1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/pagemap.h>
45 /* How many pages do we try to swap or page in/out together? */
48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 .lock = INIT_LOCAL_LOCK(lock),
58 * The following struct pagevec are grouped together because they are protected
59 * by disabling preemption (and interrupts remain enabled).
63 struct pagevec lru_add;
64 struct pagevec lru_deactivate_file;
65 struct pagevec lru_deactivate;
66 struct pagevec lru_lazyfree;
68 struct pagevec activate_page;
71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 .lock = INIT_LOCAL_LOCK(lock),
76 * This path almost never happens for VM activity - pages are normally
77 * freed via pagevecs. But it gets used by networking.
79 static void __page_cache_release(struct page *page)
82 struct lruvec *lruvec;
85 lruvec = lock_page_lruvec_irqsave(page, &flags);
86 del_page_from_lru_list(page, lruvec);
87 __clear_page_lru_flags(page);
88 unlock_page_lruvec_irqrestore(lruvec, flags);
90 __ClearPageWaiters(page);
93 static void __put_single_page(struct page *page)
95 __page_cache_release(page);
96 mem_cgroup_uncharge(page);
97 free_unref_page(page);
100 static void __put_compound_page(struct page *page)
103 * __page_cache_release() is supposed to be called for thp, not for
104 * hugetlb. This is because hugetlb page does never have PageLRU set
105 * (it's never listed to any LRU lists) and no memcg routines should
106 * be called for hugetlb (it has a separate hugetlb_cgroup.)
109 __page_cache_release(page);
110 destroy_compound_page(page);
113 void __put_page(struct page *page)
115 if (is_zone_device_page(page)) {
116 put_dev_pagemap(page->pgmap);
119 * The page belongs to the device that created pgmap. Do
120 * not return it to page allocator.
125 if (unlikely(PageCompound(page)))
126 __put_compound_page(page);
128 __put_single_page(page);
130 EXPORT_SYMBOL(__put_page);
133 * put_pages_list() - release a list of pages
134 * @pages: list of pages threaded on page->lru
136 * Release a list of pages which are strung together on page.lru. Currently
137 * used by read_cache_pages() and related error recovery code.
139 void put_pages_list(struct list_head *pages)
141 while (!list_empty(pages)) {
144 victim = lru_to_page(pages);
145 list_del(&victim->lru);
149 EXPORT_SYMBOL(put_pages_list);
152 * get_kernel_pages() - pin kernel pages in memory
153 * @kiov: An array of struct kvec structures
154 * @nr_segs: number of segments to pin
155 * @write: pinning for read/write, currently ignored
156 * @pages: array that receives pointers to the pages pinned.
157 * Should be at least nr_segs long.
159 * Returns number of pages pinned. This may be fewer than the number
160 * requested. If nr_pages is 0 or negative, returns 0. If no pages
161 * were pinned, returns -errno. Each page returned must be released
162 * with a put_page() call when it is finished with.
164 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
169 for (seg = 0; seg < nr_segs; seg++) {
170 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
173 pages[seg] = kmap_to_page(kiov[seg].iov_base);
174 get_page(pages[seg]);
179 EXPORT_SYMBOL_GPL(get_kernel_pages);
182 * get_kernel_page() - pin a kernel page in memory
183 * @start: starting kernel address
184 * @write: pinning for read/write, currently ignored
185 * @pages: array that receives pointer to the page pinned.
186 * Must be at least nr_segs long.
188 * Returns 1 if page is pinned. If the page was not pinned, returns
189 * -errno. The page returned must be released with a put_page() call
190 * when it is finished with.
