]> Git Repo - linux.git/blob - mm/migrate.c
mm: disable LRU pagevec during the migration temporarily
[linux.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <[email protected]>
11  * Hirokazu Takahashi <[email protected]>
12  * Dave Hansen <[email protected]>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 void migrate_prep(void)
66 {
67         /*
68          * Clear the LRU lists so pages can be isolated.
69          */
70         lru_cache_disable();
71 }
72
73 void migrate_finish(void)
74 {
75         lru_cache_enable();
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 void migrate_prep_local(void)
80 {
81         lru_add_drain();
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86         struct address_space *mapping;
87
88         /*
89          * Avoid burning cycles with pages that are yet under __free_pages(),
90          * or just got freed under us.
91          *
92          * In case we 'win' a race for a movable page being freed under us and
93          * raise its refcount preventing __free_pages() from doing its job
94          * the put_page() at the end of this block will take care of
95          * release this page, thus avoiding a nasty leakage.
96          */
97         if (unlikely(!get_page_unless_zero(page)))
98                 goto out;
99
100         /*
101          * Check PageMovable before holding a PG_lock because page's owner
102          * assumes anybody doesn't touch PG_lock of newly allocated page
103          * so unconditionally grabbing the lock ruins page's owner side.
104          */
105         if (unlikely(!__PageMovable(page)))
106                 goto out_putpage;
107         /*
108          * As movable pages are not isolated from LRU lists, concurrent
109          * compaction threads can race against page migration functions
110          * as well as race against the releasing a page.
111          *
112          * In order to avoid having an already isolated movable page
113          * being (wrongly) re-isolated while it is under migration,
114          * or to avoid attempting to isolate pages being released,
115          * lets be sure we have the page lock
116          * before proceeding with the movable page isolation steps.
117          */
118         if (unlikely(!trylock_page(page)))
119                 goto out_putpage;
120
121         if (!PageMovable(page) || PageIsolated(page))
122                 goto out_no_isolated;
123
124         mapping = page_mapping(page);
125         VM_BUG_ON_PAGE(!mapping, page);
126
127         if (!mapping->a_ops->isolate_page(page, mode))
128                 goto out_no_isolated;
129
130         /* Driver shouldn't use PG_isolated bit of page->flags */
131         WARN_ON_ONCE(PageIsolated(page));
132         __SetPageIsolated(page);
133         unlock_page(page);
134
135         return 0;
136
137 out_no_isolated:
138         unlock_page(page);
139 out_putpage:
140         put_page(page);
141 out:
142         return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148         struct address_space *mapping;
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(!PageMovable(page), page);
152         VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154         mapping = page_mapping(page);
155         mapping->a_ops->putback_page(page);
156         __ClearPageIsolated(page);
157 }
158
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169         struct page *page;
170         struct page *page2;
171
172         list_for_each_entry_safe(page, page2, l, lru) {
173                 if (unlikely(PageHuge(page))) {
174                         putback_active_hugepage(page);
175                         continue;
176                 }
177                 list_del(&page->lru);
178                 /*
179                  * We isolated non-lru movable page so here we can use
180                  * __PageMovable because LRU page's mapping cannot have
181                  * PAGE_MAPPING_MOVABLE.
182                  */
183                 if (unlikely(__PageMovable(page))) {
184                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
185                         lock_page(page);
186                         if (PageMovable(page))
187                                 putback_movable_page(page);
188                         else
189                                 __ClearPageIsolated(page);
190                         unlock_page(page);
191                         put_page(page);
192                 } else {
193                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194                                         page_is_file_lru(page), -thp_nr_pages(page));
195                         putback_lru_page(page);
196                 }
197         }
198 }
199
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204                                  unsigned long addr, void *old)
205 {
206         struct page_vma_mapped_walk pvmw = {
207                 .page = old,
208                 .vma = vma,
209                 .address = addr,
210                 .flags = PVMW_SYNC | PVMW_MIGRATION,
211         };
212         struct page *new;
213         pte_t pte;
214         swp_entry_t entry;
215
216         VM_BUG_ON_PAGE(PageTail(page), page);
217         while (page_vma_mapped_walk(&pvmw)) {
218                 if (PageKsm(page))
219                         new = page;
220                 else
221                         new = page - pvmw.page->index +
222                                 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225                 /* PMD-mapped THP migration entry */
226                 if (!pvmw.pte) {
227                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228                         remove_migration_pmd(&pvmw, new);
229                         continue;
230                 }
231 #endif
232
233                 get_page(new);
234                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235                 if (pte_swp_soft_dirty(*pvmw.pte))
236                         pte = pte_mksoft_dirty(pte);
237
238                 /*
239                  * Recheck VMA as permissions can change since migration started
240                  */
241                 entry = pte_to_swp_entry(*pvmw.pte);
242                 if (is_write_migration_entry(entry))
243                         pte = maybe_mkwrite(pte, vma);
244                 else if (pte_swp_uffd_wp(*pvmw.pte))
245                         pte = pte_mkuffd_wp(pte);
246
247                 if (unlikely(is_device_private_page(new))) {
248                         entry = make_device_private_entry(new, pte_write(pte));
249                         pte = swp_entry_to_pte(entry);
250                         if (pte_swp_soft_dirty(*pvmw.pte))
251                                 pte = pte_swp_mksoft_dirty(pte);
252                         if (pte_swp_uffd_wp(*pvmw.pte))
253                                 pte = pte_swp_mkuffd_wp(pte);
254                 }
255
256 #ifdef CONFIG_HUGETLB_PAGE
257                 if (PageHuge(new)) {
258                         pte = pte_mkhuge(pte);
259                         pte = arch_make_huge_pte(pte, vma, new, 0);
260                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261                         if (PageAnon(new))
262                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
263                         else
264                                 page_dup_rmap(new, true);
265                 } else
266 #endif
267                 {
268                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269
270                         if (PageAnon(new))
271                                 page_add_anon_rmap(new, vma, pvmw.address, false);
272                         else
273                                 page_add_file_rmap(new, false);
274                 }
275                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276                         mlock_vma_page(new);
277
278                 if (PageTransHuge(page) && PageMlocked(page))
279                         clear_page_mlock(page);
280
281                 /* No need to invalidate - it was non-present before */
282                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
283         }
284
285         return true;
286 }
287
288 /*
289  * Get rid of all migration entries and replace them by
290  * references to the indicated page.
291  */
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293 {
294         struct rmap_walk_control rwc = {
295                 .rmap_one = remove_migration_pte,
296                 .arg = old,
297         };
298
299         if (locked)
300                 rmap_walk_locked(new, &rwc);
301         else
302                 rmap_walk(new, &rwc);
303 }
304
305 /*
306  * Something used the pte of a page under migration. We need to
307  * get to the page and wait until migration is finished.
308  * When we return from this function the fault will be retried.
309  */
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311                                 spinlock_t *ptl)
312 {
313         pte_t pte;
314         swp_entry_t entry;
315         struct page *page;
316
317         spin_lock(ptl);
318         pte = *ptep;
319         if (!is_swap_pte(pte))
320                 goto out;
321
322         entry = pte_to_swp_entry(pte);
323         if (!is_migration_entry(entry))
324                 goto out;
325
326         page = migration_entry_to_page(entry);
327
328         /*
329          * Once page cache replacement of page migration started, page_count
330          * is zero; but we must not call put_and_wait_on_page_locked() without
331          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
332          */
333         if (!get_page_unless_zero(page))
334                 goto out;
335         pte_unmap_unlock(ptep, ptl);
336         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
337         return;
338 out:
339         pte_unmap_unlock(ptep, ptl);
340 }
341
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343                                 unsigned long address)
344 {
345         spinlock_t *ptl = pte_lockptr(mm, pmd);
346         pte_t *ptep = pte_offset_map(pmd, address);
347         __migration_entry_wait(mm, ptep, ptl);
348 }
349
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351                 struct mm_struct *mm, pte_t *pte)
352 {
353         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354         __migration_entry_wait(mm, pte, ptl);
355 }
356
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360         spinlock_t *ptl;
361         struct page *page;
362
363         ptl = pmd_lock(mm, pmd);
364         if (!is_pmd_migration_entry(*pmd))
365                 goto unlock;
366         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367         if (!get_page_unless_zero(page))
368                 goto unlock;
369         spin_unlock(ptl);
370         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
371         return;
372 unlock:
373         spin_unlock(ptl);
374 }
375 #endif
376
377 static int expected_page_refs(struct address_space *mapping, struct page *page)
378 {
379         int expected_count = 1;
380
381         /*
382          * Device private pages have an extra refcount as they are
383          * ZONE_DEVICE pages.
384          */
385         expected_count += is_device_private_page(page);
386         if (mapping)
387                 expected_count += thp_nr_pages(page) + page_has_private(page);
388
389         return expected_count;
390 }
391
392 /*
393  * Replace the page in the mapping.
394  *
395  * The number of remaining references must be:
396  * 1 for anonymous pages without a mapping
397  * 2 for pages with a mapping
398  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
399  */
400 int migrate_page_move_mapping(struct address_space *mapping,
401                 struct page *newpage, struct page *page, int extra_count)
402 {
403         XA_STATE(xas, &mapping->i_pages, page_index(page));
404         struct zone *oldzone, *newzone;
405         int dirty;
406         int expected_count = expected_page_refs(mapping, page) + extra_count;
407         int nr = thp_nr_pages(page);
408
409         if (!mapping) {
410                 /* Anonymous page without mapping */
411                 if (page_count(page) != expected_count)
412                         return -EAGAIN;
413
414                 /* No turning back from here */
415                 newpage->index = page->index;
416                 newpage->mapping = page->mapping;
417                 if (PageSwapBacked(page))
418                         __SetPageSwapBacked(newpage);
419
420                 return MIGRATEPAGE_SUCCESS;
421         }
422
423         oldzone = page_zone(page);
424         newzone = page_zone(newpage);
425
426         xas_lock_irq(&xas);
427         if (page_count(page) != expected_count || xas_load(&xas) != page) {
428                 xas_unlock_irq(&xas);
429                 return -EAGAIN;
430         }
431
432         if (!page_ref_freeze(page, expected_count)) {
433                 xas_unlock_irq(&xas);
434                 return -EAGAIN;
435         }
436
437         /*
438          * Now we know that no one else is looking at the page:
439          * no turning back from here.
440          */
441         newpage->index = page->index;
442         newpage->mapping = page->mapping;
443         page_ref_add(newpage, nr); /* add cache reference */
444         if (PageSwapBacked(page)) {
445                 __SetPageSwapBacked(newpage);
446                 if (PageSwapCache(page)) {
447                         SetPageSwapCache(newpage);
448                         set_page_private(newpage, page_private(page));
449                 }
450         } else {
451                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
452         }
453
454         /* Move dirty while page refs frozen and newpage not yet exposed */
455         dirty = PageDirty(page);
456         if (dirty) {
457                 ClearPageDirty(page);
458                 SetPageDirty(newpage);
459         }
460
461         xas_store(&xas, newpage);
462         if (PageTransHuge(page)) {
463                 int i;
464
465                 for (i = 1; i < nr; i++) {
466                         xas_next(&xas);
467                         xas_store(&xas, newpage);
468                 }
469         }
470
471         /*
472          * Drop cache reference from old page by unfreezing
473          * to one less reference.
474          * We know this isn't the last reference.
475          */
476         page_ref_unfreeze(page, expected_count - nr);
477
478         xas_unlock(&xas);
479         /* Leave irq disabled to prevent preemption while updating stats */
480
481         /*
482          * If moved to a different zone then also account
483          * the page for that zone. Other VM counters will be
484          * taken care of when we establish references to the
485          * new page and drop references to the old page.
486          *
487          * Note that anonymous pages are accounted for
488          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
489          * are mapped to swap space.
