2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
134 #include "net-sysfs.h"
136 /* Instead of increasing this, you should create a hash table. */
137 #define MAX_GRO_SKBS 8
139 /* This should be increased if a protocol with a bigger head is added. */
140 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143 * The list of packet types we will receive (as opposed to discard)
144 * and the routines to invoke.
146 * Why 16. Because with 16 the only overlap we get on a hash of the
147 * low nibble of the protocol value is RARP/SNAP/X.25.
149 * NOTE: That is no longer true with the addition of VLAN tags. Not
150 * sure which should go first, but I bet it won't make much
151 * difference if we are running VLANs. The good news is that
152 * this protocol won't be in the list unless compiled in, so
153 * the average user (w/out VLANs) will not be adversely affected.
170 #define PTYPE_HASH_SIZE (16)
171 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173 static DEFINE_SPINLOCK(ptype_lock);
174 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
175 static struct list_head ptype_all __read_mostly; /* Taps */
178 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 * Writers must hold the rtnl semaphore while they loop through the
184 * dev_base_head list, and hold dev_base_lock for writing when they do the
185 * actual updates. This allows pure readers to access the list even
186 * while a writer is preparing to update it.
188 * To put it another way, dev_base_lock is held for writing only to
189 * protect against pure readers; the rtnl semaphore provides the
190 * protection against other writers.
192 * See, for example usages, register_netdevice() and
193 * unregister_netdevice(), which must be called with the rtnl
196 DEFINE_RWLOCK(dev_base_lock);
197 EXPORT_SYMBOL(dev_base_lock);
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
213 struct net *net = dev_net(dev);
217 write_lock_bh(&dev_base_lock);
218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head_rcu(&dev->index_hlist,
221 dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
226 /* Device list removal
227 * caller must respect a RCU grace period before freeing/reusing dev
229 static void unlist_netdevice(struct net_device *dev)
233 /* Unlink dev from the device chain */
234 write_lock_bh(&dev_base_lock);
235 list_del_rcu(&dev->dev_list);
236 hlist_del_rcu(&dev->name_hlist);
237 hlist_del_rcu(&dev->index_hlist);
238 write_unlock_bh(&dev_base_lock);
245 static RAW_NOTIFIER_HEAD(netdev_chain);
248 * Device drivers call our routines to queue packets here. We empty the
249 * queue in the local softnet handler.
252 DEFINE_PER_CPU(struct softnet_data, softnet_data);
253 EXPORT_PER_CPU_SYMBOL(softnet_data);
255 #ifdef CONFIG_LOCKDEP
257 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
258 * according to dev->type
260 static const unsigned short netdev_lock_type[] =
261 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
262 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
263 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
264 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
265 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
266 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
267 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
268 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
269 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
270 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
271 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
272 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
273 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
274 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
275 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
276 ARPHRD_VOID, ARPHRD_NONE};
278 static const char *const netdev_lock_name[] =
279 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
280 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
281 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
282 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
283 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
284 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
285 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
286 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
287 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
288 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
289 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
290 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
291 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
292 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
293 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
294 "_xmit_VOID", "_xmit_NONE"};
296 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
297 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
299 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
303 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
304 if (netdev_lock_type[i] == dev_type)
306 /* the last key is used by default */
307 return ARRAY_SIZE(netdev_lock_type) - 1;
310 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
311 unsigned short dev_type)
315 i = netdev_lock_pos(dev_type);
316 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
317 netdev_lock_name[i]);
320 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
324 i = netdev_lock_pos(dev->type);
325 lockdep_set_class_and_name(&dev->addr_list_lock,
326 &netdev_addr_lock_key[i],
327 netdev_lock_name[i]);
330 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
331 unsigned short dev_type)
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 /*******************************************************************************
341 Protocol management and registration routines
343 *******************************************************************************/
346 * Add a protocol ID to the list. Now that the input handler is
347 * smarter we can dispense with all the messy stuff that used to be
350 * BEWARE!!! Protocol handlers, mangling input packets,
351 * MUST BE last in hash buckets and checking protocol handlers
352 * MUST start from promiscuous ptype_all chain in net_bh.
353 * It is true now, do not change it.
354 * Explanation follows: if protocol handler, mangling packet, will
355 * be the first on list, it is not able to sense, that packet
356 * is cloned and should be copied-on-write, so that it will
357 * change it and subsequent readers will get broken packet.
362 * dev_add_pack - add packet handler
363 * @pt: packet type declaration
365 * Add a protocol handler to the networking stack. The passed &packet_type
366 * is linked into kernel lists and may not be freed until it has been
367 * removed from the kernel lists.
