2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
48 #include <linux/uaccess.h>
61 MODULE_ALIAS("mmc:block");
62 #ifdef MODULE_PARAM_PREFIX
63 #undef MODULE_PARAM_PREFIX
65 #define MODULE_PARAM_PREFIX "mmcblk."
68 * Set a 10 second timeout for polling write request busy state. Note, mmc core
69 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
70 * second software timer to timeout the whole request, so 10 seconds should be
73 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
77 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
78 (rq_data_dir(req) == WRITE))
79 static DEFINE_MUTEX(block_mutex);
82 * The defaults come from config options but can be overriden by module
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88 * We've only got one major, so number of mmcblk devices is
89 * limited to (1 << 20) / number of minors per device. It is also
90 * limited by the MAX_DEVICES below.
92 static int max_devices;
94 #define MAX_DEVICES 256
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
100 * There is one mmc_blk_data per slot.
102 struct mmc_blk_data {
103 struct device *parent;
104 struct gendisk *disk;
105 struct mmc_queue queue;
106 struct list_head part;
107 struct list_head rpmbs;
110 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
111 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
114 unsigned int read_only;
115 unsigned int part_type;
116 unsigned int reset_done;
117 #define MMC_BLK_READ BIT(0)
118 #define MMC_BLK_WRITE BIT(1)
119 #define MMC_BLK_DISCARD BIT(2)
120 #define MMC_BLK_SECDISCARD BIT(3)
121 #define MMC_BLK_CQE_RECOVERY BIT(4)
124 * Only set in main mmc_blk_data associated
125 * with mmc_card with dev_set_drvdata, and keeps
126 * track of the current selected device partition.
128 unsigned int part_curr;
129 struct device_attribute force_ro;
130 struct device_attribute power_ro_lock;
133 /* debugfs files (only in main mmc_blk_data) */
134 struct dentry *status_dentry;
135 struct dentry *ext_csd_dentry;
138 /* Device type for RPMB character devices */
139 static dev_t mmc_rpmb_devt;
141 /* Bus type for RPMB character devices */
142 static struct bus_type mmc_rpmb_bus_type = {
147 * struct mmc_rpmb_data - special RPMB device type for these areas
148 * @dev: the device for the RPMB area
149 * @chrdev: character device for the RPMB area
150 * @id: unique device ID number
151 * @part_index: partition index (0 on first)
152 * @md: parent MMC block device
153 * @node: list item, so we can put this device on a list
155 struct mmc_rpmb_data {
159 unsigned int part_index;
160 struct mmc_blk_data *md;
161 struct list_head node;
164 static DEFINE_MUTEX(open_lock);
166 module_param(perdev_minors, int, 0444);
167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
169 static inline int mmc_blk_part_switch(struct mmc_card *card,
170 unsigned int part_type);
171 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
172 struct mmc_card *card,
174 struct mmc_queue *mq);
175 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
177 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
179 struct mmc_blk_data *md;
181 mutex_lock(&open_lock);
182 md = disk->private_data;
183 if (md && md->usage == 0)
187 mutex_unlock(&open_lock);
192 static inline int mmc_get_devidx(struct gendisk *disk)
194 int devidx = disk->first_minor / perdev_minors;
198 static void mmc_blk_put(struct mmc_blk_data *md)
200 mutex_lock(&open_lock);
202 if (md->usage == 0) {
203 int devidx = mmc_get_devidx(md->disk);
204 blk_put_queue(md->queue.queue);
205 ida_simple_remove(&mmc_blk_ida, devidx);
209 mutex_unlock(&open_lock);
212 static ssize_t power_ro_lock_show(struct device *dev,
213 struct device_attribute *attr, char *buf)
216 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
217 struct mmc_card *card = md->queue.card;
220 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
222 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
225 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
232 static ssize_t power_ro_lock_store(struct device *dev,
233 struct device_attribute *attr, const char *buf, size_t count)
236 struct mmc_blk_data *md, *part_md;
237 struct mmc_queue *mq;
241 if (kstrtoul(buf, 0, &set))
247 md = mmc_blk_get(dev_to_disk(dev));
250 /* Dispatch locking to the block layer */
251 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
253 count = PTR_ERR(req);
256 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
257 blk_execute_rq(NULL, req, 0);
258 ret = req_to_mmc_queue_req(req)->drv_op_result;
259 blk_put_request(req);
262 pr_info("%s: Locking boot partition ro until next power on\n",
263 md->disk->disk_name);
264 set_disk_ro(md->disk, 1);
266 list_for_each_entry(part_md, &md->part, part)
267 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
268 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
269 set_disk_ro(part_md->disk, 1);
277 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
281 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
283 ret = snprintf(buf, PAGE_SIZE, "%d\n",
284 get_disk_ro(dev_to_disk(dev)) ^
290 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
291 const char *buf, size_t count)
295 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
296 unsigned long set = simple_strtoul(buf, &end, 0);
302 set_disk_ro(dev_to_disk(dev), set || md->read_only);
309 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
311 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
314 mutex_lock(&block_mutex);
317 if ((mode & FMODE_WRITE) && md->read_only) {
322 mutex_unlock(&block_mutex);
327 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
329 struct mmc_blk_data *md = disk->private_data;
331 mutex_lock(&block_mutex);
333 mutex_unlock(&block_mutex);
337 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
339 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
345 struct mmc_blk_ioc_data {
346 struct mmc_ioc_cmd ic;
349 struct mmc_rpmb_data *rpmb;
352 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
353 struct mmc_ioc_cmd __user *user)
355 struct mmc_blk_ioc_data *idata;
358 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
364 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
369 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
370 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
375 if (!idata->buf_bytes) {
380 idata->buf = memdup_user((void __user *)(unsigned long)
381 idata->ic.data_ptr, idata->buf_bytes);
382 if (IS_ERR(idata->buf)) {
383 err = PTR_ERR(idata->buf);
395 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
396 struct mmc_blk_ioc_data *idata)
398 struct mmc_ioc_cmd *ic = &idata->ic;
400 if (copy_to_user(&(ic_ptr->response), ic->response,
401 sizeof(ic->response)))
404 if (!idata->ic.write_flag) {
405 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
406 idata->buf, idata->buf_bytes))
413 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
416 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
421 bool done = time_after(jiffies, timeout);
423 err = __mmc_send_status(card, &status, 5);
425 dev_err(mmc_dev(card->host),
426 "error %d requesting status\n", err);
430 /* Accumulate any response error bits seen */
432 *resp_errs |= status;
435 * Timeout if the device never becomes ready for data and never
436 * leaves the program state.
439 dev_err(mmc_dev(card->host),
440 "Card stuck in wrong state! %s status: %#x\n",
444 } while (!mmc_ready_for_data(status));
449 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
450 struct mmc_blk_ioc_data *idata)
452 struct mmc_command cmd = {}, sbc = {};
453 struct mmc_data data = {};
454 struct mmc_request mrq = {};
455 struct scatterlist sg;
457 unsigned int target_part;
459 if (!card || !md || !idata)
463 * The RPMB accesses comes in from the character device, so we
464 * need to target these explicitly. Else we just target the
465 * partition type for the block device the ioctl() was issued
469 /* Support multiple RPMB partitions */
470 target_part = idata->rpmb->part_index;
471 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
473 target_part = md->part_type;
476 cmd.opcode = idata->ic.opcode;
477 cmd.arg = idata->ic.arg;
478 cmd.flags = idata->ic.flags;
480 if (idata->buf_bytes) {
483 data.blksz = idata->ic.blksz;
484 data.blocks = idata->ic.blocks;
486 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
488 if (idata->ic.write_flag)
489 data.flags = MMC_DATA_WRITE;
491 data.flags = MMC_DATA_READ;
493 /* data.flags must already be set before doing this. */
494 mmc_set_data_timeout(&data, card);
496 /* Allow overriding the timeout_ns for empirical tuning. */
497 if (idata->ic.data_timeout_ns)
498 data.timeout_ns = idata->ic.data_timeout_ns;
500 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
502 * Pretend this is a data transfer and rely on the
503 * host driver to compute timeout. When all host
504 * drivers support cmd.cmd_timeout for R1B, this
508 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
510 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
518 err = mmc_blk_part_switch(card, target_part);
522 if (idata->ic.is_acmd) {
523 err = mmc_app_cmd(card->host, card);
529 sbc.opcode = MMC_SET_BLOCK_COUNT;
531 * We don't do any blockcount validation because the max size
532 * may be increased by a future standard. We just copy the
533 * 'Reliable Write' bit here.