192 int get_kernel_page(unsigned long start, int write, struct page **pages)
194 const struct kvec kiov = {
195 .iov_base = (void *)start,
199 return get_kernel_pages(&kiov, 1, write, pages);
201 EXPORT_SYMBOL_GPL(get_kernel_page);
203 static void pagevec_lru_move_fn(struct pagevec *pvec,
204 void (*move_fn)(struct page *page, struct lruvec *lruvec))
207 struct lruvec *lruvec = NULL;
208 unsigned long flags = 0;
210 for (i = 0; i < pagevec_count(pvec); i++) {
211 struct page *page = pvec->pages[i];
213 /* block memcg migration during page moving between lru */
214 if (!TestClearPageLRU(page))
217 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
218 (*move_fn)(page, lruvec);
223 unlock_page_lruvec_irqrestore(lruvec, flags);
224 release_pages(pvec->pages, pvec->nr);
225 pagevec_reinit(pvec);
228 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
230 if (!PageUnevictable(page)) {
231 del_page_from_lru_list(page, lruvec);
232 ClearPageActive(page);
233 add_page_to_lru_list_tail(page, lruvec);
234 __count_vm_events(PGROTATED, thp_nr_pages(page));
238 /* return true if pagevec needs to drain */
239 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
243 if (!pagevec_add(pvec, page) || PageCompound(page) ||
244 lru_cache_disabled())
251 * Writeback is about to end against a page which has been marked for immediate
252 * reclaim. If it still appears to be reclaimable, move it to the tail of the
255 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
257 void rotate_reclaimable_page(struct page *page)
259 if (!PageLocked(page) && !PageDirty(page) &&
260 !PageUnevictable(page) && PageLRU(page)) {
261 struct pagevec *pvec;
265 local_lock_irqsave(&lru_rotate.lock, flags);
266 pvec = this_cpu_ptr(&lru_rotate.pvec);
267 if (pagevec_add_and_need_flush(pvec, page))
268 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
269 local_unlock_irqrestore(&lru_rotate.lock, flags);
273 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
276 unsigned long lrusize;
279 * Hold lruvec->lru_lock is safe here, since
280 * 1) The pinned lruvec in reclaim, or
281 * 2) From a pre-LRU page during refault (which also holds the
282 * rcu lock, so would be safe even if the page was on the LRU
283 * and could move simultaneously to a new lruvec).
285 spin_lock_irq(&lruvec->lru_lock);
286 /* Record cost event */
288 lruvec->file_cost += nr_pages;
290 lruvec->anon_cost += nr_pages;
293 * Decay previous events
295 * Because workloads change over time (and to avoid
296 * overflow) we keep these statistics as a floating
297 * average, which ends up weighing recent refaults
298 * more than old ones.
300 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
301 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
302 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
303 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
305 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
306 lruvec->file_cost /= 2;
307 lruvec->anon_cost /= 2;
309 spin_unlock_irq(&lruvec->lru_lock);
310 } while ((lruvec = parent_lruvec(lruvec)));
313 void lru_note_cost_page(struct page *page)
315 lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
316 page_is_file_lru(page), thp_nr_pages(page));
319 static void __activate_page(struct page *page, struct lruvec *lruvec)
321 if (!PageActive(page) && !PageUnevictable(page)) {
322 int nr_pages = thp_nr_pages(page);
324 del_page_from_lru_list(page, lruvec);
326 add_page_to_lru_list(page, lruvec);
327 trace_mm_lru_activate(page);
329 __count_vm_events(PGACTIVATE, nr_pages);
330 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
336 static void activate_page_drain(int cpu)
338 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
340 if (pagevec_count(pvec))
341 pagevec_lru_move_fn(pvec, __activate_page);
344 static bool need_activate_page_drain(int cpu)
346 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
349 static void activate_page(struct page *page)
351 page = compound_head(page);
352 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
353 struct pagevec *pvec;
355 local_lock(&lru_pvecs.lock);
356 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
358 if (pagevec_add_and_need_flush(pvec, page))
359 pagevec_lru_move_fn(pvec, __activate_page);
360 local_unlock(&lru_pvecs.lock);
365 static inline void activate_page_drain(int cpu)
369 static void activate_page(struct page *page)
371 struct lruvec *lruvec;
373 page = compound_head(page);
374 if (TestClearPageLRU(page)) {
375 lruvec = lock_page_lruvec_irq(page);
376 __activate_page(page, lruvec);
377 unlock_page_lruvec_irq(lruvec);
383 static void __lru_cache_activate_page(struct page *page)
385 struct pagevec *pvec;
388 local_lock(&lru_pvecs.lock);
389 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
392 * Search backwards on the optimistic assumption that the page being
393 * activated has just been added to this pagevec. Note that only
394 * the local pagevec is examined as a !PageLRU page could be in the
395 * process of being released, reclaimed, migrated or on a remote
396 * pagevec that is currently being drained. Furthermore, marking
397 * a remote pagevec's page PageActive potentially hits a race where
398 * a page is marked PageActive just after it is added to the inactive
399 * list causing accounting errors and BUG_ON checks to trigger.