490          */
491         if (newzone != oldzone) {
492                 struct lruvec *old_lruvec, *new_lruvec;
493                 struct mem_cgroup *memcg;
494
495                 memcg = page_memcg(page);
496                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
497                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
498
499                 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
500                 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
501                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
502                         __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
503                         __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
504                 }
505 #ifdef CONFIG_SWAP
506                 if (PageSwapCache(page)) {
507                         __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
508                         __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
509                 }
510 #endif
511                 if (dirty && mapping_can_writeback(mapping)) {
512                         __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
513                         __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
514                         __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
515                         __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
516                 }
517         }
518         local_irq_enable();
519
520         return MIGRATEPAGE_SUCCESS;
521 }
522 EXPORT_SYMBOL(migrate_page_move_mapping);
523
524 /*
525  * The expected number of remaining references is the same as that
526  * of migrate_page_move_mapping().
527  */
528 int migrate_huge_page_move_mapping(struct address_space *mapping,
529                                    struct page *newpage, struct page *page)
530 {
531         XA_STATE(xas, &mapping->i_pages, page_index(page));
532         int expected_count;
533
534         xas_lock_irq(&xas);
535         expected_count = 2 + page_has_private(page);
536         if (page_count(page) != expected_count || xas_load(&xas) != page) {
537                 xas_unlock_irq(&xas);
538                 return -EAGAIN;
539         }
540
541         if (!page_ref_freeze(page, expected_count)) {
542                 xas_unlock_irq(&xas);
543                 return -EAGAIN;
544         }
545
546         newpage->index = page->index;
547         newpage->mapping = page->mapping;
548
549         get_page(newpage);
550
551         xas_store(&xas, newpage);
552
553         page_ref_unfreeze(page, expected_count - 1);
554
555         xas_unlock_irq(&xas);
556
557         return MIGRATEPAGE_SUCCESS;
558 }
559
560 /*
561  * Gigantic pages are so large that we do not guarantee that page++ pointer
562  * arithmetic will work across the entire page.  We need something more
563  * specialized.
564  */
565 static void __copy_gigantic_page(struct page *dst, struct page *src,
566                                 int nr_pages)
567 {
568         int i;
569         struct page *dst_base = dst;
570         struct page *src_base = src;
571
572         for (i = 0; i < nr_pages; ) {
573                 cond_resched();
574                 copy_highpage(dst, src);
575
576                 i++;
577                 dst = mem_map_next(dst, dst_base, i);
578                 src = mem_map_next(src, src_base, i);
579         }
580 }
581
582 static void copy_huge_page(struct page *dst, struct page *src)
583 {
584         int i;
585         int nr_pages;
586
587         if (PageHuge(src)) {
588                 /* hugetlbfs page */
589                 struct hstate *h = page_hstate(src);
590                 nr_pages = pages_per_huge_page(h);
591
592                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
593                         __copy_gigantic_page(dst, src, nr_pages);
594                         return;
595                 }
596         } else {
597                 /* thp page */
598                 BUG_ON(!PageTransHuge(src));
599                 nr_pages = thp_nr_pages(src);
600         }
601
602         for (i = 0; i < nr_pages; i++) {
603                 cond_resched();
604                 copy_highpage(dst + i, src + i);
605         }
606 }
607
608 /*
609  * Copy the page to its new location
610  */
611 void migrate_page_states(struct page *newpage, struct page *page)
612 {
613         int cpupid;
614
615         if (PageError(page))
616                 SetPageError(newpage);
617         if (PageReferenced(page))
618                 SetPageReferenced(newpage);
619         if (PageUptodate(page))
620                 SetPageUptodate(newpage);
621         if (TestClearPageActive(page)) {
622                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
623                 SetPageActive(newpage);
624         } else if (TestClearPageUnevictable(page))
625                 SetPageUnevictable(newpage);
626         if (PageWorkingset(page))
627                 SetPageWorkingset(newpage);
628         if (PageChecked(page))
629                 SetPageChecked(newpage);
630         if (PageMappedToDisk(page))
631                 SetPageMappedToDisk(newpage);
632
633         /* Move dirty on pages not done by migrate_page_move_mapping() */
634         if (PageDirty(page))
635                 SetPageDirty(newpage);
636
637         if (page_is_young(page))
638                 set_page_young(newpage);
639         if (page_is_idle(page))
640                 set_page_idle(newpage);
641
642         /*
643          * Copy NUMA information to the new page, to prevent over-eager
644          * future migrations of this same page.
645          */
646         cpupid = page_cpupid_xchg_last(page, -1);
647         page_cpupid_xchg_last(newpage, cpupid);
648
649         ksm_migrate_page(newpage, page);
650         /*
651          * Please do not reorder this without considering how mm/ksm.c's
652          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
653          */
654         if (PageSwapCache(page))
655                 ClearPageSwapCache(page);
656         ClearPagePrivate(page);
657         set_page_private(page, 0);
658
659         /*
660          * If any waiters have accumulated on the new page then
661          * wake them up.
662          */
663         if (PageWriteback(newpage))
664                 end_page_writeback(newpage);
665
666         /*
667          * PG_readahead shares the same bit with PG_reclaim.  The above
668          * end_page_writeback() may clear PG_readahead mistakenly, so set the
669          * bit after that.
670          */
671         if (PageReadahead(page))
672                 SetPageReadahead(newpage);
673
674         copy_page_owner(page, newpage);
675
676         if (!PageHuge(page))
677                 mem_cgroup_migrate(page, newpage);
678 }
679 EXPORT_SYMBOL(migrate_page_states);
680
681 void migrate_page_copy(struct page *newpage, struct page *page)
682 {
683         if (PageHuge(page) || PageTransHuge(page))
684                 copy_huge_page(newpage, page);
685         else
686                 copy_highpage(newpage, page);
687
688         migrate_page_states(newpage, page);
689 }
690 EXPORT_SYMBOL(migrate_page_copy);
691
692 /************************************************************
693  *                    Migration functions
694  ***********************************************************/
695
696 /*
697  * Common logic to directly migrate a single LRU page suitable for
698  * pages that do not use PagePrivate/PagePrivate2.
699  *
700  * Pages are locked upon entry and exit.
701  */
702 int migrate_page(struct address_space *mapping,
703                 struct page *newpage, struct page *page,
704                 enum migrate_mode mode)
705 {
706         int rc;
707
708         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
709
710         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
711
712         if (rc != MIGRATEPAGE_SUCCESS)
713                 return rc;
714
715         if (mode != MIGRATE_SYNC_NO_COPY)
716                 migrate_page_copy(newpage, page);
717         else
718                 migrate_page_states(newpage, page);
719         return MIGRATEPAGE_SUCCESS;
720 }
721 EXPORT_SYMBOL(migrate_page);
722
723 #ifdef CONFIG_BLOCK
724 /* Returns true if all buffers are successfully locked */
725 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
726                                                         enum migrate_mode mode)
727 {
728         struct buffer_head *bh = head;
729
730         /* Simple case, sync compaction */
731         if (mode != MIGRATE_ASYNC) {
732                 do {
733                         lock_buffer(bh);
734                         bh = bh->b_this_page;
735
736                 } while (bh != head);
737
738                 return true;
739         }
740
741         /* async case, we cannot block on lock_buffer so use trylock_buffer */
742         do {
743                 if (!trylock_buffer(bh)) {
744                         /*
745                          * We failed to lock the buffer and cannot stall in
746                          * async migration. Release the taken locks
747                          */
748                         struct buffer_head *failed_bh = bh;
749                         bh = head;
750                         while (bh != failed_bh) {
751                                 unlock_buffer(bh);
752                                 bh = bh->b_this_page;
753                         }
754                         return false;
755                 }
756
757                 bh = bh->b_this_page;
758         } while (bh != head);
759         return true;
760 }
761
762 static int __buffer_migrate_page(struct address_space *mapping,
763                 struct page *newpage, struct page *page, enum migrate_mode mode,
764                 bool check_refs)
765 {
766         struct buffer_head *bh, *head;
767         int rc;
768         int expected_count;
769
770         if (!page_has_buffers(page))
771                 return migrate_page(mapping, newpage, page, mode);
772
773         /* Check whether page does not have extra refs before we do more work */
774         expected_count = expected_page_refs(mapping, page);
775         if (page_count(page) != expected_count)
776                 return -EAGAIN;
777
778         head = page_buffers(page);
779         if (!buffer_migrate_lock_buffers(head, mode))
780                 return -EAGAIN;
781
782         if (check_refs) {
783                 bool busy;
784                 bool invalidated = false;
785
786 recheck_buffers:
787                 busy = false;
788                 spin_lock(&mapping->private_lock);
789                 bh = head;
790                 do {
791                         if (atomic_read(&bh->b_count)) {
792                                 busy = true;
793                                 break;
794                         }
795                         bh = bh->b_this_page;
796                 } while (bh != head);
797                 if (busy) {
798                         if (invalidated) {
799                                 rc = -EAGAIN;
800                                 goto unlock_buffers;
801                         }
802                         spin_unlock(&mapping->private_lock);
803                         invalidate_bh_lrus();
804                         invalidated = true;
805                         goto recheck_buffers;
806                 }
807         }
808
809         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
810         if (rc != MIGRATEPAGE_SUCCESS)
811                 goto unlock_buffers;
812
813         attach_page_private(newpage, detach_page_private(page));
814
815         bh = head;
816         do {
817                 set_bh_page(bh, newpage, bh_offset(bh));
818                 bh = bh->b_this_page;
819
820         } while (bh != head);
821
822         if (mode != MIGRATE_SYNC_NO_COPY)
823                 migrate_page_copy(newpage, page);
824         else
825                 migrate_page_states(newpage, page);
826
827         rc = MIGRATEPAGE_SUCCESS;
828 unlock_buffers:
829         if (check_refs)
830                 spin_unlock(&mapping->private_lock);
831         bh = head;
832         do {
833                 unlock_buffer(bh);
834                 bh = bh->b_this_page;
835
836         } while (bh != head);
837
838         return rc;
839 }
840
841 /*
842  * Migration function for pages with buffers. This function can only be used
843  * if the underlying filesystem guarantees that no other references to "page"
844  * exist. For example attached buffer heads are accessed only under page lock.
845  */
846 int buffer_migrate_page(struct address_space *mapping,
847                 struct page *newpage, struct page *page, enum migrate_mode mode)
848 {
849         return __buffer_migrate_page(mapping, newpage, page, mode, false);
850 }
851 EXPORT_SYMBOL(buffer_migrate_page);
852
853 /*
854  * Same as above except that this variant is more careful and checks that there
855  * are also no buffer head references. This function is the right one for
856  * mappings where buffer heads are directly looked up and referenced (such as
857  * block device mappings).
858  */
859 int buffer_migrate_page_norefs(struct address_space *mapping,
860                 struct page *newpage, struct page *page, enum migrate_mode mode)
861 {
862         return __buffer_migrate_page(mapping, newpage, page, mode, true);
863 }
864 #endif
865
866 /*
867  * Writeback a page to clean the dirty state
868  */
869 static int writeout(struct address_space *mapping, struct page *page)
870 {
871         struct writeback_control wbc = {
872                 .sync_mode = WB_SYNC_NONE,
873                 .nr_to_write = 1,
874                 .range_start = 0,
875                 .range_end = LLONG_MAX,
876                 .for_reclaim = 1
877         };
878         int rc;
879
880         if (!mapping->a_ops->writepage)
881                 /* No write method for the address space */
882                 return -EINVAL;
883
884         if (!clear_page_dirty_for_io(page))
885                 /* Someone else already triggered a write */
886                 return -EAGAIN;
887
888         /*
889          * A dirty page may imply that the underlying filesystem has
890          * the page on some queue. So the page must be clean for
891          * migration. Writeout may mean we loose the lock and the
892          * page state is no longer what we checked for earlier.
893          * At this point we know that the migration attempt cannot
894          * be successful.
895          */
896         remove_migration_ptes(page, page, false);
897
898         rc = mapping->a_ops->writepage(page, &wbc);
899
900         if (rc != AOP_WRITEPAGE_ACTIVATE)
901                 /* unlocked. Relock */
902                 lock_page(page);
903
904         return (rc < 0) ? -EIO : -EAGAIN;
905 }
906
907 /*
908  * Default handling if a filesystem does not provide a migration function.