535 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
536 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
540 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
541 (cmd.opcode == MMC_SWITCH))
542 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
544 mmc_wait_for_req(card->host, &mrq);
547 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
548 __func__, cmd.error);
552 dev_err(mmc_dev(card->host), "%s: data error %d\n",
553 __func__, data.error);
558 * Make sure the cache of the PARTITION_CONFIG register and
559 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
560 * changed it successfully.
562 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
563 (cmd.opcode == MMC_SWITCH)) {
564 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
565 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
568 * Update cache so the next mmc_blk_part_switch call operates
569 * on up-to-date data.
571 card->ext_csd.part_config = value;
572 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
576 * Make sure to update CACHE_CTRL in case it was changed. The cache
577 * will get turned back on if the card is re-initialized, e.g.
578 * suspend/resume or hw reset in recovery.
580 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
581 (cmd.opcode == MMC_SWITCH)) {
582 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
584 card->ext_csd.cache_ctrl = value;
588 * According to the SD specs, some commands require a delay after
589 * issuing the command.
591 if (idata->ic.postsleep_min_us)
592 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
594 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
596 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
598 * Ensure RPMB/R1B command has completed by polling CMD13
601 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
607 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
608 struct mmc_ioc_cmd __user *ic_ptr,
609 struct mmc_rpmb_data *rpmb)
611 struct mmc_blk_ioc_data *idata;
612 struct mmc_blk_ioc_data *idatas[1];
613 struct mmc_queue *mq;
614 struct mmc_card *card;
615 int err = 0, ioc_err = 0;
618 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
620 return PTR_ERR(idata);
621 /* This will be NULL on non-RPMB ioctl():s */
624 card = md->queue.card;
631 * Dispatch the ioctl() into the block request queue.
634 req = blk_get_request(mq->queue,
635 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
641 req_to_mmc_queue_req(req)->drv_op =
642 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
643 req_to_mmc_queue_req(req)->drv_op_data = idatas;
644 req_to_mmc_queue_req(req)->ioc_count = 1;
645 blk_execute_rq(NULL, req, 0);
646 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
647 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
648 blk_put_request(req);
653 return ioc_err ? ioc_err : err;
656 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
657 struct mmc_ioc_multi_cmd __user *user,
658 struct mmc_rpmb_data *rpmb)
660 struct mmc_blk_ioc_data **idata = NULL;
661 struct mmc_ioc_cmd __user *cmds = user->cmds;
662 struct mmc_card *card;
663 struct mmc_queue *mq;
664 int i, err = 0, ioc_err = 0;
668 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
669 sizeof(num_of_cmds)))
675 if (num_of_cmds > MMC_IOC_MAX_CMDS)
678 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
682 for (i = 0; i < num_of_cmds; i++) {
683 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
684 if (IS_ERR(idata[i])) {
685 err = PTR_ERR(idata[i]);
689 /* This will be NULL on non-RPMB ioctl():s */
690 idata[i]->rpmb = rpmb;
693 card = md->queue.card;
701 * Dispatch the ioctl()s into the block request queue.
704 req = blk_get_request(mq->queue,
705 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
710 req_to_mmc_queue_req(req)->drv_op =
711 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
712 req_to_mmc_queue_req(req)->drv_op_data = idata;
713 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
714 blk_execute_rq(NULL, req, 0);
715 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
717 /* copy to user if data and response */
718 for (i = 0; i < num_of_cmds && !err; i++)
719 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
721 blk_put_request(req);
724 for (i = 0; i < num_of_cmds; i++) {
725 kfree(idata[i]->buf);
729 return ioc_err ? ioc_err : err;
732 static int mmc_blk_check_blkdev(struct block_device *bdev)
735 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
736 * whole block device, not on a partition. This prevents overspray
737 * between sibling partitions.
739 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
744 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
745 unsigned int cmd, unsigned long arg)
747 struct mmc_blk_data *md;
752 ret = mmc_blk_check_blkdev(bdev);
755 md = mmc_blk_get(bdev->bd_disk);
758 ret = mmc_blk_ioctl_cmd(md,
759 (struct mmc_ioc_cmd __user *)arg,
763 case MMC_IOC_MULTI_CMD:
764 ret = mmc_blk_check_blkdev(bdev);
767 md = mmc_blk_get(bdev->bd_disk);
770 ret = mmc_blk_ioctl_multi_cmd(md,
771 (struct mmc_ioc_multi_cmd __user *)arg,
781 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
782 unsigned int cmd, unsigned long arg)
784 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
788 static const struct block_device_operations mmc_bdops = {
789 .open = mmc_blk_open,
790 .release = mmc_blk_release,
791 .getgeo = mmc_blk_getgeo,
792 .owner = THIS_MODULE,
793 .ioctl = mmc_blk_ioctl,
795 .compat_ioctl = mmc_blk_compat_ioctl,
799 static int mmc_blk_part_switch_pre(struct mmc_card *card,
800 unsigned int part_type)
804 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
805 if (card->ext_csd.cmdq_en) {
806 ret = mmc_cmdq_disable(card);
810 mmc_retune_pause(card->host);
816 static int mmc_blk_part_switch_post(struct mmc_card *card,
817 unsigned int part_type)
821 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
822 mmc_retune_unpause(card->host);
823 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
824 ret = mmc_cmdq_enable(card);
830 static inline int mmc_blk_part_switch(struct mmc_card *card,
831 unsigned int part_type)
834 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
836 if (main_md->part_curr == part_type)
839 if (mmc_card_mmc(card)) {
840 u8 part_config = card->ext_csd.part_config;
842 ret = mmc_blk_part_switch_pre(card, part_type);
846 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
847 part_config |= part_type;
849 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
850 EXT_CSD_PART_CONFIG, part_config,
851 card->ext_csd.part_time);
853 mmc_blk_part_switch_post(card, part_type);
857 card->ext_csd.part_config = part_config;
859 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
862 main_md->part_curr = part_type;
866 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
872 struct mmc_request mrq = {};
873 struct mmc_command cmd = {};
874 struct mmc_data data = {};
876 struct scatterlist sg;
878 cmd.opcode = MMC_APP_CMD;
879 cmd.arg = card->rca << 16;
880 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
882 err = mmc_wait_for_cmd(card->host, &cmd, 0);
885 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
888 memset(&cmd, 0, sizeof(struct mmc_command));
890 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
892 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
896 data.flags = MMC_DATA_READ;
899 mmc_set_data_timeout(&data, card);
904 blocks = kmalloc(4, GFP_KERNEL);
908 sg_init_one(&sg, blocks, 4);
910 mmc_wait_for_req(card->host, &mrq);
912 result = ntohl(*blocks);
915 if (cmd.error || data.error)
918 *written_blocks = result;
923 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
925 if (host->actual_clock)
926 return host->actual_clock / 1000;
928 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
930 return host->ios.clock / 2000;
932 /* How can there be no clock */
934 return 100; /* 100 kHz is minimum possible value */
937 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
938 struct mmc_data *data)
940 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
943 if (data->timeout_clks) {
944 khz = mmc_blk_clock_khz(host);
945 ms += DIV_ROUND_UP(data->timeout_clks, khz);
951 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
956 if (md->reset_done & type)
959 md->reset_done |= type;
960 err = mmc_hw_reset(host);
961 /* Ensure we switch back to the correct partition */
963 struct mmc_blk_data *main_md =
964 dev_get_drvdata(&host->card->dev);
967 main_md->part_curr = main_md->part_type;
968 part_err = mmc_blk_part_switch(host->card, md->part_type);
971 * We have failed to get back into the correct
972 * partition, so we need to abort the whole request.
