier);
1838 goto bad_io_barrier;
1840 md->numa_node_id = numa_node_id;
1841 md->init_tio_pdu = false;
1842 md->type = DM_TYPE_NONE;
1843 mutex_init(&md->suspend_lock);
1844 mutex_init(&md->type_lock);
1845 mutex_init(&md->table_devices_lock);
1846 spin_lock_init(&md->deferred_lock);
1847 atomic_set(&md->holders, 1);
1848 atomic_set(&md->open_count, 0);
1849 atomic_set(&md->event_nr, 0);
1850 atomic_set(&md->uevent_seq, 0);
1851 INIT_LIST_HEAD(&md->uevent_list);
1852 INIT_LIST_HEAD(&md->table_devices);
1853 spin_lock_init(&md->uevent_lock);
1856 * default to bio-based until DM table is loaded and md->type
1857 * established. If request-based table is loaded: blk-mq will
1858 * override accordingly.
1860 md->disk = blk_alloc_disk(md->numa_node_id);
1863 md->queue = md->disk->queue;
1865 init_waitqueue_head(&md->wait);
1866 INIT_WORK(&md->work, dm_wq_work);
1867 init_waitqueue_head(&md->eventq);
1868 init_completion(&md->kobj_holder.completion);
1870 md->swap_bios = get_swap_bios();
1871 sema_init(&md->swap_bios_semaphore, md->swap_bios);
1872 mutex_init(&md->swap_bios_lock);
1874 md->disk->major = _major;
1875 md->disk->first_minor = minor;
1876 md->disk->minors = 1;
1877 md->disk->flags |= GENHD_FL_NO_PART;
1878 md->disk->fops = &dm_blk_dops;
1879 md->disk->queue = md->queue;
1880 md->disk->private_data = md;
1881 sprintf(md->disk->disk_name, "dm-%d", minor);
1883 if (IS_ENABLED(CONFIG_FS_DAX)) {
1884 md->dax_dev = alloc_dax(md, &dm_dax_ops);
1885 if (IS_ERR(md->dax_dev)) {
1889 set_dax_nocache(md->dax_dev);
1890 set_dax_nomc(md->dax_dev);
1891 if (dax_add_host(md->dax_dev, md->disk))
1895 format_dev_t(md->name, MKDEV(_major, minor));
1897 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
1901 md->pending_io = alloc_percpu(unsigned long);
1902 if (!md->pending_io)
1905 dm_stats_init(&md->stats);
1907 /* Populate the mapping, nobody knows we exist yet */
1908 spin_lock(&_minor_lock);
1909 old_md = idr_replace(&_minor_idr, md, minor);
1910 spin_unlock(&_minor_lock);
1912 BUG_ON(old_md != MINOR_ALLOCED);
1917 cleanup_mapped_device(md);
1921 module_put(THIS_MODULE);
1927 static void unlock_fs(struct mapped_device *md);
1929 static void free_dev(struct mapped_device *md)
1931 int minor = MINOR(disk_devt(md->disk));
1935 cleanup_mapped_device(md);
1937 free_table_devices(&md->table_devices);
1938 dm_stats_cleanup(&md->stats);
1941 module_put(THIS_MODULE);
1945 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1947 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1950 if (dm_table_bio_based(t)) {
1952 * The md may already have mempools that need changing.
1953 * If so, reload bioset because front_pad may have changed
1954 * because a different table was loaded.
1956 bioset_exit(&md->bs);
1957 bioset_exit(&md->io_bs);
1959 } else if (bioset_initialized(&md->bs)) {
1961 * There's no need to reload with request-based dm
1962 * because the size of front_pad doesn't change.
1963 * Note for future: If you are to reload bioset,
1964 * prep-ed requests in the queue may refer
1965 * to bio from the old bioset, so you must walk
1966 * through the queue to unprep.