909  */
910 static int fallback_migrate_page(struct address_space *mapping,
911         struct page *newpage, struct page *page, enum migrate_mode mode)
912 {
913         if (PageDirty(page)) {
914                 /* Only writeback pages in full synchronous migration */
915                 switch (mode) {
916                 case MIGRATE_SYNC:
917                 case MIGRATE_SYNC_NO_COPY:
918                         break;
919                 default:
920                         return -EBUSY;
921                 }
922                 return writeout(mapping, page);
923         }
924
925         /*
926          * Buffers may be managed in a filesystem specific way.
927          * We must have no buffers or drop them.
928          */
929         if (page_has_private(page) &&
930             !try_to_release_page(page, GFP_KERNEL))
931                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
932
933         return migrate_page(mapping, newpage, page, mode);
934 }
935
936 /*
937  * Move a page to a newly allocated page
938  * The page is locked and all ptes have been successfully removed.
939  *
940  * The new page will have replaced the old page if this function
941  * is successful.
942  *
943  * Return value:
944  *   < 0 - error code
945  *  MIGRATEPAGE_SUCCESS - success
946  */
947 static int move_to_new_page(struct page *newpage, struct page *page,
948                                 enum migrate_mode mode)
949 {
950         struct address_space *mapping;
951         int rc = -EAGAIN;
952         bool is_lru = !__PageMovable(page);
953
954         VM_BUG_ON_PAGE(!PageLocked(page), page);
955         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
956
957         mapping = page_mapping(page);
958
959         if (likely(is_lru)) {
960                 if (!mapping)
961                         rc = migrate_page(mapping, newpage, page, mode);
962                 else if (mapping->a_ops->migratepage)
963                         /*
964                          * Most pages have a mapping and most filesystems
965                          * provide a migratepage callback. Anonymous pages
966                          * are part of swap space which also has its own
967                          * migratepage callback. This is the most common path
968                          * for page migration.
969                          */
970                         rc = mapping->a_ops->migratepage(mapping, newpage,
971                                                         page, mode);
972                 else
973                         rc = fallback_migrate_page(mapping, newpage,
974                                                         page, mode);
975         } else {
976                 /*
977                  * In case of non-lru page, it could be released after
978                  * isolation step. In that case, we shouldn't try migration.
979                  */
980                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
981                 if (!PageMovable(page)) {
982                         rc = MIGRATEPAGE_SUCCESS;
983                         __ClearPageIsolated(page);
984                         goto out;
985                 }
986
987                 rc = mapping->a_ops->migratepage(mapping, newpage,
988                                                 page, mode);
989                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
990                         !PageIsolated(page));
991         }
992
993         /*
994          * When successful, old pagecache page->mapping must be cleared before
995          * page is freed; but stats require that PageAnon be left as PageAnon.
996          */
997         if (rc == MIGRATEPAGE_SUCCESS) {
998                 if (__PageMovable(page)) {
999                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1000
1001                         /*
1002                          * We clear PG_movable under page_lock so any compactor
1003                          * cannot try to migrate this page.
1004                          */
1005                         __ClearPageIsolated(page);
1006                 }
1007
1008                 /*
1009                  * Anonymous and movable page->mapping will be cleared by
1010                  * free_pages_prepare so don't reset it here for keeping
1011                  * the type to work PageAnon, for example.
1012                  */
1013                 if (!PageMappingFlags(page))
1014                         page->mapping = NULL;
1015
1016                 if (likely(!is_zone_device_page(newpage)))
1017                         flush_dcache_page(newpage);
1018
1019         }
1020 out:
1021         return rc;
1022 }
1023
1024 static int __unmap_and_move(struct page *page, struct page *newpage,
1025                                 int force, enum migrate_mode mode)
1026 {
1027         int rc = -EAGAIN;
1028         int page_was_mapped = 0;
1029         struct anon_vma *anon_vma = NULL;
1030         bool is_lru = !__PageMovable(page);
1031
1032         if (!trylock_page(page)) {
1033                 if (!force || mode == MIGRATE_ASYNC)
1034                         goto out;
1035
1036                 /*
1037                  * It's not safe for direct compaction to call lock_page.
1038                  * For example, during page readahead pages are added locked
1039                  * to the LRU. Later, when the IO completes the pages are
1040                  * marked uptodate and unlocked. However, the queueing
1041                  * could be merging multiple pages for one bio (e.g.
1042                  * mpage_readahead). If an allocation happens for the
1043                  * second or third page, the process can end up locking
1044                  * the same page twice and deadlocking. Rather than
1045                  * trying to be clever about what pages can be locked,
1046                  * avoid the use of lock_page for direct compaction
1047                  * altogether.
1048                  */
1049                 if (current->flags & PF_MEMALLOC)
1050                         goto out;
1051
1052                 lock_page(page);
1053         }
1054
1055         if (PageWriteback(page)) {
1056                 /*
1057                  * Only in the case of a full synchronous migration is it
1058                  * necessary to wait for PageWriteback. In the async case,
1059                  * the retry loop is too short and in the sync-light case,
1060                  * the overhead of stalling is too much
1061                  */
1062                 switch (mode) {
1063                 case MIGRATE_SYNC:
1064                 case MIGRATE_SYNC_NO_COPY:
1065                         break;
1066                 default:
1067                         rc = -EBUSY;
1068                         goto out_unlock;
1069                 }
1070                 if (!force)
1071                         goto out_unlock;
1072                 wait_on_page_writeback(page);
1073         }
1074
1075         /*
1076          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1077          * we cannot notice that anon_vma is freed while we migrates a page.
1078          * This get_anon_vma() delays freeing anon_vma pointer until the end
1079          * of migration. File cache pages are no problem because of page_lock()
1080          * File Caches may use write_page() or lock_page() in migration, then,
1081          * just care Anon page here.
1082          *
1083          * Only page_get_anon_vma() understands the subtleties of
1084          * getting a hold on an anon_vma from outside one of its mms.
1085          * But if we cannot get anon_vma, then we won't need it anyway,
1086          * because that implies that the anon page is no longer mapped
1087          * (and cannot be remapped so long as we hold the page lock).
1088          */
1089         if (PageAnon(page) && !PageKsm(page))
1090                 anon_vma = page_get_anon_vma(page);
1091
1092         /*
1093          * Block others from accessing the new page when we get around to
1094          * establishing additional references. We are usually the only one
1095          * holding a reference to newpage at this point. We used to have a BUG
1096          * here if trylock_page(newpage) fails, but would like to allow for
1097          * cases where there might be a race with the previous use of newpage.
1098          * This is much like races on refcount of oldpage: just don't BUG().
1099          */
1100         if (unlikely(!trylock_page(newpage)))
1101                 goto out_unlock;
1102
1103         if (unlikely(!is_lru)) {
1104                 rc = move_to_new_page(newpage, page, mode);
1105                 goto out_unlock_both;
1106         }
1107
1108         /*
1109          * Corner case handling:
1110          * 1. When a new swap-cache page is read into, it is added to the LRU
1111          * and treated as swapcache but it has no rmap yet.
1112          * Calling try_to_unmap() against a page->mapping==NULL page will
1113          * trigger a BUG.  So handle it here.
1114          * 2. An orphaned page (see truncate_cleanup_page) might have
1115          * fs-private metadata. The page can be picked up due to memory
1116          * offlining.  Everywhere else except page reclaim, the page is
1117          * invisible to the vm, so the page can not be migrated.  So try to
1118          * free the metadata, so the page can be freed.
1119          */
1120         if (!page->mapping) {
1121                 VM_BUG_ON_PAGE(PageAnon(page), page);
1122                 if (page_has_private(page)) {
1123                         try_to_free_buffers(page);
1124                         goto out_unlock_both;
1125                 }
1126         } else if (page_mapped(page)) {
1127                 /* Establish migration ptes */
1128                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1129                                 page);
1130                 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1131                 page_was_mapped = 1;
1132         }
1133
1134         if (!page_mapped(page))
1135                 rc = move_to_new_page(newpage, page, mode);
1136
1137         if (page_was_mapped)
1138                 remove_migration_ptes(page,
1139                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1140
1141 out_unlock_both:
1142         unlock_page(newpage);
1143 out_unlock:
1144         /* Drop an anon_vma reference if we took one */
1145         if (anon_vma)
1146                 put_anon_vma(anon_vma);
1147         unlock_page(page);
1148 out:
1149         /*
1150          * If migration is successful, decrease refcount of the newpage
1151          * which will not free the page because new page owner increased
1152          * refcounter. As well, if it is LRU page, add the page to LRU
1153          * list in here. Use the old state of the isolated source page to
1154          * determine if we migrated a LRU page. newpage was already unlocked
1155          * and possibly modified by its owner - don't rely on the page
1156          * state.
1157          */
1158         if (rc == MIGRATEPAGE_SUCCESS) {
1159                 if (unlikely(!is_lru))
1160                         put_page(newpage);
1161                 else
1162                         putback_lru_page(newpage);
1163         }
1164
1165         return rc;
1166 }
1167
1168 /*
1169  * Obtain the lock on page, remove all ptes and migrate the page
1170  * to the newly allocated page in newpage.
1171  */
1172 static int unmap_and_move(new_page_t get_new_page,
1173                                    free_page_t put_new_page,
1174                                    unsigned long private, struct page *page,
1175                                    int force, enum migrate_mode mode,
1176                                    enum migrate_reason reason,
1177                                    struct list_head *ret)
1178 {
1179         int rc = MIGRATEPAGE_SUCCESS;
1180         struct page *newpage = NULL;
1181
1182         if (!thp_migration_supported() && PageTransHuge(page))
1183                 return -ENOSYS;
1184
1185         if (page_count(page) == 1) {
1186                 /* page was freed from under us. So we are done. */
1187                 ClearPageActive(page);
1188                 ClearPageUnevictable(page);
1189                 if (unlikely(__PageMovable(page))) {
1190                         lock_page(page);
1191                         if (!PageMovable(page))
1192                                 __ClearPageIsolated(page);
1193                         unlock_page(page);
1194                 }
1195                 goto out;
1196         }
1197
1198         newpage = get_new_page(page, private);
1199         if (!newpage)
1200                 return -ENOMEM;
1201
1202         rc = __unmap_and_move(page, newpage, force, mode);
1203         if (rc == MIGRATEPAGE_SUCCESS)
1204                 set_page_owner_migrate_reason(newpage, reason);
1205
1206 out:
1207         if (rc != -EAGAIN) {
1208                 /*
1209                  * A page that has been migrated has all references
1210                  * removed and will be freed. A page that has not been
1211                  * migrated will have kept its references and be restored.
1212                  */
1213                 list_del(&page->lru);
1214         }
1215
1216         /*
1217          * If migration is successful, releases reference grabbed during
1218          * isolation. Otherwise, restore the page to right list unless
1219          * we want to retry.
1220          */
1221         if (rc == MIGRATEPAGE_SUCCESS) {
1222                 /*
1223                  * Compaction can migrate also non-LRU pages which are
1224                  * not accounted to NR_ISOLATED_*. They can be recognized
1225                  * as __PageMovable
1226                  */
1227                 if (likely(!__PageMovable(page)))
1228                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1229                                         page_is_file_lru(page), -thp_nr_pages(page));
1230
1231                 if (reason != MR_MEMORY_FAILURE)
1232                         /*
1233                          * We release the page in page_handle_poison.
1234                          */
1235                         put_page(page);
1236         } else {
1237                 if (rc != -EAGAIN)
1238                         list_add_tail(&page->lru, ret);
1239
1240                 if (put_new_page)
1241                         put_new_page(newpage, private);
1242                 else
1243                         put_page(newpage);
1244         }
1245
1246         return rc;
1247 }
1248
1249 /*
1250  * Counterpart of unmap_and_move_page() for hugepage migration.
1251  *
1252  * This function doesn't wait the completion of hugepage I/O
1253  * because there is no race between I/O and migration for hugepage.
1254  * Note that currently hugepage I/O occurs only in direct I/O
1255  * where no lock is held and PG_writeback is irrelevant,
1256  * and writeback status of all subpages are counted in the reference
1257  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1258  * under direct I/O, the reference of the head page is 512 and a bit more.)
