1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
53 #include <asm/tlbflush.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
65 void migrate_prep(void)
68 * Clear the LRU lists so pages can be isolated.
73 void migrate_finish(void)
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 void migrate_prep_local(void)
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 struct address_space *mapping;
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
97 if (unlikely(!get_page_unless_zero(page)))
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grabbing the lock ruins page's owner side.
105 if (unlikely(!__PageMovable(page)))
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
118 if (unlikely(!trylock_page(page)))
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
148 struct address_space *mapping;
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
167 void putback_movable_pages(struct list_head *l)
172 list_for_each_entry_safe(page, page2, l, lru) {
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
177 list_del(&page->lru);
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
183 if (unlikely(__PageMovable(page))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
186 if (PageMovable(page))
187 putback_movable_page(page);
189 __ClearPageIsolated(page);
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_lru(page), -thp_nr_pages(page));
195 putback_lru_page(page);
201 * Restore a potential migration pte to a working pte entry
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 unsigned long addr, void *old)
206 struct page_vma_mapped_walk pvmw = {
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
239 * Recheck VMA as permissions can change since migration started
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
244 else if (pte_swp_uffd_wp(*pvmw.pte))
245 pte = pte_mkuffd_wp(pte);
247 if (unlikely(is_device_private_page(new))) {
248 entry = make_device_private_entry(new, pte_write(pte));
249 pte = swp_entry_to_pte(entry);
250 if (pte_swp_soft_dirty(*pvmw.pte))
251 pte = pte_swp_mksoft_dirty(pte);
252 if (pte_swp_uffd_wp(*pvmw.pte))
253 pte = pte_swp_mkuffd_wp(pte);
256 #ifdef CONFIG_HUGETLB_PAGE
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
264 page_dup_rmap(new, true);
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271 page_add_anon_rmap(new, vma, pvmw.address, false);
273 page_add_file_rmap(new, false);
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 if (PageTransHuge(page) && PageMlocked(page))
279 clear_page_mlock(page);
281 /* No need to invalidate - it was non-present before */
282 update_mmu_cache(vma, pvmw.address, pvmw.pte);
289 * Get rid of all migration entries and replace them by
290 * references to the indicated page.
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
294 struct rmap_walk_control rwc = {
295 .rmap_one = remove_migration_pte,
300 rmap_walk_locked(new, &rwc);
302 rmap_walk(new, &rwc);
306 * Something used the pte of a page under migration. We need to
307 * get to the page and wait until migration is finished.
308 * When we return from this function the fault will be retried.
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
319 if (!is_swap_pte(pte))
322 entry = pte_to_swp_entry(pte);
323 if (!is_migration_entry(entry))
326 page = migration_entry_to_page(entry);
329 * Once page cache replacement of page migration started, page_count
330 * is zero; but we must not call put_and_wait_on_page_locked() without
331 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
333 if (!get_page_unless_zero(page))
335 pte_unmap_unlock(ptep, ptl);
336 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
339 pte_unmap_unlock(ptep, ptl);
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 __migration_entry_wait(mm, pte, ptl);
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
370 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
377 static int expected_page_refs(struct address_space *mapping, struct page *page)
379 int expected_count = 1;
382 * Device private pages have an extra refcount as they are
385 expected_count += is_device_private_page(page);
387 expected_count += thp_nr_pages(page) + page_has_private(page);
389 return expected_count;
393 * Replace the page in the mapping.
395 * The number of remaining references must be:
396 * 1 for anonymous pages without a mapping
397 * 2 for pages with a mapping
398 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
400 int migrate_page_move_mapping(struct address_space *mapping,
401 struct page *newpage, struct page *page, int extra_count)
403 XA_STATE(xas, &mapping->i_pages, page_index(page));
404 struct zone *oldzone, *newzone;
406 int expected_count = expected_page_refs(mapping, page) + extra_count;
407 int nr = thp_nr_pages(page);
410 /* Anonymous page without mapping */
411 if (page_count(page) != expected_count)
414 /* No turning back from here */
415 newpage->index = page->index;
416 newpage->mapping = page->mapping;
417 if (PageSwapBacked(page))
418 __SetPageSwapBacked(newpage);
420 return MIGRATEPAGE_SUCCESS;
423 oldzone = page_zone(page);
424 newzone = page_zone(newpage);
427 if (page_count(page) != expected_count || xas_load(&xas) != page) {
428 xas_unlock_irq(&xas);
432 if (!page_ref_freeze(page, expected_count)) {
433 xas_unlock_irq(&xas);
438 * Now we know that no one else is looking at the page:
439 * no turning back from here.
441 newpage->index = page->index;
442 newpage->mapping = page->mapping;
443 page_ref_add(newpage, nr); /* add cache reference */
444 if (PageSwapBacked(page)) {
445 __SetPageSwapBacked(newpage);
446 if (PageSwapCache(page)) {
447 SetPageSwapCache(newpage);
448 set_page_private(newpage, page_private(page));
451 VM_BUG_ON_PAGE(PageSwapCache(page), page);
454 /* Move dirty while page refs frozen and newpage not yet exposed */
455 dirty = PageDirty(page);
457 ClearPageDirty(page);
458 SetPageDirty(newpage);
461 xas_store(&xas, newpage);
462 if (PageTransHuge(page)) {
465 for (i = 1; i < nr; i++) {
467 xas_store(&xas, newpage);
472 * Drop cache reference from old page by unfreezing
473 * to one less reference.
474 * We know this isn't the last reference.
476 page_ref_unfreeze(page, expected_count - nr);
479 /* Leave irq disabled to prevent preemption while updating stats */
482 * If moved to a different zone then also account
483 * the page for that zone. Other VM counters will be
484 * taken care of when we establish references to the
485 * new page and drop references to the old page.
487 * Note that anonymous pages are accounted for
488 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
489 * are mapped to swap space.
491 if (newzone != oldzone) {
492 struct lruvec *old_lruvec, *new_lruvec;
493 struct mem_cgroup *memcg;
495 memcg = page_memcg(page);
496 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
497 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
499 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
500 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
501 if (PageSwapBacked(page) && !PageSwapCache(page)) {
502 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
503 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
506 if (PageSwapCache(page)) {
507 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
508 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
511 if (dirty && mapping_can_writeback(mapping)) {
512 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
513 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
514 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
515 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
520 return MIGRATEPAGE_SUCCESS;
522 EXPORT_SYMBOL(migrate_page_move_mapping);
525 * The expected number of remaining references is the same as that
526 * of migrate_page_move_mapping().
528 int migrate_huge_page_move_mapping(struct address_space *mapping,
529 struct page *newpage, struct page *page)
531 XA_STATE(xas, &mapping->i_pages, page_index(page));
535 expected_count = 2 + page_has_private(page);
536 if (page_count(page) != expected_count || xas_load(&xas) != page) {
537 xas_unlock_irq(&xas);
541 if (!page_ref_freeze(page, expected_count)) {
542 xas_unlock_irq(&xas);
546 newpage->index = page->index;
547 newpage->mapping = page->mapping;
551 xas_store(&xas, newpage);
553 page_ref_unfreeze(page, expected_count - 1);
555 xas_unlock_irq(&xas);
557 return MIGRATEPAGE_SUCCESS;
561 * Gigantic pages are so large that we do not guarantee that page++ pointer
562 * arithmetic will work across the entire page. We need something more
565 static void __copy_gigantic_page(struct page *dst, struct page *src,
569 struct page *dst_base = dst;
570 struct page *src_base = src;
572 for (i = 0; i < nr_pages; ) {
574 copy_highpage(dst, src);
577 dst = mem_map_next(dst, dst_base, i);
578 src = mem_map_next(src, src_base, i);
582 static void copy_huge_page(struct page *dst, struct page *src)
589 struct hstate *h = page_hstate(src);
590 nr_pages = pages_per_huge_page(h);
592 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
593 __copy_gigantic_page(dst, src, nr_pages);
598 BUG_ON(!PageTransHuge(src));
599 nr_pages = thp_nr_pages(src);
602 for (i = 0; i < nr_pages; i++) {
604 copy_highpage(dst + i, src + i);
609 * Copy the page to its new location
611 void migrate_page_states(struct page *newpage, struct page *page)
616 SetPageError(newpage);
617 if (PageReferenced(page))
618 SetPageReferenced(newpage);
619 if (PageUptodate(page))
620 SetPageUptodate(newpage);
621 if (TestClearPageActive(page)) {
622 VM_BUG_ON_PAGE(PageUnevictable(page), page);
623 SetPageActive(newpage);
624 } else if (TestClearPageUnevictable(page))
625 SetPageUnevictable(newpage);
626 if (PageWorkingset(page))
627 SetPageWorkingset(newpage);
628 if (PageChecked(page))
629 SetPageChecked(newpage);
630 if (PageMappedToDisk(page))
631 SetPageMappedToDisk(newpage);
633 /* Move dirty on pages not done by migrate_page_move_mapping() */
635 SetPageDirty(newpage);
637 if (page_is_young(page))
638 set_page_young(newpage);
639 if (page_is_idle(page))
640 set_page_idle(newpage);
643 * Copy NUMA information to the new page, to prevent over-eager
644 * future migrations of this same page.