401 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
402 struct page *pagevec_page = pvec->pages[i];
404 if (pagevec_page == page) {
410 local_unlock(&lru_pvecs.lock);
414 * Mark a page as having seen activity.
416 * inactive,unreferenced -> inactive,referenced
417 * inactive,referenced -> active,unreferenced
418 * active,unreferenced -> active,referenced
420 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
421 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
423 void mark_page_accessed(struct page *page)
425 page = compound_head(page);
427 if (!PageReferenced(page)) {
428 SetPageReferenced(page);
429 } else if (PageUnevictable(page)) {
431 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
432 * this list is never rotated or maintained, so marking an
433 * evictable page accessed has no effect.
435 } else if (!PageActive(page)) {
437 * If the page is on the LRU, queue it for activation via
438 * lru_pvecs.activate_page. Otherwise, assume the page is on a
439 * pagevec, mark it active and it'll be moved to the active
440 * LRU on the next drain.
445 __lru_cache_activate_page(page);
446 ClearPageReferenced(page);
447 workingset_activation(page);
449 if (page_is_idle(page))
450 clear_page_idle(page);
452 EXPORT_SYMBOL(mark_page_accessed);
455 * lru_cache_add - add a page to a page list
456 * @page: the page to be added to the LRU.
458 * Queue the page for addition to the LRU via pagevec. The decision on whether
459 * to add the page to the [in]active [file|anon] list is deferred until the
460 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
461 * have the page added to the active list using mark_page_accessed().
463 void lru_cache_add(struct page *page)
465 struct pagevec *pvec;
467 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
468 VM_BUG_ON_PAGE(PageLRU(page), page);
471 local_lock(&lru_pvecs.lock);
472 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
473 if (pagevec_add_and_need_flush(pvec, page))
474 __pagevec_lru_add(pvec);
475 local_unlock(&lru_pvecs.lock);
477 EXPORT_SYMBOL(lru_cache_add);
480 * lru_cache_add_inactive_or_unevictable
481 * @page: the page to be added to LRU
482 * @vma: vma in which page is mapped for determining reclaimability
484 * Place @page on the inactive or unevictable LRU list, depending on its
487 void lru_cache_add_inactive_or_unevictable(struct page *page,
488 struct vm_area_struct *vma)
492 VM_BUG_ON_PAGE(PageLRU(page), page);
494 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
495 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
496 int nr_pages = thp_nr_pages(page);
498 * We use the irq-unsafe __mod_zone_page_stat because this
499 * counter is not modified from interrupt context, and the pte
500 * lock is held(spinlock), which implies preemption disabled.
502 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
503 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
509 * If the page can not be invalidated, it is moved to the
510 * inactive list to speed up its reclaim. It is moved to the
511 * head of the list, rather than the tail, to give the flusher
512 * threads some time to write it out, as this is much more
513 * effective than the single-page writeout from reclaim.
515 * If the page isn't page_mapped and dirty/writeback, the page
516 * could reclaim asap using PG_reclaim.
518 * 1. active, mapped page -> none
519 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
520 * 3. inactive, mapped page -> none
521 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
522 * 5. inactive, clean -> inactive, tail
525 * In 4, why it moves inactive's head, the VM expects the page would
526 * be write it out by flusher threads as this is much more effective
527 * than the single-page writeout from reclaim.