980 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
982 md->reset_done &= ~type;
986 * The non-block commands come back from the block layer after it queued it and
987 * processed it with all other requests and then they get issued in this
990 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
992 struct mmc_queue_req *mq_rq;
993 struct mmc_card *card = mq->card;
994 struct mmc_blk_data *md = mq->blkdata;
995 struct mmc_blk_ioc_data **idata;
1002 mq_rq = req_to_mmc_queue_req(req);
1003 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1005 switch (mq_rq->drv_op) {
1006 case MMC_DRV_OP_IOCTL:
1007 case MMC_DRV_OP_IOCTL_RPMB:
1008 idata = mq_rq->drv_op_data;
1009 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1010 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1014 /* Always switch back to main area after RPMB access */
1016 mmc_blk_part_switch(card, 0);
1018 case MMC_DRV_OP_BOOT_WP:
1019 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1020 card->ext_csd.boot_ro_lock |
1021 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1022 card->ext_csd.part_time);
1024 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1025 md->disk->disk_name, ret);
1027 card->ext_csd.boot_ro_lock |=
1028 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1030 case MMC_DRV_OP_GET_CARD_STATUS:
1031 ret = mmc_send_status(card, &status);
1035 case MMC_DRV_OP_GET_EXT_CSD:
1036 ext_csd = mq_rq->drv_op_data;
1037 ret = mmc_get_ext_csd(card, ext_csd);
1040 pr_err("%s: unknown driver specific operation\n",
1041 md->disk->disk_name);
1045 mq_rq->drv_op_result = ret;
1046 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1049 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1051 struct mmc_blk_data *md = mq->blkdata;
1052 struct mmc_card *card = md->queue.card;
1053 unsigned int from, nr;
1054 int err = 0, type = MMC_BLK_DISCARD;
1055 blk_status_t status = BLK_STS_OK;
1057 if (!mmc_can_erase(card)) {
1058 status = BLK_STS_NOTSUPP;
1062 from = blk_rq_pos(req);
1063 nr = blk_rq_sectors(req);
1067 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1068 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1069 INAND_CMD38_ARG_EXT_CSD,
1070 card->erase_arg == MMC_TRIM_ARG ?
1071 INAND_CMD38_ARG_TRIM :
1072 INAND_CMD38_ARG_ERASE,
1073 card->ext_csd.generic_cmd6_time);
1076 err = mmc_erase(card, from, nr, card->erase_arg);
1077 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1079 status = BLK_STS_IOERR;
1081 mmc_blk_reset_success(md, type);
1083 blk_mq_end_request(req, status);
1086 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1087 struct request *req)
1089 struct mmc_blk_data *md = mq->blkdata;
1090 struct mmc_card *card = md->queue.card;
1091 unsigned int from, nr, arg;
1092 int err = 0, type = MMC_BLK_SECDISCARD;
1093 blk_status_t status = BLK_STS_OK;
1095 if (!(mmc_can_secure_erase_trim(card))) {
1096 status = BLK_STS_NOTSUPP;
1100 from = blk_rq_pos(req);
1101 nr = blk_rq_sectors(req);
1103 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1104 arg = MMC_SECURE_TRIM1_ARG;
1106 arg = MMC_SECURE_ERASE_ARG;
1109 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1110 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1111 INAND_CMD38_ARG_EXT_CSD,
1112 arg == MMC_SECURE_TRIM1_ARG ?
1113 INAND_CMD38_ARG_SECTRIM1 :
1114 INAND_CMD38_ARG_SECERASE,
1115 card->ext_csd.generic_cmd6_time);
1120 err = mmc_erase(card, from, nr, arg);
1124 status = BLK_STS_IOERR;
1128 if (arg == MMC_SECURE_TRIM1_ARG) {
1129 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1130 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1131 INAND_CMD38_ARG_EXT_CSD,
1132 INAND_CMD38_ARG_SECTRIM2,
1133 card->ext_csd.generic_cmd6_time);
1138 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1142 status = BLK_STS_IOERR;
1148 if (err && !mmc_blk_reset(md, card->host, type))
1151 mmc_blk_reset_success(md, type);
1153 blk_mq_end_request(req, status);
1156 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1158 struct mmc_blk_data *md = mq->blkdata;
1159 struct mmc_card *card = md->queue.card;
1162 ret = mmc_flush_cache(card);
1163 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1167 * Reformat current write as a reliable write, supporting
1168 * both legacy and the enhanced reliable write MMC cards.
1169 * In each transfer we'll handle only as much as a single
1170 * reliable write can handle, thus finish the request in
1171 * partial completions.
1173 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1174 struct mmc_card *card,
1175 struct request *req)
1177 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1178 /* Legacy mode imposes restrictions on transfers. */
1179 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1180 brq->data.blocks = 1;
1182 if (brq->data.blocks > card->ext_csd.rel_sectors)
1183 brq->data.blocks = card->ext_csd.rel_sectors;
1184 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1185 brq->data.blocks = 1;
1189 #define CMD_ERRORS_EXCL_OOR \
1190 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1191 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1192 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1193 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1194 R1_CC_ERROR | /* Card controller error */ \
1195 R1_ERROR) /* General/unknown error */
1197 #define CMD_ERRORS \
1198 (CMD_ERRORS_EXCL_OOR | \
1199 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1201 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1206 * Per the SD specification(physical layer version 4.10)[1],
1207 * section 4.3.3, it explicitly states that "When the last
1208 * block of user area is read using CMD18, the host should
1209 * ignore OUT_OF_RANGE error that may occur even the sequence
1210 * is correct". And JESD84-B51 for eMMC also has a similar
1211 * statement on section 6.8.3.
1213 * Multiple block read/write could be done by either predefined
1214 * method, namely CMD23, or open-ending mode. For open-ending mode,
1215 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1217 * However the spec[1] doesn't tell us whether we should also
1218 * ignore that for predefined method. But per the spec[1], section
1219 * 4.15 Set Block Count Command, it says"If illegal block count
1220 * is set, out of range error will be indicated during read/write
1221 * operation (For example, data transfer is stopped at user area
1222 * boundary)." In another word, we could expect a out of range error
1223 * in the response for the following CMD18/25. And if argument of
1224 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1225 * we could also expect to get a -ETIMEDOUT or any error number from
1226 * the host drivers due to missing data response(for write)/data(for
1227 * read), as the cards will stop the data transfer by itself per the
1228 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1231 if (!brq->stop.error) {
1232 bool oor_with_open_end;
1233 /* If there is no error yet, check R1 response */
1235 val = brq->stop.resp[0] & CMD_ERRORS;
1236 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1238 if (val && !oor_with_open_end)
1239 brq->stop.error = -EIO;
1243 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1244 int disable_multi, bool *do_rel_wr_p,
1245 bool *do_data_tag_p)
1247 struct mmc_blk_data *md = mq->blkdata;
1248 struct mmc_card *card = md->queue.card;
1249 struct mmc_blk_request *brq = &mqrq->brq;
1250 struct request *req = mmc_queue_req_to_req(mqrq);
1251 bool do_rel_wr, do_data_tag;
1254 * Reliable writes are used to implement Forced Unit Access and
1255 * are supported only on MMCs.
1257 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1258 rq_data_dir(req) == WRITE &&
1259 (md->flags & MMC_BLK_REL_WR);
1261 memset(brq, 0, sizeof(struct mmc_blk_request));
1263 mmc_crypto_prepare_req(mqrq);
1265 brq->mrq.data = &brq->data;
1266 brq->mrq.tag = req->tag;
1268 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1271 if (rq_data_dir(req) == READ) {
1272 brq->data.flags = MMC_DATA_READ;
1273 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1275 brq->data.flags = MMC_DATA_WRITE;
1276 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1279 brq->data.blksz = 512;
1280 brq->data.blocks = blk_rq_sectors(req);
1281 brq->data.blk_addr = blk_rq_pos(req);
1284 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1285 * The eMMC will give "high" priority tasks priority over "simple"
1286 * priority tasks. Here we always set "simple" priority by not setting
1291 * The block layer doesn't support all sector count
1292 * restrictions, so we need to be prepared for too big
1295 if (brq->data.blocks > card->host->max_blk_count)
1296 brq->data.blocks = card->host->max_blk_count;
1298 if (brq->data.blocks > 1) {
1300 * Some SD cards in SPI mode return a CRC error or even lock up
1301 * completely when trying to read the last block using a
1302 * multiblock read command.