646 cpupid = page_cpupid_xchg_last(page, -1);
647 page_cpupid_xchg_last(newpage, cpupid);
649 ksm_migrate_page(newpage, page);
651 * Please do not reorder this without considering how mm/ksm.c's
652 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
654 if (PageSwapCache(page))
655 ClearPageSwapCache(page);
656 ClearPagePrivate(page);
657 set_page_private(page, 0);
660 * If any waiters have accumulated on the new page then
663 if (PageWriteback(newpage))
664 end_page_writeback(newpage);
667 * PG_readahead shares the same bit with PG_reclaim. The above
668 * end_page_writeback() may clear PG_readahead mistakenly, so set the
671 if (PageReadahead(page))
672 SetPageReadahead(newpage);
674 copy_page_owner(page, newpage);
677 mem_cgroup_migrate(page, newpage);
679 EXPORT_SYMBOL(migrate_page_states);
681 void migrate_page_copy(struct page *newpage, struct page *page)
683 if (PageHuge(page) || PageTransHuge(page))
684 copy_huge_page(newpage, page);
686 copy_highpage(newpage, page);
688 migrate_page_states(newpage, page);
690 EXPORT_SYMBOL(migrate_page_copy);
692 /************************************************************
693 * Migration functions
694 ***********************************************************/
697 * Common logic to directly migrate a single LRU page suitable for
698 * pages that do not use PagePrivate/PagePrivate2.
700 * Pages are locked upon entry and exit.
702 int migrate_page(struct address_space *mapping,
703 struct page *newpage, struct page *page,
704 enum migrate_mode mode)
708 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
710 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
712 if (rc != MIGRATEPAGE_SUCCESS)
715 if (mode != MIGRATE_SYNC_NO_COPY)
716 migrate_page_copy(newpage, page);
718 migrate_page_states(newpage, page);
719 return MIGRATEPAGE_SUCCESS;
721 EXPORT_SYMBOL(migrate_page);
724 /* Returns true if all buffers are successfully locked */
725 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
726 enum migrate_mode mode)
728 struct buffer_head *bh = head;
730 /* Simple case, sync compaction */
731 if (mode != MIGRATE_ASYNC) {
734 bh = bh->b_this_page;
736 } while (bh != head);
741 /* async case, we cannot block on lock_buffer so use trylock_buffer */
743 if (!trylock_buffer(bh)) {
745 * We failed to lock the buffer and cannot stall in
746 * async migration. Release the taken locks
748 struct buffer_head *failed_bh = bh;
750 while (bh != failed_bh) {
752 bh = bh->b_this_page;
757 bh = bh->b_this_page;
758 } while (bh != head);
762 static int __buffer_migrate_page(struct address_space *mapping,
763 struct page *newpage, struct page *page, enum migrate_mode mode,
766 struct buffer_head *bh, *head;
770 if (!page_has_buffers(page))
771 return migrate_page(mapping, newpage, page, mode);
773 /* Check whether page does not have extra refs before we do more work */
774 expected_count = expected_page_refs(mapping, page);
775 if (page_count(page) != expected_count)
778 head = page_buffers(page);
779 if (!buffer_migrate_lock_buffers(head, mode))
784 bool invalidated = false;
788 spin_lock(&mapping->private_lock);
791 if (atomic_read(&bh->b_count)) {
795 bh = bh->b_this_page;
796 } while (bh != head);
802 spin_unlock(&mapping->private_lock);
803 invalidate_bh_lrus();
805 goto recheck_buffers;
809 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
810 if (rc != MIGRATEPAGE_SUCCESS)
813 attach_page_private(newpage, detach_page_private(page));
817 set_bh_page(bh, newpage, bh_offset(bh));
818 bh = bh->b_this_page;
820 } while (bh != head);
822 if (mode != MIGRATE_SYNC_NO_COPY)
823 migrate_page_copy(newpage, page);
825 migrate_page_states(newpage, page);
827 rc = MIGRATEPAGE_SUCCESS;
830 spin_unlock(&mapping->private_lock);
834 bh = bh->b_this_page;
836 } while (bh != head);
842 * Migration function for pages with buffers. This function can only be used
843 * if the underlying filesystem guarantees that no other references to "page"
844 * exist. For example attached buffer heads are accessed only under page lock.
846 int buffer_migrate_page(struct address_space *mapping,
847 struct page *newpage, struct page *page, enum migrate_mode mode)
849 return __buffer_migrate_page(mapping, newpage, page, mode, false);
851 EXPORT_SYMBOL(buffer_migrate_page);
854 * Same as above except that this variant is more careful and checks that there
855 * are also no buffer head references. This function is the right one for
856 * mappings where buffer heads are directly looked up and referenced (such as
857 * block device mappings).
859 int buffer_migrate_page_norefs(struct address_space *mapping,
860 struct page *newpage, struct page *page, enum migrate_mode mode)
862 return __buffer_migrate_page(mapping, newpage, page, mode, true);
867 * Writeback a page to clean the dirty state
869 static int writeout(struct address_space *mapping, struct page *page)
871 struct writeback_control wbc = {
872 .sync_mode = WB_SYNC_NONE,
875 .range_end = LLONG_MAX,
880 if (!mapping->a_ops->writepage)
881 /* No write method for the address space */
884 if (!clear_page_dirty_for_io(page))
885 /* Someone else already triggered a write */
889 * A dirty page may imply that the underlying filesystem has
890 * the page on some queue. So the page must be clean for
891 * migration. Writeout may mean we loose the lock and the
892 * page state is no longer what we checked for earlier.
893 * At this point we know that the migration attempt cannot
896 remove_migration_ptes(page, page, false);
898 rc = mapping->a_ops->writepage(page, &wbc);
900 if (rc != AOP_WRITEPAGE_ACTIVATE)
901 /* unlocked. Relock */
904 return (rc < 0) ? -EIO : -EAGAIN;
908 * Default handling if a filesystem does not provide a migration function.
910 static int fallback_migrate_page(struct address_space *mapping,
911 struct page *newpage, struct page *page, enum migrate_mode mode)
913 if (PageDirty(page)) {
914 /* Only writeback pages in full synchronous migration */
917 case MIGRATE_SYNC_NO_COPY:
922 return writeout(mapping, page);
926 * Buffers may be managed in a filesystem specific way.
927 * We must have no buffers or drop them.
929 if (page_has_private(page) &&
930 !try_to_release_page(page, GFP_KERNEL))
931 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
933 return migrate_page(mapping, newpage, page, mode);
937 * Move a page to a newly allocated page
938 * The page is locked and all ptes have been successfully removed.
940 * The new page will have replaced the old page if this function
945 * MIGRATEPAGE_SUCCESS - success
947 static int move_to_new_page(struct page *newpage, struct page *page,
948 enum migrate_mode mode)
950 struct address_space *mapping;
952 bool is_lru = !__PageMovable(page);
954 VM_BUG_ON_PAGE(!PageLocked(page), page);
955 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
957 mapping = page_mapping(page);
959 if (likely(is_lru)) {
961 rc = migrate_page(mapping, newpage, page, mode);
962 else if (mapping->a_ops->migratepage)
964 * Most pages have a mapping and most filesystems
965 * provide a migratepage callback. Anonymous pages
966 * are part of swap space which also has its own
967 * migratepage callback. This is the most common path
968 * for page migration.