529 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
531 bool active = PageActive(page);
532 int nr_pages = thp_nr_pages(page);
534 if (PageUnevictable(page))
537 /* Some processes are using the page */
538 if (page_mapped(page))
541 del_page_from_lru_list(page, lruvec);
542 ClearPageActive(page);
543 ClearPageReferenced(page);
545 if (PageWriteback(page) || PageDirty(page)) {
547 * PG_reclaim could be raced with end_page_writeback
548 * It can make readahead confusing. But race window
549 * is _really_ small and it's non-critical problem.
551 add_page_to_lru_list(page, lruvec);
552 SetPageReclaim(page);
555 * The page's writeback ends up during pagevec
556 * We moves tha page into tail of inactive.
558 add_page_to_lru_list_tail(page, lruvec);
559 __count_vm_events(PGROTATED, nr_pages);
563 __count_vm_events(PGDEACTIVATE, nr_pages);
564 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
569 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
571 if (PageActive(page) && !PageUnevictable(page)) {
572 int nr_pages = thp_nr_pages(page);
574 del_page_from_lru_list(page, lruvec);
575 ClearPageActive(page);
576 ClearPageReferenced(page);
577 add_page_to_lru_list(page, lruvec);
579 __count_vm_events(PGDEACTIVATE, nr_pages);
580 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
585 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
587 if (PageAnon(page) && PageSwapBacked(page) &&
588 !PageSwapCache(page) && !PageUnevictable(page)) {
589 int nr_pages = thp_nr_pages(page);
591 del_page_from_lru_list(page, lruvec);
592 ClearPageActive(page);
593 ClearPageReferenced(page);
595 * Lazyfree pages are clean anonymous pages. They have
596 * PG_swapbacked flag cleared, to distinguish them from normal
599 ClearPageSwapBacked(page);
600 add_page_to_lru_list(page, lruvec);
602 __count_vm_events(PGLAZYFREE, nr_pages);
603 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
609 * Drain pages out of the cpu's pagevecs.
610 * Either "cpu" is the current CPU, and preemption has already been
611 * disabled; or "cpu" is being hot-unplugged, and is already dead.
613 void lru_add_drain_cpu(int cpu)
615 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
617 if (pagevec_count(pvec))
618 __pagevec_lru_add(pvec);
620 pvec = &per_cpu(lru_rotate.pvec, cpu);
621 /* Disabling interrupts below acts as a compiler barrier. */
622 if (data_race(pagevec_count(pvec))) {
625 /* No harm done if a racing interrupt already did this */
626 local_lock_irqsave(&lru_rotate.lock, flags);
627 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
628 local_unlock_irqrestore(&lru_rotate.lock, flags);
631 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
632 if (pagevec_count(pvec))
633 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
635 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
636 if (pagevec_count(pvec))
637 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
639 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
640 if (pagevec_count(pvec))
641 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
643 activate_page_drain(cpu);
647 * deactivate_file_page - forcefully deactivate a file page
648 * @page: page to deactivate
650 * This function hints the VM that @page is a good reclaim candidate,
651 * for example if its invalidation fails due to the page being dirty
652 * or under writeback.
654 void deactivate_file_page(struct page *page)
657 * In a workload with many unevictable page such as mprotect,
658 * unevictable page deactivation for accelerating reclaim is pointless.
660 if (PageUnevictable(page))
663 if (likely(get_page_unless_zero(page))) {
664 struct pagevec *pvec;
666 local_lock(&lru_pvecs.lock);
667 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
669 if (pagevec_add_and_need_flush(pvec, page))
670 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
671 local_unlock(&lru_pvecs.lock);
676 * deactivate_page - deactivate a page
677 * @page: page to deactivate
679 * deactivate_page() moves @page to the inactive list if @page was on the active
680 * list and was not an unevictable page. This is done to accelerate the reclaim
683 void deactivate_page(struct page *page)
685 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
686 struct pagevec *pvec;
688 local_lock(&lru_pvecs.lock);
689 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
691 if (pagevec_add_and_need_flush(pvec, page))
692 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
693 local_unlock(&lru_pvecs.lock);
698 * mark_page_lazyfree - make an anon page lazyfree
699 * @page: page to deactivate
701 * mark_page_lazyfree() moves @page to the inactive file list.