369 * This call does not sleep therefore it can not
370 * guarantee all CPU's that are in middle of receiving packets
371 * will see the new packet type (until the next received packet).
374 void dev_add_pack(struct packet_type *pt)
378 spin_lock_bh(&ptype_lock);
379 if (pt->type == htons(ETH_P_ALL))
380 list_add_rcu(&pt->list, &ptype_all);
382 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
383 list_add_rcu(&pt->list, &ptype_base[hash]);
385 spin_unlock_bh(&ptype_lock);
387 EXPORT_SYMBOL(dev_add_pack);
390 * __dev_remove_pack - remove packet handler
391 * @pt: packet type declaration
393 * Remove a protocol handler that was previously added to the kernel
394 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
395 * from the kernel lists and can be freed or reused once this function
398 * The packet type might still be in use by receivers
399 * and must not be freed until after all the CPU's have gone
400 * through a quiescent state.
402 void __dev_remove_pack(struct packet_type *pt)
404 struct list_head *head;
405 struct packet_type *pt1;
407 spin_lock_bh(&ptype_lock);
409 if (pt->type == htons(ETH_P_ALL))
412 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
414 list_for_each_entry(pt1, head, list) {
416 list_del_rcu(&pt->list);
421 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
423 spin_unlock_bh(&ptype_lock);
425 EXPORT_SYMBOL(__dev_remove_pack);
428 * dev_remove_pack - remove packet handler
429 * @pt: packet type declaration
431 * Remove a protocol handler that was previously added to the kernel
432 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
433 * from the kernel lists and can be freed or reused once this function
436 * This call sleeps to guarantee that no CPU is looking at the packet
439 void dev_remove_pack(struct packet_type *pt)
441 __dev_remove_pack(pt);
445 EXPORT_SYMBOL(dev_remove_pack);
447 /******************************************************************************
449 Device Boot-time Settings Routines
451 *******************************************************************************/
453 /* Boot time configuration table */
454 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
457 * netdev_boot_setup_add - add new setup entry
458 * @name: name of the device
459 * @map: configured settings for the device
461 * Adds new setup entry to the dev_boot_setup list. The function
462 * returns 0 on error and 1 on success. This is a generic routine to
465 static int netdev_boot_setup_add(char *name, struct ifmap *map)
467 struct netdev_boot_setup *s;
471 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
472 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
473 memset(s[i].name, 0, sizeof(s[i].name));
474 strlcpy(s[i].name, name, IFNAMSIZ);
475 memcpy(&s[i].map, map, sizeof(s[i].map));
480 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
484 * netdev_boot_setup_check - check boot time settings
485 * @dev: the netdevice
487 * Check boot time settings for the device.
488 * The found settings are set for the device to be used
489 * later in the device probing.
490 * Returns 0 if no settings found, 1 if they are.
492 int netdev_boot_setup_check(struct net_device *dev)
494 struct netdev_boot_setup *s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
499 !strcmp(dev->name, s[i].name)) {
500 dev->irq = s[i].map.irq;
501 dev->base_addr = s[i].map.base_addr;
502 dev->mem_start = s[i].map.mem_start;
503 dev->mem_end = s[i].map.mem_end;
509 EXPORT_SYMBOL(netdev_boot_setup_check);
513 * netdev_boot_base - get address from boot time settings
514 * @prefix: prefix for network device
515 * @unit: id for network device
517 * Check boot time settings for the base address of device.
518 * The found settings are set for the device to be used
519 * later in the device probing.
520 * Returns 0 if no settings found.
522 unsigned long netdev_boot_base(const char *prefix, int unit)
524 const struct netdev_boot_setup *s = dev_boot_setup;
528 sprintf(name, "%s%d", prefix, unit);
531 * If device already registered then return base of 1
532 * to indicate not to probe for this interface
534 if (__dev_get_by_name(&init_net, name))
537 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
538 if (!strcmp(name, s[i].name))
539 return s[i].map.base_addr;
544 * Saves at boot time configured settings for any netdevice.
546 int __init netdev_boot_setup(char *str)
551 str = get_options(str, ARRAY_SIZE(ints), ints);
556 memset(&map, 0, sizeof(map));
560 map.base_addr = ints[2];
562 map.mem_start = ints[3];
564 map.mem_end = ints[4];
566 /* Add new entry to the list */
567 return netdev_boot_setup_add(str, &map);
570 __setup("netdev=", netdev_boot_setup);
572 /*******************************************************************************
574 Device Interface Subroutines
576 *******************************************************************************/
579 * __dev_get_by_name - find a device by its name
580 * @net: the applicable net namespace
581 * @name: name to find
583 * Find an interface by name. Must be called under RTNL semaphore
584 * or @dev_base_lock. If the name is found a pointer to the device
585 * is returned. If the name is not found then %NULL is returned. The
586 * reference counters are not incremented so the caller must be
587 * careful with locks.