970 rc = mapping->a_ops->migratepage(mapping, newpage,
973 rc = fallback_migrate_page(mapping, newpage,
977 * In case of non-lru page, it could be released after
978 * isolation step. In that case, we shouldn't try migration.
980 VM_BUG_ON_PAGE(!PageIsolated(page), page);
981 if (!PageMovable(page)) {
982 rc = MIGRATEPAGE_SUCCESS;
983 __ClearPageIsolated(page);
987 rc = mapping->a_ops->migratepage(mapping, newpage,
989 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
990 !PageIsolated(page));
994 * When successful, old pagecache page->mapping must be cleared before
995 * page is freed; but stats require that PageAnon be left as PageAnon.
997 if (rc == MIGRATEPAGE_SUCCESS) {
998 if (__PageMovable(page)) {
999 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1002 * We clear PG_movable under page_lock so any compactor
1003 * cannot try to migrate this page.
1005 __ClearPageIsolated(page);
1009 * Anonymous and movable page->mapping will be cleared by
1010 * free_pages_prepare so don't reset it here for keeping
1011 * the type to work PageAnon, for example.
1013 if (!PageMappingFlags(page))
1014 page->mapping = NULL;
1016 if (likely(!is_zone_device_page(newpage)))
1017 flush_dcache_page(newpage);
1024 static int __unmap_and_move(struct page *page, struct page *newpage,
1025 int force, enum migrate_mode mode)
1028 int page_was_mapped = 0;
1029 struct anon_vma *anon_vma = NULL;
1030 bool is_lru = !__PageMovable(page);
1032 if (!trylock_page(page)) {
1033 if (!force || mode == MIGRATE_ASYNC)
1037 * It's not safe for direct compaction to call lock_page.
1038 * For example, during page readahead pages are added locked
1039 * to the LRU. Later, when the IO completes the pages are
1040 * marked uptodate and unlocked. However, the queueing
1041 * could be merging multiple pages for one bio (e.g.
1042 * mpage_readahead). If an allocation happens for the
1043 * second or third page, the process can end up locking
1044 * the same page twice and deadlocking. Rather than
1045 * trying to be clever about what pages can be locked,
1046 * avoid the use of lock_page for direct compaction
1049 if (current->flags & PF_MEMALLOC)
1055 if (PageWriteback(page)) {
1057 * Only in the case of a full synchronous migration is it
1058 * necessary to wait for PageWriteback. In the async case,
1059 * the retry loop is too short and in the sync-light case,
1060 * the overhead of stalling is too much
1064 case MIGRATE_SYNC_NO_COPY:
1072 wait_on_page_writeback(page);
1076 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1077 * we cannot notice that anon_vma is freed while we migrates a page.
1078 * This get_anon_vma() delays freeing anon_vma pointer until the end
1079 * of migration. File cache pages are no problem because of page_lock()
1080 * File Caches may use write_page() or lock_page() in migration, then,
1081 * just care Anon page here.
1083 * Only page_get_anon_vma() understands the subtleties of
1084 * getting a hold on an anon_vma from outside one of its mms.
1085 * But if we cannot get anon_vma, then we won't need it anyway,
1086 * because that implies that the anon page is no longer mapped
1087 * (and cannot be remapped so long as we hold the page lock).
1089 if (PageAnon(page) && !PageKsm(page))
1090 anon_vma = page_get_anon_vma(page);
1093 * Block others from accessing the new page when we get around to
1094 * establishing additional references. We are usually the only one
1095 * holding a reference to newpage at this point. We used to have a BUG
1096 * here if trylock_page(newpage) fails, but would like to allow for
1097 * cases where there might be a race with the previous use of newpage.
1098 * This is much like races on refcount of oldpage: just don't BUG().
1100 if (unlikely(!trylock_page(newpage)))
1103 if (unlikely(!is_lru)) {
1104 rc = move_to_new_page(newpage, page, mode);
1105 goto out_unlock_both;
1109 * Corner case handling:
1110 * 1. When a new swap-cache page is read into, it is added to the LRU
1111 * and treated as swapcache but it has no rmap yet.
1112 * Calling try_to_unmap() against a page->mapping==NULL page will
1113 * trigger a BUG. So handle it here.
1114 * 2. An orphaned page (see truncate_cleanup_page) might have
1115 * fs-private metadata. The page can be picked up due to memory
1116 * offlining. Everywhere else except page reclaim, the page is
1117 * invisible to the vm, so the page can not be migrated. So try to
1118 * free the metadata, so the page can be freed.
1120 if (!page->mapping) {
1121 VM_BUG_ON_PAGE(PageAnon(page), page);
1122 if (page_has_private(page)) {
1123 try_to_free_buffers(page);
1124 goto out_unlock_both;
1126 } else if (page_mapped(page)) {
1127 /* Establish migration ptes */
1128 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1130 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1131 page_was_mapped = 1;
1134 if (!page_mapped(page))
1135 rc = move_to_new_page(newpage, page, mode);
1137 if (page_was_mapped)
1138 remove_migration_ptes(page,
1139 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1142 unlock_page(newpage);
1144 /* Drop an anon_vma reference if we took one */
1146 put_anon_vma(anon_vma);
1150 * If migration is successful, decrease refcount of the newpage
1151 * which will not free the page because new page owner increased
1152 * refcounter. As well, if it is LRU page, add the page to LRU
1153 * list in here. Use the old state of the isolated source page to
1154 * determine if we migrated a LRU page. newpage was already unlocked
1155 * and possibly modified by its owner - don't rely on the page
1158 if (rc == MIGRATEPAGE_SUCCESS) {
1159 if (unlikely(!is_lru))
1162 putback_lru_page(newpage);
1169 * Obtain the lock on page, remove all ptes and migrate the page
1170 * to the newly allocated page in newpage.
1172 static int unmap_and_move(new_page_t get_new_page,
1173 free_page_t put_new_page,
1174 unsigned long private, struct page *page,
1175 int force, enum migrate_mode mode,
1176 enum migrate_reason reason,
1177 struct list_head *ret)
1179 int rc = MIGRATEPAGE_SUCCESS;
1180 struct page *newpage = NULL;
1182 if (!thp_migration_supported() && PageTransHuge(page))
1185 if (page_count(page) == 1) {
1186 /* page was freed from under us. So we are done. */
1187 ClearPageActive(page);
1188 ClearPageUnevictable(page);
1189 if (unlikely(__PageMovable(page))) {
1191 if (!PageMovable(page))
1192 __ClearPageIsolated(page);
1198 newpage = get_new_page(page, private);
1202 rc = __unmap_and_move(page, newpage, force, mode);
1203 if (rc == MIGRATEPAGE_SUCCESS)
1204 set_page_owner_migrate_reason(newpage, reason);
1207 if (rc != -EAGAIN) {
1209 * A page that has been migrated has all references
1210 * removed and will be freed. A page that has not been
1211 * migrated will have kept its references and be restored.
1213 list_del(&page->lru);
1217 * If migration is successful, releases reference grabbed during
1218 * isolation. Otherwise, restore the page to right list unless
1221 if (rc == MIGRATEPAGE_SUCCESS) {
1223 * Compaction can migrate also non-LRU pages which are
1224 * not accounted to NR_ISOLATED_*. They can be recognized
1227 if (likely(!__PageMovable(page)))
1228 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1229 page_is_file_lru(page), -thp_nr_pages(page));
1231 if (reason != MR_MEMORY_FAILURE)
1233 * We release the page in page_handle_poison.
1238 list_add_tail(&page->lru, ret);
1241 put_new_page(newpage, private);
1250 * Counterpart of unmap_and_move_page() for hugepage migration.
1252 * This function doesn't wait the completion of hugepage I/O
1253 * because there is no race between I/O and migration for hugepage.
1254 * Note that currently hugepage I/O occurs only in direct I/O
1255 * where no lock is held and PG_writeback is irrelevant,
1256 * and writeback status of all subpages are counted in the reference
1257 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1258 * under direct I/O, the reference of the head page is 512 and a bit more.)
1259 * This means that when we try to migrate hugepage whose subpages are
1260 * doing direct I/O, some references remain after try_to_unmap() and
1261 * hugepage migration fails without data corruption.