1972 bioset_initialized(&md->bs) ||
1973 bioset_initialized(&md->io_bs));
1975 ret = bioset_init_from_src(&md->bs, &p->bs);
1978 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1980 bioset_exit(&md->bs);
1982 /* mempool bind completed, no longer need any mempools in the table */
1983 dm_table_free_md_mempools(t);
1988 * Bind a table to the device.
1990 static void event_callback(void *context)
1992 unsigned long flags;
1994 struct mapped_device *md = (struct mapped_device *) context;
1996 spin_lock_irqsave(&md->uevent_lock, flags);
1997 list_splice_init(&md->uevent_list, &uevents);
1998 spin_unlock_irqrestore(&md->uevent_lock, flags);
2000 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2002 atomic_inc(&md->event_nr);
2003 wake_up(&md->eventq);
2004 dm_issue_global_event();
2008 * Returns old map, which caller must destroy.
2010 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2011 struct queue_limits *limits)
2013 struct dm_table *old_map;
2017 lockdep_assert_held(&md->suspend_lock);
2019 size = dm_table_get_size(t);
2022 * Wipe any geometry if the size of the table changed.
2024 if (size != dm_get_size(md))
2025 memset(&md->geometry, 0, sizeof(md->geometry));
2027 if (!get_capacity(md->disk))
2028 set_capacity(md->disk, size);
2030 set_capacity_and_notify(md->disk, size);
2032 dm_table_event_callback(t, event_callback, md);
2034 if (dm_table_request_based(t)) {
2036 * Leverage the fact that request-based DM targets are
2037 * immutable singletons - used to optimize dm_mq_queue_rq.
2039 md->immutable_target = dm_table_get_immutable_target(t);
2042 ret = __bind_mempools(md, t);
2044 old_map = ERR_PTR(ret);
2048 ret = dm_table_set_restrictions(t, md->queue, limits);
2050 old_map = ERR_PTR(ret);
2054 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2055 rcu_assign_pointer(md->map, (void *)t);
2056 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2065 * Returns unbound table for the caller to free.
2067 static struct dm_table *__unbind(struct mapped_device *md)
2069 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2074 dm_table_event_callback(map, NULL, NULL);
2075 RCU_INIT_POINTER(md->map, NULL);
2082 * Constructor for a new device.
2084 int dm_create(int minor, struct mapped_device **result)
2086 struct mapped_device *md;
2088 md = alloc_dev(minor);
2092 dm_ima_reset_data(md);
2099 * Functions to manage md->type.
2100 * All are required to hold md->type_lock.
2102 void dm_lock_md_type(struct mapped_device *md)
2104 mutex_lock(&md->type_lock);
2107 void dm_unlock_md_type(struct mapped_device *md)
2109 mutex_unlock(&md->type_lock);
2112 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2114 BUG_ON(!mutex_is_locked(&md->type_lock));
2118 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2123 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2125 return md->immutable_target_type;
2129 * The queue_limits are only valid as long as you have a reference
2132 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2134 BUG_ON(!atomic_read(&md->holders));
2135 return &md->queue->limits;
2137 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2140 * Setup the DM device's queue based on md's type
2142 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2144 enum dm_queue_mode type = dm_table_get_type(t);
2145 struct queue_limits limits;
2149 case DM_TYPE_REQUEST_BASED:
2150 md->disk->fops = &dm_rq_blk_dops;
2151 r = dm_mq_init_request_queue(md, t);
2153 DMERR("Cannot initialize queue for request-based dm mapped device");
2157 case DM_TYPE_BIO_BASED:
2158 case DM_TYPE_DAX_BIO_BASED:
2165 r = dm_calculate_queue_limits(t, &limits);
2167 DMERR("Cannot calculate initial queue limits");
2170 r = dm_table_set_restrictions(t, md->queue, &limits);
2174 r = add_disk(md->disk);
2178 r = dm_sysfs_init(md);
2180 del_gendisk(md->disk);
2187 struct mapped_device *dm_get_md(dev_t dev)