590 struct net_device *__dev_get_by_name(struct net *net, const char *name)
592 struct hlist_node *p;
593 struct net_device *dev;
594 struct hlist_head *head = dev_name_hash(net, name);
596 hlist_for_each_entry(dev, p, head, name_hlist)
597 if (!strncmp(dev->name, name, IFNAMSIZ))
602 EXPORT_SYMBOL(__dev_get_by_name);
605 * dev_get_by_name_rcu - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
609 * Find an interface by name.
610 * If the name is found a pointer to the device is returned.
611 * If the name is not found then %NULL is returned.
612 * The reference counters are not incremented so the caller must be
613 * careful with locks. The caller must hold RCU lock.
616 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
622 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
628 EXPORT_SYMBOL(dev_get_by_name_rcu);
631 * dev_get_by_name - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
635 * Find an interface by name. This can be called from any
636 * context and does its own locking. The returned handle has
637 * the usage count incremented and the caller must use dev_put() to
638 * release it when it is no longer needed. %NULL is returned if no
639 * matching device is found.
642 struct net_device *dev_get_by_name(struct net *net, const char *name)
644 struct net_device *dev;
647 dev = dev_get_by_name_rcu(net, name);
653 EXPORT_SYMBOL(dev_get_by_name);
656 * __dev_get_by_index - find a device by its ifindex
657 * @net: the applicable net namespace
658 * @ifindex: index of device
660 * Search for an interface by index. Returns %NULL if the device
661 * is not found or a pointer to the device. The device has not
662 * had its reference counter increased so the caller must be careful
663 * about locking. The caller must hold either the RTNL semaphore
667 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
669 struct hlist_node *p;
670 struct net_device *dev;
671 struct hlist_head *head = dev_index_hash(net, ifindex);
673 hlist_for_each_entry(dev, p, head, index_hlist)
674 if (dev->ifindex == ifindex)
679 EXPORT_SYMBOL(__dev_get_by_index);
682 * dev_get_by_index_rcu - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold RCU lock.
692 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
694 struct hlist_node *p;
695 struct net_device *dev;
696 struct hlist_head *head = dev_index_hash(net, ifindex);
698 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
699 if (dev->ifindex == ifindex)
704 EXPORT_SYMBOL(dev_get_by_index_rcu);
708 * dev_get_by_index - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
712 * Search for an interface by index. Returns NULL if the device
713 * is not found or a pointer to the device. The device returned has
714 * had a reference added and the pointer is safe until the user calls
715 * dev_put to indicate they have finished with it.
718 struct net_device *dev_get_by_index(struct net *net, int ifindex)
720 struct net_device *dev;
723 dev = dev_get_by_index_rcu(net, ifindex);
729 EXPORT_SYMBOL(dev_get_by_index);
732 * dev_getbyhwaddr - find a device by its hardware address
733 * @net: the applicable net namespace
734 * @type: media type of device
735 * @ha: hardware address
737 * Search for an interface by MAC address. Returns NULL if the device
738 * is not found or a pointer to the device. The caller must hold the
739 * rtnl semaphore. The returned device has not had its ref count increased
740 * and the caller must therefore be careful about locking
743 * If the API was consistent this would be __dev_get_by_hwaddr
746 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
748 struct net_device *dev;
752 for_each_netdev(net, dev)
753 if (dev->type == type &&
754 !memcmp(dev->dev_addr, ha, dev->addr_len))
759 EXPORT_SYMBOL(dev_getbyhwaddr);
761 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
763 struct net_device *dev;
766 for_each_netdev(net, dev)
767 if (dev->type == type)
772 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
774 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
776 struct net_device *dev;
779 dev = __dev_getfirstbyhwtype(net, type);
785 EXPORT_SYMBOL(dev_getfirstbyhwtype);
788 * dev_get_by_flags - find any device with given flags
789 * @net: the applicable net namespace
790 * @if_flags: IFF_* values
791 * @mask: bitmask of bits in if_flags to check
793 * Search for any interface with the given flags. Returns NULL if a device
794 * is not found or a pointer to the device. The device returned has
795 * had a reference added and the pointer is safe until the user calls
796 * dev_put to indicate they have finished with it.
