]> Git Repo - linux.git/blob - drivers/mmc/core/block.c
Merge branch 'for-5.13' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux.git] / drivers / mmc / core / block.c
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47
48 #include <linux/uaccess.h>
49
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "crypto.h"
55 #include "host.h"
56 #include "bus.h"
57 #include "mmc_ops.h"
58 #include "quirks.h"
59 #include "sd_ops.h"
60
61 MODULE_ALIAS("mmc:block");
62 #ifdef MODULE_PARAM_PREFIX
63 #undef MODULE_PARAM_PREFIX
64 #endif
65 #define MODULE_PARAM_PREFIX "mmcblk."
66
67 /*
68  * Set a 10 second timeout for polling write request busy state. Note, mmc core
69  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
70  * second software timer to timeout the whole request, so 10 seconds should be
71  * ample.
72  */
73 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
76
77 #define mmc_req_rel_wr(req)     ((req->cmd_flags & REQ_FUA) && \
78                                   (rq_data_dir(req) == WRITE))
79 static DEFINE_MUTEX(block_mutex);
80
81 /*
82  * The defaults come from config options but can be overriden by module
83  * or bootarg options.
84  */
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86
87 /*
88  * We've only got one major, so number of mmcblk devices is
89  * limited to (1 << 20) / number of minors per device.  It is also
90  * limited by the MAX_DEVICES below.
91  */
92 static int max_devices;
93
94 #define MAX_DEVICES 256
95
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
98
99 /*
100  * There is one mmc_blk_data per slot.
101  */
102 struct mmc_blk_data {
103         struct device   *parent;
104         struct gendisk  *disk;
105         struct mmc_queue queue;
106         struct list_head part;
107         struct list_head rpmbs;
108
109         unsigned int    flags;
110 #define MMC_BLK_CMD23   (1 << 0)        /* Can do SET_BLOCK_COUNT for multiblock */
111 #define MMC_BLK_REL_WR  (1 << 1)        /* MMC Reliable write support */
112
113         unsigned int    usage;
114         unsigned int    read_only;
115         unsigned int    part_type;
116         unsigned int    reset_done;
117 #define MMC_BLK_READ            BIT(0)
118 #define MMC_BLK_WRITE           BIT(1)
119 #define MMC_BLK_DISCARD         BIT(2)
120 #define MMC_BLK_SECDISCARD      BIT(3)
121 #define MMC_BLK_CQE_RECOVERY    BIT(4)
122
123         /*
124          * Only set in main mmc_blk_data associated
125          * with mmc_card with dev_set_drvdata, and keeps
126          * track of the current selected device partition.
127          */
128         unsigned int    part_curr;
129         struct device_attribute force_ro;
130         struct device_attribute power_ro_lock;
131         int     area_type;
132
133         /* debugfs files (only in main mmc_blk_data) */
134         struct dentry *status_dentry;
135         struct dentry *ext_csd_dentry;
136 };
137
138 /* Device type for RPMB character devices */
139 static dev_t mmc_rpmb_devt;
140
141 /* Bus type for RPMB character devices */
142 static struct bus_type mmc_rpmb_bus_type = {
143         .name = "mmc_rpmb",
144 };
145
146 /**
147  * struct mmc_rpmb_data - special RPMB device type for these areas
148  * @dev: the device for the RPMB area
149  * @chrdev: character device for the RPMB area
150  * @id: unique device ID number
151  * @part_index: partition index (0 on first)
152  * @md: parent MMC block device
153  * @node: list item, so we can put this device on a list
154  */
155 struct mmc_rpmb_data {
156         struct device dev;
157         struct cdev chrdev;
158         int id;
159         unsigned int part_index;
160         struct mmc_blk_data *md;
161         struct list_head node;
162 };
163
164 static DEFINE_MUTEX(open_lock);
165
166 module_param(perdev_minors, int, 0444);
167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
168
169 static inline int mmc_blk_part_switch(struct mmc_card *card,
170                                       unsigned int part_type);
171 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
172                                struct mmc_card *card,
173                                int disable_multi,
174                                struct mmc_queue *mq);
175 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
176
177 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
178 {
179         struct mmc_blk_data *md;
180
181         mutex_lock(&open_lock);
182         md = disk->private_data;
183         if (md && md->usage == 0)
184                 md = NULL;
185         if (md)
186                 md->usage++;
187         mutex_unlock(&open_lock);
188
189         return md;
190 }
191
192 static inline int mmc_get_devidx(struct gendisk *disk)
193 {
194         int devidx = disk->first_minor / perdev_minors;
195         return devidx;
196 }
197
198 static void mmc_blk_put(struct mmc_blk_data *md)
199 {
200         mutex_lock(&open_lock);
201         md->usage--;
202         if (md->usage == 0) {
203                 int devidx = mmc_get_devidx(md->disk);
204                 blk_put_queue(md->queue.queue);
205                 ida_simple_remove(&mmc_blk_ida, devidx);
206                 put_disk(md->disk);
207                 kfree(md);
208         }
209         mutex_unlock(&open_lock);
210 }
211
212 static ssize_t power_ro_lock_show(struct device *dev,
213                 struct device_attribute *attr, char *buf)
214 {
215         int ret;
216         struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
217         struct mmc_card *card = md->queue.card;
218         int locked = 0;
219
220         if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
221                 locked = 2;
222         else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
223                 locked = 1;
224
225         ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
226
227         mmc_blk_put(md);
228
229         return ret;
230 }
231
232 static ssize_t power_ro_lock_store(struct device *dev,
233                 struct device_attribute *attr, const char *buf, size_t count)
234 {
235         int ret;
236         struct mmc_blk_data *md, *part_md;
237         struct mmc_queue *mq;
238         struct request *req;
239         unsigned long set;
240
241         if (kstrtoul(buf, 0, &set))
242                 return -EINVAL;
243
244         if (set != 1)
245                 return count;
246
247         md = mmc_blk_get(dev_to_disk(dev));
248         mq = &md->queue;
249
250         /* Dispatch locking to the block layer */
251         req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
252         if (IS_ERR(req)) {
253                 count = PTR_ERR(req);
254                 goto out_put;
255         }
256         req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
257         blk_execute_rq(NULL, req, 0);
258         ret = req_to_mmc_queue_req(req)->drv_op_result;
259         blk_put_request(req);
260
261         if (!ret) {
262                 pr_info("%s: Locking boot partition ro until next power on\n",
263                         md->disk->disk_name);
264                 set_disk_ro(md->disk, 1);
265
266                 list_for_each_entry(part_md, &md->part, part)
267                         if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
268                                 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
269                                 set_disk_ro(part_md->disk, 1);
270                         }
271         }
272 out_put:
273         mmc_blk_put(md);
274         return count;
275 }
276
277 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
278                              char *buf)
279 {
280         int ret;
281         struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
282
283         ret = snprintf(buf, PAGE_SIZE, "%d\n",
284                        get_disk_ro(dev_to_disk(dev)) ^
285                        md->read_only);
286         mmc_blk_put(md);
287         return ret;
288 }
289
290 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
291                               const char *buf, size_t count)
292 {
293         int ret;
294         char *end;
295         struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
296         unsigned long set = simple_strtoul(buf, &end, 0);
297         if (end == buf) {
298                 ret = -EINVAL;
299                 goto out;
300         }
301
302         set_disk_ro(dev_to_disk(dev), set || md->read_only);
303         ret = count;
304 out:
305         mmc_blk_put(md);
306         return ret;
307 }
308
309 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
310 {
311         struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
312         int ret = -ENXIO;
313
314         mutex_lock(&block_mutex);
315         if (md) {
316                 ret = 0;
317                 if ((mode & FMODE_WRITE) && md->read_only) {
318                         mmc_blk_put(md);
319                         ret = -EROFS;
320                 }
321         }
322         mutex_unlock(&block_mutex);
323
324         return ret;
325 }
326
327 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
328 {
329         struct mmc_blk_data *md = disk->private_data;
330
331         mutex_lock(&block_mutex);
332         mmc_blk_put(md);
333         mutex_unlock(&block_mutex);
334 }
335
336 static int
337 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
338 {
339         geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
340         geo->heads = 4;
341         geo->sectors = 16;
342         return 0;
343 }
344
345 struct mmc_blk_ioc_data {
346         struct mmc_ioc_cmd ic;
347         unsigned char *buf;
348         u64 buf_bytes;
349         struct mmc_rpmb_data *rpmb;
350 };
351
352 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
353         struct mmc_ioc_cmd __user *user)
354 {
355         struct mmc_blk_ioc_data *idata;
356         int err;
357
358         idata = kmalloc(sizeof(*idata), GFP_KERNEL);
359         if (!idata) {
360                 err = -ENOMEM;
361                 goto out;
362         }
363
364         if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
365                 err = -EFAULT;
366                 goto idata_err;
367         }
368
369         idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
370         if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
371                 err = -EOVERFLOW;
372                 goto idata_err;
373         }
374
375         if (!idata->buf_bytes) {
376                 idata->buf = NULL;
377                 return idata;
378         }
379
380         idata->buf = memdup_user((void __user *)(unsigned long)
381                                  idata->ic.data_ptr, idata->buf_bytes);
382         if (IS_ERR(idata->buf)) {
383                 err = PTR_ERR(idata->buf);
384                 goto idata_err;
385         }
386
387         return idata;
388
389 idata_err:
390         kfree(idata);
391 out:
392         return ERR_PTR(err);
393 }
394
395 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
396                                       struct mmc_blk_ioc_data *idata)
397 {
398         struct mmc_ioc_cmd *ic = &idata->ic;
399
400         if (copy_to_user(&(ic_ptr->response), ic->response,
401                          sizeof(ic->response)))
402                 return -EFAULT;
403
404         if (!idata->ic.write_flag) {
405                 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
406                                  idata->buf, idata->buf_bytes))
407                         return -EFAULT;
408         }
409
410         return 0;
411 }
412
413 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
414                             u32 *resp_errs)
415 {
416         unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
417         int err = 0;
418         u32 status;
419
420         do {
421                 bool done = time_after(jiffies, timeout);
422
423                 err = __mmc_send_status(card, &status, 5);
424                 if (err) {
425                         dev_err(mmc_dev(card->host),
426                                 "error %d requesting status\n", err);
427                         return err;
428                 }
429
430                 /* Accumulate any response error bits seen */
431                 if (resp_errs)
432                         *resp_errs |= status;
433
434                 /*
435                  * Timeout if the device never becomes ready for data and never
436                  * leaves the program state.
437                  */
438                 if (done) {
439                         dev_err(mmc_dev(card->host),
440                                 "Card stuck in wrong state! %s status: %#x\n",
441                                  __func__, status);
442                         return -ETIMEDOUT;
443                 }
444         } while (!mmc_ready_for_data(status));
445
446         return err;
447 }
448
449 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
450                                struct mmc_blk_ioc_data *idata)
451 {
452         struct mmc_command cmd = {}, sbc = {};
453         struct mmc_data data = {};
454         struct mmc_request mrq = {};
455         struct scatterlist sg;
456         int err;
457         unsigned int target_part;
458
459         if (!card || !md || !idata)
460                 return -EINVAL;
461
462         /*
463          * The RPMB accesses comes in from the character device, so we
464          * need to target these explicitly. Else we just target the
465          * partition type for the block device the ioctl() was issued
466          * on.