1259  * This means that when we try to migrate hugepage whose subpages are
1260  * doing direct I/O, some references remain after try_to_unmap() and
1261  * hugepage migration fails without data corruption.
1262  *
1263  * There is also no race when direct I/O is issued on the page under migration,
1264  * because then pte is replaced with migration swap entry and direct I/O code
1265  * will wait in the page fault for migration to complete.
1266  */
1267 static int unmap_and_move_huge_page(new_page_t get_new_page,
1268                                 free_page_t put_new_page, unsigned long private,
1269                                 struct page *hpage, int force,
1270                                 enum migrate_mode mode, int reason,
1271                                 struct list_head *ret)
1272 {
1273         int rc = -EAGAIN;
1274         int page_was_mapped = 0;
1275         struct page *new_hpage;
1276         struct anon_vma *anon_vma = NULL;
1277         struct address_space *mapping = NULL;
1278
1279         /*
1280          * Migratability of hugepages depends on architectures and their size.
1281          * This check is necessary because some callers of hugepage migration
1282          * like soft offline and memory hotremove don't walk through page
1283          * tables or check whether the hugepage is pmd-based or not before
1284          * kicking migration.
1285          */
1286         if (!hugepage_migration_supported(page_hstate(hpage))) {
1287                 list_move_tail(&hpage->lru, ret);
1288                 return -ENOSYS;
1289         }
1290
1291         if (page_count(hpage) == 1) {
1292                 /* page was freed from under us. So we are done. */
1293                 putback_active_hugepage(hpage);
1294                 return MIGRATEPAGE_SUCCESS;
1295         }
1296
1297         new_hpage = get_new_page(hpage, private);
1298         if (!new_hpage)
1299                 return -ENOMEM;
1300
1301         if (!trylock_page(hpage)) {
1302                 if (!force)
1303                         goto out;
1304                 switch (mode) {
1305                 case MIGRATE_SYNC:
1306                 case MIGRATE_SYNC_NO_COPY:
1307                         break;
1308                 default:
1309                         goto out;
1310                 }
1311                 lock_page(hpage);
1312         }
1313
1314         /*
1315          * Check for pages which are in the process of being freed.  Without
1316          * page_mapping() set, hugetlbfs specific move page routine will not
1317          * be called and we could leak usage counts for subpools.
1318          */
1319         if (page_private(hpage) && !page_mapping(hpage)) {
1320                 rc = -EBUSY;
1321                 goto out_unlock;
1322         }
1323
1324         if (PageAnon(hpage))
1325                 anon_vma = page_get_anon_vma(hpage);
1326
1327         if (unlikely(!trylock_page(new_hpage)))
1328                 goto put_anon;
1329
1330         if (page_mapped(hpage)) {
1331                 bool mapping_locked = false;
1332                 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1333
1334                 if (!PageAnon(hpage)) {
1335                         /*
1336                          * In shared mappings, try_to_unmap could potentially
1337                          * call huge_pmd_unshare.  Because of this, take
1338                          * semaphore in write mode here and set TTU_RMAP_LOCKED
1339                          * to let lower levels know we have taken the lock.
1340                          */
1341                         mapping = hugetlb_page_mapping_lock_write(hpage);
1342                         if (unlikely(!mapping))
1343                                 goto unlock_put_anon;
1344
1345                         mapping_locked = true;
1346                         ttu |= TTU_RMAP_LOCKED;
1347                 }
1348
1349                 try_to_unmap(hpage, ttu);
1350                 page_was_mapped = 1;
1351
1352                 if (mapping_locked)
1353                         i_mmap_unlock_write(mapping);
1354         }
1355
1356         if (!page_mapped(hpage))
1357                 rc = move_to_new_page(new_hpage, hpage, mode);
1358
1359         if (page_was_mapped)
1360                 remove_migration_ptes(hpage,
1361                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1362
1363 unlock_put_anon:
1364         unlock_page(new_hpage);
1365
1366 put_anon:
1367         if (anon_vma)
1368                 put_anon_vma(anon_vma);
1369
1370         if (rc == MIGRATEPAGE_SUCCESS) {
1371                 move_hugetlb_state(hpage, new_hpage, reason);
1372                 put_new_page = NULL;
1373         }
1374
1375 out_unlock:
1376         unlock_page(hpage);
1377 out:
1378         if (rc == MIGRATEPAGE_SUCCESS)
1379                 putback_active_hugepage(hpage);
1380         else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS)
1381                 list_move_tail(&hpage->lru, ret);
1382
1383         /*
1384          * If migration was not successful and there's a freeing callback, use
1385          * it.  Otherwise, put_page() will drop the reference grabbed during
1386          * isolation.
1387          */
1388         if (put_new_page)
1389                 put_new_page(new_hpage, private);
1390         else
1391                 putback_active_hugepage(new_hpage);
1392
1393         return rc;
1394 }
1395
1396 static inline int try_split_thp(struct page *page, struct page **page2,
1397                                 struct list_head *from)
1398 {
1399         int rc = 0;
1400
1401         lock_page(page);
1402         rc = split_huge_page_to_list(page, from);
1403         unlock_page(page);
1404         if (!rc)
1405                 list_safe_reset_next(page, *page2, lru);
1406
1407         return rc;
1408 }
1409
1410 /*
1411  * migrate_pages - migrate the pages specified in a list, to the free pages
1412  *                 supplied as the target for the page migration
1413  *
1414  * @from:               The list of pages to be migrated.
1415  * @get_new_page:       The function used to allocate free pages to be used
1416  *                      as the target of the page migration.
1417  * @put_new_page:       The function used to free target pages if migration
1418  *                      fails, or NULL if no special handling is necessary.
1419  * @private:            Private data to be passed on to get_new_page()
1420  * @mode:               The migration mode that specifies the constraints for
1421  *                      page migration, if any.
1422  * @reason:             The reason for page migration.
1423  *
1424  * The function returns after 10 attempts or if no pages are movable any more
1425  * because the list has become empty or no retryable pages exist any more.
1426  * It is caller's responsibility to call putback_movable_pages() to return pages
1427  * to the LRU or free list only if ret != 0.
1428  *
1429  * Returns the number of pages that were not migrated, or an error code.
1430  */
1431 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1432                 free_page_t put_new_page, unsigned long private,
1433                 enum migrate_mode mode, int reason)
1434 {
1435         int retry = 1;
1436         int thp_retry = 1;
1437         int nr_failed = 0;
1438         int nr_succeeded = 0;
1439         int nr_thp_succeeded = 0;
1440         int nr_thp_failed = 0;
1441         int nr_thp_split = 0;
1442         int pass = 0;
1443         bool is_thp = false;
1444         struct page *page;
1445         struct page *page2;
1446         int swapwrite = current->flags & PF_SWAPWRITE;
1447         int rc, nr_subpages;
1448         LIST_HEAD(ret_pages);
1449
1450         if (!swapwrite)
1451                 current->flags |= PF_SWAPWRITE;
1452
1453         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1454                 retry = 0;
1455                 thp_retry = 0;
1456
1457                 list_for_each_entry_safe(page, page2, from, lru) {
1458 retry:
1459                         /*
1460                          * THP statistics is based on the source huge page.
1461                          * Capture required information that might get lost
1462                          * during migration.
1463                          */
1464                         is_thp = PageTransHuge(page) && !PageHuge(page);
1465                         nr_subpages = thp_nr_pages(page);
1466                         cond_resched();
1467
1468                         if (PageHuge(page))
1469                                 rc = unmap_and_move_huge_page(get_new_page,
1470                                                 put_new_page, private, page,
1471                                                 pass > 2, mode, reason,
1472                                                 &ret_pages);
1473                         else
1474                                 rc = unmap_and_move(get_new_page, put_new_page,
1475                                                 private, page, pass > 2, mode,
1476                                                 reason, &ret_pages);
1477                         /*
1478                          * The rules are:
1479                          *      Success: non hugetlb page will be freed, hugetlb
1480                          *               page will be put back
1481                          *      -EAGAIN: stay on the from list
1482                          *      -ENOMEM: stay on the from list
1483                          *      Other errno: put on ret_pages list then splice to
1484                          *                   from list
1485                          */
1486                         switch(rc) {
1487                         /*
1488                          * THP migration might be unsupported or the
1489                          * allocation could've failed so we should
1490                          * retry on the same page with the THP split
1491                          * to base pages.
1492                          *
1493                          * Head page is retried immediately and tail
1494                          * pages are added to the tail of the list so
1495                          * we encounter them after the rest of the list
1496                          * is processed.
1497                          */
1498                         case -ENOSYS:
1499                                 /* THP migration is unsupported */
1500                                 if (is_thp) {
1501                                         if (!try_split_thp(page, &page2, from)) {
1502                                                 nr_thp_split++;
1503                                                 goto retry;
1504                                         }
1505
1506                                         nr_thp_failed++;
1507                                         nr_failed += nr_subpages;
1508                                         break;
1509                                 }
1510
1511                                 /* Hugetlb migration is unsupported */
1512                                 nr_failed++;
1513                                 break;
1514                         case -ENOMEM:
1515                                 /*
1516                                  * When memory is low, don't bother to try to migrate
1517                                  * other pages, just exit.
1518                                  */
1519                                 if (is_thp) {
1520                                         if (!try_split_thp(page, &page2, from)) {
1521                                                 nr_thp_split++;
1522                                                 goto retry;
1523                                         }
1524
1525                                         nr_thp_failed++;
1526                                         nr_failed += nr_subpages;
1527                                         goto out;
1528                                 }
1529                                 nr_failed++;
1530                                 goto out;
1531                         case -EAGAIN:
1532                                 if (is_thp) {
1533                                         thp_retry++;
1534                                         break;
1535                                 }
1536                                 retry++;
1537                                 break;
1538                         case MIGRATEPAGE_SUCCESS:
1539                                 if (is_thp) {
1540                                         nr_thp_succeeded++;
1541                                         nr_succeeded += nr_subpages;
1542                                         break;
1543                                 }
1544                                 nr_succeeded++;
1545                                 break;
1546                         default:
1547                                 /*
1548                                  * Permanent failure (-EBUSY, etc.):
1549                                  * unlike -EAGAIN case, the failed page is
1550                                  * removed from migration page list and not
1551                                  * retried in the next outer loop.
1552                                  */
1553                                 if (is_thp) {
1554                                         nr_thp_failed++;
1555                                         nr_failed += nr_subpages;
1556                                         break;
1557                                 }
1558                                 nr_failed++;
1559                                 break;
1560                         }
1561                 }
1562         }
1563         nr_failed += retry + thp_retry;
1564         nr_thp_failed += thp_retry;
1565         rc = nr_failed;
1566 out:
1567         /*
1568          * Put the permanent failure page back to migration list, they
1569          * will be put back to the right list by the caller.
1570          */
1571         list_splice(&ret_pages, from);
1572
1573         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1574         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1575         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1576         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1577         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1578         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1579                                nr_thp_failed, nr_thp_split, mode, reason);
1580
1581         if (!swapwrite)
1582                 current->flags &= ~PF_SWAPWRITE;
1583
1584         return rc;
1585 }
1586
1587 struct page *alloc_migration_target(struct page *page, unsigned long private)
1588 {
1589         struct migration_target_control *mtc;
1590         gfp_t gfp_mask;
1591         unsigned int order = 0;
1592         struct page *new_page = NULL;
1593         int nid;
1594         int zidx;
1595
1596         mtc = (struct migration_target_control *)private;
1597         gfp_mask = mtc->gfp_mask;
1598         nid = mtc->nid;
1599         if (nid == NUMA_NO_NODE)
1600                 nid = page_to_nid(page);
1601
1602         if (PageHuge(page)) {
1603                 struct hstate *h = page_hstate(compound_head(page));
1604
1605                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1606                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1607         }
1608
1609         if (PageTransHuge(page)) {
1610                 /*
1611                  * clear __GFP_RECLAIM to make the migration callback
1612                  * consistent with regular THP allocations.