799 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
802 struct net_device *dev, *ret;
806 for_each_netdev_rcu(net, dev) {
807 if (((dev->flags ^ if_flags) & mask) == 0) {
816 EXPORT_SYMBOL(dev_get_by_flags);
819 * dev_valid_name - check if name is okay for network device
822 * Network device names need to be valid file names to
823 * to allow sysfs to work. We also disallow any kind of
826 int dev_valid_name(const char *name)
830 if (strlen(name) >= IFNAMSIZ)
832 if (!strcmp(name, ".") || !strcmp(name, ".."))
836 if (*name == '/' || isspace(*name))
842 EXPORT_SYMBOL(dev_valid_name);
845 * __dev_alloc_name - allocate a name for a device
846 * @net: network namespace to allocate the device name in
847 * @name: name format string
848 * @buf: scratch buffer and result name string
850 * Passed a format string - eg "lt%d" it will try and find a suitable
851 * id. It scans list of devices to build up a free map, then chooses
852 * the first empty slot. The caller must hold the dev_base or rtnl lock
853 * while allocating the name and adding the device in order to avoid
855 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
856 * Returns the number of the unit assigned or a negative errno code.
859 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
863 const int max_netdevices = 8*PAGE_SIZE;
864 unsigned long *inuse;
865 struct net_device *d;
867 p = strnchr(name, IFNAMSIZ-1, '%');
870 * Verify the string as this thing may have come from
871 * the user. There must be either one "%d" and no other "%"
874 if (p[1] != 'd' || strchr(p + 2, '%'))
877 /* Use one page as a bit array of possible slots */
878 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
882 for_each_netdev(net, d) {
883 if (!sscanf(d->name, name, &i))
885 if (i < 0 || i >= max_netdevices)
888 /* avoid cases where sscanf is not exact inverse of printf */
889 snprintf(buf, IFNAMSIZ, name, i);
890 if (!strncmp(buf, d->name, IFNAMSIZ))
894 i = find_first_zero_bit(inuse, max_netdevices);
895 free_page((unsigned long) inuse);
899 snprintf(buf, IFNAMSIZ, name, i);
900 if (!__dev_get_by_name(net, buf))
903 /* It is possible to run out of possible slots
904 * when the name is long and there isn't enough space left
905 * for the digits, or if all bits are used.
911 * dev_alloc_name - allocate a name for a device
913 * @name: name format string
915 * Passed a format string - eg "lt%d" it will try and find a suitable
916 * id. It scans list of devices to build up a free map, then chooses
917 * the first empty slot. The caller must hold the dev_base or rtnl lock
918 * while allocating the name and adding the device in order to avoid
920 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
921 * Returns the number of the unit assigned or a negative errno code.
924 int dev_alloc_name(struct net_device *dev, const char *name)
930 BUG_ON(!dev_net(dev));
932 ret = __dev_alloc_name(net, name, buf);
934 strlcpy(dev->name, buf, IFNAMSIZ);
937 EXPORT_SYMBOL(dev_alloc_name);
939 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
942 if (!dev_valid_name(name))
945 if (fmt && strchr(name, '%'))
946 return __dev_alloc_name(net, name, buf);
947 else if (__dev_get_by_name(net, name))
949 else if (buf != name)
950 strlcpy(buf, name, IFNAMSIZ);
956 * dev_change_name - change name of a device
958 * @newname: name (or format string) must be at least IFNAMSIZ
960 * Change name of a device, can pass format strings "eth%d".
963 int dev_change_name(struct net_device *dev, const char *newname)
965 char oldname[IFNAMSIZ];
971 BUG_ON(!dev_net(dev));
974 if (dev->flags & IFF_UP)
977 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
980 memcpy(oldname, dev->name, IFNAMSIZ);
982 err = dev_get_valid_name(net, newname, dev->name, 1);
987 /* For now only devices in the initial network namespace
990 if (net_eq(net, &init_net)) {
991 ret = device_rename(&dev->dev, dev->name);
993 memcpy(dev->name, oldname, IFNAMSIZ);
998 write_lock_bh(&dev_base_lock);
999 hlist_del(&dev->name_hlist);
1000 write_unlock_bh(&dev_base_lock);
1004 write_lock_bh(&dev_base_lock);
1005 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1006 write_unlock_bh(&dev_base_lock);
1008 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1009 ret = notifier_to_errno(ret);
1012 /* err >= 0 after dev_alloc_name() or stores the first errno */
1015 memcpy(dev->name, oldname, IFNAMSIZ);
1019 "%s: name change rollback failed: %d.\n",
1028 * dev_set_alias - change ifalias of a device
1030 * @alias: name up to IFALIASZ
1031 * @len: limit of bytes to copy from info
1033 * Set ifalias for a device,
1035 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1039 if (len >= IFALIASZ)
1044 kfree(dev->ifalias);
1045 dev->ifalias = NULL;
1050 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1054 strlcpy(dev->ifalias, alias, len+1);
1060 * netdev_features_change - device changes features
1061 * @dev: device to cause notification
1063 * Called to indicate a device has changed features.