467          */
468         if (idata->rpmb) {
469                 /* Support multiple RPMB partitions */
470                 target_part = idata->rpmb->part_index;
471                 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
472         } else {
473                 target_part = md->part_type;
474         }
475
476         cmd.opcode = idata->ic.opcode;
477         cmd.arg = idata->ic.arg;
478         cmd.flags = idata->ic.flags;
479
480         if (idata->buf_bytes) {
481                 data.sg = &sg;
482                 data.sg_len = 1;
483                 data.blksz = idata->ic.blksz;
484                 data.blocks = idata->ic.blocks;
485
486                 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
487
488                 if (idata->ic.write_flag)
489                         data.flags = MMC_DATA_WRITE;
490                 else
491                         data.flags = MMC_DATA_READ;
492
493                 /* data.flags must already be set before doing this. */
494                 mmc_set_data_timeout(&data, card);
495
496                 /* Allow overriding the timeout_ns for empirical tuning. */
497                 if (idata->ic.data_timeout_ns)
498                         data.timeout_ns = idata->ic.data_timeout_ns;
499
500                 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
501                         /*
502                          * Pretend this is a data transfer and rely on the
503                          * host driver to compute timeout.  When all host
504                          * drivers support cmd.cmd_timeout for R1B, this
505                          * can be changed to:
506                          *
507                          *     mrq.data = NULL;
508                          *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
509                          */
510                         data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
511                 }
512
513                 mrq.data = &data;
514         }
515
516         mrq.cmd = &cmd;
517
518         err = mmc_blk_part_switch(card, target_part);
519         if (err)
520                 return err;
521
522         if (idata->ic.is_acmd) {
523                 err = mmc_app_cmd(card->host, card);
524                 if (err)
525                         return err;
526         }
527
528         if (idata->rpmb) {
529                 sbc.opcode = MMC_SET_BLOCK_COUNT;
530                 /*
531                  * We don't do any blockcount validation because the max size
532                  * may be increased by a future standard. We just copy the
533                  * 'Reliable Write' bit here.
534                  */
535                 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
536                 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
537                 mrq.sbc = &sbc;
538         }
539
540         if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
541             (cmd.opcode == MMC_SWITCH))
542                 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
543
544         mmc_wait_for_req(card->host, &mrq);
545
546         if (cmd.error) {
547                 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
548                                                 __func__, cmd.error);
549                 return cmd.error;
550         }
551         if (data.error) {
552                 dev_err(mmc_dev(card->host), "%s: data error %d\n",
553                                                 __func__, data.error);
554                 return data.error;
555         }
556
557         /*
558          * Make sure the cache of the PARTITION_CONFIG register and
559          * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
560          * changed it successfully.
561          */
562         if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
563             (cmd.opcode == MMC_SWITCH)) {
564                 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
565                 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
566
567                 /*
568                  * Update cache so the next mmc_blk_part_switch call operates
569                  * on up-to-date data.
570                  */
571                 card->ext_csd.part_config = value;
572                 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
573         }
574
575         /*
576          * Make sure to update CACHE_CTRL in case it was changed. The cache
577          * will get turned back on if the card is re-initialized, e.g.
578          * suspend/resume or hw reset in recovery.
579          */
580         if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
581             (cmd.opcode == MMC_SWITCH)) {
582                 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
583
584                 card->ext_csd.cache_ctrl = value;
585         }
586
587         /*
588          * According to the SD specs, some commands require a delay after
589          * issuing the command.
590          */
591         if (idata->ic.postsleep_min_us)
592                 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
593
594         memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
595
596         if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
597                 /*
598                  * Ensure RPMB/R1B command has completed by polling CMD13
599                  * "Send Status".
600                  */
601                 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
602         }
603
604         return err;
605 }
606
607 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
608                              struct mmc_ioc_cmd __user *ic_ptr,
609                              struct mmc_rpmb_data *rpmb)
610 {
611         struct mmc_blk_ioc_data *idata;
612         struct mmc_blk_ioc_data *idatas[1];
613         struct mmc_queue *mq;
614         struct mmc_card *card;
615         int err = 0, ioc_err = 0;
616         struct request *req;
617
618         idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
619         if (IS_ERR(idata))
620                 return PTR_ERR(idata);
621         /* This will be NULL on non-RPMB ioctl():s */
622         idata->rpmb = rpmb;
623
624         card = md->queue.card;
625         if (IS_ERR(card)) {
626                 err = PTR_ERR(card);
627                 goto cmd_done;
628         }
629
630         /*
631          * Dispatch the ioctl() into the block request queue.
632          */
633         mq = &md->queue;
634         req = blk_get_request(mq->queue,
635                 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
636         if (IS_ERR(req)) {
637                 err = PTR_ERR(req);
638                 goto cmd_done;
639         }
640         idatas[0] = idata;
641         req_to_mmc_queue_req(req)->drv_op =
642                 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
643         req_to_mmc_queue_req(req)->drv_op_data = idatas;
644         req_to_mmc_queue_req(req)->ioc_count = 1;
645         blk_execute_rq(NULL, req, 0);
646         ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
647         err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
648         blk_put_request(req);
649
650 cmd_done:
651         kfree(idata->buf);
652         kfree(idata);
653         return ioc_err ? ioc_err : err;
654 }
655
656 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
657                                    struct mmc_ioc_multi_cmd __user *user,
658                                    struct mmc_rpmb_data *rpmb)
659 {
660         struct mmc_blk_ioc_data **idata = NULL;
661         struct mmc_ioc_cmd __user *cmds = user->cmds;
662         struct mmc_card *card;
663         struct mmc_queue *mq;
664         int i, err = 0, ioc_err = 0;
665         __u64 num_of_cmds;
666         struct request *req;
667
668         if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
669                            sizeof(num_of_cmds)))
670                 return -EFAULT;
671
672         if (!num_of_cmds)
673                 return 0;
674
675         if (num_of_cmds > MMC_IOC_MAX_CMDS)
676                 return -EINVAL;
677
678         idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
679         if (!idata)
680                 return -ENOMEM;
681
682         for (i = 0; i < num_of_cmds; i++) {
683                 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
684                 if (IS_ERR(idata[i])) {
685                         err = PTR_ERR(idata[i]);
686                         num_of_cmds = i;
687                         goto cmd_err;
688                 }
689                 /* This will be NULL on non-RPMB ioctl():s */
690                 idata[i]->rpmb = rpmb;
691         }
692
693         card = md->queue.card;
694         if (IS_ERR(card)) {
695                 err = PTR_ERR(card);
696                 goto cmd_err;
697         }
698
699
700         /*
701          * Dispatch the ioctl()s into the block request queue.
702          */
703         mq = &md->queue;
704         req = blk_get_request(mq->queue,
705                 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
706         if (IS_ERR(req)) {
707                 err = PTR_ERR(req);
708                 goto cmd_err;
709         }
710         req_to_mmc_queue_req(req)->drv_op =
711                 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
712         req_to_mmc_queue_req(req)->drv_op_data = idata;
713         req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
714         blk_execute_rq(NULL, req, 0);
715         ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
716
717         /* copy to user if data and response */
718         for (i = 0; i < num_of_cmds && !err; i++)
719                 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
720
721         blk_put_request(req);
722
723 cmd_err:
724         for (i = 0; i < num_of_cmds; i++) {
725                 kfree(idata[i]->buf);
726                 kfree(idata[i]);
727         }
728         kfree(idata);
729         return ioc_err ? ioc_err : err;
730 }
731
732 static int mmc_blk_check_blkdev(struct block_device *bdev)
733 {
734         /*
735          * The caller must have CAP_SYS_RAWIO, and must be calling this on the
736          * whole block device, not on a partition.  This prevents overspray
737          * between sibling partitions.
738          */
739         if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
740                 return -EPERM;
741         return 0;
742 }
743
744 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
745         unsigned int cmd, unsigned long arg)
746 {
747         struct mmc_blk_data *md;
748         int ret;
749
750         switch (cmd) {
751         case MMC_IOC_CMD:
752                 ret = mmc_blk_check_blkdev(bdev);
753                 if (ret)
754                         return ret;
755                 md = mmc_blk_get(bdev->bd_disk);
756                 if (!md)
757                         return -EINVAL;
758                 ret = mmc_blk_ioctl_cmd(md,
759                                         (struct mmc_ioc_cmd __user *)arg,
760                                         NULL);
761                 mmc_blk_put(md);
762                 return ret;
763         case MMC_IOC_MULTI_CMD:
764                 ret = mmc_blk_check_blkdev(bdev);
765                 if (ret)
766                         return ret;
767                 md = mmc_blk_get(bdev->bd_disk);
768                 if (!md)
769                         return -EINVAL;
770                 ret = mmc_blk_ioctl_multi_cmd(md,
771                                         (struct mmc_ioc_multi_cmd __user *)arg,
772                                         NULL);
773                 mmc_blk_put(md);
774                 return ret;
775         default:
776                 return -EINVAL;
777         }
778 }
779
780 #ifdef CONFIG_COMPAT
781 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
782         unsigned int cmd, unsigned long arg)
783 {
784         return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
785 }
786 #endif
787
788 static const struct block_device_operations mmc_bdops = {
789         .open                   = mmc_blk_open,
790         .release                = mmc_blk_release,
791         .getgeo                 = mmc_blk_getgeo,
792         .owner                  = THIS_MODULE,
793         .ioctl                  = mmc_blk_ioctl,
794 #ifdef CONFIG_COMPAT
795         .compat_ioctl           = mmc_blk_compat_ioctl,
796 #endif
797 };
798
799 static int mmc_blk_part_switch_pre(struct mmc_card *card,
800                                    unsigned int part_type)
801 {
802         int ret = 0;
803
804         if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
805                 if (card->ext_csd.cmdq_en) {
806                         ret = mmc_cmdq_disable(card);
807                         if (ret)
808                                 return ret;
809                 }
810                 mmc_retune_pause(card->host);
811         }
812
813         return ret;
814 }
815
816 static int mmc_blk_part_switch_post(struct mmc_card *card,
817                                     unsigned int part_type)
818 {
819         int ret = 0;
820
821         if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
822                 mmc_retune_unpause(card->host);
823                 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
824                         ret = mmc_cmdq_enable(card);
825         }
826
827         return ret;
828 }
829
830 static inline int mmc_blk_part_switch(struct mmc_card *card,
831                                       unsigned int part_type)
832 {
833         int ret = 0;
834         struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
835
836         if (main_md->part_curr == part_type)
837                 return 0;
838
839         if (mmc_card_mmc(card)) {
840                 u8 part_config = card->ext_csd.part_config;
841
842                 ret = mmc_blk_part_switch_pre(card, part_type);
843                 if (ret)
844                         return ret;
845
846                 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
847                 part_config |= part_type;
848
849                 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
850                                  EXT_CSD_PART_CONFIG, part_config,
851                                  card->ext_csd.part_time);
852                 if (ret) {
853                         mmc_blk_part_switch_post(card, part_type);
854                         return ret;
855                 }
856
857                 card->ext_csd.part_config = part_config;
858
859                 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
860         }
861
862         main_md->part_curr = part_type;
863         return ret;
864 }
865
866 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
867 {
868         int err;
869         u32 result;
870         __be32 *blocks;
871
872         struct mmc_request mrq = {};
873         struct mmc_command cmd = {};
874         struct mmc_data data = {};
875
876         struct scatterlist sg;
877
878         cmd.opcode = MMC_APP_CMD;
879         cmd.arg = card->rca << 16;
880         cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
881
882         err = mmc_wait_for_cmd(card->host, &cmd, 0);
883         if (err)
884                 return err;
885         if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
886                 return -EIO;
887
888         memset(&cmd, 0, sizeof(struct mmc_command));
889
890         cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
891         cmd.arg = 0;
892         cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
893
894         data.blksz = 4;
895         data.blocks = 1;
896         data.flags = MMC_DATA_READ;
897         data.sg = &sg;
898         data.sg_len = 1;
899         mmc_set_data_timeout(&data, card);
900
901         mrq.cmd = &cmd;
902         mrq.data = &data;
903
904         blocks = kmalloc(4, GFP_KERNEL);
905         if (!blocks)
906                 return -ENOMEM;
907
908         sg_init_one(&sg, blocks, 4);
909
910         mmc_wait_for_req(card->host, &mrq);
911
912         result = ntohl(*blocks);
913         kfree(blocks);
914
915         if (cmd.error || data.error)
916                 return -EIO;
917
918         *written_blocks = result;
919
920         return 0;
921 }
922
923 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
924 {
925         if (host->actual_clock)
926                 return host->actual_clock / 1000;
927
928         /* Clock may be subject to a divisor, fudge it by a factor of 2. */
929         if (host->ios.clock)
930                 return host->ios.clock / 2000;
931
932         /* How can there be no clock */
933         WARN_ON_ONCE(1);
934         return 100; /* 100 kHz is minimum possible value */
935 }
936
937 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
938                                             struct mmc_data *data)
939 {
940         unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
941         unsigned int khz;
942
943         if (data->timeout_clks) {
944                 khz = mmc_blk_clock_khz(host);
945                 ms += DIV_ROUND_UP(data->timeout_clks, khz);
946         }
947
948         return ms;
949 }
950
951 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
952                          int type)
953 {
954         int err;
955
956         if (md->reset_done & type)
957                 return -EEXIST;
958
959         md->reset_done |= type;
960         err = mmc_hw_reset(host);
961         /* Ensure we switch back to the correct partition */
962         if (err) {
963                 struct mmc_blk_data *main_md =
964                         dev_get_drvdata(&host->card->dev);
965                 int part_err;
966
967                 main_md->part_curr = main_md->part_type;
968                 part_err = mmc_blk_part_switch(host->card, md->part_type);
969                 if (part_err) {
970                         /*
971                          * We have failed to get back into the correct
972                          * partition, so we need to abort the whole request.