1613                  */
1614                 gfp_mask &= ~__GFP_RECLAIM;
1615                 gfp_mask |= GFP_TRANSHUGE;
1616                 order = HPAGE_PMD_ORDER;
1617         }
1618         zidx = zone_idx(page_zone(page));
1619         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1620                 gfp_mask |= __GFP_HIGHMEM;
1621
1622         new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1623
1624         if (new_page && PageTransHuge(new_page))
1625                 prep_transhuge_page(new_page);
1626
1627         return new_page;
1628 }
1629
1630 #ifdef CONFIG_NUMA
1631
1632 static int store_status(int __user *status, int start, int value, int nr)
1633 {
1634         while (nr-- > 0) {
1635                 if (put_user(value, status + start))
1636                         return -EFAULT;
1637                 start++;
1638         }
1639
1640         return 0;
1641 }
1642
1643 static int do_move_pages_to_node(struct mm_struct *mm,
1644                 struct list_head *pagelist, int node)
1645 {
1646         int err;
1647         struct migration_target_control mtc = {
1648                 .nid = node,
1649                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1650         };
1651
1652         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1653                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1654         if (err)
1655                 putback_movable_pages(pagelist);
1656         return err;
1657 }
1658
1659 /*
1660  * Resolves the given address to a struct page, isolates it from the LRU and
1661  * puts it to the given pagelist.
1662  * Returns:
1663  *     errno - if the page cannot be found/isolated
1664  *     0 - when it doesn't have to be migrated because it is already on the
1665  *         target node
1666  *     1 - when it has been queued
1667  */
1668 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1669                 int node, struct list_head *pagelist, bool migrate_all)
1670 {
1671         struct vm_area_struct *vma;
1672         struct page *page;
1673         unsigned int follflags;
1674         int err;
1675
1676         mmap_read_lock(mm);
1677         err = -EFAULT;
1678         vma = find_vma(mm, addr);
1679         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1680                 goto out;
1681
1682         /* FOLL_DUMP to ignore special (like zero) pages */
1683         follflags = FOLL_GET | FOLL_DUMP;
1684         page = follow_page(vma, addr, follflags);
1685
1686         err = PTR_ERR(page);
1687         if (IS_ERR(page))
1688                 goto out;
1689
1690         err = -ENOENT;
1691         if (!page)
1692                 goto out;
1693
1694         err = 0;
1695         if (page_to_nid(page) == node)
1696                 goto out_putpage;
1697
1698         err = -EACCES;
1699         if (page_mapcount(page) > 1 && !migrate_all)
1700                 goto out_putpage;
1701
1702         if (PageHuge(page)) {
1703                 if (PageHead(page)) {
1704                         isolate_huge_page(page, pagelist);
1705                         err = 1;
1706                 }
1707         } else {
1708                 struct page *head;
1709
1710                 head = compound_head(page);
1711                 err = isolate_lru_page(head);
1712                 if (err)
1713                         goto out_putpage;
1714
1715                 err = 1;
1716                 list_add_tail(&head->lru, pagelist);
1717                 mod_node_page_state(page_pgdat(head),
1718                         NR_ISOLATED_ANON + page_is_file_lru(head),
1719                         thp_nr_pages(head));
1720         }
1721 out_putpage:
1722         /*
1723          * Either remove the duplicate refcount from
1724          * isolate_lru_page() or drop the page ref if it was
1725          * not isolated.
1726          */
1727         put_page(page);
1728 out:
1729         mmap_read_unlock(mm);
1730         return err;
1731 }
1732
1733 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1734                 struct list_head *pagelist, int __user *status,
1735                 int start, int i, unsigned long nr_pages)
1736 {
1737         int err;
1738
1739         if (list_empty(pagelist))
1740                 return 0;
1741
1742         err = do_move_pages_to_node(mm, pagelist, node);
1743         if (err) {
1744                 /*
1745                  * Positive err means the number of failed
1746                  * pages to migrate.  Since we are going to
1747                  * abort and return the number of non-migrated
1748                  * pages, so need to include the rest of the
1749                  * nr_pages that have not been attempted as
1750                  * well.
1751                  */
1752                 if (err > 0)
1753                         err += nr_pages - i - 1;
1754                 return err;
1755         }
1756         return store_status(status, start, node, i - start);
1757 }
1758
1759 /*
1760  * Migrate an array of page address onto an array of nodes and fill
1761  * the corresponding array of status.
1762  */
1763 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1764                          unsigned long nr_pages,
1765                          const void __user * __user *pages,
1766                          const int __user *nodes,
1767                          int __user *status, int flags)
1768 {
1769         int current_node = NUMA_NO_NODE;
1770         LIST_HEAD(pagelist);
1771         int start, i;
1772         int err = 0, err1;
1773
1774         migrate_prep();
1775
1776         for (i = start = 0; i < nr_pages; i++) {
1777                 const void __user *p;
1778                 unsigned long addr;
1779                 int node;
1780
1781                 err = -EFAULT;
1782                 if (get_user(p, pages + i))
1783                         goto out_flush;
1784                 if (get_user(node, nodes + i))
1785                         goto out_flush;
1786                 addr = (unsigned long)untagged_addr(p);
1787
1788                 err = -ENODEV;
1789                 if (node < 0 || node >= MAX_NUMNODES)
1790                         goto out_flush;
1791                 if (!node_state(node, N_MEMORY))
1792                         goto out_flush;
1793
1794                 err = -EACCES;
1795                 if (!node_isset(node, task_nodes))
1796                         goto out_flush;
1797
1798                 if (current_node == NUMA_NO_NODE) {
1799                         current_node = node;
1800                         start = i;
1801                 } else if (node != current_node) {
1802                         err = move_pages_and_store_status(mm, current_node,
1803                                         &pagelist, status, start, i, nr_pages);
1804                         if (err)
1805                                 goto out;
1806                         start = i;
1807                         current_node = node;
1808                 }
1809
1810                 /*
1811                  * Errors in the page lookup or isolation are not fatal and we simply
1812                  * report them via status
1813                  */
1814                 err = add_page_for_migration(mm, addr, current_node,
1815                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1816
1817                 if (err > 0) {
1818                         /* The page is successfully queued for migration */
1819                         continue;
1820                 }
1821
1822                 /*
1823                  * If the page is already on the target node (!err), store the
1824                  * node, otherwise, store the err.
1825                  */
1826                 err = store_status(status, i, err ? : current_node, 1);
1827                 if (err)
1828                         goto out_flush;
1829
1830                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1831                                 status, start, i, nr_pages);
1832                 if (err)
1833                         goto out;
1834                 current_node = NUMA_NO_NODE;
1835         }
1836 out_flush:
1837         /* Make sure we do not overwrite the existing error */
1838         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1839                                 status, start, i, nr_pages);
1840         if (err >= 0)
1841                 err = err1;
1842 out:
1843         migrate_finish();
1844         return err;
1845 }
1846
1847 /*
1848  * Determine the nodes of an array of pages and store it in an array of status.
1849  */
1850 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1851                                 const void __user **pages, int *status)
1852 {
1853         unsigned long i;
1854
1855         mmap_read_lock(mm);
1856
1857         for (i = 0; i < nr_pages; i++) {
1858                 unsigned long addr = (unsigned long)(*pages);
1859                 struct vm_area_struct *vma;
1860                 struct page *page;
1861                 int err = -EFAULT;
1862
1863                 vma = find_vma(mm, addr);
1864                 if (!vma || addr < vma->vm_start)
1865                         goto set_status;
1866
1867                 /* FOLL_DUMP to ignore special (like zero) pages */
1868                 page = follow_page(vma, addr, FOLL_DUMP);
1869
1870                 err = PTR_ERR(page);
1871                 if (IS_ERR(page))
1872                         goto set_status;
1873
1874                 err = page ? page_to_nid(page) : -ENOENT;
1875 set_status:
1876                 *status = err;
1877
1878                 pages++;
1879                 status++;
1880         }
1881
1882         mmap_read_unlock(mm);
1883 }
1884
1885 /*
1886  * Determine the nodes of a user array of pages and store it in
1887  * a user array of status.
1888  */
1889 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1890                          const void __user * __user *pages,
1891                          int __user *status)
1892 {
1893 #define DO_PAGES_STAT_CHUNK_NR 16
1894         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1895         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1896
1897         while (nr_pages) {
1898                 unsigned long chunk_nr;
1899
1900                 chunk_nr = nr_pages;
1901                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1902                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1903
1904                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1905                         break;
1906
1907                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1908
1909                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1910                         break;
1911
1912                 pages += chunk_nr;
1913                 status += chunk_nr;
1914                 nr_pages -= chunk_nr;
1915         }
1916         return nr_pages ? -EFAULT : 0;
1917 }
1918
1919 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1920 {
1921         struct task_struct *task;
1922         struct mm_struct *mm;
1923
1924         /*
1925          * There is no need to check if current process has the right to modify
1926          * the specified process when they are same.
1927          */
1928         if (!pid) {
1929                 mmget(current->mm);
1930                 *mem_nodes = cpuset_mems_allowed(current);
1931                 return current->mm;
1932         }
1933
1934         /* Find the mm_struct */
1935         rcu_read_lock();
1936         task = find_task_by_vpid(pid);
1937         if (!task) {
1938                 rcu_read_unlock();
1939                 return ERR_PTR(-ESRCH);
1940         }
1941         get_task_struct(task);
1942
1943         /*
1944          * Check if this process has the right to modify the specified
1945          * process. Use the regular "ptrace_may_access()" checks.
1946          */
1947         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1948                 rcu_read_unlock();
1949                 mm = ERR_PTR(-EPERM);
1950                 goto out;
1951         }
1952         rcu_read_unlock();
1953
1954         mm = ERR_PTR(security_task_movememory(task));
1955         if (IS_ERR(mm))
1956                 goto out;
1957         *mem_nodes = cpuset_mems_allowed(task);
1958         mm = get_task_mm(task);
1959 out:
1960         put_task_struct(task);
1961         if (!mm)
1962                 mm = ERR_PTR(-EINVAL);
1963         return mm;
1964 }
1965
1966 /*
1967  * Move a list of pages in the address space of the currently executing
1968  * process.
1969  */
1970 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1971                              const void __user * __user *pages,
1972                              const int __user *nodes,
1973                              int __user *status, int flags)
1974 {
1975         struct mm_struct *mm;
1976         int err;
1977         nodemask_t task_nodes;
1978
1979         /* Check flags */
1980         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1981                 return -EINVAL;
1982
1983         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1984                 return -EPERM;
1985
1986         mm = find_mm_struct(pid, &task_nodes);
1987         if (IS_ERR(mm))
1988                 return PTR_ERR(mm);
1989
1990         if (nodes)
1991                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1992                                     nodes, status, flags);
1993         else
1994                 err = do_pages_stat(mm, nr_pages, pages, status);
1995
1996         mmput(mm);
1997         return err;
1998 }
1999
2000 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2001                 const void __user * __user *, pages,
2002                 const int __user *, nodes,
2003                 int __user *, status, int, flags)
2004 {
2005         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2006 }
2007
2008 #ifdef CONFIG_COMPAT
2009 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
2010                        compat_uptr_t __user *, pages32,
2011                        const int __user *, nodes,
2012                        int __user *, status,
2013                        int, flags)
2014 {
2015         const void __user * __user *pages;
2016         int i;
2017
2018         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2019         for (i = 0; i < nr_pages; i++) {
2020                 compat_uptr_t p;
2021
2022                 if (get_user(p, pages32 + i) ||
2023                         put_user(compat_ptr(p), pages + i))
2024                         return -EFAULT;
2025         }
2026         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2027 }
2028 #endif /* CONFIG_COMPAT */
2029
2030 #ifdef CONFIG_NUMA_BALANCING
2031 /*
2032  * Returns true if this is a safe migration target node for misplaced NUMA
2033  * pages. Currently it only checks the watermarks which crude
2034  */
2035 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2036                                    unsigned long nr_migrate_pages)
2037 {
2038         int z;
2039
2040         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2041                 struct zone *zone = pgdat->node_zones + z;
2042
2043                 if (!populated_zone(zone))
2044                         continue;
2045
2046                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2047                 if (!zone_watermark_ok(zone, 0,
2048                                        high_wmark_pages(zone) +
2049                                        nr_migrate_pages,
2050                                        ZONE_MOVABLE, 0))
2051                         continue;
2052                 return true;
2053         }
2054         return false;
2055 }
2056
2057 static struct page *alloc_misplaced_dst_page(struct page *page,
2058                                            unsigned long data)
2059 {
2060         int nid = (int) data;
2061         struct page *newpage;
2062
2063         newpage = __alloc_pages_node(nid,
2064                                          (GFP_HIGHUSER_MOVABLE |
2065                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2066                                           __GFP_NORETRY | __GFP_NOWARN) &
2067                                          ~__GFP_RECLAIM, 0);
2068
2069         return newpage;
2070 }
2071
2072 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2073 {
2074         int page_lru;
2075
2076         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2077
2078         /* Avoid migrating to a node that is nearly full */
2079         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2080                 return 0;
2081
2082         if (isolate_lru_page(page))
2083                 return 0;
2084
2085         /*
2086          * migrate_misplaced_transhuge_page() skips page migration's usual
2087          * check on page_count(), so we must do it here, now that the page
2088          * has been isolated: a GUP pin, or any other pin, prevents migration.