1304 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1305 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1306 get_capacity(md->disk)))
1310 * After a read error, we redo the request one sector
1311 * at a time in order to accurately determine which
1312 * sectors can be read successfully.
1315 brq->data.blocks = 1;
1318 * Some controllers have HW issues while operating
1319 * in multiple I/O mode
1321 if (card->host->ops->multi_io_quirk)
1322 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1323 (rq_data_dir(req) == READ) ?
1324 MMC_DATA_READ : MMC_DATA_WRITE,
1329 mmc_apply_rel_rw(brq, card, req);
1330 brq->data.flags |= MMC_DATA_REL_WR;
1334 * Data tag is used only during writing meta data to speed
1335 * up write and any subsequent read of this meta data
1337 do_data_tag = card->ext_csd.data_tag_unit_size &&
1338 (req->cmd_flags & REQ_META) &&
1339 (rq_data_dir(req) == WRITE) &&
1340 ((brq->data.blocks * brq->data.blksz) >=
1341 card->ext_csd.data_tag_unit_size);
1344 brq->data.flags |= MMC_DATA_DAT_TAG;
1346 mmc_set_data_timeout(&brq->data, card);
1348 brq->data.sg = mqrq->sg;
1349 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1352 * Adjust the sg list so it is the same size as the
1355 if (brq->data.blocks != blk_rq_sectors(req)) {
1356 int i, data_size = brq->data.blocks << 9;
1357 struct scatterlist *sg;
1359 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1360 data_size -= sg->length;
1361 if (data_size <= 0) {
1362 sg->length += data_size;
1367 brq->data.sg_len = i;
1371 *do_rel_wr_p = do_rel_wr;
1374 *do_data_tag_p = do_data_tag;
1377 #define MMC_CQE_RETRIES 2
1379 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1381 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1382 struct mmc_request *mrq = &mqrq->brq.mrq;
1383 struct request_queue *q = req->q;
1384 struct mmc_host *host = mq->card->host;
1385 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1386 unsigned long flags;
1390 mmc_cqe_post_req(host, mrq);
1392 if (mrq->cmd && mrq->cmd->error)
1393 err = mrq->cmd->error;
1394 else if (mrq->data && mrq->data->error)
1395 err = mrq->data->error;
1400 if (mqrq->retries++ < MMC_CQE_RETRIES)
1401 blk_mq_requeue_request(req, true);
1403 blk_mq_end_request(req, BLK_STS_IOERR);
1404 } else if (mrq->data) {
1405 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1406 blk_mq_requeue_request(req, true);
1408 __blk_mq_end_request(req, BLK_STS_OK);
1410 blk_mq_end_request(req, BLK_STS_OK);
1413 spin_lock_irqsave(&mq->lock, flags);
1415 mq->in_flight[issue_type] -= 1;
1417 put_card = (mmc_tot_in_flight(mq) == 0);
1419 mmc_cqe_check_busy(mq);
1421 spin_unlock_irqrestore(&mq->lock, flags);
1424 blk_mq_run_hw_queues(q, true);
1427 mmc_put_card(mq->card, &mq->ctx);
1430 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1432 struct mmc_card *card = mq->card;
1433 struct mmc_host *host = card->host;
1436 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1438 err = mmc_cqe_recovery(host);
1440 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1442 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1444 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1447 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1449 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1451 struct request *req = mmc_queue_req_to_req(mqrq);
1452 struct request_queue *q = req->q;
1453 struct mmc_queue *mq = q->queuedata;
1456 * Block layer timeouts race with completions which means the normal
1457 * completion path cannot be used during recovery.
1459 if (mq->in_recovery)
1460 mmc_blk_cqe_complete_rq(mq, req);
1461 else if (likely(!blk_should_fake_timeout(req->q)))
1462 blk_mq_complete_request(req);
1465 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1467 mrq->done = mmc_blk_cqe_req_done;
1468 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1470 return mmc_cqe_start_req(host, mrq);
1473 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1474 struct request *req)
1476 struct mmc_blk_request *brq = &mqrq->brq;
1478 memset(brq, 0, sizeof(*brq));
1480 brq->mrq.cmd = &brq->cmd;
1481 brq->mrq.tag = req->tag;
1486 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1488 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1489 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1491 mrq->cmd->opcode = MMC_SWITCH;
1492 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1493 (EXT_CSD_FLUSH_CACHE << 16) |
1495 EXT_CSD_CMD_SET_NORMAL;
1496 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1498 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1501 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1503 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1504 struct mmc_host *host = mq->card->host;
1507 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1508 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1509 mmc_pre_req(host, &mqrq->brq.mrq);
1511 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1513 mmc_post_req(host, &mqrq->brq.mrq, err);
1518 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1520 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1521 struct mmc_host *host = mq->card->host;
1523 if (host->hsq_enabled)
1524 return mmc_blk_hsq_issue_rw_rq(mq, req);
1526 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1528 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1531 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1532 struct mmc_card *card,
1534 struct mmc_queue *mq)
1536 u32 readcmd, writecmd;
1537 struct mmc_blk_request *brq = &mqrq->brq;
1538 struct request *req = mmc_queue_req_to_req(mqrq);
1539 struct mmc_blk_data *md = mq->blkdata;
1540 bool do_rel_wr, do_data_tag;
1542 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1544 brq->mrq.cmd = &brq->cmd;
1546 brq->cmd.arg = blk_rq_pos(req);
1547 if (!mmc_card_blockaddr(card))
1549 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1551 if (brq->data.blocks > 1 || do_rel_wr) {
1552 /* SPI multiblock writes terminate using a special
1553 * token, not a STOP_TRANSMISSION request.
1555 if (!mmc_host_is_spi(card->host) ||
1556 rq_data_dir(req) == READ)
1557 brq->mrq.stop = &brq->stop;
1558 readcmd = MMC_READ_MULTIPLE_BLOCK;
1559 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1561 brq->mrq.stop = NULL;
1562 readcmd = MMC_READ_SINGLE_BLOCK;
1563 writecmd = MMC_WRITE_BLOCK;
1565 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1568 * Pre-defined multi-block transfers are preferable to
1569 * open ended-ones (and necessary for reliable writes).
1570 * However, it is not sufficient to just send CMD23,
1571 * and avoid the final CMD12, as on an error condition
1572 * CMD12 (stop) needs to be sent anyway. This, coupled
1573 * with Auto-CMD23 enhancements provided by some
1574 * hosts, means that the complexity of dealing
1575 * with this is best left to the host. If CMD23 is
1576 * supported by card and host, we'll fill sbc in and let
1577 * the host deal with handling it correctly. This means
1578 * that for hosts that don't expose MMC_CAP_CMD23, no
1579 * change of behavior will be observed.
1581 * N.B: Some MMC cards experience perf degradation.
1582 * We'll avoid using CMD23-bounded multiblock writes for
1583 * these, while retaining features like reliable writes.