973                          */
974                         return -ENODEV;
975                 }
976         }
977         return err;
978 }
979
980 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
981 {
982         md->reset_done &= ~type;
983 }
984
985 /*
986  * The non-block commands come back from the block layer after it queued it and
987  * processed it with all other requests and then they get issued in this
988  * function.
989  */
990 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
991 {
992         struct mmc_queue_req *mq_rq;
993         struct mmc_card *card = mq->card;
994         struct mmc_blk_data *md = mq->blkdata;
995         struct mmc_blk_ioc_data **idata;
996         bool rpmb_ioctl;
997         u8 **ext_csd;
998         u32 status;
999         int ret;
1000         int i;
1001
1002         mq_rq = req_to_mmc_queue_req(req);
1003         rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1004
1005         switch (mq_rq->drv_op) {
1006         case MMC_DRV_OP_IOCTL:
1007         case MMC_DRV_OP_IOCTL_RPMB:
1008                 idata = mq_rq->drv_op_data;
1009                 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1010                         ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1011                         if (ret)
1012                                 break;
1013                 }
1014                 /* Always switch back to main area after RPMB access */
1015                 if (rpmb_ioctl)
1016                         mmc_blk_part_switch(card, 0);
1017                 break;
1018         case MMC_DRV_OP_BOOT_WP:
1019                 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1020                                  card->ext_csd.boot_ro_lock |
1021                                  EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1022                                  card->ext_csd.part_time);
1023                 if (ret)
1024                         pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1025                                md->disk->disk_name, ret);
1026                 else
1027                         card->ext_csd.boot_ro_lock |=
1028                                 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1029                 break;
1030         case MMC_DRV_OP_GET_CARD_STATUS:
1031                 ret = mmc_send_status(card, &status);
1032                 if (!ret)
1033                         ret = status;
1034                 break;
1035         case MMC_DRV_OP_GET_EXT_CSD:
1036                 ext_csd = mq_rq->drv_op_data;
1037                 ret = mmc_get_ext_csd(card, ext_csd);
1038                 break;
1039         default:
1040                 pr_err("%s: unknown driver specific operation\n",
1041                        md->disk->disk_name);
1042                 ret = -EINVAL;
1043                 break;
1044         }
1045         mq_rq->drv_op_result = ret;
1046         blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1047 }
1048
1049 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1050 {
1051         struct mmc_blk_data *md = mq->blkdata;
1052         struct mmc_card *card = md->queue.card;
1053         unsigned int from, nr;
1054         int err = 0, type = MMC_BLK_DISCARD;
1055         blk_status_t status = BLK_STS_OK;
1056
1057         if (!mmc_can_erase(card)) {
1058                 status = BLK_STS_NOTSUPP;
1059                 goto fail;
1060         }
1061
1062         from = blk_rq_pos(req);
1063         nr = blk_rq_sectors(req);
1064
1065         do {
1066                 err = 0;
1067                 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1068                         err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1069                                          INAND_CMD38_ARG_EXT_CSD,
1070                                          card->erase_arg == MMC_TRIM_ARG ?
1071                                          INAND_CMD38_ARG_TRIM :
1072                                          INAND_CMD38_ARG_ERASE,
1073                                          card->ext_csd.generic_cmd6_time);
1074                 }
1075                 if (!err)
1076                         err = mmc_erase(card, from, nr, card->erase_arg);
1077         } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1078         if (err)
1079                 status = BLK_STS_IOERR;
1080         else
1081                 mmc_blk_reset_success(md, type);
1082 fail:
1083         blk_mq_end_request(req, status);
1084 }
1085
1086 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1087                                        struct request *req)
1088 {
1089         struct mmc_blk_data *md = mq->blkdata;
1090         struct mmc_card *card = md->queue.card;
1091         unsigned int from, nr, arg;
1092         int err = 0, type = MMC_BLK_SECDISCARD;
1093         blk_status_t status = BLK_STS_OK;
1094
1095         if (!(mmc_can_secure_erase_trim(card))) {
1096                 status = BLK_STS_NOTSUPP;
1097                 goto out;
1098         }
1099
1100         from = blk_rq_pos(req);
1101         nr = blk_rq_sectors(req);
1102
1103         if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1104                 arg = MMC_SECURE_TRIM1_ARG;
1105         else
1106                 arg = MMC_SECURE_ERASE_ARG;
1107
1108 retry:
1109         if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1110                 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1111                                  INAND_CMD38_ARG_EXT_CSD,
1112                                  arg == MMC_SECURE_TRIM1_ARG ?
1113                                  INAND_CMD38_ARG_SECTRIM1 :
1114                                  INAND_CMD38_ARG_SECERASE,
1115                                  card->ext_csd.generic_cmd6_time);
1116                 if (err)
1117                         goto out_retry;
1118         }
1119
1120         err = mmc_erase(card, from, nr, arg);
1121         if (err == -EIO)
1122                 goto out_retry;
1123         if (err) {
1124                 status = BLK_STS_IOERR;
1125                 goto out;
1126         }
1127
1128         if (arg == MMC_SECURE_TRIM1_ARG) {
1129                 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1130                         err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1131                                          INAND_CMD38_ARG_EXT_CSD,
1132                                          INAND_CMD38_ARG_SECTRIM2,
1133                                          card->ext_csd.generic_cmd6_time);
1134                         if (err)
1135                                 goto out_retry;
1136                 }
1137
1138                 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1139                 if (err == -EIO)
1140                         goto out_retry;
1141                 if (err) {
1142                         status = BLK_STS_IOERR;
1143                         goto out;
1144                 }
1145         }
1146
1147 out_retry:
1148         if (err && !mmc_blk_reset(md, card->host, type))
1149                 goto retry;
1150         if (!err)
1151                 mmc_blk_reset_success(md, type);
1152 out:
1153         blk_mq_end_request(req, status);
1154 }
1155
1156 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1157 {
1158         struct mmc_blk_data *md = mq->blkdata;
1159         struct mmc_card *card = md->queue.card;
1160         int ret = 0;
1161
1162         ret = mmc_flush_cache(card);
1163         blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1164 }
1165
1166 /*
1167  * Reformat current write as a reliable write, supporting
1168  * both legacy and the enhanced reliable write MMC cards.
1169  * In each transfer we'll handle only as much as a single
1170  * reliable write can handle, thus finish the request in
1171  * partial completions.
1172  */
1173 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1174                                     struct mmc_card *card,
1175                                     struct request *req)
1176 {
1177         if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1178                 /* Legacy mode imposes restrictions on transfers. */
1179                 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1180                         brq->data.blocks = 1;
1181
1182                 if (brq->data.blocks > card->ext_csd.rel_sectors)
1183                         brq->data.blocks = card->ext_csd.rel_sectors;
1184                 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1185                         brq->data.blocks = 1;
1186         }
1187 }
1188
1189 #define CMD_ERRORS_EXCL_OOR                                             \
1190         (R1_ADDRESS_ERROR |     /* Misaligned address */                \
1191          R1_BLOCK_LEN_ERROR |   /* Transferred block length incorrect */\
1192          R1_WP_VIOLATION |      /* Tried to write to protected block */ \
1193          R1_CARD_ECC_FAILED |   /* Card ECC failed */                   \
1194          R1_CC_ERROR |          /* Card controller error */             \
1195          R1_ERROR)              /* General/unknown error */
1196
1197 #define CMD_ERRORS                                                      \
1198         (CMD_ERRORS_EXCL_OOR |                                          \
1199          R1_OUT_OF_RANGE)       /* Command argument out of range */     \
1200
1201 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1202 {
1203         u32 val;
1204
1205         /*
1206          * Per the SD specification(physical layer version 4.10)[1],
1207          * section 4.3.3, it explicitly states that "When the last
1208          * block of user area is read using CMD18, the host should
1209          * ignore OUT_OF_RANGE error that may occur even the sequence
1210          * is correct". And JESD84-B51 for eMMC also has a similar
1211          * statement on section 6.8.3.
1212          *
1213          * Multiple block read/write could be done by either predefined
1214          * method, namely CMD23, or open-ending mode. For open-ending mode,
1215          * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1216          *
1217          * However the spec[1] doesn't tell us whether we should also
1218          * ignore that for predefined method. But per the spec[1], section
1219          * 4.15 Set Block Count Command, it says"If illegal block count
1220          * is set, out of range error will be indicated during read/write
1221          * operation (For example, data transfer is stopped at user area
1222          * boundary)." In another word, we could expect a out of range error
1223          * in the response for the following CMD18/25. And if argument of
1224          * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1225          * we could also expect to get a -ETIMEDOUT or any error number from
1226          * the host drivers due to missing data response(for write)/data(for
1227          * read), as the cards will stop the data transfer by itself per the
1228          * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1229          */
1230
1231         if (!brq->stop.error) {
1232                 bool oor_with_open_end;
1233                 /* If there is no error yet, check R1 response */
1234
1235                 val = brq->stop.resp[0] & CMD_ERRORS;
1236                 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1237
1238                 if (val && !oor_with_open_end)
1239                         brq->stop.error = -EIO;
1240         }
1241 }
1242
1243 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1244                               int disable_multi, bool *do_rel_wr_p,
1245                               bool *do_data_tag_p)
1246 {
1247         struct mmc_blk_data *md = mq->blkdata;
1248         struct mmc_card *card = md->queue.card;
1249         struct mmc_blk_request *brq = &mqrq->brq;
1250         struct request *req = mmc_queue_req_to_req(mqrq);
1251         bool do_rel_wr, do_data_tag;
1252
1253         /*
1254          * Reliable writes are used to implement Forced Unit Access and
1255          * are supported only on MMCs.