2089          * The expected page count is 3: 1 for page's mapcount and 1 for the
2090          * caller's pin and 1 for the reference taken by isolate_lru_page().
2091          */
2092         if (PageTransHuge(page) && page_count(page) != 3) {
2093                 putback_lru_page(page);
2094                 return 0;
2095         }
2096
2097         page_lru = page_is_file_lru(page);
2098         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2099                                 thp_nr_pages(page));
2100
2101         /*
2102          * Isolating the page has taken another reference, so the
2103          * caller's reference can be safely dropped without the page
2104          * disappearing underneath us during migration.
2105          */
2106         put_page(page);
2107         return 1;
2108 }
2109
2110 bool pmd_trans_migrating(pmd_t pmd)
2111 {
2112         struct page *page = pmd_page(pmd);
2113         return PageLocked(page);
2114 }
2115
2116 static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2117                                        struct page *page)
2118 {
2119         if (page_mapcount(page) != 1 &&
2120             (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2121             (vma->vm_flags & VM_EXEC))
2122                 return true;
2123
2124         return false;
2125 }
2126
2127 /*
2128  * Attempt to migrate a misplaced page to the specified destination
2129  * node. Caller is expected to have an elevated reference count on
2130  * the page that will be dropped by this function before returning.
2131  */
2132 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2133                            int node)
2134 {
2135         pg_data_t *pgdat = NODE_DATA(node);
2136         int isolated;
2137         int nr_remaining;
2138         LIST_HEAD(migratepages);
2139
2140         /*
2141          * Don't migrate file pages that are mapped in multiple processes
2142          * with execute permissions as they are probably shared libraries.
2143          */
2144         if (is_shared_exec_page(vma, page))
2145                 goto out;
2146
2147         /*
2148          * Also do not migrate dirty pages as not all filesystems can move
2149          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2150          */
2151         if (page_is_file_lru(page) && PageDirty(page))
2152                 goto out;
2153
2154         isolated = numamigrate_isolate_page(pgdat, page);
2155         if (!isolated)
2156                 goto out;
2157
2158         list_add(&page->lru, &migratepages);
2159         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2160                                      NULL, node, MIGRATE_ASYNC,
2161                                      MR_NUMA_MISPLACED);
2162         if (nr_remaining) {
2163                 if (!list_empty(&migratepages)) {
2164                         list_del(&page->lru);
2165                         dec_node_page_state(page, NR_ISOLATED_ANON +
2166                                         page_is_file_lru(page));
2167                         putback_lru_page(page);
2168                 }
2169                 isolated = 0;
2170         } else
2171                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2172         BUG_ON(!list_empty(&migratepages));
2173         return isolated;
2174
2175 out:
2176         put_page(page);
2177         return 0;
2178 }
2179 #endif /* CONFIG_NUMA_BALANCING */
2180
2181 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2182 /*
2183  * Migrates a THP to a given target node. page must be locked and is unlocked
2184  * before returning.
2185  */
2186 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2187                                 struct vm_area_struct *vma,
2188                                 pmd_t *pmd, pmd_t entry,
2189                                 unsigned long address,
2190                                 struct page *page, int node)
2191 {
2192         spinlock_t *ptl;
2193         pg_data_t *pgdat = NODE_DATA(node);
2194         int isolated = 0;
2195         struct page *new_page = NULL;
2196         int page_lru = page_is_file_lru(page);
2197         unsigned long start = address & HPAGE_PMD_MASK;
2198
2199         if (is_shared_exec_page(vma, page))
2200                 goto out;
2201
2202         new_page = alloc_pages_node(node,
2203                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2204                 HPAGE_PMD_ORDER);
2205         if (!new_page)
2206                 goto out_fail;
2207         prep_transhuge_page(new_page);
2208
2209         isolated = numamigrate_isolate_page(pgdat, page);
2210         if (!isolated) {
2211                 put_page(new_page);
2212                 goto out_fail;
2213         }
2214
2215         /* Prepare a page as a migration target */
2216         __SetPageLocked(new_page);
2217         if (PageSwapBacked(page))
2218                 __SetPageSwapBacked(new_page);
2219
2220         /* anon mapping, we can simply copy page->mapping to the new page: */
2221         new_page->mapping = page->mapping;
2222         new_page->index = page->index;
2223         /* flush the cache before copying using the kernel virtual address */
2224         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2225         migrate_page_copy(new_page, page);
2226         WARN_ON(PageLRU(new_page));
2227
2228         /* Recheck the target PMD */
2229         ptl = pmd_lock(mm, pmd);
2230         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2231                 spin_unlock(ptl);
2232
2233                 /* Reverse changes made by migrate_page_copy() */
2234                 if (TestClearPageActive(new_page))
2235                         SetPageActive(page);
2236                 if (TestClearPageUnevictable(new_page))
2237                         SetPageUnevictable(page);
2238
2239                 unlock_page(new_page);
2240                 put_page(new_page);             /* Free it */
2241
2242                 /* Retake the callers reference and putback on LRU */
2243                 get_page(page);
2244                 putback_lru_page(page);
2245                 mod_node_page_state(page_pgdat(page),
2246                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2247
2248                 goto out_unlock;
2249         }
2250
2251         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2252         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2253
2254         /*
2255          * Overwrite the old entry under pagetable lock and establish
2256          * the new PTE. Any parallel GUP will either observe the old
2257          * page blocking on the page lock, block on the page table
2258          * lock or observe the new page. The SetPageUptodate on the
2259          * new page and page_add_new_anon_rmap guarantee the copy is
2260          * visible before the pagetable update.
2261          */
2262         page_add_anon_rmap(new_page, vma, start, true);
2263         /*
2264          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2265          * has already been flushed globally.  So no TLB can be currently
2266          * caching this non present pmd mapping.  There's no need to clear the
2267          * pmd before doing set_pmd_at(), nor to flush the TLB after
2268          * set_pmd_at().  Clearing the pmd here would introduce a race
2269          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2270          * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2271          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2272          * pmd.
2273          */
2274         set_pmd_at(mm, start, pmd, entry);
2275         update_mmu_cache_pmd(vma, address, &entry);
2276
2277         page_ref_unfreeze(page, 2);
2278         mlock_migrate_page(new_page, page);
2279         page_remove_rmap(page, true);
2280         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2281
2282         spin_unlock(ptl);
2283
2284         /* Take an "isolate" reference and put new page on the LRU. */
2285         get_page(new_page);
2286         putback_lru_page(new_page);
2287
2288         unlock_page(new_page);
2289         unlock_page(page);
2290         put_page(page);                 /* Drop the rmap reference */
2291         put_page(page);                 /* Drop the LRU isolation reference */
2292
2293         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2294         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2295
2296         mod_node_page_state(page_pgdat(page),
2297                         NR_ISOLATED_ANON + page_lru,
2298                         -HPAGE_PMD_NR);
2299         return isolated;
2300
2301 out_fail:
2302         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2303         ptl = pmd_lock(mm, pmd);
2304         if (pmd_same(*pmd, entry)) {
2305                 entry = pmd_modify(entry, vma->vm_page_prot);
2306                 set_pmd_at(mm, start, pmd, entry);
2307                 update_mmu_cache_pmd(vma, address, &entry);
2308         }
2309         spin_unlock(ptl);
2310
2311 out_unlock:
2312         unlock_page(page);
2313 out:
2314         put_page(page);
2315         return 0;
2316 }
2317 #endif /* CONFIG_NUMA_BALANCING */
2318
2319 #endif /* CONFIG_NUMA */
2320
2321 #ifdef CONFIG_DEVICE_PRIVATE
2322 static int migrate_vma_collect_hole(unsigned long start,
2323                                     unsigned long end,
2324                                     __always_unused int depth,
2325                                     struct mm_walk *walk)
2326 {
2327         struct migrate_vma *migrate = walk->private;
2328         unsigned long addr;
2329
2330         /* Only allow populating anonymous memory. */
2331         if (!vma_is_anonymous(walk->vma)) {
2332                 for (addr = start; addr < end; addr += PAGE_SIZE) {
2333                         migrate->src[migrate->npages] = 0;
2334                         migrate->dst[migrate->npages] = 0;
2335                         migrate->npages++;
2336                 }
2337                 return 0;
2338         }
2339
2340         for (addr = start; addr < end; addr += PAGE_SIZE) {
2341                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2342                 migrate->dst[migrate->npages] = 0;
2343                 migrate->npages++;
2344                 migrate->cpages++;
2345         }
2346
2347         return 0;
2348 }
2349
2350 static int migrate_vma_collect_skip(unsigned long start,
2351                                     unsigned long end,
2352                                     struct mm_walk *walk)
2353 {
2354         struct migrate_vma *migrate = walk->private;
2355         unsigned long addr;
2356
2357         for (addr = start; addr < end; addr += PAGE_SIZE) {
2358                 migrate->dst[migrate->npages] = 0;
2359                 migrate->src[migrate->npages++] = 0;
2360         }
2361
2362         return 0;
2363 }
2364
2365 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2366                                    unsigned long start,
2367                                    unsigned long end,
2368                                    struct mm_walk *walk)
2369 {
2370         struct migrate_vma *migrate = walk->private;
2371         struct vm_area_struct *vma = walk->vma;
2372         struct mm_struct *mm = vma->vm_mm;
2373         unsigned long addr = start, unmapped = 0;
2374         spinlock_t *ptl;
2375         pte_t *ptep;
2376
2377 again:
2378         if (pmd_none(*pmdp))
2379                 return migrate_vma_collect_hole(start, end, -1, walk);
2380
2381         if (pmd_trans_huge(*pmdp)) {
2382                 struct page *page;
2383
2384                 ptl = pmd_lock(mm, pmdp);
2385                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2386                         spin_unlock(ptl);
2387                         goto again;
2388                 }
2389
2390                 page = pmd_page(*pmdp);
2391                 if (is_huge_zero_page(page)) {
2392                         spin_unlock(ptl);
2393                         split_huge_pmd(vma, pmdp, addr);
2394                         if (pmd_trans_unstable(pmdp))
2395                                 return migrate_vma_collect_skip(start, end,
2396                                                                 walk);
2397                 } else {
2398                         int ret;
2399
2400                         get_page(page);
2401                         spin_unlock(ptl);
2402                         if (unlikely(!trylock_page(page)))
2403                                 return migrate_vma_collect_skip(start, end,
2404                                                                 walk);
2405                         ret = split_huge_page(page);
2406                         unlock_page(page);
2407                         put_page(page);
2408                         if (ret)
2409                                 return migrate_vma_collect_skip(start, end,
2410                                                                 walk);
2411                         if (pmd_none(*pmdp))
2412                                 return migrate_vma_collect_hole(start, end, -1,
2413                                                                 walk);
2414                 }
2415         }
2416
2417         if (unlikely(pmd_bad(*pmdp)))
2418                 return migrate_vma_collect_skip(start, end, walk);
2419
2420         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2421         arch_enter_lazy_mmu_mode();
2422
2423         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2424                 unsigned long mpfn = 0, pfn;
2425                 struct page *page;
2426                 swp_entry_t entry;
2427                 pte_t pte;
2428
2429                 pte = *ptep;
2430
2431                 if (pte_none(pte)) {
2432                         if (vma_is_anonymous(vma)) {
2433                                 mpfn = MIGRATE_PFN_MIGRATE;
2434                                 migrate->cpages++;
2435                         }
2436                         goto next;
2437                 }
2438
2439                 if (!pte_present(pte)) {
2440                         /*
2441                          * Only care about unaddressable device page special
2442                          * page table entry. Other special swap entries are not
2443                          * migratable, and we ignore regular swapped page.