1263 * There is also no race when direct I/O is issued on the page under migration,
1264 * because then pte is replaced with migration swap entry and direct I/O code
1265 * will wait in the page fault for migration to complete.
1267 static int unmap_and_move_huge_page(new_page_t get_new_page,
1268 free_page_t put_new_page, unsigned long private,
1269 struct page *hpage, int force,
1270 enum migrate_mode mode, int reason,
1271 struct list_head *ret)
1274 int page_was_mapped = 0;
1275 struct page *new_hpage;
1276 struct anon_vma *anon_vma = NULL;
1277 struct address_space *mapping = NULL;
1280 * Migratability of hugepages depends on architectures and their size.
1281 * This check is necessary because some callers of hugepage migration
1282 * like soft offline and memory hotremove don't walk through page
1283 * tables or check whether the hugepage is pmd-based or not before
1284 * kicking migration.
1286 if (!hugepage_migration_supported(page_hstate(hpage))) {
1287 list_move_tail(&hpage->lru, ret);
1291 if (page_count(hpage) == 1) {
1292 /* page was freed from under us. So we are done. */
1293 putback_active_hugepage(hpage);
1294 return MIGRATEPAGE_SUCCESS;
1297 new_hpage = get_new_page(hpage, private);
1301 if (!trylock_page(hpage)) {
1306 case MIGRATE_SYNC_NO_COPY:
1315 * Check for pages which are in the process of being freed. Without
1316 * page_mapping() set, hugetlbfs specific move page routine will not
1317 * be called and we could leak usage counts for subpools.
1319 if (page_private(hpage) && !page_mapping(hpage)) {
1324 if (PageAnon(hpage))
1325 anon_vma = page_get_anon_vma(hpage);
1327 if (unlikely(!trylock_page(new_hpage)))
1330 if (page_mapped(hpage)) {
1331 bool mapping_locked = false;
1332 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1334 if (!PageAnon(hpage)) {
1336 * In shared mappings, try_to_unmap could potentially
1337 * call huge_pmd_unshare. Because of this, take
1338 * semaphore in write mode here and set TTU_RMAP_LOCKED
1339 * to let lower levels know we have taken the lock.
1341 mapping = hugetlb_page_mapping_lock_write(hpage);
1342 if (unlikely(!mapping))
1343 goto unlock_put_anon;
1345 mapping_locked = true;
1346 ttu |= TTU_RMAP_LOCKED;
1349 try_to_unmap(hpage, ttu);
1350 page_was_mapped = 1;
1353 i_mmap_unlock_write(mapping);
1356 if (!page_mapped(hpage))
1357 rc = move_to_new_page(new_hpage, hpage, mode);
1359 if (page_was_mapped)
1360 remove_migration_ptes(hpage,
1361 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1364 unlock_page(new_hpage);
1368 put_anon_vma(anon_vma);
1370 if (rc == MIGRATEPAGE_SUCCESS) {
1371 move_hugetlb_state(hpage, new_hpage, reason);
1372 put_new_page = NULL;
1378 if (rc == MIGRATEPAGE_SUCCESS)
1379 putback_active_hugepage(hpage);
1380 else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS)
1381 list_move_tail(&hpage->lru, ret);
1384 * If migration was not successful and there's a freeing callback, use
1385 * it. Otherwise, put_page() will drop the reference grabbed during
1389 put_new_page(new_hpage, private);
1391 putback_active_hugepage(new_hpage);
1396 static inline int try_split_thp(struct page *page, struct page **page2,
1397 struct list_head *from)
1402 rc = split_huge_page_to_list(page, from);
1405 list_safe_reset_next(page, *page2, lru);
1411 * migrate_pages - migrate the pages specified in a list, to the free pages
1412 * supplied as the target for the page migration
1414 * @from: The list of pages to be migrated.
1415 * @get_new_page: The function used to allocate free pages to be used
1416 * as the target of the page migration.
1417 * @put_new_page: The function used to free target pages if migration
1418 * fails, or NULL if no special handling is necessary.
1419 * @private: Private data to be passed on to get_new_page()
1420 * @mode: The migration mode that specifies the constraints for
1421 * page migration, if any.
1422 * @reason: The reason for page migration.
1424 * The function returns after 10 attempts or if no pages are movable any more
1425 * because the list has become empty or no retryable pages exist any more.
1426 * It is caller's responsibility to call putback_movable_pages() to return pages
1427 * to the LRU or free list only if ret != 0.
1429 * Returns the number of pages that were not migrated, or an error code.
1431 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1432 free_page_t put_new_page, unsigned long private,
1433 enum migrate_mode mode, int reason)
1438 int nr_succeeded = 0;
1439 int nr_thp_succeeded = 0;
1440 int nr_thp_failed = 0;
1441 int nr_thp_split = 0;
1443 bool is_thp = false;
1446 int swapwrite = current->flags & PF_SWAPWRITE;
1447 int rc, nr_subpages;
1448 LIST_HEAD(ret_pages);
1451 current->flags |= PF_SWAPWRITE;
1453 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1457 list_for_each_entry_safe(page, page2, from, lru) {
1460 * THP statistics is based on the source huge page.
1461 * Capture required information that might get lost
1464 is_thp = PageTransHuge(page) && !PageHuge(page);
1465 nr_subpages = thp_nr_pages(page);
1469 rc = unmap_and_move_huge_page(get_new_page,
1470 put_new_page, private, page,
1471 pass > 2, mode, reason,
1474 rc = unmap_and_move(get_new_page, put_new_page,
1475 private, page, pass > 2, mode,
1476 reason, &ret_pages);
1479 * Success: non hugetlb page will be freed, hugetlb
1480 * page will be put back
1481 * -EAGAIN: stay on the from list
1482 * -ENOMEM: stay on the from list
1483 * Other errno: put on ret_pages list then splice to
1488 * THP migration might be unsupported or the
1489 * allocation could've failed so we should
1490 * retry on the same page with the THP split
1493 * Head page is retried immediately and tail
1494 * pages are added to the tail of the list so
1495 * we encounter them after the rest of the list
1499 /* THP migration is unsupported */
1501 if (!try_split_thp(page, &page2, from)) {
1507 nr_failed += nr_subpages;
1511 /* Hugetlb migration is unsupported */
1516 * When memory is low, don't bother to try to migrate
1517 * other pages, just exit.
1520 if (!try_split_thp(page, &page2, from)) {
1526 nr_failed += nr_subpages;
1538 case MIGRATEPAGE_SUCCESS:
1541 nr_succeeded += nr_subpages;
1548 * Permanent failure (-EBUSY, etc.):
1549 * unlike -EAGAIN case, the failed page is
1550 * removed from migration page list and not
1551 * retried in the next outer loop.
1555 nr_failed += nr_subpages;
1563 nr_failed += retry + thp_retry;
1564 nr_thp_failed += thp_retry;
1568 * Put the permanent failure page back to migration list, they
1569 * will be put back to the right list by the caller.
1571 list_splice(&ret_pages, from);
1573 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1574 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1575 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1576 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1577 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1578 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1579 nr_thp_failed, nr_thp_split, mode, reason);
1582 current->flags &= ~PF_SWAPWRITE;
1587 struct page *alloc_migration_target(struct page *page, unsigned long private)
1589 struct migration_target_control *mtc;
1591 unsigned int order = 0;
1592 struct page *new_page = NULL;
1596 mtc = (struct migration_target_control *)private;
1597 gfp_mask = mtc->gfp_mask;
1599 if (nid == NUMA_NO_NODE)
1600 nid = page_to_nid(page);
1602 if (PageHuge(page)) {
1603 struct hstate *h = page_hstate(compound_head(page));
1605 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1606 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1609 if (PageTransHuge(page)) {
1611 * clear __GFP_RECLAIM to make the migration callback
1612 * consistent with regular THP allocations.