1256          */
1257         do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1258                     rq_data_dir(req) == WRITE &&
1259                     (md->flags & MMC_BLK_REL_WR);
1260
1261         memset(brq, 0, sizeof(struct mmc_blk_request));
1262
1263         mmc_crypto_prepare_req(mqrq);
1264
1265         brq->mrq.data = &brq->data;
1266         brq->mrq.tag = req->tag;
1267
1268         brq->stop.opcode = MMC_STOP_TRANSMISSION;
1269         brq->stop.arg = 0;
1270
1271         if (rq_data_dir(req) == READ) {
1272                 brq->data.flags = MMC_DATA_READ;
1273                 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1274         } else {
1275                 brq->data.flags = MMC_DATA_WRITE;
1276                 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1277         }
1278
1279         brq->data.blksz = 512;
1280         brq->data.blocks = blk_rq_sectors(req);
1281         brq->data.blk_addr = blk_rq_pos(req);
1282
1283         /*
1284          * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1285          * The eMMC will give "high" priority tasks priority over "simple"
1286          * priority tasks. Here we always set "simple" priority by not setting
1287          * MMC_DATA_PRIO.
1288          */
1289
1290         /*
1291          * The block layer doesn't support all sector count
1292          * restrictions, so we need to be prepared for too big
1293          * requests.
1294          */
1295         if (brq->data.blocks > card->host->max_blk_count)
1296                 brq->data.blocks = card->host->max_blk_count;
1297
1298         if (brq->data.blocks > 1) {
1299                 /*
1300                  * Some SD cards in SPI mode return a CRC error or even lock up
1301                  * completely when trying to read the last block using a
1302                  * multiblock read command.
1303                  */
1304                 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1305                     (blk_rq_pos(req) + blk_rq_sectors(req) ==
1306                      get_capacity(md->disk)))
1307                         brq->data.blocks--;
1308
1309                 /*
1310                  * After a read error, we redo the request one sector
1311                  * at a time in order to accurately determine which
1312                  * sectors can be read successfully.
1313                  */
1314                 if (disable_multi)
1315                         brq->data.blocks = 1;
1316
1317                 /*
1318                  * Some controllers have HW issues while operating
1319                  * in multiple I/O mode
1320                  */
1321                 if (card->host->ops->multi_io_quirk)
1322                         brq->data.blocks = card->host->ops->multi_io_quirk(card,
1323                                                 (rq_data_dir(req) == READ) ?
1324                                                 MMC_DATA_READ : MMC_DATA_WRITE,
1325                                                 brq->data.blocks);
1326         }
1327
1328         if (do_rel_wr) {
1329                 mmc_apply_rel_rw(brq, card, req);
1330                 brq->data.flags |= MMC_DATA_REL_WR;
1331         }
1332
1333         /*
1334          * Data tag is used only during writing meta data to speed
1335          * up write and any subsequent read of this meta data
1336          */
1337         do_data_tag = card->ext_csd.data_tag_unit_size &&
1338                       (req->cmd_flags & REQ_META) &&
1339                       (rq_data_dir(req) == WRITE) &&
1340                       ((brq->data.blocks * brq->data.blksz) >=
1341                        card->ext_csd.data_tag_unit_size);
1342
1343         if (do_data_tag)
1344                 brq->data.flags |= MMC_DATA_DAT_TAG;
1345
1346         mmc_set_data_timeout(&brq->data, card);
1347
1348         brq->data.sg = mqrq->sg;
1349         brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1350
1351         /*
1352          * Adjust the sg list so it is the same size as the
1353          * request.
1354          */
1355         if (brq->data.blocks != blk_rq_sectors(req)) {
1356                 int i, data_size = brq->data.blocks << 9;
1357                 struct scatterlist *sg;
1358
1359                 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1360                         data_size -= sg->length;
1361                         if (data_size <= 0) {
1362                                 sg->length += data_size;
1363                                 i++;
1364                                 break;
1365                         }
1366                 }
1367                 brq->data.sg_len = i;
1368         }
1369
1370         if (do_rel_wr_p)
1371                 *do_rel_wr_p = do_rel_wr;
1372
1373         if (do_data_tag_p)
1374                 *do_data_tag_p = do_data_tag;
1375 }
1376
1377 #define MMC_CQE_RETRIES 2
1378
1379 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1380 {
1381         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1382         struct mmc_request *mrq = &mqrq->brq.mrq;
1383         struct request_queue *q = req->q;
1384         struct mmc_host *host = mq->card->host;
1385         enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1386         unsigned long flags;
1387         bool put_card;
1388         int err;
1389
1390         mmc_cqe_post_req(host, mrq);
1391
1392         if (mrq->cmd && mrq->cmd->error)
1393                 err = mrq->cmd->error;
1394         else if (mrq->data && mrq->data->error)
1395                 err = mrq->data->error;
1396         else
1397                 err = 0;
1398
1399         if (err) {
1400                 if (mqrq->retries++ < MMC_CQE_RETRIES)
1401                         blk_mq_requeue_request(req, true);
1402                 else
1403                         blk_mq_end_request(req, BLK_STS_IOERR);
1404         } else if (mrq->data) {
1405                 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1406                         blk_mq_requeue_request(req, true);
1407                 else
1408                         __blk_mq_end_request(req, BLK_STS_OK);
1409         } else {
1410                 blk_mq_end_request(req, BLK_STS_OK);
1411         }
1412
1413         spin_lock_irqsave(&mq->lock, flags);
1414
1415         mq->in_flight[issue_type] -= 1;
1416
1417         put_card = (mmc_tot_in_flight(mq) == 0);
1418
1419         mmc_cqe_check_busy(mq);
1420
1421         spin_unlock_irqrestore(&mq->lock, flags);
1422
1423         if (!mq->cqe_busy)
1424                 blk_mq_run_hw_queues(q, true);
1425
1426         if (put_card)
1427                 mmc_put_card(mq->card, &mq->ctx);
1428 }
1429
1430 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1431 {
1432         struct mmc_card *card = mq->card;
1433         struct mmc_host *host = card->host;
1434         int err;
1435
1436         pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1437
1438         err = mmc_cqe_recovery(host);
1439         if (err)
1440                 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1441         else
1442                 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1443
1444         pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1445 }
1446
1447 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1448 {
1449         struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1450                                                   brq.mrq);
1451         struct request *req = mmc_queue_req_to_req(mqrq);
1452         struct request_queue *q = req->q;
1453         struct mmc_queue *mq = q->queuedata;
1454
1455         /*
1456          * Block layer timeouts race with completions which means the normal
1457          * completion path cannot be used during recovery.
1458          */
1459         if (mq->in_recovery)
1460                 mmc_blk_cqe_complete_rq(mq, req);
1461         else if (likely(!blk_should_fake_timeout(req->q)))
1462                 blk_mq_complete_request(req);
1463 }
1464
1465 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1466 {
1467         mrq->done               = mmc_blk_cqe_req_done;
1468         mrq->recovery_notifier  = mmc_cqe_recovery_notifier;
1469
1470         return mmc_cqe_start_req(host, mrq);
1471 }
1472
1473 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1474                                                  struct request *req)
1475 {
1476         struct mmc_blk_request *brq = &mqrq->brq;
1477
1478         memset(brq, 0, sizeof(*brq));
1479
1480         brq->mrq.cmd = &brq->cmd;
1481         brq->mrq.tag = req->tag;
1482
1483         return &brq->mrq;
1484 }
1485
1486 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1487 {
1488         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1489         struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1490
1491         mrq->cmd->opcode = MMC_SWITCH;
1492         mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1493                         (EXT_CSD_FLUSH_CACHE << 16) |
1494                         (1 << 8) |
1495                         EXT_CSD_CMD_SET_NORMAL;
1496         mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1497
1498         return mmc_blk_cqe_start_req(mq->card->host, mrq);
1499 }
1500
1501 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1502 {
1503         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1504         struct mmc_host *host = mq->card->host;
1505         int err;
1506
1507         mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1508         mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1509         mmc_pre_req(host, &mqrq->brq.mrq);
1510
1511         err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1512         if (err)
1513                 mmc_post_req(host, &mqrq->brq.mrq, err);
1514
1515         return err;
1516 }
1517
1518 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1519 {
1520         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1521         struct mmc_host *host = mq->card->host;
1522
1523         if (host->hsq_enabled)
1524                 return mmc_blk_hsq_issue_rw_rq(mq, req);
1525
1526         mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1527
1528         return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1529 }
1530
1531 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1532                                struct mmc_card *card,
1533                                int disable_multi,
1534                                struct mmc_queue *mq)
1535 {
1536         u32 readcmd, writecmd;
1537         struct mmc_blk_request *brq = &mqrq->brq;
1538         struct request *req = mmc_queue_req_to_req(mqrq);
1539         struct mmc_blk_data *md = mq->blkdata;
1540         bool do_rel_wr, do_data_tag;
1541
1542         mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1543
1544         brq->mrq.cmd = &brq->cmd;
1545
1546         brq->cmd.arg = blk_rq_pos(req);
1547         if (!mmc_card_blockaddr(card))
1548                 brq->cmd.arg <<= 9;
1549         brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1550
1551         if (brq->data.blocks > 1 || do_rel_wr) {
1552                 /* SPI multiblock writes terminate using a special
1553                  * token, not a STOP_TRANSMISSION request.
1554                  */
1555                 if (!mmc_host_is_spi(card->host) ||
1556                     rq_data_dir(req) == READ)
1557                         brq->mrq.stop = &brq->stop;
1558                 readcmd = MMC_READ_MULTIPLE_BLOCK;
1559                 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1560         } else {
1561                 brq->mrq.stop = NULL;
1562                 readcmd = MMC_READ_SINGLE_BLOCK;
1563                 writecmd = MMC_WRITE_BLOCK;
1564         }
1565         brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1566
1567         /*
1568          * Pre-defined multi-block transfers are preferable to
1569          * open ended-ones (and necessary for reliable writes).
1570          * However, it is not sufficient to just send CMD23,
1571          * and avoid the final CMD12, as on an error condition
1572          * CMD12 (stop) needs to be sent anyway. This, coupled
1573          * with Auto-CMD23 enhancements provided by some
1574          * hosts, means that the complexity of dealing
1575          * with this is best left to the host. If CMD23 is
1576          * supported by card and host, we'll fill sbc in and let
1577          * the host deal with handling it correctly. This means
1578          * that for hosts that don't expose MMC_CAP_CMD23, no
1579          * change of behavior will be observed.
1580          *
1581          * N.B: Some MMC cards experience perf degradation.
1582          * We'll avoid using CMD23-bounded multiblock writes for
1583          * these, while retaining features like reliable writes.