2189 struct mapped_device *md;
2190 unsigned minor = MINOR(dev);
2192 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2195 spin_lock(&_minor_lock);
2197 md = idr_find(&_minor_idr, minor);
2198 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2199 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2205 spin_unlock(&_minor_lock);
2209 EXPORT_SYMBOL_GPL(dm_get_md);
2211 void *dm_get_mdptr(struct mapped_device *md)
2213 return md->interface_ptr;
2216 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2218 md->interface_ptr = ptr;
2221 void dm_get(struct mapped_device *md)
2223 atomic_inc(&md->holders);
2224 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2227 int dm_hold(struct mapped_device *md)
2229 spin_lock(&_minor_lock);
2230 if (test_bit(DMF_FREEING, &md->flags)) {
2231 spin_unlock(&_minor_lock);
2235 spin_unlock(&_minor_lock);
2238 EXPORT_SYMBOL_GPL(dm_hold);
2240 const char *dm_device_name(struct mapped_device *md)
2244 EXPORT_SYMBOL_GPL(dm_device_name);
2246 static void __dm_destroy(struct mapped_device *md, bool wait)
2248 struct dm_table *map;
2253 spin_lock(&_minor_lock);
2254 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2255 set_bit(DMF_FREEING, &md->flags);
2256 spin_unlock(&_minor_lock);
2258 blk_mark_disk_dead(md->disk);
2261 * Take suspend_lock so that presuspend and postsuspend methods
2262 * do not race with internal suspend.
2264 mutex_lock(&md->suspend_lock);
2265 map = dm_get_live_table(md, &srcu_idx);
2266 if (!dm_suspended_md(md)) {
2267 dm_table_presuspend_targets(map);
2268 set_bit(DMF_SUSPENDED, &md->flags);
2269 set_bit(DMF_POST_SUSPENDING, &md->flags);
2270 dm_table_postsuspend_targets(map);
2272 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2273 dm_put_live_table(md, srcu_idx);
2274 mutex_unlock(&md->suspend_lock);
2277 * Rare, but there may be I/O requests still going to complete,
2278 * for example. Wait for all references to disappear.
2279 * No one should increment the reference count of the mapped_device,
2280 * after the mapped_device state becomes DMF_FREEING.
2283 while (atomic_read(&md->holders))
2285 else if (atomic_read(&md->holders))
2286 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2287 dm_device_name(md), atomic_read(&md->holders));
2289 dm_table_destroy(__unbind(md));
2293 void dm_destroy(struct mapped_device *md)
2295 __dm_destroy(md, true);
2298 void dm_destroy_immediate(struct mapped_device *md)
2300 __dm_destroy(md, false);
2303 void dm_put(struct mapped_device *md)
2305 atomic_dec(&md->holders);
2307 EXPORT_SYMBOL_GPL(dm_put);
2309 static bool dm_in_flight_bios(struct mapped_device *md)
2312 unsigned long sum = 0;
2314 for_each_possible_cpu(cpu)
2315 sum += *per_cpu_ptr(md->pending_io, cpu);
2320 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2326 prepare_to_wait(&md->wait, &wait, task_state);
2328 if (!dm_in_flight_bios(md))
2331 if (signal_pending_state(task_state, current)) {
2338 finish_wait(&md->wait, &wait);
2345 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2349 if (!queue_is_mq(md->queue))
2350 return dm_wait_for_bios_completion(md, task_state);
2353 if (!blk_mq_queue_inflight(md->queue))
2356 if (signal_pending_state(task_state, current)) {
2368 * Process the deferred bios
2370 static void dm_wq_work(struct work_struct *work)
2372 struct mapped_device *md = container_of(work, struct mapped_device, work);
2375 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2376 spin_lock_irq(&md->deferred_lock);
2377 bio = bio_list_pop(&md->deferred);
2378 spin_unlock_irq(&md->deferred_lock);
2383 submit_bio_noacct(bio);
2387 static void dm_queue_flush(struct mapped_device *md)
2389 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2390 smp_mb__after_atomic();
2391 queue_work(md->wq, &md->work);
2395 * Swap in a new table, returning the old one for the caller to destroy.