1614 gfp_mask &= ~__GFP_RECLAIM;
1615 gfp_mask |= GFP_TRANSHUGE;
1616 order = HPAGE_PMD_ORDER;
1618 zidx = zone_idx(page_zone(page));
1619 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1620 gfp_mask |= __GFP_HIGHMEM;
1622 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1624 if (new_page && PageTransHuge(new_page))
1625 prep_transhuge_page(new_page);
1632 static int store_status(int __user *status, int start, int value, int nr)
1635 if (put_user(value, status + start))
1643 static int do_move_pages_to_node(struct mm_struct *mm,
1644 struct list_head *pagelist, int node)
1647 struct migration_target_control mtc = {
1649 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1652 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1653 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1655 putback_movable_pages(pagelist);
1660 * Resolves the given address to a struct page, isolates it from the LRU and
1661 * puts it to the given pagelist.
1663 * errno - if the page cannot be found/isolated
1664 * 0 - when it doesn't have to be migrated because it is already on the
1666 * 1 - when it has been queued
1668 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1669 int node, struct list_head *pagelist, bool migrate_all)
1671 struct vm_area_struct *vma;
1673 unsigned int follflags;
1678 vma = find_vma(mm, addr);
1679 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1682 /* FOLL_DUMP to ignore special (like zero) pages */
1683 follflags = FOLL_GET | FOLL_DUMP;
1684 page = follow_page(vma, addr, follflags);
1686 err = PTR_ERR(page);
1695 if (page_to_nid(page) == node)
1699 if (page_mapcount(page) > 1 && !migrate_all)
1702 if (PageHuge(page)) {
1703 if (PageHead(page)) {
1704 isolate_huge_page(page, pagelist);
1710 head = compound_head(page);
1711 err = isolate_lru_page(head);
1716 list_add_tail(&head->lru, pagelist);
1717 mod_node_page_state(page_pgdat(head),
1718 NR_ISOLATED_ANON + page_is_file_lru(head),
1719 thp_nr_pages(head));
1723 * Either remove the duplicate refcount from
1724 * isolate_lru_page() or drop the page ref if it was
1729 mmap_read_unlock(mm);
1733 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1734 struct list_head *pagelist, int __user *status,
1735 int start, int i, unsigned long nr_pages)
1739 if (list_empty(pagelist))
1742 err = do_move_pages_to_node(mm, pagelist, node);
1745 * Positive err means the number of failed
1746 * pages to migrate. Since we are going to
1747 * abort and return the number of non-migrated
1748 * pages, so need to include the rest of the
1749 * nr_pages that have not been attempted as
1753 err += nr_pages - i - 1;
1756 return store_status(status, start, node, i - start);
1760 * Migrate an array of page address onto an array of nodes and fill
1761 * the corresponding array of status.
1763 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1764 unsigned long nr_pages,
1765 const void __user * __user *pages,
1766 const int __user *nodes,
1767 int __user *status, int flags)
1769 int current_node = NUMA_NO_NODE;
1770 LIST_HEAD(pagelist);
1776 for (i = start = 0; i < nr_pages; i++) {
1777 const void __user *p;
1782 if (get_user(p, pages + i))
1784 if (get_user(node, nodes + i))
1786 addr = (unsigned long)untagged_addr(p);
1789 if (node < 0 || node >= MAX_NUMNODES)
1791 if (!node_state(node, N_MEMORY))
1795 if (!node_isset(node, task_nodes))
1798 if (current_node == NUMA_NO_NODE) {
1799 current_node = node;
1801 } else if (node != current_node) {
1802 err = move_pages_and_store_status(mm, current_node,
1803 &pagelist, status, start, i, nr_pages);
1807 current_node = node;
1811 * Errors in the page lookup or isolation are not fatal and we simply
1812 * report them via status
1814 err = add_page_for_migration(mm, addr, current_node,
1815 &pagelist, flags & MPOL_MF_MOVE_ALL);
1818 /* The page is successfully queued for migration */
1823 * If the page is already on the target node (!err), store the
1824 * node, otherwise, store the err.
1826 err = store_status(status, i, err ? : current_node, 1);
1830 err = move_pages_and_store_status(mm, current_node, &pagelist,
1831 status, start, i, nr_pages);
1834 current_node = NUMA_NO_NODE;
1837 /* Make sure we do not overwrite the existing error */
1838 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1839 status, start, i, nr_pages);
1848 * Determine the nodes of an array of pages and store it in an array of status.
1850 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1851 const void __user **pages, int *status)
1857 for (i = 0; i < nr_pages; i++) {
1858 unsigned long addr = (unsigned long)(*pages);
1859 struct vm_area_struct *vma;
1863 vma = find_vma(mm, addr);
1864 if (!vma || addr < vma->vm_start)
1867 /* FOLL_DUMP to ignore special (like zero) pages */
1868 page = follow_page(vma, addr, FOLL_DUMP);
1870 err = PTR_ERR(page);
1874 err = page ? page_to_nid(page) : -ENOENT;
1882 mmap_read_unlock(mm);
1886 * Determine the nodes of a user array of pages and store it in
1887 * a user array of status.
1889 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1890 const void __user * __user *pages,
1893 #define DO_PAGES_STAT_CHUNK_NR 16
1894 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1895 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1898 unsigned long chunk_nr;
1900 chunk_nr = nr_pages;
1901 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1902 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1904 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1907 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1909 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1914 nr_pages -= chunk_nr;
1916 return nr_pages ? -EFAULT : 0;
1919 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1921 struct task_struct *task;
1922 struct mm_struct *mm;
1925 * There is no need to check if current process has the right to modify
1926 * the specified process when they are same.
1930 *mem_nodes = cpuset_mems_allowed(current);
1934 /* Find the mm_struct */
1936 task = find_task_by_vpid(pid);
1939 return ERR_PTR(-ESRCH);
1941 get_task_struct(task);
1944 * Check if this process has the right to modify the specified
1945 * process. Use the regular "ptrace_may_access()" checks.
1947 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1949 mm = ERR_PTR(-EPERM);
1954 mm = ERR_PTR(security_task_movememory(task));
1957 *mem_nodes = cpuset_mems_allowed(task);
1958 mm = get_task_mm(task);
1960 put_task_struct(task);
1962 mm = ERR_PTR(-EINVAL);
1967 * Move a list of pages in the address space of the currently executing
1970 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1971 const void __user * __user *pages,
1972 const int __user *nodes,
1973 int __user *status, int flags)
1975 struct mm_struct *mm;
1977 nodemask_t task_nodes;
1980 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1983 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1986 mm = find_mm_struct(pid, &task_nodes);
1991 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1992 nodes, status, flags);
1994 err = do_pages_stat(mm, nr_pages, pages, status);
2000 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2001 const void __user * __user *, pages,
2002 const int __user *, nodes,
2003 int __user *, status, int, flags)
2005 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2008 #ifdef CONFIG_COMPAT
2009 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
2010 compat_uptr_t __user *, pages32,
2011 const int __user *, nodes,
2012 int __user *, status,
2015 const void __user * __user *pages;
2018 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2019 for (i = 0; i < nr_pages; i++) {
2022 if (get_user(p, pages32 + i) ||
2023 put_user(compat_ptr(p), pages + i))
2026 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2028 #endif /* CONFIG_COMPAT */
2030 #ifdef CONFIG_NUMA_BALANCING
2032 * Returns true if this is a safe migration target node for misplaced NUMA
2033 * pages. Currently it only checks the watermarks which crude
2035 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2036 unsigned long nr_migrate_pages)
2040 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2041 struct zone *zone = pgdat->node_zones + z;
2043 if (!populated_zone(zone))
2046 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2047 if (!zone_watermark_ok(zone, 0,
2048 high_wmark_pages(zone) +
2057 static struct page *alloc_misplaced_dst_page(struct page *page,
2060 int nid = (int) data;
2061 struct page *newpage;
2063 newpage = __alloc_pages_node(nid,
2064 (GFP_HIGHUSER_MOVABLE |
2065 __GFP_THISNODE | __GFP_NOMEMALLOC |
2066 __GFP_NORETRY | __GFP_NOWARN) &
2072 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2076 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2078 /* Avoid migrating to a node that is nearly full */
2079 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2082 if (isolate_lru_page(page))
2086 * migrate_misplaced_transhuge_page() skips page migration's usual
2087 * check on page_count(), so we must do it here, now that the page
2088 * has been isolated: a GUP pin, or any other pin, prevents migration.
2089 * The expected page count is 3: 1 for page's mapcount and 1 for the
2090 * caller's pin and 1 for the reference taken by isolate_lru_page().