1584          */
1585         if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1586             (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1587              do_data_tag)) {
1588                 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1589                 brq->sbc.arg = brq->data.blocks |
1590                         (do_rel_wr ? (1 << 31) : 0) |
1591                         (do_data_tag ? (1 << 29) : 0);
1592                 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1593                 brq->mrq.sbc = &brq->sbc;
1594         }
1595 }
1596
1597 #define MMC_MAX_RETRIES         5
1598 #define MMC_DATA_RETRIES        2
1599 #define MMC_NO_RETRIES          (MMC_MAX_RETRIES + 1)
1600
1601 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1602 {
1603         struct mmc_command cmd = {
1604                 .opcode = MMC_STOP_TRANSMISSION,
1605                 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1606                 /* Some hosts wait for busy anyway, so provide a busy timeout */
1607                 .busy_timeout = timeout,
1608         };
1609
1610         return mmc_wait_for_cmd(card->host, &cmd, 5);
1611 }
1612
1613 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1614 {
1615         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1616         struct mmc_blk_request *brq = &mqrq->brq;
1617         unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1618         int err;
1619
1620         mmc_retune_hold_now(card->host);
1621
1622         mmc_blk_send_stop(card, timeout);
1623
1624         err = card_busy_detect(card, timeout, NULL);
1625
1626         mmc_retune_release(card->host);
1627
1628         return err;
1629 }
1630
1631 #define MMC_READ_SINGLE_RETRIES 2
1632
1633 /* Single sector read during recovery */
1634 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1635 {
1636         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1637         struct mmc_request *mrq = &mqrq->brq.mrq;
1638         struct mmc_card *card = mq->card;
1639         struct mmc_host *host = card->host;
1640         blk_status_t error = BLK_STS_OK;
1641         int retries = 0;
1642
1643         do {
1644                 u32 status;
1645                 int err;
1646
1647                 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1648
1649                 mmc_wait_for_req(host, mrq);
1650
1651                 err = mmc_send_status(card, &status);
1652                 if (err)
1653                         goto error_exit;
1654
1655                 if (!mmc_host_is_spi(host) &&
1656                     !mmc_ready_for_data(status)) {
1657                         err = mmc_blk_fix_state(card, req);
1658                         if (err)
1659                                 goto error_exit;
1660                 }
1661
1662                 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1663                         continue;
1664
1665                 retries = 0;
1666
1667                 if (mrq->cmd->error ||
1668                     mrq->data->error ||
1669                     (!mmc_host_is_spi(host) &&
1670                      (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1671                         error = BLK_STS_IOERR;
1672                 else
1673                         error = BLK_STS_OK;
1674
1675         } while (blk_update_request(req, error, 512));
1676
1677         return;
1678
1679 error_exit:
1680         mrq->data->bytes_xfered = 0;
1681         blk_update_request(req, BLK_STS_IOERR, 512);
1682         /* Let it try the remaining request again */
1683         if (mqrq->retries > MMC_MAX_RETRIES - 1)
1684                 mqrq->retries = MMC_MAX_RETRIES - 1;
1685 }
1686
1687 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1688 {
1689         return !!brq->mrq.sbc;
1690 }
1691
1692 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1693 {
1694         return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1695 }
1696
1697 /*
1698  * Check for errors the host controller driver might not have seen such as
1699  * response mode errors or invalid card state.
1700  */
1701 static bool mmc_blk_status_error(struct request *req, u32 status)
1702 {
1703         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1704         struct mmc_blk_request *brq = &mqrq->brq;
1705         struct mmc_queue *mq = req->q->queuedata;
1706         u32 stop_err_bits;
1707
1708         if (mmc_host_is_spi(mq->card->host))
1709                 return false;
1710
1711         stop_err_bits = mmc_blk_stop_err_bits(brq);
1712
1713         return brq->cmd.resp[0]  & CMD_ERRORS    ||
1714                brq->stop.resp[0] & stop_err_bits ||
1715                status            & stop_err_bits ||
1716                (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1717 }
1718
1719 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1720 {
1721         return !brq->sbc.error && !brq->cmd.error &&
1722                !(brq->cmd.resp[0] & CMD_ERRORS);
1723 }
1724
1725 /*
1726  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1727  * policy:
1728  * 1. A request that has transferred at least some data is considered
1729  * successful and will be requeued if there is remaining data to
1730  * transfer.
1731  * 2. Otherwise the number of retries is incremented and the request
1732  * will be requeued if there are remaining retries.
1733  * 3. Otherwise the request will be errored out.
1734  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1735  * mqrq->retries. So there are only 4 possible actions here:
1736  *      1. do not accept the bytes_xfered value i.e. set it to zero
1737  *      2. change mqrq->retries to determine the number of retries
1738  *      3. try to reset the card
1739  *      4. read one sector at a time
1740  */
1741 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1742 {
1743         int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1744         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1745         struct mmc_blk_request *brq = &mqrq->brq;
1746         struct mmc_blk_data *md = mq->blkdata;
1747         struct mmc_card *card = mq->card;
1748         u32 status;
1749         u32 blocks;
1750         int err;
1751
1752         /*
1753          * Some errors the host driver might not have seen. Set the number of
1754          * bytes transferred to zero in that case.
1755          */
1756         err = __mmc_send_status(card, &status, 0);
1757         if (err || mmc_blk_status_error(req, status))
1758                 brq->data.bytes_xfered = 0;
1759
1760         mmc_retune_release(card->host);
1761
1762         /*
1763          * Try again to get the status. This also provides an opportunity for
1764          * re-tuning.
1765          */
1766         if (err)
1767                 err = __mmc_send_status(card, &status, 0);
1768
1769         /*
1770          * Nothing more to do after the number of bytes transferred has been
1771          * updated and there is no card.
1772          */
1773         if (err && mmc_detect_card_removed(card->host))
1774                 return;
1775
1776         /* Try to get back to "tran" state */
1777         if (!mmc_host_is_spi(mq->card->host) &&
1778             (err || !mmc_ready_for_data(status)))
1779                 err = mmc_blk_fix_state(mq->card, req);
1780
1781         /*
1782          * Special case for SD cards where the card might record the number of
1783          * blocks written.
1784          */
1785         if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1786             rq_data_dir(req) == WRITE) {
1787                 if (mmc_sd_num_wr_blocks(card, &blocks))
1788                         brq->data.bytes_xfered = 0;
1789                 else
1790                         brq->data.bytes_xfered = blocks << 9;
1791         }
1792
1793         /* Reset if the card is in a bad state */
1794         if (!mmc_host_is_spi(mq->card->host) &&
1795             err && mmc_blk_reset(md, card->host, type)) {
1796                 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1797                 mqrq->retries = MMC_NO_RETRIES;
1798                 return;
1799         }
1800
1801         /*
1802          * If anything was done, just return and if there is anything remaining
1803          * on the request it will get requeued.
1804          */
1805         if (brq->data.bytes_xfered)
1806                 return;
1807
1808         /* Reset before last retry */
1809         if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1810                 mmc_blk_reset(md, card->host, type);
1811
1812         /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1813         if (brq->sbc.error || brq->cmd.error)
1814                 return;
1815
1816         /* Reduce the remaining retries for data errors */
1817         if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1818                 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1819                 return;
1820         }
1821
1822         /* FIXME: Missing single sector read for large sector size */
1823         if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1824             brq->data.blocks > 1) {
1825                 /* Read one sector at a time */
1826                 mmc_blk_read_single(mq, req);
1827                 return;
1828         }
1829 }
1830
1831 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1832 {
1833         mmc_blk_eval_resp_error(brq);
1834
1835         return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1836                brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1837 }
1838
1839 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1840 {
1841         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1842         u32 status = 0;
1843         int err;
1844
1845         if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1846                 return 0;
1847
1848         err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1849
1850         /*
1851          * Do not assume data transferred correctly if there are any error bits
1852          * set.
1853          */
1854         if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1855                 mqrq->brq.data.bytes_xfered = 0;
1856                 err = err ? err : -EIO;
1857         }
1858
1859         /* Copy the exception bit so it will be seen later on */
1860         if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1861                 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1862
1863         return err;
1864 }
1865
1866 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1867                                             struct request *req)
1868 {
1869         int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1870
1871         mmc_blk_reset_success(mq->blkdata, type);
1872 }
1873
1874 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1875 {
1876         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1877         unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1878
1879         if (nr_bytes) {
1880                 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1881                         blk_mq_requeue_request(req, true);
1882                 else
1883                         __blk_mq_end_request(req, BLK_STS_OK);
1884         } else if (!blk_rq_bytes(req)) {
1885                 __blk_mq_end_request(req, BLK_STS_IOERR);
1886         } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1887                 blk_mq_requeue_request(req, true);
1888         } else {
1889                 if (mmc_card_removed(mq->card))
1890                         req->rq_flags |= RQF_QUIET;
1891                 blk_mq_end_request(req, BLK_STS_IOERR);
1892         }
1893 }
1894
1895 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1896                                         struct mmc_queue_req *mqrq)
1897 {
1898         return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1899                (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1900                 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1901 }
1902
1903 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1904                                  struct mmc_queue_req *mqrq)
1905 {
1906         if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1907                 mmc_run_bkops(mq->card);
1908 }
1909
1910 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1911 {
1912         struct mmc_queue_req *mqrq =
1913                 container_of(mrq, struct mmc_queue_req, brq.mrq);
1914         struct request *req = mmc_queue_req_to_req(mqrq);
1915         struct request_queue *q = req->q;
1916         struct mmc_queue *mq = q->queuedata;
1917         struct mmc_host *host = mq->card->host;
1918         unsigned long flags;
1919
1920         if (mmc_blk_rq_error(&mqrq->brq) ||
1921             mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1922                 spin_lock_irqsave(&mq->lock, flags);
1923                 mq->recovery_needed = true;
1924                 mq->recovery_req = req;
1925                 spin_unlock_irqrestore(&mq->lock, flags);
1926
1927                 host->cqe_ops->cqe_recovery_start(host);
1928
1929                 schedule_work(&mq->recovery_work);
1930                 return;
1931         }
1932
1933         mmc_blk_rw_reset_success(mq, req);
1934
1935         /*
1936          * Block layer timeouts race with completions which means the normal
1937          * completion path cannot be used during recovery.
1938          */
1939         if (mq->in_recovery)
1940                 mmc_blk_cqe_complete_rq(mq, req);
1941         else if (likely(!blk_should_fake_timeout(req->q)))
1942                 blk_mq_complete_request(req);
1943 }
1944
1945 void mmc_blk_mq_complete(struct request *req)
1946 {
1947         struct mmc_queue *mq = req->q->queuedata;
1948         struct mmc_host *host = mq->card->host;
1949
1950         if (host->cqe_enabled)
1951                 mmc_blk_cqe_complete_rq(mq, req);
1952         else if (likely(!blk_should_fake_timeout(req->q)))
1953                 mmc_blk_mq_complete_rq(mq, req);
1954 }
1955
1956 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1957                                        struct request *req)
1958 {
1959         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1960         struct mmc_host *host = mq->card->host;
1961
1962         if (mmc_blk_rq_error(&mqrq->brq) ||
1963             mmc_blk_card_busy(mq->card, req)) {
1964                 mmc_blk_mq_rw_recovery(mq, req);
1965         } else {
1966                 mmc_blk_rw_reset_success(mq, req);
1967                 mmc_retune_release(host);
1968         }
1969
1970         mmc_blk_urgent_bkops(mq, mqrq);
1971 }
1972
1973 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1974 {
1975         unsigned long flags;
1976         bool put_card;
1977
1978         spin_lock_irqsave(&mq->lock, flags);
1979
1980         mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1981
1982         put_card = (mmc_tot_in_flight(mq) == 0);
1983
1984         spin_unlock_irqrestore(&mq->lock, flags);
1985
1986         if (put_card)
1987                 mmc_put_card(mq->card, &mq->ctx);
1988 }
1989
1990 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1991 {
1992         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1993         struct mmc_request *mrq = &mqrq->brq.mrq;
1994         struct mmc_host *host = mq->card->host;
1995
1996         mmc_post_req(host, mrq, 0);
1997
1998         /*
1999          * Block layer timeouts race with completions which means the normal
2000          * completion path cannot be used during recovery.