2397 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2399 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2400 struct queue_limits limits;
2403 mutex_lock(&md->suspend_lock);
2405 /* device must be suspended */
2406 if (!dm_suspended_md(md))
2410 * If the new table has no data devices, retain the existing limits.
2411 * This helps multipath with queue_if_no_path if all paths disappear,
2412 * then new I/O is queued based on these limits, and then some paths
2415 if (dm_table_has_no_data_devices(table)) {
2416 live_map = dm_get_live_table_fast(md);
2418 limits = md->queue->limits;
2419 dm_put_live_table_fast(md);
2423 r = dm_calculate_queue_limits(table, &limits);
2430 map = __bind(md, table, &limits);
2431 dm_issue_global_event();
2434 mutex_unlock(&md->suspend_lock);
2439 * Functions to lock and unlock any filesystem running on the
2442 static int lock_fs(struct mapped_device *md)
2446 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2448 r = freeze_bdev(md->disk->part0);
2450 set_bit(DMF_FROZEN, &md->flags);
2454 static void unlock_fs(struct mapped_device *md)
2456 if (!test_bit(DMF_FROZEN, &md->flags))
2458 thaw_bdev(md->disk->part0);
2459 clear_bit(DMF_FROZEN, &md->flags);
2463 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2464 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2465 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2467 * If __dm_suspend returns 0, the device is completely quiescent
2468 * now. There is no request-processing activity. All new requests
2469 * are being added to md->deferred list.
2471 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2472 unsigned suspend_flags, unsigned int task_state,
2473 int dmf_suspended_flag)
2475 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2476 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2479 lockdep_assert_held(&md->suspend_lock);
2482 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2483 * This flag is cleared before dm_suspend returns.
2486 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2488 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2491 * This gets reverted if there's an error later and the targets
2492 * provide the .presuspend_undo hook.
2494 dm_table_presuspend_targets(map);
2497 * Flush I/O to the device.
2498 * Any I/O submitted after lock_fs() may not be flushed.
2499 * noflush takes precedence over do_lockfs.
2500 * (lock_fs() flushes I/Os and waits for them to complete.)
2502 if (!noflush && do_lockfs) {
2505 dm_table_presuspend_undo_targets(map);
2511 * Here we must make sure that no processes are submitting requests
2512 * to target drivers i.e. no one may be executing
2513 * dm_split_and_process_bio from dm_submit_bio.
2515 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2516 * we take the write lock. To prevent any process from reentering
2517 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2518 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2519 * flush_workqueue(md->wq).
2521 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2523 synchronize_srcu(&md->io_barrier);
2526 * Stop md->queue before flushing md->wq in case request-based
2527 * dm defers requests to md->wq from md->queue.
2529 if (dm_request_based(md))
2530 dm_stop_queue(md->queue);
2532 flush_workqueue(md->wq);
2535 * At this point no more requests are entering target request routines.
2536 * We call dm_wait_for_completion to wait for all existing requests
2539 r = dm_wait_for_completion(md, task_state);
2541 set_bit(dmf_suspended_flag, &md->flags);
2544 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2546 synchronize_srcu(&md->io_barrier);
2548 /* were we interrupted ? */
2552 if (dm_request_based(md))
2553 dm_start_queue(md->queue);
2556 dm_table_presuspend_undo_targets(map);
2557 /* pushback list is already flushed, so skip flush */
2564 * We need to be able to change a mapping table under a mounted
2565 * filesystem. For example we might want to move some data in
2566 * the background. Before the table can be swapped with
2567 * dm_bind_table, dm_suspend must be called to flush any in
2568 * flight bios and ensure that any further io gets deferred.