1065 void netdev_features_change(struct net_device *dev)
1067 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1069 EXPORT_SYMBOL(netdev_features_change);
1072 * netdev_state_change - device changes state
1073 * @dev: device to cause notification
1075 * Called to indicate a device has changed state. This function calls
1076 * the notifier chains for netdev_chain and sends a NEWLINK message
1077 * to the routing socket.
1079 void netdev_state_change(struct net_device *dev)
1081 if (dev->flags & IFF_UP) {
1082 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1083 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1086 EXPORT_SYMBOL(netdev_state_change);
1088 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1090 call_netdevice_notifiers(event, dev);
1092 EXPORT_SYMBOL(netdev_bonding_change);
1095 * dev_load - load a network module
1096 * @net: the applicable net namespace
1097 * @name: name of interface
1099 * If a network interface is not present and the process has suitable
1100 * privileges this function loads the module. If module loading is not
1101 * available in this kernel then it becomes a nop.
1104 void dev_load(struct net *net, const char *name)
1106 struct net_device *dev;
1109 dev = dev_get_by_name_rcu(net, name);
1112 if (!dev && capable(CAP_NET_ADMIN))
1113 request_module("%s", name);
1115 EXPORT_SYMBOL(dev_load);
1117 static int __dev_open(struct net_device *dev)
1119 const struct net_device_ops *ops = dev->netdev_ops;
1125 * Is it even present?
1127 if (!netif_device_present(dev))
1130 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1131 ret = notifier_to_errno(ret);
1136 * Call device private open method
1138 set_bit(__LINK_STATE_START, &dev->state);
1140 if (ops->ndo_validate_addr)
1141 ret = ops->ndo_validate_addr(dev);
1143 if (!ret && ops->ndo_open)
1144 ret = ops->ndo_open(dev);
1147 * If it went open OK then:
1151 clear_bit(__LINK_STATE_START, &dev->state);
1156 dev->flags |= IFF_UP;
1161 net_dmaengine_get();
1164 * Initialize multicasting status
1166 dev_set_rx_mode(dev);
1169 * Wakeup transmit queue engine
1178 * dev_open - prepare an interface for use.
1179 * @dev: device to open
1181 * Takes a device from down to up state. The device's private open
1182 * function is invoked and then the multicast lists are loaded. Finally
1183 * the device is moved into the up state and a %NETDEV_UP message is
1184 * sent to the netdev notifier chain.
1186 * Calling this function on an active interface is a nop. On a failure
1187 * a negative errno code is returned.
1189 int dev_open(struct net_device *dev)
1196 if (dev->flags & IFF_UP)
1202 ret = __dev_open(dev);
1207 * ... and announce new interface.
1209 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1210 call_netdevice_notifiers(NETDEV_UP, dev);
1214 EXPORT_SYMBOL(dev_open);
1216 static int __dev_close(struct net_device *dev)
1218 const struct net_device_ops *ops = dev->netdev_ops;
1224 * Tell people we are going down, so that they can
1225 * prepare to death, when device is still operating.
1227 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1229 clear_bit(__LINK_STATE_START, &dev->state);
1231 /* Synchronize to scheduled poll. We cannot touch poll list,
1232 * it can be even on different cpu. So just clear netif_running().
1234 * dev->stop() will invoke napi_disable() on all of it's
1235 * napi_struct instances on this device.
1237 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1239 dev_deactivate(dev);
1242 * Call the device specific close. This cannot fail.
1243 * Only if device is UP
1245 * We allow it to be called even after a DETACH hot-plug
1252 * Device is now down.
1255 dev->flags &= ~IFF_UP;
1260 net_dmaengine_put();
1266 * dev_close - shutdown an interface.
1267 * @dev: device to shutdown
1269 * This function moves an active device into down state. A
1270 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1271 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1274 int dev_close(struct net_device *dev)
1276 if (!(dev->flags & IFF_UP))
1282 * Tell people we are down
1284 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1285 call_netdevice_notifiers(NETDEV_DOWN, dev);
1289 EXPORT_SYMBOL(dev_close);
1293 * dev_disable_lro - disable Large Receive Offload on a device
1296 * Disable Large Receive Offload (LRO) on a net device. Must be
1297 * called under RTNL. This is needed if received packets may be
1298 * forwarded to another interface.