702 * This is done to accelerate the reclaim of @page.
704 void mark_page_lazyfree(struct page *page)
706 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
707 !PageSwapCache(page) && !PageUnevictable(page)) {
708 struct pagevec *pvec;
710 local_lock(&lru_pvecs.lock);
711 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
713 if (pagevec_add_and_need_flush(pvec, page))
714 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
715 local_unlock(&lru_pvecs.lock);
719 void lru_add_drain(void)
721 local_lock(&lru_pvecs.lock);
722 lru_add_drain_cpu(smp_processor_id());
723 local_unlock(&lru_pvecs.lock);
726 void lru_add_drain_cpu_zone(struct zone *zone)
728 local_lock(&lru_pvecs.lock);
729 lru_add_drain_cpu(smp_processor_id());
730 drain_local_pages(zone);
731 local_unlock(&lru_pvecs.lock);
736 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
738 static void lru_add_drain_per_cpu(struct work_struct *dummy)
744 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
745 * kworkers being shut down before our page_alloc_cpu_dead callback is
746 * executed on the offlined cpu.
747 * Calling this function with cpu hotplug locks held can actually lead
748 * to obscure indirect dependencies via WQ context.
750 inline void __lru_add_drain_all(bool force_all_cpus)
753 * lru_drain_gen - Global pages generation number
755 * (A) Definition: global lru_drain_gen = x implies that all generations
756 * 0 < n <= x are already *scheduled* for draining.
758 * This is an optimization for the highly-contended use case where a
759 * user space workload keeps constantly generating a flow of pages for
762 static unsigned int lru_drain_gen;
763 static struct cpumask has_work;
764 static DEFINE_MUTEX(lock);
765 unsigned cpu, this_gen;
768 * Make sure nobody triggers this path before mm_percpu_wq is fully
771 if (WARN_ON(!mm_percpu_wq))
775 * Guarantee pagevec counter stores visible by this CPU are visible to
776 * other CPUs before loading the current drain generation.
781 * (B) Locally cache global LRU draining generation number
783 * The read barrier ensures that the counter is loaded before the mutex
784 * is taken. It pairs with smp_mb() inside the mutex critical section
787 this_gen = smp_load_acquire(&lru_drain_gen);
792 * (C) Exit the draining operation if a newer generation, from another
793 * lru_add_drain_all(), was already scheduled for draining. Check (A).
795 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
799 * (D) Increment global generation number
801 * Pairs with smp_load_acquire() at (B), outside of the critical
802 * section. Use a full memory barrier to guarantee that the new global
803 * drain generation number is stored before loading pagevec counters.
805 * This pairing must be done here, before the for_each_online_cpu loop
806 * below which drains the page vectors.
808 * Let x, y, and z represent some system CPU numbers, where x < y < z.
809 * Assume CPU #z is is in the middle of the for_each_online_cpu loop
810 * below and has already reached CPU #y's per-cpu data. CPU #x comes
811 * along, adds some pages to its per-cpu vectors, then calls
812 * lru_add_drain_all().
814 * If the paired barrier is done at any later step, e.g. after the
815 * loop, CPU #x will just exit at (C) and miss flushing out all of its
818 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
821 cpumask_clear(&has_work);
822 for_each_online_cpu(cpu) {
823 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
825 if (force_all_cpus ||
826 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
827 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
828 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
829 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
830 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
831 need_activate_page_drain(cpu)) {
832 INIT_WORK(work, lru_add_drain_per_cpu);
833 queue_work_on(cpu, mm_percpu_wq, work);
834 __cpumask_set_cpu(cpu, &has_work);
838 for_each_cpu(cpu, &has_work)
839 flush_work(&per_cpu(lru_add_drain_work, cpu));
845 void lru_add_drain_all(void)
847 __lru_add_drain_all(false);
850 void lru_add_drain_all(void)
854 #endif /* CONFIG_SMP */
856 atomic_t lru_disable_count = ATOMIC_INIT(0);
859 * lru_cache_disable() needs to be called before we start compiling
860 * a list of pages to be migrated using isolate_lru_page().