2092 if (PageTransHuge(page) && page_count(page) != 3) {
2093 putback_lru_page(page);
2097 page_lru = page_is_file_lru(page);
2098 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2099 thp_nr_pages(page));
2102 * Isolating the page has taken another reference, so the
2103 * caller's reference can be safely dropped without the page
2104 * disappearing underneath us during migration.
2110 bool pmd_trans_migrating(pmd_t pmd)
2112 struct page *page = pmd_page(pmd);
2113 return PageLocked(page);
2116 static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2119 if (page_mapcount(page) != 1 &&
2120 (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2121 (vma->vm_flags & VM_EXEC))
2128 * Attempt to migrate a misplaced page to the specified destination
2129 * node. Caller is expected to have an elevated reference count on
2130 * the page that will be dropped by this function before returning.
2132 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2135 pg_data_t *pgdat = NODE_DATA(node);
2138 LIST_HEAD(migratepages);
2141 * Don't migrate file pages that are mapped in multiple processes
2142 * with execute permissions as they are probably shared libraries.
2144 if (is_shared_exec_page(vma, page))
2148 * Also do not migrate dirty pages as not all filesystems can move
2149 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2151 if (page_is_file_lru(page) && PageDirty(page))
2154 isolated = numamigrate_isolate_page(pgdat, page);
2158 list_add(&page->lru, &migratepages);
2159 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2160 NULL, node, MIGRATE_ASYNC,
2163 if (!list_empty(&migratepages)) {
2164 list_del(&page->lru);
2165 dec_node_page_state(page, NR_ISOLATED_ANON +
2166 page_is_file_lru(page));
2167 putback_lru_page(page);
2171 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2172 BUG_ON(!list_empty(&migratepages));
2179 #endif /* CONFIG_NUMA_BALANCING */
2181 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2183 * Migrates a THP to a given target node. page must be locked and is unlocked
2186 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2187 struct vm_area_struct *vma,
2188 pmd_t *pmd, pmd_t entry,
2189 unsigned long address,
2190 struct page *page, int node)
2193 pg_data_t *pgdat = NODE_DATA(node);
2195 struct page *new_page = NULL;
2196 int page_lru = page_is_file_lru(page);
2197 unsigned long start = address & HPAGE_PMD_MASK;
2199 if (is_shared_exec_page(vma, page))
2202 new_page = alloc_pages_node(node,
2203 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2207 prep_transhuge_page(new_page);
2209 isolated = numamigrate_isolate_page(pgdat, page);
2215 /* Prepare a page as a migration target */
2216 __SetPageLocked(new_page);
2217 if (PageSwapBacked(page))
2218 __SetPageSwapBacked(new_page);
2220 /* anon mapping, we can simply copy page->mapping to the new page: */
2221 new_page->mapping = page->mapping;
2222 new_page->index = page->index;
2223 /* flush the cache before copying using the kernel virtual address */
2224 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2225 migrate_page_copy(new_page, page);
2226 WARN_ON(PageLRU(new_page));
2228 /* Recheck the target PMD */
2229 ptl = pmd_lock(mm, pmd);
2230 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2233 /* Reverse changes made by migrate_page_copy() */
2234 if (TestClearPageActive(new_page))
2235 SetPageActive(page);
2236 if (TestClearPageUnevictable(new_page))
2237 SetPageUnevictable(page);
2239 unlock_page(new_page);
2240 put_page(new_page); /* Free it */
2242 /* Retake the callers reference and putback on LRU */
2244 putback_lru_page(page);
2245 mod_node_page_state(page_pgdat(page),
2246 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2251 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2252 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2255 * Overwrite the old entry under pagetable lock and establish
2256 * the new PTE. Any parallel GUP will either observe the old
2257 * page blocking on the page lock, block on the page table
2258 * lock or observe the new page. The SetPageUptodate on the
2259 * new page and page_add_new_anon_rmap guarantee the copy is
2260 * visible before the pagetable update.
2262 page_add_anon_rmap(new_page, vma, start, true);
2264 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2265 * has already been flushed globally. So no TLB can be currently
2266 * caching this non present pmd mapping. There's no need to clear the
2267 * pmd before doing set_pmd_at(), nor to flush the TLB after
2268 * set_pmd_at(). Clearing the pmd here would introduce a race
2269 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2270 * mmap_lock for reading. If the pmd is set to NULL at any given time,
2271 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2274 set_pmd_at(mm, start, pmd, entry);
2275 update_mmu_cache_pmd(vma, address, &entry);
2277 page_ref_unfreeze(page, 2);
2278 mlock_migrate_page(new_page, page);
2279 page_remove_rmap(page, true);
2280 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2284 /* Take an "isolate" reference and put new page on the LRU. */
2286 putback_lru_page(new_page);
2288 unlock_page(new_page);
2290 put_page(page); /* Drop the rmap reference */
2291 put_page(page); /* Drop the LRU isolation reference */
2293 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2294 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2296 mod_node_page_state(page_pgdat(page),
2297 NR_ISOLATED_ANON + page_lru,
2302 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2303 ptl = pmd_lock(mm, pmd);
2304 if (pmd_same(*pmd, entry)) {
2305 entry = pmd_modify(entry, vma->vm_page_prot);
2306 set_pmd_at(mm, start, pmd, entry);
2307 update_mmu_cache_pmd(vma, address, &entry);
2317 #endif /* CONFIG_NUMA_BALANCING */
2319 #endif /* CONFIG_NUMA */
2321 #ifdef CONFIG_DEVICE_PRIVATE
2322 static int migrate_vma_collect_hole(unsigned long start,
2324 __always_unused int depth,
2325 struct mm_walk *walk)
2327 struct migrate_vma *migrate = walk->private;
2330 /* Only allow populating anonymous memory. */
2331 if (!vma_is_anonymous(walk->vma)) {
2332 for (addr = start; addr < end; addr += PAGE_SIZE) {
2333 migrate->src[migrate->npages] = 0;
2334 migrate->dst[migrate->npages] = 0;
2340 for (addr = start; addr < end; addr += PAGE_SIZE) {
2341 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2342 migrate->dst[migrate->npages] = 0;
2350 static int migrate_vma_collect_skip(unsigned long start,
2352 struct mm_walk *walk)
2354 struct migrate_vma *migrate = walk->private;
2357 for (addr = start; addr < end; addr += PAGE_SIZE) {
2358 migrate->dst[migrate->npages] = 0;
2359 migrate->src[migrate->npages++] = 0;
2365 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2366 unsigned long start,
2368 struct mm_walk *walk)
2370 struct migrate_vma *migrate = walk->private;
2371 struct vm_area_struct *vma = walk->vma;
2372 struct mm_struct *mm = vma->vm_mm;
2373 unsigned long addr = start, unmapped = 0;
2378 if (pmd_none(*pmdp))
2379 return migrate_vma_collect_hole(start, end, -1, walk);
2381 if (pmd_trans_huge(*pmdp)) {
2384 ptl = pmd_lock(mm, pmdp);
2385 if (unlikely(!pmd_trans_huge(*pmdp))) {
2390 page = pmd_page(*pmdp);
2391 if (is_huge_zero_page(page)) {
2393 split_huge_pmd(vma, pmdp, addr);
2394 if (pmd_trans_unstable(pmdp))
2395 return migrate_vma_collect_skip(start, end,
2402 if (unlikely(!trylock_page(page)))
2403 return migrate_vma_collect_skip(start, end,
2405 ret = split_huge_page(page);
2409 return migrate_vma_collect_skip(start, end,
2411 if (pmd_none(*pmdp))
2412 return migrate_vma_collect_hole(start, end, -1,
2417 if (unlikely(pmd_bad(*pmdp)))
2418 return migrate_vma_collect_skip(start, end, walk);
2420 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2421 arch_enter_lazy_mmu_mode();
2423 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2424 unsigned long mpfn = 0, pfn;
2431 if (pte_none(pte)) {
2432 if (vma_is_anonymous(vma)) {
2433 mpfn = MIGRATE_PFN_MIGRATE;
2439 if (!pte_present(pte)) {
2441 * Only care about unaddressable device page special
2442 * page table entry. Other special swap entries are not
2443 * migratable, and we ignore regular swapped page.