1300 void dev_disable_lro(struct net_device *dev)
1302 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1303 dev->ethtool_ops->set_flags) {
1304 u32 flags = dev->ethtool_ops->get_flags(dev);
1305 if (flags & ETH_FLAG_LRO) {
1306 flags &= ~ETH_FLAG_LRO;
1307 dev->ethtool_ops->set_flags(dev, flags);
1310 WARN_ON(dev->features & NETIF_F_LRO);
1312 EXPORT_SYMBOL(dev_disable_lro);
1315 static int dev_boot_phase = 1;
1318 * Device change register/unregister. These are not inline or static
1319 * as we export them to the world.
1323 * register_netdevice_notifier - register a network notifier block
1326 * Register a notifier to be called when network device events occur.
1327 * The notifier passed is linked into the kernel structures and must
1328 * not be reused until it has been unregistered. A negative errno code
1329 * is returned on a failure.
1331 * When registered all registration and up events are replayed
1332 * to the new notifier to allow device to have a race free
1333 * view of the network device list.
1336 int register_netdevice_notifier(struct notifier_block *nb)
1338 struct net_device *dev;
1339 struct net_device *last;
1344 err = raw_notifier_chain_register(&netdev_chain, nb);
1350 for_each_netdev(net, dev) {
1351 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1352 err = notifier_to_errno(err);
1356 if (!(dev->flags & IFF_UP))
1359 nb->notifier_call(nb, NETDEV_UP, dev);
1370 for_each_netdev(net, dev) {
1374 if (dev->flags & IFF_UP) {
1375 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1376 nb->notifier_call(nb, NETDEV_DOWN, dev);
1378 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1379 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1383 raw_notifier_chain_unregister(&netdev_chain, nb);
1386 EXPORT_SYMBOL(register_netdevice_notifier);
1389 * unregister_netdevice_notifier - unregister a network notifier block
1392 * Unregister a notifier previously registered by
1393 * register_netdevice_notifier(). The notifier is unlinked into the
1394 * kernel structures and may then be reused. A negative errno code
1395 * is returned on a failure.
1398 int unregister_netdevice_notifier(struct notifier_block *nb)
1403 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1407 EXPORT_SYMBOL(unregister_netdevice_notifier);
1410 * call_netdevice_notifiers - call all network notifier blocks
1411 * @val: value passed unmodified to notifier function
1412 * @dev: net_device pointer passed unmodified to notifier function
1414 * Call all network notifier blocks. Parameters and return value
1415 * are as for raw_notifier_call_chain().
1418 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1420 return raw_notifier_call_chain(&netdev_chain, val, dev);
1423 /* When > 0 there are consumers of rx skb time stamps */
1424 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1426 void net_enable_timestamp(void)
1428 atomic_inc(&netstamp_needed);
1430 EXPORT_SYMBOL(net_enable_timestamp);
1432 void net_disable_timestamp(void)
1434 atomic_dec(&netstamp_needed);
1436 EXPORT_SYMBOL(net_disable_timestamp);
1438 static inline void net_timestamp(struct sk_buff *skb)
1440 if (atomic_read(&netstamp_needed))
1441 __net_timestamp(skb);
1443 skb->tstamp.tv64 = 0;
1447 * dev_forward_skb - loopback an skb to another netif
1449 * @dev: destination network device
1450 * @skb: buffer to forward
1453 * NET_RX_SUCCESS (no congestion)
1454 * NET_RX_DROP (packet was dropped, but freed)
1456 * dev_forward_skb can be used for injecting an skb from the
1457 * start_xmit function of one device into the receive queue
1458 * of another device.
1460 * The receiving device may be in another namespace, so
1461 * we have to clear all information in the skb that could
1462 * impact namespace isolation.
1464 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1468 if (!(dev->flags & IFF_UP) ||
1469 (skb->len > (dev->mtu + dev->hard_header_len))) {
1473 skb_set_dev(skb, dev);
1474 skb->tstamp.tv64 = 0;
1475 skb->pkt_type = PACKET_HOST;
1476 skb->protocol = eth_type_trans(skb, dev);
1477 return netif_rx(skb);
1479 EXPORT_SYMBOL_GPL(dev_forward_skb);
1482 * Support routine. Sends outgoing frames to any network
1483 * taps currently in use.
1486 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1488 struct packet_type *ptype;
1490 #ifdef CONFIG_NET_CLS_ACT
1491 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1498 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1499 /* Never send packets back to the socket
1502 if ((ptype->dev == dev || !ptype->dev) &&
1503 (ptype->af_packet_priv == NULL ||
1504 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1505 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1509 /* skb->nh should be correctly
1510 set by sender, so that the second statement is
1511 just protection against buggy protocols.