1585 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1586 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1588 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1589 brq->sbc.arg = brq->data.blocks |
1590 (do_rel_wr ? (1 << 31) : 0) |
1591 (do_data_tag ? (1 << 29) : 0);
1592 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1593 brq->mrq.sbc = &brq->sbc;
1597 #define MMC_MAX_RETRIES 5
1598 #define MMC_DATA_RETRIES 2
1599 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1601 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1603 struct mmc_command cmd = {
1604 .opcode = MMC_STOP_TRANSMISSION,
1605 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1606 /* Some hosts wait for busy anyway, so provide a busy timeout */
1607 .busy_timeout = timeout,
1610 return mmc_wait_for_cmd(card->host, &cmd, 5);
1613 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1615 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1616 struct mmc_blk_request *brq = &mqrq->brq;
1617 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1620 mmc_retune_hold_now(card->host);
1622 mmc_blk_send_stop(card, timeout);
1624 err = card_busy_detect(card, timeout, NULL);
1626 mmc_retune_release(card->host);
1631 #define MMC_READ_SINGLE_RETRIES 2
1633 /* Single sector read during recovery */
1634 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1636 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1637 struct mmc_request *mrq = &mqrq->brq.mrq;
1638 struct mmc_card *card = mq->card;
1639 struct mmc_host *host = card->host;
1640 blk_status_t error = BLK_STS_OK;
1647 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1649 mmc_wait_for_req(host, mrq);
1651 err = mmc_send_status(card, &status);
1655 if (!mmc_host_is_spi(host) &&
1656 !mmc_ready_for_data(status)) {
1657 err = mmc_blk_fix_state(card, req);
1662 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1667 if (mrq->cmd->error ||
1669 (!mmc_host_is_spi(host) &&
1670 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1671 error = BLK_STS_IOERR;
1675 } while (blk_update_request(req, error, 512));
1680 mrq->data->bytes_xfered = 0;
1681 blk_update_request(req, BLK_STS_IOERR, 512);
1682 /* Let it try the remaining request again */
1683 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1684 mqrq->retries = MMC_MAX_RETRIES - 1;
1687 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1689 return !!brq->mrq.sbc;
1692 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1694 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1698 * Check for errors the host controller driver might not have seen such as
1699 * response mode errors or invalid card state.
1701 static bool mmc_blk_status_error(struct request *req, u32 status)
1703 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1704 struct mmc_blk_request *brq = &mqrq->brq;
1705 struct mmc_queue *mq = req->q->queuedata;
1708 if (mmc_host_is_spi(mq->card->host))
1711 stop_err_bits = mmc_blk_stop_err_bits(brq);
1713 return brq->cmd.resp[0] & CMD_ERRORS ||
1714 brq->stop.resp[0] & stop_err_bits ||
1715 status & stop_err_bits ||
1716 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1719 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1721 return !brq->sbc.error && !brq->cmd.error &&
1722 !(brq->cmd.resp[0] & CMD_ERRORS);
1726 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1728 * 1. A request that has transferred at least some data is considered
1729 * successful and will be requeued if there is remaining data to
1731 * 2. Otherwise the number of retries is incremented and the request
1732 * will be requeued if there are remaining retries.
1733 * 3. Otherwise the request will be errored out.
1734 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1735 * mqrq->retries. So there are only 4 possible actions here:
1736 * 1. do not accept the bytes_xfered value i.e. set it to zero
1737 * 2. change mqrq->retries to determine the number of retries
1738 * 3. try to reset the card
1739 * 4. read one sector at a time
1741 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1743 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1744 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1745 struct mmc_blk_request *brq = &mqrq->brq;
1746 struct mmc_blk_data *md = mq->blkdata;
1747 struct mmc_card *card = mq->card;
1753 * Some errors the host driver might not have seen. Set the number of
1754 * bytes transferred to zero in that case.
1756 err = __mmc_send_status(card, &status, 0);
1757 if (err || mmc_blk_status_error(req, status))
1758 brq->data.bytes_xfered = 0;
1760 mmc_retune_release(card->host);
1763 * Try again to get the status. This also provides an opportunity for
1767 err = __mmc_send_status(card, &status, 0);
1770 * Nothing more to do after the number of bytes transferred has been
1771 * updated and there is no card.
1773 if (err && mmc_detect_card_removed(card->host))
1776 /* Try to get back to "tran" state */
1777 if (!mmc_host_is_spi(mq->card->host) &&
1778 (err || !mmc_ready_for_data(status)))
1779 err = mmc_blk_fix_state(mq->card, req);
1782 * Special case for SD cards where the card might record the number of
1785 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1786 rq_data_dir(req) == WRITE) {
1787 if (mmc_sd_num_wr_blocks(card, &blocks))
1788 brq->data.bytes_xfered = 0;
1790 brq->data.bytes_xfered = blocks << 9;
1793 /* Reset if the card is in a bad state */
1794 if (!mmc_host_is_spi(mq->card->host) &&
1795 err && mmc_blk_reset(md, card->host, type)) {
1796 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1797 mqrq->retries = MMC_NO_RETRIES;
1802 * If anything was done, just return and if there is anything remaining
1803 * on the request it will get requeued.
1805 if (brq->data.bytes_xfered)
1808 /* Reset before last retry */
1809 if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1810 mmc_blk_reset(md, card->host, type);
1812 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1813 if (brq->sbc.error || brq->cmd.error)
1816 /* Reduce the remaining retries for data errors */
1817 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1818 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1822 /* FIXME: Missing single sector read for large sector size */
1823 if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1824 brq->data.blocks > 1) {
1825 /* Read one sector at a time */
1826 mmc_blk_read_single(mq, req);
1831 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1833 mmc_blk_eval_resp_error(brq);
1835 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1836 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1839 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1841 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1845 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1848 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1851 * Do not assume data transferred correctly if there are any error bits
1854 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1855 mqrq->brq.data.bytes_xfered = 0;
1856 err = err ? err : -EIO;
1859 /* Copy the exception bit so it will be seen later on */
1860 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1861 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1866 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1867 struct request *req)
1869 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1871 mmc_blk_reset_success(mq->blkdata, type);
1874 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1876 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1877 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1880 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1881 blk_mq_requeue_request(req, true);
1883 __blk_mq_end_request(req, BLK_STS_OK);
1884 } else if (!blk_rq_bytes(req)) {
1885 __blk_mq_end_request(req, BLK_STS_IOERR);
1886 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1887 blk_mq_requeue_request(req, true);
1889 if (mmc_card_removed(mq->card))
1890 req->rq_flags |= RQF_QUIET;
1891 blk_mq_end_request(req, BLK_STS_IOERR);
1895 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1896 struct mmc_queue_req *mqrq)
1898 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1899 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1900 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1903 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1904 struct mmc_queue_req *mqrq)
1906 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1907 mmc_run_bkops(mq->card);
1910 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1912 struct mmc_queue_req *mqrq =
1913 container_of(mrq, struct mmc_queue_req, brq.mrq);
1914 struct request *req = mmc_queue_req_to_req(mqrq);
1915 struct request_queue *q = req->q;
1916 struct mmc_queue *mq = q->queuedata;
1917 struct mmc_host *host = mq->card->host;
1918 unsigned long flags;
1920 if (mmc_blk_rq_error(&mqrq->brq) ||
1921 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1922 spin_lock_irqsave(&mq->lock, flags);
1923 mq->recovery_needed = true;
1924 mq->recovery_req = req;
1925 spin_unlock_irqrestore(&mq->lock, flags);
1927 host->cqe_ops->cqe_recovery_start(host);
1929 schedule_work(&mq->recovery_work);
1933 mmc_blk_rw_reset_success(mq, req);
1936 * Block layer timeouts race with completions which means the normal
1937 * completion path cannot be used during recovery.
1939 if (mq->in_recovery)
1940 mmc_blk_cqe_complete_rq(mq, req);
1941 else if (likely(!blk_should_fake_timeout(req->q)))
1942 blk_mq_complete_request(req);
1945 void mmc_blk_mq_complete(struct request *req)
1947 struct mmc_queue *mq = req->q->queuedata;
1948 struct mmc_host *host = mq->card->host;
1950 if (host->cqe_enabled)
1951 mmc_blk_cqe_complete_rq(mq, req);
1952 else if (likely(!blk_should_fake_timeout(req->q)))
1953 mmc_blk_mq_complete_rq(mq, req);
1956 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1957 struct request *req)
1959 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1960 struct mmc_host *host = mq->card->host;
1962 if (mmc_blk_rq_error(&mqrq->brq) ||
1963 mmc_blk_card_busy(mq->card, req)) {
1964 mmc_blk_mq_rw_recovery(mq, req);
1966 mmc_blk_rw_reset_success(mq, req);
1967 mmc_retune_release(host);
1970 mmc_blk_urgent_bkops(mq, mqrq);
1973 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1975 unsigned long flags;
1978 spin_lock_irqsave(&mq->lock, flags);
1980 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1982 put_card = (mmc_tot_in_flight(mq) == 0);
1984 spin_unlock_irqrestore(&mq->lock, flags);
1987 mmc_put_card(mq->card, &mq->ctx);
1990 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1992 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1993 struct mmc_request *mrq = &mqrq->brq.mrq;
1994 struct mmc_host *host = mq->card->host;
1996 mmc_post_req(host, mrq, 0);
1999 * Block layer timeouts race with completions which means the normal
2000 * completion path cannot be used during recovery.