2445 entry = pte_to_swp_entry(pte);
2446 if (!is_device_private_entry(entry))
2449 page = device_private_entry_to_page(entry);
2450 if (!(migrate->flags &
2451 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2452 page->pgmap->owner != migrate->pgmap_owner)
2455 mpfn = migrate_pfn(page_to_pfn(page)) |
2456 MIGRATE_PFN_MIGRATE;
2457 if (is_write_device_private_entry(entry))
2458 mpfn |= MIGRATE_PFN_WRITE;
2460 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2463 if (is_zero_pfn(pfn)) {
2464 mpfn = MIGRATE_PFN_MIGRATE;
2468 page = vm_normal_page(migrate->vma, addr, pte);
2469 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2470 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2473 /* FIXME support THP */
2474 if (!page || !page->mapping || PageTransCompound(page)) {
2480 * By getting a reference on the page we pin it and that blocks
2481 * any kind of migration. Side effect is that it "freezes" the
2484 * We drop this reference after isolating the page from the lru
2485 * for non device page (device page are not on the lru and thus
2486 * can't be dropped from it).
2492 * Optimize for the common case where page is only mapped once
2493 * in one process. If we can lock the page, then we can safely
2494 * set up a special migration page table entry now.
2496 if (trylock_page(page)) {
2499 mpfn |= MIGRATE_PFN_LOCKED;
2500 ptep_get_and_clear(mm, addr, ptep);
2502 /* Setup special migration page table entry */
2503 entry = make_migration_entry(page, mpfn &
2505 swp_pte = swp_entry_to_pte(entry);
2506 if (pte_present(pte)) {
2507 if (pte_soft_dirty(pte))
2508 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2509 if (pte_uffd_wp(pte))
2510 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2512 if (pte_swp_soft_dirty(pte))
2513 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2514 if (pte_swp_uffd_wp(pte))
2515 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2517 set_pte_at(mm, addr, ptep, swp_pte);
2520 * This is like regular unmap: we remove the rmap and
2521 * drop page refcount. Page won't be freed, as we took
2522 * a reference just above.
2524 page_remove_rmap(page, false);
2527 if (pte_present(pte))
2532 migrate->dst[migrate->npages] = 0;
2533 migrate->src[migrate->npages++] = mpfn;
2535 arch_leave_lazy_mmu_mode();
2536 pte_unmap_unlock(ptep - 1, ptl);
2538 /* Only flush the TLB if we actually modified any entries */
2540 flush_tlb_range(walk->vma, start, end);
2545 static const struct mm_walk_ops migrate_vma_walk_ops = {
2546 .pmd_entry = migrate_vma_collect_pmd,
2547 .pte_hole = migrate_vma_collect_hole,
2551 * migrate_vma_collect() - collect pages over a range of virtual addresses
2552 * @migrate: migrate struct containing all migration information
2554 * This will walk the CPU page table. For each virtual address backed by a
2555 * valid page, it updates the src array and takes a reference on the page, in
2556 * order to pin the page until we lock it and unmap it.
2558 static void migrate_vma_collect(struct migrate_vma *migrate)
2560 struct mmu_notifier_range range;
2563 * Note that the pgmap_owner is passed to the mmu notifier callback so
2564 * that the registered device driver can skip invalidating device
2565 * private page mappings that won't be migrated.
2567 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2568 migrate->vma->vm_mm, migrate->start, migrate->end,
2569 migrate->pgmap_owner);
2570 mmu_notifier_invalidate_range_start(&range);
2572 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2573 &migrate_vma_walk_ops, migrate);
2575 mmu_notifier_invalidate_range_end(&range);
2576 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2580 * migrate_vma_check_page() - check if page is pinned or not
2581 * @page: struct page to check
2583 * Pinned pages cannot be migrated. This is the same test as in
2584 * migrate_page_move_mapping(), except that here we allow migration of a
2587 static bool migrate_vma_check_page(struct page *page)
2590 * One extra ref because caller holds an extra reference, either from
2591 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2597 * FIXME support THP (transparent huge page), it is bit more complex to
2598 * check them than regular pages, because they can be mapped with a pmd
2599 * or with a pte (split pte mapping).
2601 if (PageCompound(page))
2604 /* Page from ZONE_DEVICE have one extra reference */
2605 if (is_zone_device_page(page)) {
2607 * Private page can never be pin as they have no valid pte and
2608 * GUP will fail for those. Yet if there is a pending migration
2609 * a thread might try to wait on the pte migration entry and
2610 * will bump the page reference count. Sadly there is no way to
2611 * differentiate a regular pin from migration wait. Hence to
2612 * avoid 2 racing thread trying to migrate back to CPU to enter
2613 * infinite loop (one stopping migration because the other is
2614 * waiting on pte migration entry). We always return true here.
2616 * FIXME proper solution is to rework migration_entry_wait() so
2617 * it does not need to take a reference on page.
2619 return is_device_private_page(page);
2622 /* For file back page */
2623 if (page_mapping(page))
2624 extra += 1 + page_has_private(page);
2626 if ((page_count(page) - extra) > page_mapcount(page))
2633 * migrate_vma_prepare() - lock pages and isolate them from the lru
2634 * @migrate: migrate struct containing all migration information
2636 * This locks pages that have been collected by migrate_vma_collect(). Once each
2637 * page is locked it is isolated from the lru (for non-device pages). Finally,
2638 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2639 * migrated by concurrent kernel threads.
2641 static void migrate_vma_prepare(struct migrate_vma *migrate)
2643 const unsigned long npages = migrate->npages;
2644 const unsigned long start = migrate->start;
2645 unsigned long addr, i, restore = 0;
2646 bool allow_drain = true;
2650 for (i = 0; (i < npages) && migrate->cpages; i++) {
2651 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2657 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2659 * Because we are migrating several pages there can be
2660 * a deadlock between 2 concurrent migration where each
2661 * are waiting on each other page lock.
2663 * Make migrate_vma() a best effort thing and backoff
2664 * for any page we can not lock right away.
2666 if (!trylock_page(page)) {
2667 migrate->src[i] = 0;
2673 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2676 /* ZONE_DEVICE pages are not on LRU */
2677 if (!is_zone_device_page(page)) {
2678 if (!PageLRU(page) && allow_drain) {
2679 /* Drain CPU's pagevec */
2680 lru_add_drain_all();
2681 allow_drain = false;
2684 if (isolate_lru_page(page)) {
2686 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2690 migrate->src[i] = 0;
2698 /* Drop the reference we took in collect */
2702 if (!migrate_vma_check_page(page)) {
2704 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2708 if (!is_zone_device_page(page)) {
2710 putback_lru_page(page);
2713 migrate->src[i] = 0;
2717 if (!is_zone_device_page(page))
2718 putback_lru_page(page);
2725 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2726 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2728 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2731 remove_migration_pte(page, migrate->vma, addr, page);
2733 migrate->src[i] = 0;
2741 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2742 * @migrate: migrate struct containing all migration information
2744 * Replace page mapping (CPU page table pte) with a special migration pte entry
2745 * and check again if it has been pinned. Pinned pages are restored because we
2746 * cannot migrate them.
2748 * This is the last step before we call the device driver callback to allocate
2749 * destination memory and copy contents of original page over to new page.
2751 static void migrate_vma_unmap(struct migrate_vma *migrate)
2753 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2754 const unsigned long npages = migrate->npages;
2755 const unsigned long start = migrate->start;
2756 unsigned long addr, i, restore = 0;
2758 for (i = 0; i < npages; i++) {
2759 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2761 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2764 if (page_mapped(page)) {
2765 try_to_unmap(page, flags);
2766 if (page_mapped(page))
2770 if (migrate_vma_check_page(page))
2774 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2779 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2780 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2782 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2785 remove_migration_ptes(page, page, false);
2787 migrate->src[i] = 0;
2791 if (is_zone_device_page(page))
2794 putback_lru_page(page);
2799 * migrate_vma_setup() - prepare to migrate a range of memory
2800 * @args: contains the vma, start, and pfns arrays for the migration
2802 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2805 * Prepare to migrate a range of memory virtual address range by collecting all
2806 * the pages backing each virtual address in the range, saving them inside the
2807 * src array. Then lock those pages and unmap them. Once the pages are locked
2808 * and unmapped, check whether each page is pinned or not. Pages that aren't
2809 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2810 * corresponding src array entry. Then restores any pages that are pinned, by
2811 * remapping and unlocking those pages.