861 * It drains pages on LRU cache and then disable on all cpus until
862 * lru_cache_enable is called.
864 * Must be paired with a call to lru_cache_enable().
866 void lru_cache_disable(void)
868 atomic_inc(&lru_disable_count);
871 * lru_add_drain_all in the force mode will schedule draining on
872 * all online CPUs so any calls of lru_cache_disabled wrapped by
873 * local_lock or preemption disabled would be ordered by that.
874 * The atomic operation doesn't need to have stronger ordering
875 * requirements because that is enforeced by the scheduling
878 __lru_add_drain_all(true);
885 * release_pages - batched put_page()
886 * @pages: array of pages to release
887 * @nr: number of pages
889 * Decrement the reference count on all the pages in @pages. If it
890 * fell to zero, remove the page from the LRU and free it.
892 void release_pages(struct page **pages, int nr)
895 LIST_HEAD(pages_to_free);
896 struct lruvec *lruvec = NULL;
898 unsigned int lock_batch;
900 for (i = 0; i < nr; i++) {
901 struct page *page = pages[i];
904 * Make sure the IRQ-safe lock-holding time does not get
905 * excessive with a continuous string of pages from the
906 * same lruvec. The lock is held only if lruvec != NULL.
908 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
909 unlock_page_lruvec_irqrestore(lruvec, flags);
913 page = compound_head(page);
914 if (is_huge_zero_page(page))
917 if (is_zone_device_page(page)) {
919 unlock_page_lruvec_irqrestore(lruvec, flags);
923 * ZONE_DEVICE pages that return 'false' from
924 * page_is_devmap_managed() do not require special
925 * processing, and instead, expect a call to
926 * put_page_testzero().
928 if (page_is_devmap_managed(page)) {
929 put_devmap_managed_page(page);
932 if (put_page_testzero(page))
933 put_dev_pagemap(page->pgmap);
937 if (!put_page_testzero(page))
940 if (PageCompound(page)) {
942 unlock_page_lruvec_irqrestore(lruvec, flags);
945 __put_compound_page(page);
950 struct lruvec *prev_lruvec = lruvec;
952 lruvec = relock_page_lruvec_irqsave(page, lruvec,
954 if (prev_lruvec != lruvec)
957 del_page_from_lru_list(page, lruvec);
958 __clear_page_lru_flags(page);
961 __ClearPageWaiters(page);
963 list_add(&page->lru, &pages_to_free);
966 unlock_page_lruvec_irqrestore(lruvec, flags);
968 mem_cgroup_uncharge_list(&pages_to_free);
969 free_unref_page_list(&pages_to_free);
971 EXPORT_SYMBOL(release_pages);
974 * The pages which we're about to release may be in the deferred lru-addition
975 * queues. That would prevent them from really being freed right now. That's
976 * OK from a correctness point of view but is inefficient - those pages may be
977 * cache-warm and we want to give them back to the page allocator ASAP.