2002 if (mq->in_recovery)
2003 mmc_blk_mq_complete_rq(mq, req);
2004 else if (likely(!blk_should_fake_timeout(req->q)))
2005 blk_mq_complete_request(req);
2007 mmc_blk_mq_dec_in_flight(mq, req);
2010 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2012 struct request *req = mq->recovery_req;
2013 struct mmc_host *host = mq->card->host;
2014 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2016 mq->recovery_req = NULL;
2017 mq->rw_wait = false;
2019 if (mmc_blk_rq_error(&mqrq->brq)) {
2020 mmc_retune_hold_now(host);
2021 mmc_blk_mq_rw_recovery(mq, req);
2024 mmc_blk_urgent_bkops(mq, mqrq);
2026 mmc_blk_mq_post_req(mq, req);
2029 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2030 struct request **prev_req)
2032 if (mmc_host_done_complete(mq->card->host))
2035 mutex_lock(&mq->complete_lock);
2037 if (!mq->complete_req)
2040 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2043 *prev_req = mq->complete_req;
2045 mmc_blk_mq_post_req(mq, mq->complete_req);
2047 mq->complete_req = NULL;
2050 mutex_unlock(&mq->complete_lock);
2053 void mmc_blk_mq_complete_work(struct work_struct *work)
2055 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2058 mmc_blk_mq_complete_prev_req(mq, NULL);
2061 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2063 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2065 struct request *req = mmc_queue_req_to_req(mqrq);
2066 struct request_queue *q = req->q;
2067 struct mmc_queue *mq = q->queuedata;
2068 struct mmc_host *host = mq->card->host;
2069 unsigned long flags;
2071 if (!mmc_host_done_complete(host)) {
2075 * We cannot complete the request in this context, so record
2076 * that there is a request to complete, and that a following
2077 * request does not need to wait (although it does need to
2078 * complete complete_req first).
2080 spin_lock_irqsave(&mq->lock, flags);
2081 mq->complete_req = req;
2082 mq->rw_wait = false;
2083 waiting = mq->waiting;
2084 spin_unlock_irqrestore(&mq->lock, flags);
2087 * If 'waiting' then the waiting task will complete this
2088 * request, otherwise queue a work to do it. Note that
2089 * complete_work may still race with the dispatch of a following
2095 queue_work(mq->card->complete_wq, &mq->complete_work);
2100 /* Take the recovery path for errors or urgent background operations */
2101 if (mmc_blk_rq_error(&mqrq->brq) ||
2102 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2103 spin_lock_irqsave(&mq->lock, flags);
2104 mq->recovery_needed = true;
2105 mq->recovery_req = req;
2106 spin_unlock_irqrestore(&mq->lock, flags);
2108 schedule_work(&mq->recovery_work);
2112 mmc_blk_rw_reset_success(mq, req);
2114 mq->rw_wait = false;
2117 mmc_blk_mq_post_req(mq, req);
2120 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2122 unsigned long flags;
2126 * Wait while there is another request in progress, but not if recovery
2127 * is needed. Also indicate whether there is a request waiting to start.
2129 spin_lock_irqsave(&mq->lock, flags);
2130 if (mq->recovery_needed) {
2134 done = !mq->rw_wait;
2136 mq->waiting = !done;
2137 spin_unlock_irqrestore(&mq->lock, flags);
2142 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2146 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2148 /* Always complete the previous request if there is one */
2149 mmc_blk_mq_complete_prev_req(mq, prev_req);
2154 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2155 struct request *req)
2157 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2158 struct mmc_host *host = mq->card->host;
2159 struct request *prev_req = NULL;
2162 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2164 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2166 mmc_pre_req(host, &mqrq->brq.mrq);
2168 err = mmc_blk_rw_wait(mq, &prev_req);
2174 err = mmc_start_request(host, &mqrq->brq.mrq);
2177 mmc_blk_mq_post_req(mq, prev_req);
2180 mq->rw_wait = false;
2182 /* Release re-tuning here where there is no synchronization required */
2183 if (err || mmc_host_done_complete(host))
2184 mmc_retune_release(host);
2188 mmc_post_req(host, &mqrq->brq.mrq, err);
2193 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2195 if (host->cqe_enabled)
2196 return host->cqe_ops->cqe_wait_for_idle(host);
2198 return mmc_blk_rw_wait(mq, NULL);
2201 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2203 struct mmc_blk_data *md = mq->blkdata;
2204 struct mmc_card *card = md->queue.card;
2205 struct mmc_host *host = card->host;
2208 ret = mmc_blk_part_switch(card, md->part_type);
2210 return MMC_REQ_FAILED_TO_START;
2212 switch (mmc_issue_type(mq, req)) {
2213 case MMC_ISSUE_SYNC:
2214 ret = mmc_blk_wait_for_idle(mq, host);
2216 return MMC_REQ_BUSY;
2217 switch (req_op(req)) {
2219 case REQ_OP_DRV_OUT:
2220 mmc_blk_issue_drv_op(mq, req);
2222 case REQ_OP_DISCARD:
2223 mmc_blk_issue_discard_rq(mq, req);
2225 case REQ_OP_SECURE_ERASE:
2226 mmc_blk_issue_secdiscard_rq(mq, req);
2229 mmc_blk_issue_flush(mq, req);
2233 return MMC_REQ_FAILED_TO_START;
2235 return MMC_REQ_FINISHED;
2236 case MMC_ISSUE_DCMD:
2237 case MMC_ISSUE_ASYNC:
2238 switch (req_op(req)) {
2240 if (!mmc_cache_enabled(host)) {
2241 blk_mq_end_request(req, BLK_STS_OK);
2242 return MMC_REQ_FINISHED;
2244 ret = mmc_blk_cqe_issue_flush(mq, req);
2248 if (host->cqe_enabled)
2249 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2251 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2258 return MMC_REQ_STARTED;
2259 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2262 return MMC_REQ_FAILED_TO_START;
2266 static inline int mmc_blk_readonly(struct mmc_card *card)
2268 return mmc_card_readonly(card) ||
2269 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2272 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2273 struct device *parent,
2276 const char *subname,
2279 struct mmc_blk_data *md;
2283 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2286 * We get -ENOSPC because there are no more any available
2287 * devidx. The reason may be that, either userspace haven't yet
2288 * unmounted the partitions, which postpones mmc_blk_release()
2289 * from being called, or the device has more partitions than
2292 if (devidx == -ENOSPC)
2293 dev_err(mmc_dev(card->host),
2294 "no more device IDs available\n");
2296 return ERR_PTR(devidx);
2299 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2305 md->area_type = area_type;
2308 * Set the read-only status based on the supported commands
2309 * and the write protect switch.
2311 md->read_only = mmc_blk_readonly(card);
2313 md->disk = alloc_disk(perdev_minors);
2314 if (md->disk == NULL) {
2319 INIT_LIST_HEAD(&md->part);
2320 INIT_LIST_HEAD(&md->rpmbs);
2323 ret = mmc_init_queue(&md->queue, card);
2327 md->queue.blkdata = md;
2330 * Keep an extra reference to the queue so that we can shutdown the
2331 * queue (i.e. call blk_cleanup_queue()) while there are still
2332 * references to the 'md'. The corresponding blk_put_queue() is in
2335 if (!blk_get_queue(md->queue.queue)) {
2336 mmc_cleanup_queue(&md->queue);
2341 md->disk->major = MMC_BLOCK_MAJOR;
2342 md->disk->first_minor = devidx * perdev_minors;
2343 md->disk->fops = &mmc_bdops;
2344 md->disk->private_data = md;
2345 md->disk->queue = md->queue.queue;
2346 md->parent = parent;
2347 set_disk_ro(md->disk, md->read_only || default_ro);
2348 md->disk->flags = GENHD_FL_EXT_DEVT;
2349 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2350 md->disk->flags |= GENHD_FL_NO_PART_SCAN
2351 | GENHD_FL_SUPPRESS_PARTITION_INFO;
2354 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2356 * - be set for removable media with permanent block devices
2357 * - be unset for removable block devices with permanent media
2359 * Since MMC block devices clearly fall under the second
2360 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2361 * should use the block device creation/destruction hotplug
2362 * messages to tell when the card is present.