2001          */
2002         if (mq->in_recovery)
2003                 mmc_blk_mq_complete_rq(mq, req);
2004         else if (likely(!blk_should_fake_timeout(req->q)))
2005                 blk_mq_complete_request(req);
2006
2007         mmc_blk_mq_dec_in_flight(mq, req);
2008 }
2009
2010 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2011 {
2012         struct request *req = mq->recovery_req;
2013         struct mmc_host *host = mq->card->host;
2014         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2015
2016         mq->recovery_req = NULL;
2017         mq->rw_wait = false;
2018
2019         if (mmc_blk_rq_error(&mqrq->brq)) {
2020                 mmc_retune_hold_now(host);
2021                 mmc_blk_mq_rw_recovery(mq, req);
2022         }
2023
2024         mmc_blk_urgent_bkops(mq, mqrq);
2025
2026         mmc_blk_mq_post_req(mq, req);
2027 }
2028
2029 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2030                                          struct request **prev_req)
2031 {
2032         if (mmc_host_done_complete(mq->card->host))
2033                 return;
2034
2035         mutex_lock(&mq->complete_lock);
2036
2037         if (!mq->complete_req)
2038                 goto out_unlock;
2039
2040         mmc_blk_mq_poll_completion(mq, mq->complete_req);
2041
2042         if (prev_req)
2043                 *prev_req = mq->complete_req;
2044         else
2045                 mmc_blk_mq_post_req(mq, mq->complete_req);
2046
2047         mq->complete_req = NULL;
2048
2049 out_unlock:
2050         mutex_unlock(&mq->complete_lock);
2051 }
2052
2053 void mmc_blk_mq_complete_work(struct work_struct *work)
2054 {
2055         struct mmc_queue *mq = container_of(work, struct mmc_queue,
2056                                             complete_work);
2057
2058         mmc_blk_mq_complete_prev_req(mq, NULL);
2059 }
2060
2061 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2062 {
2063         struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2064                                                   brq.mrq);
2065         struct request *req = mmc_queue_req_to_req(mqrq);
2066         struct request_queue *q = req->q;
2067         struct mmc_queue *mq = q->queuedata;
2068         struct mmc_host *host = mq->card->host;
2069         unsigned long flags;
2070
2071         if (!mmc_host_done_complete(host)) {
2072                 bool waiting;
2073
2074                 /*
2075                  * We cannot complete the request in this context, so record
2076                  * that there is a request to complete, and that a following
2077                  * request does not need to wait (although it does need to
2078                  * complete complete_req first).
2079                  */
2080                 spin_lock_irqsave(&mq->lock, flags);
2081                 mq->complete_req = req;
2082                 mq->rw_wait = false;
2083                 waiting = mq->waiting;
2084                 spin_unlock_irqrestore(&mq->lock, flags);
2085
2086                 /*
2087                  * If 'waiting' then the waiting task will complete this
2088                  * request, otherwise queue a work to do it. Note that
2089                  * complete_work may still race with the dispatch of a following
2090                  * request.
2091                  */
2092                 if (waiting)
2093                         wake_up(&mq->wait);
2094                 else
2095                         queue_work(mq->card->complete_wq, &mq->complete_work);
2096
2097                 return;
2098         }
2099
2100         /* Take the recovery path for errors or urgent background operations */
2101         if (mmc_blk_rq_error(&mqrq->brq) ||
2102             mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2103                 spin_lock_irqsave(&mq->lock, flags);
2104                 mq->recovery_needed = true;
2105                 mq->recovery_req = req;
2106                 spin_unlock_irqrestore(&mq->lock, flags);
2107                 wake_up(&mq->wait);
2108                 schedule_work(&mq->recovery_work);
2109                 return;
2110         }
2111
2112         mmc_blk_rw_reset_success(mq, req);
2113
2114         mq->rw_wait = false;
2115         wake_up(&mq->wait);
2116
2117         mmc_blk_mq_post_req(mq, req);
2118 }
2119
2120 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2121 {
2122         unsigned long flags;
2123         bool done;
2124
2125         /*
2126          * Wait while there is another request in progress, but not if recovery
2127          * is needed. Also indicate whether there is a request waiting to start.
2128          */
2129         spin_lock_irqsave(&mq->lock, flags);
2130         if (mq->recovery_needed) {
2131                 *err = -EBUSY;
2132                 done = true;
2133         } else {
2134                 done = !mq->rw_wait;
2135         }
2136         mq->waiting = !done;
2137         spin_unlock_irqrestore(&mq->lock, flags);
2138
2139         return done;
2140 }
2141
2142 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2143 {
2144         int err = 0;
2145
2146         wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2147
2148         /* Always complete the previous request if there is one */
2149         mmc_blk_mq_complete_prev_req(mq, prev_req);
2150
2151         return err;
2152 }
2153
2154 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2155                                   struct request *req)
2156 {
2157         struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2158         struct mmc_host *host = mq->card->host;
2159         struct request *prev_req = NULL;
2160         int err = 0;
2161
2162         mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2163
2164         mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2165
2166         mmc_pre_req(host, &mqrq->brq.mrq);
2167
2168         err = mmc_blk_rw_wait(mq, &prev_req);
2169         if (err)
2170                 goto out_post_req;
2171
2172         mq->rw_wait = true;
2173
2174         err = mmc_start_request(host, &mqrq->brq.mrq);
2175
2176         if (prev_req)
2177                 mmc_blk_mq_post_req(mq, prev_req);
2178
2179         if (err)
2180                 mq->rw_wait = false;
2181
2182         /* Release re-tuning here where there is no synchronization required */
2183         if (err || mmc_host_done_complete(host))
2184                 mmc_retune_release(host);
2185
2186 out_post_req:
2187         if (err)
2188                 mmc_post_req(host, &mqrq->brq.mrq, err);
2189
2190         return err;
2191 }
2192
2193 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2194 {
2195         if (host->cqe_enabled)
2196                 return host->cqe_ops->cqe_wait_for_idle(host);
2197
2198         return mmc_blk_rw_wait(mq, NULL);
2199 }
2200
2201 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2202 {
2203         struct mmc_blk_data *md = mq->blkdata;
2204         struct mmc_card *card = md->queue.card;
2205         struct mmc_host *host = card->host;
2206         int ret;
2207
2208         ret = mmc_blk_part_switch(card, md->part_type);
2209         if (ret)
2210                 return MMC_REQ_FAILED_TO_START;
2211
2212         switch (mmc_issue_type(mq, req)) {
2213         case MMC_ISSUE_SYNC:
2214                 ret = mmc_blk_wait_for_idle(mq, host);
2215                 if (ret)
2216                         return MMC_REQ_BUSY;
2217                 switch (req_op(req)) {
2218                 case REQ_OP_DRV_IN:
2219                 case REQ_OP_DRV_OUT:
2220                         mmc_blk_issue_drv_op(mq, req);
2221                         break;
2222                 case REQ_OP_DISCARD:
2223                         mmc_blk_issue_discard_rq(mq, req);
2224                         break;
2225                 case REQ_OP_SECURE_ERASE:
2226                         mmc_blk_issue_secdiscard_rq(mq, req);
2227                         break;
2228                 case REQ_OP_FLUSH:
2229                         mmc_blk_issue_flush(mq, req);
2230                         break;
2231                 default:
2232                         WARN_ON_ONCE(1);
2233                         return MMC_REQ_FAILED_TO_START;
2234                 }
2235                 return MMC_REQ_FINISHED;
2236         case MMC_ISSUE_DCMD:
2237         case MMC_ISSUE_ASYNC:
2238                 switch (req_op(req)) {
2239                 case REQ_OP_FLUSH:
2240                         if (!mmc_cache_enabled(host)) {
2241                                 blk_mq_end_request(req, BLK_STS_OK);
2242                                 return MMC_REQ_FINISHED;
2243                         }
2244                         ret = mmc_blk_cqe_issue_flush(mq, req);
2245                         break;
2246                 case REQ_OP_READ:
2247                 case REQ_OP_WRITE:
2248                         if (host->cqe_enabled)
2249                                 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2250                         else
2251                                 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2252                         break;
2253                 default:
2254                         WARN_ON_ONCE(1);
2255                         ret = -EINVAL;
2256                 }
2257                 if (!ret)
2258                         return MMC_REQ_STARTED;
2259                 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2260         default:
2261                 WARN_ON_ONCE(1);
2262                 return MMC_REQ_FAILED_TO_START;
2263         }
2264 }
2265
2266 static inline int mmc_blk_readonly(struct mmc_card *card)
2267 {
2268         return mmc_card_readonly(card) ||
2269                !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2270 }
2271
2272 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2273                                               struct device *parent,
2274                                               sector_t size,
2275                                               bool default_ro,
2276                                               const char *subname,
2277                                               int area_type)
2278 {
2279         struct mmc_blk_data *md;
2280         int devidx, ret;
2281         char cap_str[10];
2282
2283         devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2284         if (devidx < 0) {
2285                 /*
2286                  * We get -ENOSPC because there are no more any available
2287                  * devidx. The reason may be that, either userspace haven't yet
2288                  * unmounted the partitions, which postpones mmc_blk_release()
2289                  * from being called, or the device has more partitions than
2290                  * what we support.
2291                  */
2292                 if (devidx == -ENOSPC)
2293                         dev_err(mmc_dev(card->host),
2294                                 "no more device IDs available\n");
2295
2296                 return ERR_PTR(devidx);
2297         }
2298
2299         md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2300         if (!md) {
2301                 ret = -ENOMEM;
2302                 goto out;
2303         }
2304
2305         md->area_type = area_type;
2306
2307         /*
2308          * Set the read-only status based on the supported commands
2309          * and the write protect switch.
2310          */
2311         md->read_only = mmc_blk_readonly(card);
2312
2313         md->disk = alloc_disk(perdev_minors);
2314         if (md->disk == NULL) {
2315                 ret = -ENOMEM;
2316                 goto err_kfree;
2317         }
2318
2319         INIT_LIST_HEAD(&md->part);
2320         INIT_LIST_HEAD(&md->rpmbs);
2321         md->usage = 1;
2322
2323         ret = mmc_init_queue(&md->queue, card);
2324         if (ret)
2325                 goto err_putdisk;
2326
2327         md->queue.blkdata = md;
2328
2329         /*
2330          * Keep an extra reference to the queue so that we can shutdown the
2331          * queue (i.e. call blk_cleanup_queue()) while there are still
2332          * references to the 'md'. The corresponding blk_put_queue() is in
2333          * mmc_blk_put().