2813 * The caller should then allocate destination memory and copy source memory to
2814 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2815 * flag set). Once these are allocated and copied, the caller must update each
2816 * corresponding entry in the dst array with the pfn value of the destination
2817 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2818 * (destination pages must have their struct pages locked, via lock_page()).
2820 * Note that the caller does not have to migrate all the pages that are marked
2821 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2822 * device memory to system memory. If the caller cannot migrate a device page
2823 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2824 * consequences for the userspace process, so it must be avoided if at all
2827 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2828 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2829 * allowing the caller to allocate device memory for those unback virtual
2830 * address. For this the caller simply has to allocate device memory and
2831 * properly set the destination entry like for regular migration. Note that
2832 * this can still fails and thus inside the device driver must check if the
2833 * migration was successful for those entries after calling migrate_vma_pages()
2834 * just like for regular migration.
2836 * After that, the callers must call migrate_vma_pages() to go over each entry
2837 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2838 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2839 * then migrate_vma_pages() to migrate struct page information from the source
2840 * struct page to the destination struct page. If it fails to migrate the
2841 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2844 * At this point all successfully migrated pages have an entry in the src
2845 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2846 * array entry with MIGRATE_PFN_VALID flag set.
2848 * Once migrate_vma_pages() returns the caller may inspect which pages were
2849 * successfully migrated, and which were not. Successfully migrated pages will
2850 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2852 * It is safe to update device page table after migrate_vma_pages() because
2853 * both destination and source page are still locked, and the mmap_lock is held
2854 * in read mode (hence no one can unmap the range being migrated).
2856 * Once the caller is done cleaning up things and updating its page table (if it
2857 * chose to do so, this is not an obligation) it finally calls
2858 * migrate_vma_finalize() to update the CPU page table to point to new pages
2859 * for successfully migrated pages or otherwise restore the CPU page table to
2860 * point to the original source pages.
2862 int migrate_vma_setup(struct migrate_vma *args)
2864 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2866 args->start &= PAGE_MASK;
2867 args->end &= PAGE_MASK;
2868 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2869 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2873 if (args->start < args->vma->vm_start ||
2874 args->start >= args->vma->vm_end)
2876 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2878 if (!args->src || !args->dst)
2881 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2885 migrate_vma_collect(args);
2888 migrate_vma_prepare(args);
2890 migrate_vma_unmap(args);
2893 * At this point pages are locked and unmapped, and thus they have
2894 * stable content and can safely be copied to destination memory that
2895 * is allocated by the drivers.
2900 EXPORT_SYMBOL(migrate_vma_setup);
2903 * This code closely matches the code in:
2904 * __handle_mm_fault()
2905 * handle_pte_fault()
2906 * do_anonymous_page()
2907 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2910 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2915 struct vm_area_struct *vma = migrate->vma;
2916 struct mm_struct *mm = vma->vm_mm;
2926 /* Only allow populating anonymous memory */
2927 if (!vma_is_anonymous(vma))
2930 pgdp = pgd_offset(mm, addr);
2931 p4dp = p4d_alloc(mm, pgdp, addr);
2934 pudp = pud_alloc(mm, p4dp, addr);
2937 pmdp = pmd_alloc(mm, pudp, addr);
2941 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2945 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2946 * pte_offset_map() on pmds where a huge pmd might be created
2947 * from a different thread.
2949 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2950 * parallel threads are excluded by other means.
2952 * Here we only have mmap_read_lock(mm).
2954 if (pte_alloc(mm, pmdp))
2957 /* See the comment in pte_alloc_one_map() */
2958 if (unlikely(pmd_trans_unstable(pmdp)))
2961 if (unlikely(anon_vma_prepare(vma)))
2963 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2967 * The memory barrier inside __SetPageUptodate makes sure that
2968 * preceding stores to the page contents become visible before
2969 * the set_pte_at() write.
2971 __SetPageUptodate(page);
2973 if (is_zone_device_page(page)) {
2974 if (is_device_private_page(page)) {
2975 swp_entry_t swp_entry;
2977 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2978 entry = swp_entry_to_pte(swp_entry);
2981 entry = mk_pte(page, vma->vm_page_prot);
2982 if (vma->vm_flags & VM_WRITE)
2983 entry = pte_mkwrite(pte_mkdirty(entry));
2986 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2988 if (check_stable_address_space(mm))
2991 if (pte_present(*ptep)) {
2992 unsigned long pfn = pte_pfn(*ptep);
2994 if (!is_zero_pfn(pfn))
2997 } else if (!pte_none(*ptep))
3001 * Check for userfaultfd but do not deliver the fault. Instead,
3004 if (userfaultfd_missing(vma))
3007 inc_mm_counter(mm, MM_ANONPAGES);
3008 page_add_new_anon_rmap(page, vma, addr, false);
3009 if (!is_zone_device_page(page))
3010 lru_cache_add_inactive_or_unevictable(page, vma);
3014 flush_cache_page(vma, addr, pte_pfn(*ptep));
3015 ptep_clear_flush_notify(vma, addr, ptep);
3016 set_pte_at_notify(mm, addr, ptep, entry);
3017 update_mmu_cache(vma, addr, ptep);
3019 /* No need to invalidate - it was non-present before */
3020 set_pte_at(mm, addr, ptep, entry);
3021 update_mmu_cache(vma, addr, ptep);
3024 pte_unmap_unlock(ptep, ptl);
3025 *src = MIGRATE_PFN_MIGRATE;
3029 pte_unmap_unlock(ptep, ptl);
3031 *src &= ~MIGRATE_PFN_MIGRATE;
3035 * migrate_vma_pages() - migrate meta-data from src page to dst page
3036 * @migrate: migrate struct containing all migration information
3038 * This migrates struct page meta-data from source struct page to destination
3039 * struct page. This effectively finishes the migration from source page to the
3042 void migrate_vma_pages(struct migrate_vma *migrate)
3044 const unsigned long npages = migrate->npages;
3045 const unsigned long start = migrate->start;
3046 struct mmu_notifier_range range;
3047 unsigned long addr, i;
3048 bool notified = false;
3050 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3051 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3052 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3053 struct address_space *mapping;
3057 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3062 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3067 mmu_notifier_range_init_migrate(&range, 0,
3068 migrate->vma, migrate->vma->vm_mm,
3070 migrate->pgmap_owner);
3071 mmu_notifier_invalidate_range_start(&range);
3073 migrate_vma_insert_page(migrate, addr, newpage,
3078 mapping = page_mapping(page);
3080 if (is_zone_device_page(newpage)) {
3081 if (is_device_private_page(newpage)) {
3083 * For now only support private anonymous when
3084 * migrating to un-addressable device memory.
3087 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3092 * Other types of ZONE_DEVICE page are not
3095 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3100 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3101 if (r != MIGRATEPAGE_SUCCESS)
3102 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3106 * No need to double call mmu_notifier->invalidate_range() callback as
3107 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3108 * did already call it.
3111 mmu_notifier_invalidate_range_only_end(&range);
3113 EXPORT_SYMBOL(migrate_vma_pages);
3116 * migrate_vma_finalize() - restore CPU page table entry
3117 * @migrate: migrate struct containing all migration information
3119 * This replaces the special migration pte entry with either a mapping to the
3120 * new page if migration was successful for that page, or to the original page
3123 * This also unlocks the pages and puts them back on the lru, or drops the extra
3124 * refcount, for device pages.
3126 void migrate_vma_finalize(struct migrate_vma *migrate)
3128 const unsigned long npages = migrate->npages;
3131 for (i = 0; i < npages; i++) {
3132 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3133 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3137 unlock_page(newpage);
3143 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3145 unlock_page(newpage);
3151 remove_migration_ptes(page, newpage, false);
3154 if (is_zone_device_page(page))
3157 putback_lru_page(page);
3159 if (newpage != page) {
3160 unlock_page(newpage);
3161 if (is_zone_device_page(newpage))
3164 putback_lru_page(newpage);
3168 EXPORT_SYMBOL(migrate_vma_finalize);
3169 #endif /* CONFIG_DEVICE_PRIVATE */