2365 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2366 "mmcblk%u%s", card->host->index, subname ? subname : "");
2368 set_capacity(md->disk, size);
2370 if (mmc_host_cmd23(card->host)) {
2371 if ((mmc_card_mmc(card) &&
2372 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2373 (mmc_card_sd(card) &&
2374 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2375 md->flags |= MMC_BLK_CMD23;
2378 if (mmc_card_mmc(card) &&
2379 md->flags & MMC_BLK_CMD23 &&
2380 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2381 card->ext_csd.rel_sectors)) {
2382 md->flags |= MMC_BLK_REL_WR;
2383 blk_queue_write_cache(md->queue.queue, true, true);
2386 string_get_size((u64)size, 512, STRING_UNITS_2,
2387 cap_str, sizeof(cap_str));
2388 pr_info("%s: %s %s %s %s\n",
2389 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2390 cap_str, md->read_only ? "(ro)" : "");
2399 ida_simple_remove(&mmc_blk_ida, devidx);
2400 return ERR_PTR(ret);
2403 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2407 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2409 * The EXT_CSD sector count is in number or 512 byte
2412 size = card->ext_csd.sectors;
2415 * The CSD capacity field is in units of read_blkbits.
2416 * set_capacity takes units of 512 bytes.
2418 size = (typeof(sector_t))card->csd.capacity
2419 << (card->csd.read_blkbits - 9);
2422 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2423 MMC_BLK_DATA_AREA_MAIN);
2426 static int mmc_blk_alloc_part(struct mmc_card *card,
2427 struct mmc_blk_data *md,
2428 unsigned int part_type,
2431 const char *subname,
2434 struct mmc_blk_data *part_md;
2436 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2437 subname, area_type);
2438 if (IS_ERR(part_md))
2439 return PTR_ERR(part_md);
2440 part_md->part_type = part_type;
2441 list_add(&part_md->part, &md->part);
2447 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2448 * @filp: the character device file
2449 * @cmd: the ioctl() command
2450 * @arg: the argument from userspace
2452 * This will essentially just redirect the ioctl()s coming in over to
2453 * the main block device spawning the RPMB character device.
2455 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2458 struct mmc_rpmb_data *rpmb = filp->private_data;
2463 ret = mmc_blk_ioctl_cmd(rpmb->md,
2464 (struct mmc_ioc_cmd __user *)arg,
2467 case MMC_IOC_MULTI_CMD:
2468 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2469 (struct mmc_ioc_multi_cmd __user *)arg,
2480 #ifdef CONFIG_COMPAT
2481 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2484 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2488 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2490 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2491 struct mmc_rpmb_data, chrdev);
2493 get_device(&rpmb->dev);
2494 filp->private_data = rpmb;
2495 mmc_blk_get(rpmb->md->disk);
2497 return nonseekable_open(inode, filp);
2500 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2502 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2503 struct mmc_rpmb_data, chrdev);
2505 mmc_blk_put(rpmb->md);
2506 put_device(&rpmb->dev);
2511 static const struct file_operations mmc_rpmb_fileops = {
2512 .release = mmc_rpmb_chrdev_release,
2513 .open = mmc_rpmb_chrdev_open,
2514 .owner = THIS_MODULE,
2515 .llseek = no_llseek,
2516 .unlocked_ioctl = mmc_rpmb_ioctl,
2517 #ifdef CONFIG_COMPAT
2518 .compat_ioctl = mmc_rpmb_ioctl_compat,
2522 static void mmc_blk_rpmb_device_release(struct device *dev)
2524 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2526 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2530 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2531 struct mmc_blk_data *md,
2532 unsigned int part_index,
2534 const char *subname)
2537 char rpmb_name[DISK_NAME_LEN];
2539 struct mmc_rpmb_data *rpmb;
2541 /* This creates the minor number for the RPMB char device */
2542 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2546 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2548 ida_simple_remove(&mmc_rpmb_ida, devidx);
2552 snprintf(rpmb_name, sizeof(rpmb_name),
2553 "mmcblk%u%s", card->host->index, subname ? subname : "");
2556 rpmb->part_index = part_index;
2557 rpmb->dev.init_name = rpmb_name;
2558 rpmb->dev.bus = &mmc_rpmb_bus_type;
2559 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2560 rpmb->dev.parent = &card->dev;
2561 rpmb->dev.release = mmc_blk_rpmb_device_release;
2562 device_initialize(&rpmb->dev);
2563 dev_set_drvdata(&rpmb->dev, rpmb);
2566 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2567 rpmb->chrdev.owner = THIS_MODULE;
2568 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2570 pr_err("%s: could not add character device\n", rpmb_name);
2571 goto out_put_device;
2574 list_add(&rpmb->node, &md->rpmbs);
2576 string_get_size((u64)size, 512, STRING_UNITS_2,
2577 cap_str, sizeof(cap_str));
2579 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2580 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2581 MAJOR(mmc_rpmb_devt), rpmb->id);
2586 put_device(&rpmb->dev);
2590 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2593 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2594 put_device(&rpmb->dev);
2597 /* MMC Physical partitions consist of two boot partitions and
2598 * up to four general purpose partitions.
2599 * For each partition enabled in EXT_CSD a block device will be allocatedi
2600 * to provide access to the partition.
2603 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2607 if (!mmc_card_mmc(card))
2610 for (idx = 0; idx < card->nr_parts; idx++) {
2611 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2613 * RPMB partitions does not provide block access, they
2614 * are only accessed using ioctl():s. Thus create
2615 * special RPMB block devices that do not have a
2616 * backing block queue for these.
2618 ret = mmc_blk_alloc_rpmb_part(card, md,
2619 card->part[idx].part_cfg,
2620 card->part[idx].size >> 9,
2621 card->part[idx].name);
2624 } else if (card->part[idx].size) {
2625 ret = mmc_blk_alloc_part(card, md,
2626 card->part[idx].part_cfg,
2627 card->part[idx].size >> 9,
2628 card->part[idx].force_ro,
2629 card->part[idx].name,
2630 card->part[idx].area_type);
2639 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2641 struct mmc_card *card;
2645 * Flush remaining requests and free queues. It
2646 * is freeing the queue that stops new requests
2647 * from being accepted.