2444                          */
2445                         entry = pte_to_swp_entry(pte);
2446                         if (!is_device_private_entry(entry))
2447                                 goto next;
2448
2449                         page = device_private_entry_to_page(entry);
2450                         if (!(migrate->flags &
2451                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2452                             page->pgmap->owner != migrate->pgmap_owner)
2453                                 goto next;
2454
2455                         mpfn = migrate_pfn(page_to_pfn(page)) |
2456                                         MIGRATE_PFN_MIGRATE;
2457                         if (is_write_device_private_entry(entry))
2458                                 mpfn |= MIGRATE_PFN_WRITE;
2459                 } else {
2460                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2461                                 goto next;
2462                         pfn = pte_pfn(pte);
2463                         if (is_zero_pfn(pfn)) {
2464                                 mpfn = MIGRATE_PFN_MIGRATE;
2465                                 migrate->cpages++;
2466                                 goto next;
2467                         }
2468                         page = vm_normal_page(migrate->vma, addr, pte);
2469                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2470                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2471                 }
2472
2473                 /* FIXME support THP */
2474                 if (!page || !page->mapping || PageTransCompound(page)) {
2475                         mpfn = 0;
2476                         goto next;
2477                 }
2478
2479                 /*
2480                  * By getting a reference on the page we pin it and that blocks
2481                  * any kind of migration. Side effect is that it "freezes" the
2482                  * pte.
2483                  *
2484                  * We drop this reference after isolating the page from the lru
2485                  * for non device page (device page are not on the lru and thus
2486                  * can't be dropped from it).
2487                  */
2488                 get_page(page);
2489                 migrate->cpages++;
2490
2491                 /*
2492                  * Optimize for the common case where page is only mapped once
2493                  * in one process. If we can lock the page, then we can safely
2494                  * set up a special migration page table entry now.
2495                  */
2496                 if (trylock_page(page)) {
2497                         pte_t swp_pte;
2498
2499                         mpfn |= MIGRATE_PFN_LOCKED;
2500                         ptep_get_and_clear(mm, addr, ptep);
2501
2502                         /* Setup special migration page table entry */
2503                         entry = make_migration_entry(page, mpfn &
2504                                                      MIGRATE_PFN_WRITE);
2505                         swp_pte = swp_entry_to_pte(entry);
2506                         if (pte_present(pte)) {
2507                                 if (pte_soft_dirty(pte))
2508                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2509                                 if (pte_uffd_wp(pte))
2510                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2511                         } else {
2512                                 if (pte_swp_soft_dirty(pte))
2513                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2514                                 if (pte_swp_uffd_wp(pte))
2515                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2516                         }
2517                         set_pte_at(mm, addr, ptep, swp_pte);
2518
2519                         /*
2520                          * This is like regular unmap: we remove the rmap and
2521                          * drop page refcount. Page won't be freed, as we took
2522                          * a reference just above.
2523                          */
2524                         page_remove_rmap(page, false);
2525                         put_page(page);
2526
2527                         if (pte_present(pte))
2528                                 unmapped++;
2529                 }
2530
2531 next:
2532                 migrate->dst[migrate->npages] = 0;
2533                 migrate->src[migrate->npages++] = mpfn;
2534         }
2535         arch_leave_lazy_mmu_mode();
2536         pte_unmap_unlock(ptep - 1, ptl);
2537
2538         /* Only flush the TLB if we actually modified any entries */
2539         if (unmapped)
2540                 flush_tlb_range(walk->vma, start, end);
2541
2542         return 0;
2543 }
2544
2545 static const struct mm_walk_ops migrate_vma_walk_ops = {
2546         .pmd_entry              = migrate_vma_collect_pmd,
2547         .pte_hole               = migrate_vma_collect_hole,
2548 };
2549
2550 /*
2551  * migrate_vma_collect() - collect pages over a range of virtual addresses
2552  * @migrate: migrate struct containing all migration information
2553  *
2554  * This will walk the CPU page table. For each virtual address backed by a
2555  * valid page, it updates the src array and takes a reference on the page, in
2556  * order to pin the page until we lock it and unmap it.
2557  */
2558 static void migrate_vma_collect(struct migrate_vma *migrate)
2559 {
2560         struct mmu_notifier_range range;
2561
2562         /*
2563          * Note that the pgmap_owner is passed to the mmu notifier callback so
2564          * that the registered device driver can skip invalidating device
2565          * private page mappings that won't be migrated.
2566          */
2567         mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2568                 migrate->vma->vm_mm, migrate->start, migrate->end,
2569                 migrate->pgmap_owner);
2570         mmu_notifier_invalidate_range_start(&range);
2571
2572         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2573                         &migrate_vma_walk_ops, migrate);
2574
2575         mmu_notifier_invalidate_range_end(&range);
2576         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2577 }
2578
2579 /*
2580  * migrate_vma_check_page() - check if page is pinned or not
2581  * @page: struct page to check
2582  *
2583  * Pinned pages cannot be migrated. This is the same test as in
2584  * migrate_page_move_mapping(), except that here we allow migration of a
2585  * ZONE_DEVICE page.
2586  */
2587 static bool migrate_vma_check_page(struct page *page)
2588 {
2589         /*
2590          * One extra ref because caller holds an extra reference, either from
2591          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2592          * a device page.
2593          */
2594         int extra = 1;
2595
2596         /*
2597          * FIXME support THP (transparent huge page), it is bit more complex to
2598          * check them than regular pages, because they can be mapped with a pmd
2599          * or with a pte (split pte mapping).
2600          */
2601         if (PageCompound(page))
2602                 return false;
2603
2604         /* Page from ZONE_DEVICE have one extra reference */
2605         if (is_zone_device_page(page)) {
2606                 /*
2607                  * Private page can never be pin as they have no valid pte and
2608                  * GUP will fail for those. Yet if there is a pending migration
2609                  * a thread might try to wait on the pte migration entry and
2610                  * will bump the page reference count. Sadly there is no way to
2611                  * differentiate a regular pin from migration wait. Hence to
2612                  * avoid 2 racing thread trying to migrate back to CPU to enter
2613                  * infinite loop (one stopping migration because the other is
2614                  * waiting on pte migration entry). We always return true here.
2615                  *
2616                  * FIXME proper solution is to rework migration_entry_wait() so
2617                  * it does not need to take a reference on page.
2618                  */
2619                 return is_device_private_page(page);
2620         }
2621
2622         /* For file back page */
2623         if (page_mapping(page))
2624                 extra += 1 + page_has_private(page);
2625
2626         if ((page_count(page) - extra) > page_mapcount(page))
2627                 return false;
2628
2629         return true;
2630 }
2631
2632 /*
2633  * migrate_vma_prepare() - lock pages and isolate them from the lru
2634  * @migrate: migrate struct containing all migration information
2635  *
2636  * This locks pages that have been collected by migrate_vma_collect(). Once each
2637  * page is locked it is isolated from the lru (for non-device pages). Finally,
2638  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2639  * migrated by concurrent kernel threads.
2640  */
2641 static void migrate_vma_prepare(struct migrate_vma *migrate)
2642 {
2643         const unsigned long npages = migrate->npages;
2644         const unsigned long start = migrate->start;
2645         unsigned long addr, i, restore = 0;
2646         bool allow_drain = true;
2647
2648         lru_add_drain();
2649
2650         for (i = 0; (i < npages) && migrate->cpages; i++) {
2651                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2652                 bool remap = true;
2653
2654                 if (!page)
2655                         continue;
2656
2657                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2658                         /*
2659                          * Because we are migrating several pages there can be
2660                          * a deadlock between 2 concurrent migration where each
2661                          * are waiting on each other page lock.
2662                          *
2663                          * Make migrate_vma() a best effort thing and backoff
2664                          * for any page we can not lock right away.
2665                          */
2666                         if (!trylock_page(page)) {
2667                                 migrate->src[i] = 0;
2668                                 migrate->cpages--;
2669                                 put_page(page);
2670                                 continue;
2671                         }
2672                         remap = false;
2673                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2674                 }
2675
2676                 /* ZONE_DEVICE pages are not on LRU */
2677                 if (!is_zone_device_page(page)) {
2678                         if (!PageLRU(page) && allow_drain) {
2679                                 /* Drain CPU's pagevec */
2680                                 lru_add_drain_all();
2681                                 allow_drain = false;
2682                         }
2683
2684                         if (isolate_lru_page(page)) {
2685                                 if (remap) {
2686                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2687                                         migrate->cpages--;
2688                                         restore++;
2689                                 } else {
2690                                         migrate->src[i] = 0;
2691                                         unlock_page(page);
2692                                         migrate->cpages--;
2693                                         put_page(page);
2694                                 }
2695                                 continue;
2696                         }
2697
2698                         /* Drop the reference we took in collect */
2699                         put_page(page);
2700                 }
2701
2702                 if (!migrate_vma_check_page(page)) {
2703                         if (remap) {
2704                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2705                                 migrate->cpages--;
2706                                 restore++;
2707
2708                                 if (!is_zone_device_page(page)) {
2709                                         get_page(page);
2710                                         putback_lru_page(page);
2711                                 }
2712                         } else {
2713                                 migrate->src[i] = 0;
2714                                 unlock_page(page);
2715                                 migrate->cpages--;
2716
2717                                 if (!is_zone_device_page(page))
2718                                         putback_lru_page(page);
2719                                 else
2720                                         put_page(page);
2721                         }
2722                 }
2723         }
2724
2725         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2726                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2727
2728                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2729                         continue;
2730
2731                 remove_migration_pte(page, migrate->vma, addr, page);
2732
2733                 migrate->src[i] = 0;
2734                 unlock_page(page);
2735                 put_page(page);
2736                 restore--;
2737         }
2738 }
2739
2740 /*
2741  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2742  * @migrate: migrate struct containing all migration information
2743  *
2744  * Replace page mapping (CPU page table pte) with a special migration pte entry
2745  * and check again if it has been pinned. Pinned pages are restored because we
2746  * cannot migrate them.
2747  *
2748  * This is the last step before we call the device driver callback to allocate
2749  * destination memory and copy contents of original page over to new page.
2750  */
2751 static void migrate_vma_unmap(struct migrate_vma *migrate)
2752 {
2753         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2754         const unsigned long npages = migrate->npages;
2755         const unsigned long start = migrate->start;
2756         unsigned long addr, i, restore = 0;
2757
2758         for (i = 0; i < npages; i++) {
2759                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2760
2761                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2762                         continue;
2763
2764                 if (page_mapped(page)) {
2765                         try_to_unmap(page, flags);
2766                         if (page_mapped(page))
2767                                 goto restore;
2768                 }
2769
2770                 if (migrate_vma_check_page(page))
2771                         continue;
2772
2773 restore:
2774                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2775                 migrate->cpages--;
2776                 restore++;
2777         }
2778
2779         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2780                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2781
2782                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2783                         continue;
2784
2785                 remove_migration_ptes(page, page, false);
2786
2787                 migrate->src[i] = 0;
2788                 unlock_page(page);
2789                 restore--;
2790
2791                 if (is_zone_device_page(page))
2792                         put_page(page);
2793                 else
2794                         putback_lru_page(page);
2795         }
2796 }
2797
2798 /**
2799  * migrate_vma_setup() - prepare to migrate a range of memory
2800  * @args: contains the vma, start, and pfns arrays for the migration
2801  *
2802  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2803  * without an error.