1513 skb_reset_mac_header(skb2);
1515 if (skb_network_header(skb2) < skb2->data ||
1516 skb2->network_header > skb2->tail) {
1517 if (net_ratelimit())
1518 printk(KERN_CRIT "protocol %04x is "
1520 skb2->protocol, dev->name);
1521 skb_reset_network_header(skb2);
1524 skb2->transport_header = skb2->network_header;
1525 skb2->pkt_type = PACKET_OUTGOING;
1526 ptype->func(skb2, skb->dev, ptype, skb->dev);
1533 static inline void __netif_reschedule(struct Qdisc *q)
1535 struct softnet_data *sd;
1536 unsigned long flags;
1538 local_irq_save(flags);
1539 sd = &__get_cpu_var(softnet_data);
1540 q->next_sched = sd->output_queue;
1541 sd->output_queue = q;
1542 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1543 local_irq_restore(flags);
1546 void __netif_schedule(struct Qdisc *q)
1548 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1549 __netif_reschedule(q);
1551 EXPORT_SYMBOL(__netif_schedule);
1553 void dev_kfree_skb_irq(struct sk_buff *skb)
1555 if (atomic_dec_and_test(&skb->users)) {
1556 struct softnet_data *sd;
1557 unsigned long flags;
1559 local_irq_save(flags);
1560 sd = &__get_cpu_var(softnet_data);
1561 skb->next = sd->completion_queue;
1562 sd->completion_queue = skb;
1563 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1564 local_irq_restore(flags);
1567 EXPORT_SYMBOL(dev_kfree_skb_irq);
1569 void dev_kfree_skb_any(struct sk_buff *skb)
1571 if (in_irq() || irqs_disabled())
1572 dev_kfree_skb_irq(skb);
1576 EXPORT_SYMBOL(dev_kfree_skb_any);
1580 * netif_device_detach - mark device as removed
1581 * @dev: network device
1583 * Mark device as removed from system and therefore no longer available.
1585 void netif_device_detach(struct net_device *dev)
1587 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1588 netif_running(dev)) {
1589 netif_tx_stop_all_queues(dev);
1592 EXPORT_SYMBOL(netif_device_detach);
1595 * netif_device_attach - mark device as attached
1596 * @dev: network device
1598 * Mark device as attached from system and restart if needed.
1600 void netif_device_attach(struct net_device *dev)
1602 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1603 netif_running(dev)) {
1604 netif_tx_wake_all_queues(dev);
1605 __netdev_watchdog_up(dev);
1608 EXPORT_SYMBOL(netif_device_attach);
1610 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1612 return ((features & NETIF_F_GEN_CSUM) ||
1613 ((features & NETIF_F_IP_CSUM) &&
1614 protocol == htons(ETH_P_IP)) ||
1615 ((features & NETIF_F_IPV6_CSUM) &&
1616 protocol == htons(ETH_P_IPV6)) ||
1617 ((features & NETIF_F_FCOE_CRC) &&
1618 protocol == htons(ETH_P_FCOE)));
1621 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1623 if (can_checksum_protocol(dev->features, skb->protocol))
1626 if (skb->protocol == htons(ETH_P_8021Q)) {
1627 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1628 if (can_checksum_protocol(dev->features & dev->vlan_features,
1629 veh->h_vlan_encapsulated_proto))
1637 * skb_dev_set -- assign a new device to a buffer
1638 * @skb: buffer for the new device
1639 * @dev: network device
1641 * If an skb is owned by a device already, we have to reset
1642 * all data private to the namespace a device belongs to
1643 * before assigning it a new device.
1645 #ifdef CONFIG_NET_NS
1646 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1649 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1652 skb_init_secmark(skb);
1656 skb->ipvs_property = 0;
1657 #ifdef CONFIG_NET_SCHED
1663 EXPORT_SYMBOL(skb_set_dev);
1664 #endif /* CONFIG_NET_NS */
1667 * Invalidate hardware checksum when packet is to be mangled, and
1668 * complete checksum manually on outgoing path.
1670 int skb_checksum_help(struct sk_buff *skb)
1673 int ret = 0, offset;
1675 if (skb->ip_summed == CHECKSUM_COMPLETE)
1676 goto out_set_summed;
1678 if (unlikely(skb_shinfo(skb)->gso_size)) {
1679 /* Let GSO fix up the checksum. */
1680 goto out_set_summed;
1683 offset = skb->csum_start - skb_headroom(skb);
1684 BUG_ON(offset >= skb_headlen(skb));
1685 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1687 offset += skb->csum_offset;
1688 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1690 if (skb_cloned(skb) &&
1691 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1692 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1697 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1699 skb->ip_summed = CHECKSUM_NONE;
1703 EXPORT_SYMBOL(skb_checksum_help);
1706 * skb_gso_segment - Perform segmentation on skb.