2649 card = md->queue.card;
2650 if (md->disk->flags & GENHD_FL_UP) {
2651 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2652 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2653 card->ext_csd.boot_ro_lockable)
2654 device_remove_file(disk_to_dev(md->disk),
2655 &md->power_ro_lock);
2657 del_gendisk(md->disk);
2659 mmc_cleanup_queue(&md->queue);
2664 static void mmc_blk_remove_parts(struct mmc_card *card,
2665 struct mmc_blk_data *md)
2667 struct list_head *pos, *q;
2668 struct mmc_blk_data *part_md;
2669 struct mmc_rpmb_data *rpmb;
2671 /* Remove RPMB partitions */
2672 list_for_each_safe(pos, q, &md->rpmbs) {
2673 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2675 mmc_blk_remove_rpmb_part(rpmb);
2677 /* Remove block partitions */
2678 list_for_each_safe(pos, q, &md->part) {
2679 part_md = list_entry(pos, struct mmc_blk_data, part);
2681 mmc_blk_remove_req(part_md);
2685 static int mmc_add_disk(struct mmc_blk_data *md)
2688 struct mmc_card *card = md->queue.card;
2690 device_add_disk(md->parent, md->disk, NULL);
2691 md->force_ro.show = force_ro_show;
2692 md->force_ro.store = force_ro_store;
2693 sysfs_attr_init(&md->force_ro.attr);
2694 md->force_ro.attr.name = "force_ro";
2695 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2696 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2700 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2701 card->ext_csd.boot_ro_lockable) {
2704 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2707 mode = S_IRUGO | S_IWUSR;
2709 md->power_ro_lock.show = power_ro_lock_show;
2710 md->power_ro_lock.store = power_ro_lock_store;
2711 sysfs_attr_init(&md->power_ro_lock.attr);
2712 md->power_ro_lock.attr.mode = mode;
2713 md->power_ro_lock.attr.name =
2714 "ro_lock_until_next_power_on";
2715 ret = device_create_file(disk_to_dev(md->disk),
2716 &md->power_ro_lock);
2718 goto power_ro_lock_fail;
2723 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2725 del_gendisk(md->disk);
2730 #ifdef CONFIG_DEBUG_FS
2732 static int mmc_dbg_card_status_get(void *data, u64 *val)
2734 struct mmc_card *card = data;
2735 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2736 struct mmc_queue *mq = &md->queue;
2737 struct request *req;
2740 /* Ask the block layer about the card status */
2741 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2743 return PTR_ERR(req);
2744 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2745 blk_execute_rq(NULL, req, 0);
2746 ret = req_to_mmc_queue_req(req)->drv_op_result;
2751 blk_put_request(req);
2755 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2758 /* That is two digits * 512 + 1 for newline */
2759 #define EXT_CSD_STR_LEN 1025
2761 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2763 struct mmc_card *card = inode->i_private;
2764 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2765 struct mmc_queue *mq = &md->queue;
2766 struct request *req;
2772 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2776 /* Ask the block layer for the EXT CSD */
2777 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2782 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2783 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2784 blk_execute_rq(NULL, req, 0);
2785 err = req_to_mmc_queue_req(req)->drv_op_result;
2786 blk_put_request(req);
2788 pr_err("FAILED %d\n", err);
2792 for (i = 0; i < 512; i++)
2793 n += sprintf(buf + n, "%02x", ext_csd[i]);
2794 n += sprintf(buf + n, "\n");
2796 if (n != EXT_CSD_STR_LEN) {
2802 filp->private_data = buf;
2811 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2812 size_t cnt, loff_t *ppos)
2814 char *buf = filp->private_data;
2816 return simple_read_from_buffer(ubuf, cnt, ppos,
2817 buf, EXT_CSD_STR_LEN);
2820 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2822 kfree(file->private_data);
2826 static const struct file_operations mmc_dbg_ext_csd_fops = {
2827 .open = mmc_ext_csd_open,
2828 .read = mmc_ext_csd_read,
2829 .release = mmc_ext_csd_release,
2830 .llseek = default_llseek,
2833 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2835 struct dentry *root;
2837 if (!card->debugfs_root)
2840 root = card->debugfs_root;
2842 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2844 debugfs_create_file_unsafe("status", 0400, root,
2846 &mmc_dbg_card_status_fops);
2847 if (!md->status_dentry)
2851 if (mmc_card_mmc(card)) {
2852 md->ext_csd_dentry =
2853 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2854 &mmc_dbg_ext_csd_fops);
2855 if (!md->ext_csd_dentry)
2862 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2863 struct mmc_blk_data *md)
2865 if (!card->debugfs_root)
2868 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2869 debugfs_remove(md->status_dentry);
2870 md->status_dentry = NULL;
2873 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2874 debugfs_remove(md->ext_csd_dentry);
2875 md->ext_csd_dentry = NULL;
2881 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2886 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2887 struct mmc_blk_data *md)
2891 #endif /* CONFIG_DEBUG_FS */
2893 static int mmc_blk_probe(struct mmc_card *card)
2895 struct mmc_blk_data *md, *part_md;
2899 * Check that the card supports the command class(es) we need.
2901 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2904 mmc_fixup_device(card, mmc_blk_fixups);
2906 card->complete_wq = alloc_workqueue("mmc_complete",
2907 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2908 if (!card->complete_wq) {
2909 pr_err("Failed to create mmc completion workqueue");
2913 md = mmc_blk_alloc(card);
2919 ret = mmc_blk_alloc_parts(card, md);
2923 dev_set_drvdata(&card->dev, md);
2925 ret = mmc_add_disk(md);
2929 list_for_each_entry(part_md, &md->part, part) {
2930 ret = mmc_add_disk(part_md);
2935 /* Add two debugfs entries */
2936 mmc_blk_add_debugfs(card, md);
2938 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2939 pm_runtime_use_autosuspend(&card->dev);
2942 * Don't enable runtime PM for SD-combo cards here. Leave that
2943 * decision to be taken during the SDIO init sequence instead.
2945 if (card->type != MMC_TYPE_SD_COMBO) {
2946 pm_runtime_set_active(&card->dev);
2947 pm_runtime_enable(&card->dev);
2953 mmc_blk_remove_parts(card, md);
2954 mmc_blk_remove_req(md);
2956 destroy_workqueue(card->complete_wq);
2960 static void mmc_blk_remove(struct mmc_card *card)
2962 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2964 mmc_blk_remove_debugfs(card, md);
2965 mmc_blk_remove_parts(card, md);
2966 pm_runtime_get_sync(&card->dev);
2967 if (md->part_curr != md->part_type) {
2968 mmc_claim_host(card->host);
2969 mmc_blk_part_switch(card, md->part_type);
2970 mmc_release_host(card->host);
2972 if (card->type != MMC_TYPE_SD_COMBO)
2973 pm_runtime_disable(&card->dev);
2974 pm_runtime_put_noidle(&card->dev);
2975 mmc_blk_remove_req(md);
2976 dev_set_drvdata(&card->dev, NULL);
2977 destroy_workqueue(card->complete_wq);
2980 static int _mmc_blk_suspend(struct mmc_card *card)
2982 struct mmc_blk_data *part_md;
2983 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2986 mmc_queue_suspend(&md->queue);
2987 list_for_each_entry(part_md, &md->part, part) {
2988 mmc_queue_suspend(&part_md->queue);
2994 static void mmc_blk_shutdown(struct mmc_card *card)
2996 _mmc_blk_suspend(card);
2999 #ifdef CONFIG_PM_SLEEP
3000 static int mmc_blk_suspend(struct device *dev)
3002 struct mmc_card *card = mmc_dev_to_card(dev);
3004 return _mmc_blk_suspend(card);
3007 static int mmc_blk_resume(struct device *dev)
3009 struct mmc_blk_data *part_md;
3010 struct mmc_blk_data *md = dev_get_drvdata(dev);
3014 * Resume involves the card going into idle state,
3015 * so current partition is always the main one.
3017 md->part_curr = md->part_type;
3018 mmc_queue_resume(&md->queue);
3019 list_for_each_entry(part_md, &md->part, part) {
3020 mmc_queue_resume(&part_md->queue);
3027 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3029 static struct mmc_driver mmc_driver = {
3032 .pm = &mmc_blk_pm_ops,
3034 .probe = mmc_blk_probe,
3035 .remove = mmc_blk_remove,
3036 .shutdown = mmc_blk_shutdown,
3039 static int __init mmc_blk_init(void)
3043 res = bus_register(&mmc_rpmb_bus_type);
3045 pr_err("mmcblk: could not register RPMB bus type\n");
3048 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3050 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3054 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3055 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3057 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3059 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3061 goto out_chrdev_unreg;
3063 res = mmc_register_driver(&mmc_driver);
3065 goto out_blkdev_unreg;
3070 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3072 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3074 bus_unregister(&mmc_rpmb_bus_type);
3078 static void __exit mmc_blk_exit(void)
3080 mmc_unregister_driver(&mmc_driver);
3081 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3082 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3083 bus_unregister(&mmc_rpmb_bus_type);
3086 module_init(mmc_blk_init);
3087 module_exit(mmc_blk_exit);
3089 MODULE_LICENSE("GPL");
3090 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");