2571 * Suspend mechanism in request-based dm.
2573 * 1. Flush all I/Os by lock_fs() if needed.
2574 * 2. Stop dispatching any I/O by stopping the request_queue.
2575 * 3. Wait for all in-flight I/Os to be completed or requeued.
2577 * To abort suspend, start the request_queue.
2579 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2581 struct dm_table *map = NULL;
2585 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2587 if (dm_suspended_md(md)) {
2592 if (dm_suspended_internally_md(md)) {
2593 /* already internally suspended, wait for internal resume */
2594 mutex_unlock(&md->suspend_lock);
2595 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2601 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2603 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2607 set_bit(DMF_POST_SUSPENDING, &md->flags);
2608 dm_table_postsuspend_targets(map);
2609 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2612 mutex_unlock(&md->suspend_lock);
2616 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2619 int r = dm_table_resume_targets(map);
2627 * Flushing deferred I/Os must be done after targets are resumed
2628 * so that mapping of targets can work correctly.
2629 * Request-based dm is queueing the deferred I/Os in its request_queue.
2631 if (dm_request_based(md))
2632 dm_start_queue(md->queue);
2639 int dm_resume(struct mapped_device *md)
2642 struct dm_table *map = NULL;
2646 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2648 if (!dm_suspended_md(md))
2651 if (dm_suspended_internally_md(md)) {
2652 /* already internally suspended, wait for internal resume */
2653 mutex_unlock(&md->suspend_lock);
2654 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2660 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2661 if (!map || !dm_table_get_size(map))
2664 r = __dm_resume(md, map);
2668 clear_bit(DMF_SUSPENDED, &md->flags);
2670 mutex_unlock(&md->suspend_lock);
2676 * Internal suspend/resume works like userspace-driven suspend. It waits
2677 * until all bios finish and prevents issuing new bios to the target drivers.
2678 * It may be used only from the kernel.
2681 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2683 struct dm_table *map = NULL;
2685 lockdep_assert_held(&md->suspend_lock);
2687 if (md->internal_suspend_count++)
2688 return; /* nested internal suspend */
2690 if (dm_suspended_md(md)) {
2691 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2692 return; /* nest suspend */
2695 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2698 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2699 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2700 * would require changing .presuspend to return an error -- avoid this
2701 * until there is a need for more elaborate variants of internal suspend.
2703 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2704 DMF_SUSPENDED_INTERNALLY);
2706 set_bit(DMF_POST_SUSPENDING, &md->flags);
2707 dm_table_postsuspend_targets(map);
2708 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2711 static void __dm_internal_resume(struct mapped_device *md)
2713 BUG_ON(!md->internal_suspend_count);
2715 if (--md->internal_suspend_count)
2716 return; /* resume from nested internal suspend */
2718 if (dm_suspended_md(md))
2719 goto done; /* resume from nested suspend */
2722 * NOTE: existing callers don't need to call dm_table_resume_targets
2723 * (which may fail -- so best to avoid it for now by passing NULL map)
2725 (void) __dm_resume(md, NULL);
2728 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2729 smp_mb__after_atomic();
2730 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2733 void dm_internal_suspend_noflush(struct mapped_device *md)
2735 mutex_lock(&md->suspend_lock);
2736 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2737 mutex_unlock(&md->suspend_lock);
2739 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2741 void dm_internal_resume(struct mapped_device *md)
2743 mutex_lock(&md->suspend_lock);
2744 __dm_internal_resume(md);
2745 mutex_unlock(&md->suspend_lock);
2747 EXPORT_SYMBOL_GPL(dm_internal_resume);
2750 * Fast variants of internal suspend/resume hold md->suspend_lock,
2751 * which prevents interaction with userspace-driven suspend.