2804  *
2805  * Prepare to migrate a range of memory virtual address range by collecting all
2806  * the pages backing each virtual address in the range, saving them inside the
2807  * src array.  Then lock those pages and unmap them. Once the pages are locked
2808  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2809  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2810  * corresponding src array entry.  Then restores any pages that are pinned, by
2811  * remapping and unlocking those pages.
2812  *
2813  * The caller should then allocate destination memory and copy source memory to
2814  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2815  * flag set).  Once these are allocated and copied, the caller must update each
2816  * corresponding entry in the dst array with the pfn value of the destination
2817  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2818  * (destination pages must have their struct pages locked, via lock_page()).
2819  *
2820  * Note that the caller does not have to migrate all the pages that are marked
2821  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2822  * device memory to system memory.  If the caller cannot migrate a device page
2823  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2824  * consequences for the userspace process, so it must be avoided if at all
2825  * possible.
2826  *
2827  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2828  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2829  * allowing the caller to allocate device memory for those unback virtual
2830  * address.  For this the caller simply has to allocate device memory and
2831  * properly set the destination entry like for regular migration.  Note that
2832  * this can still fails and thus inside the device driver must check if the
2833  * migration was successful for those entries after calling migrate_vma_pages()
2834  * just like for regular migration.
2835  *
2836  * After that, the callers must call migrate_vma_pages() to go over each entry
2837  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2838  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2839  * then migrate_vma_pages() to migrate struct page information from the source
2840  * struct page to the destination struct page.  If it fails to migrate the
2841  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2842  * src array.
2843  *
2844  * At this point all successfully migrated pages have an entry in the src
2845  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2846  * array entry with MIGRATE_PFN_VALID flag set.
2847  *
2848  * Once migrate_vma_pages() returns the caller may inspect which pages were
2849  * successfully migrated, and which were not.  Successfully migrated pages will
2850  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2851  *
2852  * It is safe to update device page table after migrate_vma_pages() because
2853  * both destination and source page are still locked, and the mmap_lock is held
2854  * in read mode (hence no one can unmap the range being migrated).
2855  *
2856  * Once the caller is done cleaning up things and updating its page table (if it
2857  * chose to do so, this is not an obligation) it finally calls
2858  * migrate_vma_finalize() to update the CPU page table to point to new pages
2859  * for successfully migrated pages or otherwise restore the CPU page table to
2860  * point to the original source pages.
2861  */
2862 int migrate_vma_setup(struct migrate_vma *args)
2863 {
2864         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2865
2866         args->start &= PAGE_MASK;
2867         args->end &= PAGE_MASK;
2868         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2869             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2870                 return -EINVAL;
2871         if (nr_pages <= 0)
2872                 return -EINVAL;
2873         if (args->start < args->vma->vm_start ||
2874             args->start >= args->vma->vm_end)
2875                 return -EINVAL;
2876         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2877                 return -EINVAL;
2878         if (!args->src || !args->dst)
2879                 return -EINVAL;
2880
2881         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2882         args->cpages = 0;
2883         args->npages = 0;
2884
2885         migrate_vma_collect(args);
2886
2887         if (args->cpages)
2888                 migrate_vma_prepare(args);
2889         if (args->cpages)
2890                 migrate_vma_unmap(args);
2891
2892         /*
2893          * At this point pages are locked and unmapped, and thus they have
2894          * stable content and can safely be copied to destination memory that
2895          * is allocated by the drivers.
2896          */
2897         return 0;
2898
2899 }
2900 EXPORT_SYMBOL(migrate_vma_setup);
2901
2902 /*
2903  * This code closely matches the code in:
2904  *   __handle_mm_fault()
2905  *     handle_pte_fault()
2906  *       do_anonymous_page()
2907  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2908  * private page.
2909  */
2910 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2911                                     unsigned long addr,
2912                                     struct page *page,
2913                                     unsigned long *src)
2914 {
2915         struct vm_area_struct *vma = migrate->vma;
2916         struct mm_struct *mm = vma->vm_mm;
2917         bool flush = false;
2918         spinlock_t *ptl;
2919         pte_t entry;
2920         pgd_t *pgdp;
2921         p4d_t *p4dp;
2922         pud_t *pudp;
2923         pmd_t *pmdp;
2924         pte_t *ptep;
2925
2926         /* Only allow populating anonymous memory */
2927         if (!vma_is_anonymous(vma))
2928                 goto abort;
2929
2930         pgdp = pgd_offset(mm, addr);
2931         p4dp = p4d_alloc(mm, pgdp, addr);
2932         if (!p4dp)
2933                 goto abort;
2934         pudp = pud_alloc(mm, p4dp, addr);
2935         if (!pudp)
2936                 goto abort;
2937         pmdp = pmd_alloc(mm, pudp, addr);
2938         if (!pmdp)
2939                 goto abort;
2940
2941         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2942                 goto abort;
2943
2944         /*
2945          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2946          * pte_offset_map() on pmds where a huge pmd might be created
2947          * from a different thread.
2948          *
2949          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2950          * parallel threads are excluded by other means.
2951          *
2952          * Here we only have mmap_read_lock(mm).
2953          */
2954         if (pte_alloc(mm, pmdp))
2955                 goto abort;
2956
2957         /* See the comment in pte_alloc_one_map() */
2958         if (unlikely(pmd_trans_unstable(pmdp)))
2959                 goto abort;
2960
2961         if (unlikely(anon_vma_prepare(vma)))
2962                 goto abort;
2963         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2964                 goto abort;
2965
2966         /*
2967          * The memory barrier inside __SetPageUptodate makes sure that
2968          * preceding stores to the page contents become visible before
2969          * the set_pte_at() write.
2970          */
2971         __SetPageUptodate(page);
2972
2973         if (is_zone_device_page(page)) {
2974                 if (is_device_private_page(page)) {
2975                         swp_entry_t swp_entry;
2976
2977                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2978                         entry = swp_entry_to_pte(swp_entry);
2979                 }
2980         } else {
2981                 entry = mk_pte(page, vma->vm_page_prot);
2982                 if (vma->vm_flags & VM_WRITE)
2983                         entry = pte_mkwrite(pte_mkdirty(entry));
2984         }
2985
2986         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2987
2988         if (check_stable_address_space(mm))
2989                 goto unlock_abort;
2990
2991         if (pte_present(*ptep)) {
2992                 unsigned long pfn = pte_pfn(*ptep);
2993
2994                 if (!is_zero_pfn(pfn))
2995                         goto unlock_abort;
2996                 flush = true;
2997         } else if (!pte_none(*ptep))
2998                 goto unlock_abort;
2999
3000         /*
3001          * Check for userfaultfd but do not deliver the fault. Instead,
3002          * just back off.
3003          */
3004         if (userfaultfd_missing(vma))
3005                 goto unlock_abort;
3006
3007         inc_mm_counter(mm, MM_ANONPAGES);
3008         page_add_new_anon_rmap(page, vma, addr, false);
3009         if (!is_zone_device_page(page))
3010                 lru_cache_add_inactive_or_unevictable(page, vma);
3011         get_page(page);
3012
3013         if (flush) {
3014                 flush_cache_page(vma, addr, pte_pfn(*ptep));
3015                 ptep_clear_flush_notify(vma, addr, ptep);
3016                 set_pte_at_notify(mm, addr, ptep, entry);
3017                 update_mmu_cache(vma, addr, ptep);
3018         } else {
3019                 /* No need to invalidate - it was non-present before */
3020                 set_pte_at(mm, addr, ptep, entry);
3021                 update_mmu_cache(vma, addr, ptep);
3022         }
3023
3024         pte_unmap_unlock(ptep, ptl);
3025         *src = MIGRATE_PFN_MIGRATE;
3026         return;
3027
3028 unlock_abort:
3029         pte_unmap_unlock(ptep, ptl);
3030 abort:
3031         *src &= ~MIGRATE_PFN_MIGRATE;
3032 }
3033
3034 /**
3035  * migrate_vma_pages() - migrate meta-data from src page to dst page
3036  * @migrate: migrate struct containing all migration information
3037  *
3038  * This migrates struct page meta-data from source struct page to destination
3039  * struct page. This effectively finishes the migration from source page to the
3040  * destination page.
3041  */
3042 void migrate_vma_pages(struct migrate_vma *migrate)
3043 {
3044         const unsigned long npages = migrate->npages;
3045         const unsigned long start = migrate->start;
3046         struct mmu_notifier_range range;
3047         unsigned long addr, i;
3048         bool notified = false;
3049
3050         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3051                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3052                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3053                 struct address_space *mapping;
3054                 int r;
3055
3056                 if (!newpage) {
3057                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3058                         continue;
3059                 }
3060
3061                 if (!page) {
3062                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3063                                 continue;
3064                         if (!notified) {
3065                                 notified = true;
3066
3067                                 mmu_notifier_range_init_migrate(&range, 0,
3068                                         migrate->vma, migrate->vma->vm_mm,
3069                                         addr, migrate->end,
3070                                         migrate->pgmap_owner);
3071                                 mmu_notifier_invalidate_range_start(&range);
3072                         }
3073                         migrate_vma_insert_page(migrate, addr, newpage,
3074                                                 &migrate->src[i]);
3075                         continue;
3076                 }
3077
3078                 mapping = page_mapping(page);
3079
3080                 if (is_zone_device_page(newpage)) {
3081                         if (is_device_private_page(newpage)) {
3082                                 /*
3083                                  * For now only support private anonymous when
3084                                  * migrating to un-addressable device memory.
3085                                  */
3086                                 if (mapping) {
3087                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3088                                         continue;
3089                                 }
3090                         } else {
3091                                 /*
3092                                  * Other types of ZONE_DEVICE page are not
3093                                  * supported.
3094                                  */
3095                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3096                                 continue;
3097                         }
3098                 }
3099
3100                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3101                 if (r != MIGRATEPAGE_SUCCESS)
3102                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3103         }
3104
3105         /*
3106          * No need to double call mmu_notifier->invalidate_range() callback as
3107          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3108          * did already call it.
3109          */
3110         if (notified)
3111                 mmu_notifier_invalidate_range_only_end(&range);
3112 }
3113 EXPORT_SYMBOL(migrate_vma_pages);
3114
3115 /**
3116  * migrate_vma_finalize() - restore CPU page table entry
3117  * @migrate: migrate struct containing all migration information
3118  *
3119  * This replaces the special migration pte entry with either a mapping to the
3120  * new page if migration was successful for that page, or to the original page
3121  * otherwise.
3122  *
3123  * This also unlocks the pages and puts them back on the lru, or drops the extra
3124  * refcount, for device pages.
3125  */
3126 void migrate_vma_finalize(struct migrate_vma *migrate)
3127 {
3128         const unsigned long npages = migrate->npages;
3129         unsigned long i;
3130
3131         for (i = 0; i < npages; i++) {
3132                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3133                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3134
3135                 if (!page) {
3136                         if (newpage) {
3137                                 unlock_page(newpage);
3138                                 put_page(newpage);
3139                         }
3140                         continue;
3141                 }
3142
3143                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3144                         if (newpage) {
3145                                 unlock_page(newpage);
3146                                 put_page(newpage);
3147                         }
3148                         newpage = page;
3149                 }
3150
3151                 remove_migration_ptes(page, newpage, false);
3152                 unlock_page(page);
3153
3154                 if (is_zone_device_page(page))
3155                         put_page(page);
3156                 else
3157                         putback_lru_page(page);
3158
3159                 if (newpage != page) {
3160                         unlock_page(newpage);
3161                         if (is_zone_device_page(newpage))
3162                                 put_page(newpage);
3163                         else
3164                                 putback_lru_page(newpage);
3165                 }
3166         }
3167 }
3168 EXPORT_SYMBOL(migrate_vma_finalize);
3169 #endif /* CONFIG_DEVICE_PRIVATE */
This page took 0.198084 seconds and 4 git commands to generate.