979 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
980 * and __pagevec_lru_add_active() call release_pages() directly to avoid
983 void __pagevec_release(struct pagevec *pvec)
985 if (!pvec->percpu_pvec_drained) {
987 pvec->percpu_pvec_drained = true;
989 release_pages(pvec->pages, pagevec_count(pvec));
990 pagevec_reinit(pvec);
992 EXPORT_SYMBOL(__pagevec_release);
994 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
996 int was_unevictable = TestClearPageUnevictable(page);
997 int nr_pages = thp_nr_pages(page);
999 VM_BUG_ON_PAGE(PageLRU(page), page);
1002 * Page becomes evictable in two ways:
1003 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1004 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1005 * a) do PageLRU check with lock [check_move_unevictable_pages]
1006 * b) do PageLRU check before lock [clear_page_mlock]
1008 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1009 * following strict ordering:
1011 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
1013 * SetPageLRU() TestClearPageMlocked()
1014 * smp_mb() // explicit ordering // above provides strict
1016 * PageMlocked() PageLRU()
1019 * if '#1' does not observe setting of PG_lru by '#0' and fails
1020 * isolation, the explicit barrier will make sure that page_evictable
1021 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1022 * can be reordered after PageMlocked check and can make '#1' to fail
1023 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1024 * looking at the same page) and the evictable page will be stranded
1025 * in an unevictable LRU.
1028 smp_mb__after_atomic();
1030 if (page_evictable(page)) {
1031 if (was_unevictable)
1032 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1034 ClearPageActive(page);
1035 SetPageUnevictable(page);
1036 if (!was_unevictable)
1037 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1040 add_page_to_lru_list(page, lruvec);
1041 trace_mm_lru_insertion(page);
1045 * Add the passed pages to the LRU, then drop the caller's refcount
1046 * on them. Reinitialises the caller's pagevec.
1048 void __pagevec_lru_add(struct pagevec *pvec)
1051 struct lruvec *lruvec = NULL;
1052 unsigned long flags = 0;
1054 for (i = 0; i < pagevec_count(pvec); i++) {
1055 struct page *page = pvec->pages[i];
1057 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
1058 __pagevec_lru_add_fn(page, lruvec);
1061 unlock_page_lruvec_irqrestore(lruvec, flags);
1062 release_pages(pvec->pages, pvec->nr);
1063 pagevec_reinit(pvec);
1067 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1068 * @pvec: The pagevec to prune
1070 * find_get_entries() fills both pages and XArray value entries (aka
1071 * exceptional entries) into the pagevec. This function prunes all
1072 * exceptionals from @pvec without leaving holes, so that it can be
1073 * passed on to page-only pagevec operations.
1075 void pagevec_remove_exceptionals(struct pagevec *pvec)
1079 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1080 struct page *page = pvec->pages[i];
1081 if (!xa_is_value(page))
1082 pvec->pages[j++] = page;
1088 * pagevec_lookup_range - gang pagecache lookup
1089 * @pvec: Where the resulting pages are placed
1090 * @mapping: The address_space to search
1091 * @start: The starting page index
1092 * @end: The final page index
1094 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1095 * pages in the mapping starting from index @start and upto index @end
1096 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1097 * reference against the pages in @pvec.
1099 * The search returns a group of mapping-contiguous pages with ascending
1100 * indexes. There may be holes in the indices due to not-present pages. We
1101 * also update @start to index the next page for the traversal.
1103 * pagevec_lookup_range() returns the number of pages which were found. If this
1104 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1107 unsigned pagevec_lookup_range(struct pagevec *pvec,
1108 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1110 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1112 return pagevec_count(pvec);
1114 EXPORT_SYMBOL(pagevec_lookup_range);
1116 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1117 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1120 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1121 PAGEVEC_SIZE, pvec->pages);
1122 return pagevec_count(pvec);
1124 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1127 * Perform any setup for the swap system
1129 void __init swap_setup(void)
1131 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1133 /* Use a smaller cluster for small-memory machines */
1139 * Right now other parts of the system means that we
1140 * _really_ don't want to cluster much more
1144 #ifdef CONFIG_DEV_PAGEMAP_OPS
1145 void put_devmap_managed_page(struct page *page)
1149 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1152 count = page_ref_dec_return(page);
1155 * devmap page refcounts are 1-based, rather than 0-based: if
1156 * refcount is 1, then the page is free and the refcount is
1157 * stable because nobody holds a reference on the page.
1160 free_devmap_managed_page(page);
1164 EXPORT_SYMBOL(put_devmap_managed_page);