2754 void dm_internal_suspend_fast(struct mapped_device *md)
2756 mutex_lock(&md->suspend_lock);
2757 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2760 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2761 synchronize_srcu(&md->io_barrier);
2762 flush_workqueue(md->wq);
2763 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2765 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2767 void dm_internal_resume_fast(struct mapped_device *md)
2769 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2775 mutex_unlock(&md->suspend_lock);
2777 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2779 /*-----------------------------------------------------------------
2780 * Event notification.
2781 *---------------------------------------------------------------*/
2782 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2787 char udev_cookie[DM_COOKIE_LENGTH];
2788 char *envp[] = { udev_cookie, NULL };
2790 noio_flag = memalloc_noio_save();
2793 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2795 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2796 DM_COOKIE_ENV_VAR_NAME, cookie);
2797 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2801 memalloc_noio_restore(noio_flag);
2806 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2808 return atomic_add_return(1, &md->uevent_seq);
2811 uint32_t dm_get_event_nr(struct mapped_device *md)
2813 return atomic_read(&md->event_nr);
2816 int dm_wait_event(struct mapped_device *md, int event_nr)
2818 return wait_event_interruptible(md->eventq,
2819 (event_nr != atomic_read(&md->event_nr)));
2822 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2824 unsigned long flags;
2826 spin_lock_irqsave(&md->uevent_lock, flags);
2827 list_add(elist, &md->uevent_list);
2828 spin_unlock_irqrestore(&md->uevent_lock, flags);
2832 * The gendisk is only valid as long as you have a reference
2835 struct gendisk *dm_disk(struct mapped_device *md)
2839 EXPORT_SYMBOL_GPL(dm_disk);
2841 struct kobject *dm_kobject(struct mapped_device *md)
2843 return &md->kobj_holder.kobj;
2846 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2848 struct mapped_device *md;
2850 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2852 spin_lock(&_minor_lock);
2853 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2859 spin_unlock(&_minor_lock);
2864 int dm_suspended_md(struct mapped_device *md)
2866 return test_bit(DMF_SUSPENDED, &md->flags);
2869 static int dm_post_suspending_md(struct mapped_device *md)
2871 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2874 int dm_suspended_internally_md(struct mapped_device *md)
2876 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2879 int dm_test_deferred_remove_flag(struct mapped_device *md)
2881 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2884 int dm_suspended(struct dm_target *ti)
2886 return dm_suspended_md(ti->table->md);
2888 EXPORT_SYMBOL_GPL(dm_suspended);
2890 int dm_post_suspending(struct dm_target *ti)
2892 return dm_post_suspending_md(ti->table->md);
2894 EXPORT_SYMBOL_GPL(dm_post_suspending);
2896 int dm_noflush_suspending(struct dm_target *ti)
2898 return __noflush_suspending(ti->table->md);
2900 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2902 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2903 unsigned integrity, unsigned per_io_data_size,
2904 unsigned min_pool_size)
2906 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2907 unsigned int pool_size = 0;
2908 unsigned int front_pad, io_front_pad;
2915 case DM_TYPE_BIO_BASED:
2916 case DM_TYPE_DAX_BIO_BASED:
2917 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2918 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2919 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2920 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2923 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2926 case DM_TYPE_REQUEST_BASED:
2927 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2928 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2929 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2935 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2939 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2945 dm_free_md_mempools(pools);
2950 void dm_free_md_mempools(struct dm_md_mempools *pools)
2955 bioset_exit(&pools->bs);
2956 bioset_exit(&pools->io_bs);
2968 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2971 struct mapped_device *md = bdev->bd_disk->private_data;
2972 struct dm_table *table;
2973 struct dm_target *ti;
2974 int ret = -ENOTTY, srcu_idx;
2976 table = dm_get_live_table(md, &srcu_idx);
2977 if (!table || !dm_table_get_size(table))
2980 /* We only support devices that have a single target */
2981 if (dm_table_get_num_targets(table) != 1)
2983 ti = dm_table_get_target(table, 0);
2986 if (!ti->type->iterate_devices)
2989 ret = ti->type->iterate_devices(ti, fn, data);
2991 dm_put_live_table(md, srcu_idx);
2996 * For register / unregister we need to manually call out to every path.