2334          */
2335         if (!blk_get_queue(md->queue.queue)) {
2336                 mmc_cleanup_queue(&md->queue);
2337                 ret = -ENODEV;
2338                 goto err_putdisk;
2339         }
2340
2341         md->disk->major = MMC_BLOCK_MAJOR;
2342         md->disk->first_minor = devidx * perdev_minors;
2343         md->disk->fops = &mmc_bdops;
2344         md->disk->private_data = md;
2345         md->disk->queue = md->queue.queue;
2346         md->parent = parent;
2347         set_disk_ro(md->disk, md->read_only || default_ro);
2348         md->disk->flags = GENHD_FL_EXT_DEVT;
2349         if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2350                 md->disk->flags |= GENHD_FL_NO_PART_SCAN
2351                                    | GENHD_FL_SUPPRESS_PARTITION_INFO;
2352
2353         /*
2354          * As discussed on lkml, GENHD_FL_REMOVABLE should:
2355          *
2356          * - be set for removable media with permanent block devices
2357          * - be unset for removable block devices with permanent media
2358          *
2359          * Since MMC block devices clearly fall under the second
2360          * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2361          * should use the block device creation/destruction hotplug
2362          * messages to tell when the card is present.
2363          */
2364
2365         snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2366                  "mmcblk%u%s", card->host->index, subname ? subname : "");
2367
2368         set_capacity(md->disk, size);
2369
2370         if (mmc_host_cmd23(card->host)) {
2371                 if ((mmc_card_mmc(card) &&
2372                      card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2373                     (mmc_card_sd(card) &&
2374                      card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2375                         md->flags |= MMC_BLK_CMD23;
2376         }
2377
2378         if (mmc_card_mmc(card) &&
2379             md->flags & MMC_BLK_CMD23 &&
2380             ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2381              card->ext_csd.rel_sectors)) {
2382                 md->flags |= MMC_BLK_REL_WR;
2383                 blk_queue_write_cache(md->queue.queue, true, true);
2384         }
2385
2386         string_get_size((u64)size, 512, STRING_UNITS_2,
2387                         cap_str, sizeof(cap_str));
2388         pr_info("%s: %s %s %s %s\n",
2389                 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2390                 cap_str, md->read_only ? "(ro)" : "");
2391
2392         return md;
2393
2394  err_putdisk:
2395         put_disk(md->disk);
2396  err_kfree:
2397         kfree(md);
2398  out:
2399         ida_simple_remove(&mmc_blk_ida, devidx);
2400         return ERR_PTR(ret);
2401 }
2402
2403 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2404 {
2405         sector_t size;
2406
2407         if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2408                 /*
2409                  * The EXT_CSD sector count is in number or 512 byte
2410                  * sectors.
2411                  */
2412                 size = card->ext_csd.sectors;
2413         } else {
2414                 /*
2415                  * The CSD capacity field is in units of read_blkbits.
2416                  * set_capacity takes units of 512 bytes.
2417                  */
2418                 size = (typeof(sector_t))card->csd.capacity
2419                         << (card->csd.read_blkbits - 9);
2420         }
2421
2422         return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2423                                         MMC_BLK_DATA_AREA_MAIN);
2424 }
2425
2426 static int mmc_blk_alloc_part(struct mmc_card *card,
2427                               struct mmc_blk_data *md,
2428                               unsigned int part_type,
2429                               sector_t size,
2430                               bool default_ro,
2431                               const char *subname,
2432                               int area_type)
2433 {
2434         struct mmc_blk_data *part_md;
2435
2436         part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2437                                     subname, area_type);
2438         if (IS_ERR(part_md))
2439                 return PTR_ERR(part_md);
2440         part_md->part_type = part_type;
2441         list_add(&part_md->part, &md->part);
2442
2443         return 0;
2444 }
2445
2446 /**
2447  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2448  * @filp: the character device file
2449  * @cmd: the ioctl() command
2450  * @arg: the argument from userspace
2451  *
2452  * This will essentially just redirect the ioctl()s coming in over to
2453  * the main block device spawning the RPMB character device.
2454  */
2455 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2456                            unsigned long arg)
2457 {
2458         struct mmc_rpmb_data *rpmb = filp->private_data;
2459         int ret;
2460
2461         switch (cmd) {
2462         case MMC_IOC_CMD:
2463                 ret = mmc_blk_ioctl_cmd(rpmb->md,
2464                                         (struct mmc_ioc_cmd __user *)arg,
2465                                         rpmb);
2466                 break;
2467         case MMC_IOC_MULTI_CMD:
2468                 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2469                                         (struct mmc_ioc_multi_cmd __user *)arg,
2470                                         rpmb);
2471                 break;
2472         default:
2473                 ret = -EINVAL;
2474                 break;
2475         }
2476
2477         return ret;
2478 }
2479
2480 #ifdef CONFIG_COMPAT
2481 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2482                               unsigned long arg)
2483 {
2484         return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2485 }
2486 #endif
2487
2488 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2489 {
2490         struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2491                                                   struct mmc_rpmb_data, chrdev);
2492
2493         get_device(&rpmb->dev);
2494         filp->private_data = rpmb;
2495         mmc_blk_get(rpmb->md->disk);
2496
2497         return nonseekable_open(inode, filp);
2498 }
2499
2500 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2501 {
2502         struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2503                                                   struct mmc_rpmb_data, chrdev);
2504
2505         mmc_blk_put(rpmb->md);
2506         put_device(&rpmb->dev);
2507
2508         return 0;
2509 }
2510
2511 static const struct file_operations mmc_rpmb_fileops = {
2512         .release = mmc_rpmb_chrdev_release,
2513         .open = mmc_rpmb_chrdev_open,
2514         .owner = THIS_MODULE,
2515         .llseek = no_llseek,
2516         .unlocked_ioctl = mmc_rpmb_ioctl,
2517 #ifdef CONFIG_COMPAT
2518         .compat_ioctl = mmc_rpmb_ioctl_compat,
2519 #endif
2520 };
2521
2522 static void mmc_blk_rpmb_device_release(struct device *dev)
2523 {
2524         struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2525
2526         ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2527         kfree(rpmb);
2528 }
2529
2530 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2531                                    struct mmc_blk_data *md,
2532                                    unsigned int part_index,
2533                                    sector_t size,
2534                                    const char *subname)
2535 {
2536         int devidx, ret;
2537         char rpmb_name[DISK_NAME_LEN];
2538         char cap_str[10];
2539         struct mmc_rpmb_data *rpmb;
2540
2541         /* This creates the minor number for the RPMB char device */
2542         devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2543         if (devidx < 0)
2544                 return devidx;
2545
2546         rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2547         if (!rpmb) {
2548                 ida_simple_remove(&mmc_rpmb_ida, devidx);
2549                 return -ENOMEM;
2550         }
2551
2552         snprintf(rpmb_name, sizeof(rpmb_name),
2553                  "mmcblk%u%s", card->host->index, subname ? subname : "");
2554
2555         rpmb->id = devidx;
2556         rpmb->part_index = part_index;
2557         rpmb->dev.init_name = rpmb_name;
2558         rpmb->dev.bus = &mmc_rpmb_bus_type;
2559         rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2560         rpmb->dev.parent = &card->dev;
2561         rpmb->dev.release = mmc_blk_rpmb_device_release;
2562         device_initialize(&rpmb->dev);
2563         dev_set_drvdata(&rpmb->dev, rpmb);
2564         rpmb->md = md;
2565
2566         cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2567         rpmb->chrdev.owner = THIS_MODULE;
2568         ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2569         if (ret) {
2570                 pr_err("%s: could not add character device\n", rpmb_name);
2571                 goto out_put_device;
2572         }
2573
2574         list_add(&rpmb->node, &md->rpmbs);
2575
2576         string_get_size((u64)size, 512, STRING_UNITS_2,
2577                         cap_str, sizeof(cap_str));
2578
2579         pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2580                 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2581                 MAJOR(mmc_rpmb_devt), rpmb->id);
2582
2583         return 0;
2584
2585 out_put_device:
2586         put_device(&rpmb->dev);
2587         return ret;
2588 }
2589
2590 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2591
2592 {
2593         cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2594         put_device(&rpmb->dev);
2595 }
2596
2597 /* MMC Physical partitions consist of two boot partitions and
2598  * up to four general purpose partitions.
2599  * For each partition enabled in EXT_CSD a block device will be allocatedi
2600  * to provide access to the partition.
2601  */
2602
2603 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2604 {
2605         int idx, ret;
2606
2607         if (!mmc_card_mmc(card))
2608                 return 0;
2609
2610         for (idx = 0; idx < card->nr_parts; idx++) {
2611                 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2612                         /*
2613                          * RPMB partitions does not provide block access, they
2614                          * are only accessed using ioctl():s. Thus create
2615                          * special RPMB block devices that do not have a
2616                          * backing block queue for these.
2617                          */
2618                         ret = mmc_blk_alloc_rpmb_part(card, md,
2619                                 card->part[idx].part_cfg,
2620                                 card->part[idx].size >> 9,
2621                                 card->part[idx].name);
2622                         if (ret)
2623                                 return ret;
2624                 } else if (card->part[idx].size) {
2625                         ret = mmc_blk_alloc_part(card, md,
2626                                 card->part[idx].part_cfg,
2627                                 card->part[idx].size >> 9,
2628                                 card->part[idx].force_ro,
2629                                 card->part[idx].name,
2630                                 card->part[idx].area_type);
2631                         if (ret)
2632                                 return ret;
2633                 }
2634         }
2635
2636         return 0;
2637 }
2638
2639 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2640 {
2641         struct mmc_card *card;
2642
2643         if (md) {
2644                 /*
2645                  * Flush remaining requests and free queues. It
2646                  * is freeing the queue that stops new requests
2647                  * from being accepted.