2998 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2999 sector_t start, sector_t len, void *data)
3001 struct dm_pr *pr = data;
3002 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3004 if (!ops || !ops->pr_register)
3006 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3009 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3020 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3021 if (ret && new_key) {
3022 /* unregister all paths if we failed to register any path */
3023 pr.old_key = new_key;
3026 pr.fail_early = false;
3027 dm_call_pr(bdev, __dm_pr_register, &pr);
3033 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3036 struct mapped_device *md = bdev->bd_disk->private_data;
3037 const struct pr_ops *ops;
3040 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3044 ops = bdev->bd_disk->fops->pr_ops;
3045 if (ops && ops->pr_reserve)
3046 r = ops->pr_reserve(bdev, key, type, flags);
3050 dm_unprepare_ioctl(md, srcu_idx);
3054 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3056 struct mapped_device *md = bdev->bd_disk->private_data;
3057 const struct pr_ops *ops;
3060 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3064 ops = bdev->bd_disk->fops->pr_ops;
3065 if (ops && ops->pr_release)
3066 r = ops->pr_release(bdev, key, type);
3070 dm_unprepare_ioctl(md, srcu_idx);
3074 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3075 enum pr_type type, bool abort)
3077 struct mapped_device *md = bdev->bd_disk->private_data;
3078 const struct pr_ops *ops;
3081 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3085 ops = bdev->bd_disk->fops->pr_ops;
3086 if (ops && ops->pr_preempt)
3087 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3091 dm_unprepare_ioctl(md, srcu_idx);
3095 static int dm_pr_clear(struct block_device *bdev, u64 key)
3097 struct mapped_device *md = bdev->bd_disk->private_data;
3098 const struct pr_ops *ops;
3101 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3105 ops = bdev->bd_disk->fops->pr_ops;
3106 if (ops && ops->pr_clear)
3107 r = ops->pr_clear(bdev, key);
3111 dm_unprepare_ioctl(md, srcu_idx);
3115 static const struct pr_ops dm_pr_ops = {
3116 .pr_register = dm_pr_register,
3117 .pr_reserve = dm_pr_reserve,
3118 .pr_release = dm_pr_release,
3119 .pr_preempt = dm_pr_preempt,
3120 .pr_clear = dm_pr_clear,
3123 static const struct block_device_operations dm_blk_dops = {
3124 .submit_bio = dm_submit_bio,
3125 .poll_bio = dm_poll_bio,
3126 .open = dm_blk_open,
3127 .release = dm_blk_close,
3128 .ioctl = dm_blk_ioctl,
3129 .getgeo = dm_blk_getgeo,
3130 .report_zones = dm_blk_report_zones,
3131 .pr_ops = &dm_pr_ops,
3132 .owner = THIS_MODULE
3135 static const struct block_device_operations dm_rq_blk_dops = {
3136 .open = dm_blk_open,
3137 .release = dm_blk_close,
3138 .ioctl = dm_blk_ioctl,
3139 .getgeo = dm_blk_getgeo,
3140 .pr_ops = &dm_pr_ops,
3141 .owner = THIS_MODULE
3144 static const struct dax_operations dm_dax_ops = {
3145 .direct_access = dm_dax_direct_access,
3146 .zero_page_range = dm_dax_zero_page_range,
3152 module_init(dm_init);
3153 module_exit(dm_exit);
3155 module_param(major, uint, 0);
3156 MODULE_PARM_DESC(major, "The major number of the device mapper");
3158 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3159 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3161 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3162 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3164 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3165 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3167 MODULE_DESCRIPTION(DM_NAME " driver");
3169 MODULE_LICENSE("GPL");