2648                  */
2649                 card = md->queue.card;
2650                 if (md->disk->flags & GENHD_FL_UP) {
2651                         device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2652                         if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2653                                         card->ext_csd.boot_ro_lockable)
2654                                 device_remove_file(disk_to_dev(md->disk),
2655                                         &md->power_ro_lock);
2656
2657                         del_gendisk(md->disk);
2658                 }
2659                 mmc_cleanup_queue(&md->queue);
2660                 mmc_blk_put(md);
2661         }
2662 }
2663
2664 static void mmc_blk_remove_parts(struct mmc_card *card,
2665                                  struct mmc_blk_data *md)
2666 {
2667         struct list_head *pos, *q;
2668         struct mmc_blk_data *part_md;
2669         struct mmc_rpmb_data *rpmb;
2670
2671         /* Remove RPMB partitions */
2672         list_for_each_safe(pos, q, &md->rpmbs) {
2673                 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2674                 list_del(pos);
2675                 mmc_blk_remove_rpmb_part(rpmb);
2676         }
2677         /* Remove block partitions */
2678         list_for_each_safe(pos, q, &md->part) {
2679                 part_md = list_entry(pos, struct mmc_blk_data, part);
2680                 list_del(pos);
2681                 mmc_blk_remove_req(part_md);
2682         }
2683 }
2684
2685 static int mmc_add_disk(struct mmc_blk_data *md)
2686 {
2687         int ret;
2688         struct mmc_card *card = md->queue.card;
2689
2690         device_add_disk(md->parent, md->disk, NULL);
2691         md->force_ro.show = force_ro_show;
2692         md->force_ro.store = force_ro_store;
2693         sysfs_attr_init(&md->force_ro.attr);
2694         md->force_ro.attr.name = "force_ro";
2695         md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2696         ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2697         if (ret)
2698                 goto force_ro_fail;
2699
2700         if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2701              card->ext_csd.boot_ro_lockable) {
2702                 umode_t mode;
2703
2704                 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2705                         mode = S_IRUGO;
2706                 else
2707                         mode = S_IRUGO | S_IWUSR;
2708
2709                 md->power_ro_lock.show = power_ro_lock_show;
2710                 md->power_ro_lock.store = power_ro_lock_store;
2711                 sysfs_attr_init(&md->power_ro_lock.attr);
2712                 md->power_ro_lock.attr.mode = mode;
2713                 md->power_ro_lock.attr.name =
2714                                         "ro_lock_until_next_power_on";
2715                 ret = device_create_file(disk_to_dev(md->disk),
2716                                 &md->power_ro_lock);
2717                 if (ret)
2718                         goto power_ro_lock_fail;
2719         }
2720         return ret;
2721
2722 power_ro_lock_fail:
2723         device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2724 force_ro_fail:
2725         del_gendisk(md->disk);
2726
2727         return ret;
2728 }
2729
2730 #ifdef CONFIG_DEBUG_FS
2731
2732 static int mmc_dbg_card_status_get(void *data, u64 *val)
2733 {
2734         struct mmc_card *card = data;
2735         struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2736         struct mmc_queue *mq = &md->queue;
2737         struct request *req;
2738         int ret;
2739
2740         /* Ask the block layer about the card status */
2741         req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2742         if (IS_ERR(req))
2743                 return PTR_ERR(req);
2744         req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2745         blk_execute_rq(NULL, req, 0);
2746         ret = req_to_mmc_queue_req(req)->drv_op_result;
2747         if (ret >= 0) {
2748                 *val = ret;
2749                 ret = 0;
2750         }
2751         blk_put_request(req);
2752
2753         return ret;
2754 }
2755 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2756                          NULL, "%08llx\n");
2757
2758 /* That is two digits * 512 + 1 for newline */
2759 #define EXT_CSD_STR_LEN 1025
2760
2761 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2762 {
2763         struct mmc_card *card = inode->i_private;
2764         struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2765         struct mmc_queue *mq = &md->queue;
2766         struct request *req;
2767         char *buf;
2768         ssize_t n = 0;
2769         u8 *ext_csd;
2770         int err, i;
2771
2772         buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2773         if (!buf)
2774                 return -ENOMEM;
2775
2776         /* Ask the block layer for the EXT CSD */
2777         req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2778         if (IS_ERR(req)) {
2779                 err = PTR_ERR(req);
2780                 goto out_free;
2781         }
2782         req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2783         req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2784         blk_execute_rq(NULL, req, 0);
2785         err = req_to_mmc_queue_req(req)->drv_op_result;
2786         blk_put_request(req);
2787         if (err) {
2788                 pr_err("FAILED %d\n", err);
2789                 goto out_free;
2790         }
2791
2792         for (i = 0; i < 512; i++)
2793                 n += sprintf(buf + n, "%02x", ext_csd[i]);
2794         n += sprintf(buf + n, "\n");
2795
2796         if (n != EXT_CSD_STR_LEN) {
2797                 err = -EINVAL;
2798                 kfree(ext_csd);
2799                 goto out_free;
2800         }
2801
2802         filp->private_data = buf;
2803         kfree(ext_csd);
2804         return 0;
2805
2806 out_free:
2807         kfree(buf);
2808         return err;
2809 }
2810
2811 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2812                                 size_t cnt, loff_t *ppos)
2813 {
2814         char *buf = filp->private_data;
2815
2816         return simple_read_from_buffer(ubuf, cnt, ppos,
2817                                        buf, EXT_CSD_STR_LEN);
2818 }
2819
2820 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2821 {
2822         kfree(file->private_data);
2823         return 0;
2824 }
2825
2826 static const struct file_operations mmc_dbg_ext_csd_fops = {
2827         .open           = mmc_ext_csd_open,
2828         .read           = mmc_ext_csd_read,
2829         .release        = mmc_ext_csd_release,
2830         .llseek         = default_llseek,
2831 };
2832
2833 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2834 {
2835         struct dentry *root;
2836
2837         if (!card->debugfs_root)
2838                 return 0;
2839
2840         root = card->debugfs_root;
2841
2842         if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2843                 md->status_dentry =
2844                         debugfs_create_file_unsafe("status", 0400, root,
2845                                                    card,
2846                                                    &mmc_dbg_card_status_fops);
2847                 if (!md->status_dentry)
2848                         return -EIO;
2849         }
2850
2851         if (mmc_card_mmc(card)) {
2852                 md->ext_csd_dentry =
2853                         debugfs_create_file("ext_csd", S_IRUSR, root, card,
2854                                             &mmc_dbg_ext_csd_fops);
2855                 if (!md->ext_csd_dentry)
2856                         return -EIO;
2857         }
2858
2859         return 0;
2860 }
2861
2862 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2863                                    struct mmc_blk_data *md)
2864 {
2865         if (!card->debugfs_root)
2866                 return;
2867
2868         if (!IS_ERR_OR_NULL(md->status_dentry)) {
2869                 debugfs_remove(md->status_dentry);
2870                 md->status_dentry = NULL;
2871         }
2872
2873         if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2874                 debugfs_remove(md->ext_csd_dentry);
2875                 md->ext_csd_dentry = NULL;
2876         }
2877 }
2878
2879 #else
2880
2881 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2882 {
2883         return 0;
2884 }
2885
2886 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2887                                    struct mmc_blk_data *md)
2888 {
2889 }
2890
2891 #endif /* CONFIG_DEBUG_FS */
2892
2893 static int mmc_blk_probe(struct mmc_card *card)
2894 {
2895         struct mmc_blk_data *md, *part_md;
2896         int ret = 0;
2897
2898         /*
2899          * Check that the card supports the command class(es) we need.
2900          */
2901         if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2902                 return -ENODEV;
2903
2904         mmc_fixup_device(card, mmc_blk_fixups);
2905
2906         card->complete_wq = alloc_workqueue("mmc_complete",
2907                                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2908         if (!card->complete_wq) {
2909                 pr_err("Failed to create mmc completion workqueue");
2910                 return -ENOMEM;
2911         }
2912
2913         md = mmc_blk_alloc(card);
2914         if (IS_ERR(md)) {
2915                 ret = PTR_ERR(md);
2916                 goto out_free;
2917         }
2918
2919         ret = mmc_blk_alloc_parts(card, md);
2920         if (ret)
2921                 goto out;
2922
2923         dev_set_drvdata(&card->dev, md);
2924
2925         ret = mmc_add_disk(md);
2926         if (ret)
2927                 goto out;
2928
2929         list_for_each_entry(part_md, &md->part, part) {
2930                 ret = mmc_add_disk(part_md);
2931                 if (ret)
2932                         goto out;
2933         }
2934
2935         /* Add two debugfs entries */
2936         mmc_blk_add_debugfs(card, md);
2937
2938         pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2939         pm_runtime_use_autosuspend(&card->dev);
2940
2941         /*
2942          * Don't enable runtime PM for SD-combo cards here. Leave that
2943          * decision to be taken during the SDIO init sequence instead.
2944          */
2945         if (card->type != MMC_TYPE_SD_COMBO) {
2946                 pm_runtime_set_active(&card->dev);
2947                 pm_runtime_enable(&card->dev);
2948         }
2949
2950         return 0;
2951
2952 out:
2953         mmc_blk_remove_parts(card, md);
2954         mmc_blk_remove_req(md);
2955 out_free:
2956         destroy_workqueue(card->complete_wq);
2957         return ret;
2958 }
2959
2960 static void mmc_blk_remove(struct mmc_card *card)
2961 {
2962         struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2963
2964         mmc_blk_remove_debugfs(card, md);
2965         mmc_blk_remove_parts(card, md);
2966         pm_runtime_get_sync(&card->dev);
2967         if (md->part_curr != md->part_type) {
2968                 mmc_claim_host(card->host);
2969                 mmc_blk_part_switch(card, md->part_type);
2970                 mmc_release_host(card->host);
2971         }
2972         if (card->type != MMC_TYPE_SD_COMBO)
2973                 pm_runtime_disable(&card->dev);
2974         pm_runtime_put_noidle(&card->dev);
2975         mmc_blk_remove_req(md);
2976         dev_set_drvdata(&card->dev, NULL);
2977         destroy_workqueue(card->complete_wq);
2978 }
2979
2980 static int _mmc_blk_suspend(struct mmc_card *card)
2981 {
2982         struct mmc_blk_data *part_md;
2983         struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2984
2985         if (md) {
2986                 mmc_queue_suspend(&md->queue);
2987                 list_for_each_entry(part_md, &md->part, part) {
2988                         mmc_queue_suspend(&part_md->queue);
2989                 }
2990         }
2991         return 0;
2992 }
2993
2994 static void mmc_blk_shutdown(struct mmc_card *card)
2995 {
2996         _mmc_blk_suspend(card);
2997 }
2998
2999 #ifdef CONFIG_PM_SLEEP
3000 static int mmc_blk_suspend(struct device *dev)
3001 {
3002         struct mmc_card *card = mmc_dev_to_card(dev);
3003
3004         return _mmc_blk_suspend(card);
3005 }
3006
3007 static int mmc_blk_resume(struct device *dev)
3008 {
3009         struct mmc_blk_data *part_md;
3010         struct mmc_blk_data *md = dev_get_drvdata(dev);
3011
3012         if (md) {
3013                 /*
3014                  * Resume involves the card going into idle state,
3015                  * so current partition is always the main one.
3016                  */
3017                 md->part_curr = md->part_type;
3018                 mmc_queue_resume(&md->queue);
3019                 list_for_each_entry(part_md, &md->part, part) {
3020                         mmc_queue_resume(&part_md->queue);
3021                 }
3022         }
3023         return 0;
3024 }
3025 #endif
3026
3027 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3028
3029 static struct mmc_driver mmc_driver = {
3030         .drv            = {
3031                 .name   = "mmcblk",
3032                 .pm     = &mmc_blk_pm_ops,
3033         },
3034         .probe          = mmc_blk_probe,
3035         .remove         = mmc_blk_remove,
3036         .shutdown       = mmc_blk_shutdown,
3037 };
3038
3039 static int __init mmc_blk_init(void)
3040 {
3041         int res;
3042
3043         res  = bus_register(&mmc_rpmb_bus_type);
3044         if (res < 0) {
3045                 pr_err("mmcblk: could not register RPMB bus type\n");
3046                 return res;
3047         }
3048         res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3049         if (res < 0) {
3050                 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3051                 goto out_bus_unreg;
3052         }
3053
3054         if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3055                 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3056
3057         max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3058
3059         res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3060         if (res)
3061                 goto out_chrdev_unreg;
3062
3063         res = mmc_register_driver(&mmc_driver);
3064         if (res)
3065                 goto out_blkdev_unreg;
3066
3067         return 0;
3068
3069 out_blkdev_unreg:
3070         unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3071 out_chrdev_unreg:
3072         unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3073 out_bus_unreg:
3074         bus_unregister(&mmc_rpmb_bus_type);
3075         return res;
3076 }
3077
3078 static void __exit mmc_blk_exit(void)
3079 {
3080         mmc_unregister_driver(&mmc_driver);
3081         unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3082         unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3083         bus_unregister(&mmc_rpmb_bus_type);
3084 }
3085
3086 module_init(mmc_blk_init);
3087 module_exit(mmc_blk_exit);
3088
3089 MODULE_LICENSE("GPL");
3090 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3091
This page took 0.207962 seconds and 4 git commands to generate.