1707 * @skb: buffer to segment
1708 * @features: features for the output path (see dev->features)
1710 * This function segments the given skb and returns a list of segments.
1712 * It may return NULL if the skb requires no segmentation. This is
1713 * only possible when GSO is used for verifying header integrity.
1715 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1717 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1718 struct packet_type *ptype;
1719 __be16 type = skb->protocol;
1722 skb_reset_mac_header(skb);
1723 skb->mac_len = skb->network_header - skb->mac_header;
1724 __skb_pull(skb, skb->mac_len);
1726 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1727 struct net_device *dev = skb->dev;
1728 struct ethtool_drvinfo info = {};
1730 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1731 dev->ethtool_ops->get_drvinfo(dev, &info);
1733 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1735 info.driver, dev ? dev->features : 0L,
1736 skb->sk ? skb->sk->sk_route_caps : 0L,
1737 skb->len, skb->data_len, skb->ip_summed);
1739 if (skb_header_cloned(skb) &&
1740 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1741 return ERR_PTR(err);
1745 list_for_each_entry_rcu(ptype,
1746 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1747 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1748 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1749 err = ptype->gso_send_check(skb);
1750 segs = ERR_PTR(err);
1751 if (err || skb_gso_ok(skb, features))
1753 __skb_push(skb, (skb->data -
1754 skb_network_header(skb)));
1756 segs = ptype->gso_segment(skb, features);
1762 __skb_push(skb, skb->data - skb_mac_header(skb));
1766 EXPORT_SYMBOL(skb_gso_segment);
1768 /* Take action when hardware reception checksum errors are detected. */
1770 void netdev_rx_csum_fault(struct net_device *dev)
1772 if (net_ratelimit()) {
1773 printk(KERN_ERR "%s: hw csum failure.\n",
1774 dev ? dev->name : "<unknown>");
1778 EXPORT_SYMBOL(netdev_rx_csum_fault);
1781 /* Actually, we should eliminate this check as soon as we know, that:
1782 * 1. IOMMU is present and allows to map all the memory.
1783 * 2. No high memory really exists on this machine.
1786 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1788 #ifdef CONFIG_HIGHMEM
1791 if (dev->features & NETIF_F_HIGHDMA)
1794 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1795 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1803 void (*destructor)(struct sk_buff *skb);
1806 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1808 static void dev_gso_skb_destructor(struct sk_buff *skb)
1810 struct dev_gso_cb *cb;
1813 struct sk_buff *nskb = skb->next;
1815 skb->next = nskb->next;
1818 } while (skb->next);
1820 cb = DEV_GSO_CB(skb);
1822 cb->destructor(skb);
1826 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1827 * @skb: buffer to segment
1829 * This function segments the given skb and stores the list of segments
1832 static int dev_gso_segment(struct sk_buff *skb)
1834 struct net_device *dev = skb->dev;
1835 struct sk_buff *segs;
1836 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1839 segs = skb_gso_segment(skb, features);
1841 /* Verifying header integrity only. */
1846 return PTR_ERR(segs);
1849 DEV_GSO_CB(skb)->destructor = skb->destructor;
1850 skb->destructor = dev_gso_skb_destructor;
1855 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1856 struct netdev_queue *txq)
1858 const struct net_device_ops *ops = dev->netdev_ops;
1859 int rc = NETDEV_TX_OK;
1861 if (likely(!skb->next)) {
1862 if (!list_empty(&ptype_all))
1863 dev_queue_xmit_nit(skb, dev);
1865 if (netif_needs_gso(dev, skb)) {
1866 if (unlikely(dev_gso_segment(skb)))
1873 * If device doesnt need skb->dst, release it right now while
1874 * its hot in this cpu cache
1876 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1879 rc = ops->ndo_start_xmit(skb, dev);
1880 if (rc == NETDEV_TX_OK)
1881 txq_trans_update(txq);
1883 * TODO: if skb_orphan() was called by
1884 * dev->hard_start_xmit() (for example, the unmodified
1885 * igb driver does that; bnx2 doesn't), then
1886 * skb_tx_software_timestamp() will be unable to send
1887 * back the time stamp.
1889 * How can this be prevented? Always create another
1890 * reference to the socket before calling
1891 * dev->hard_start_xmit()? Prevent that skb_orphan()
1892 * does anything in dev->hard_start_xmit() by clearing
1893 * the skb destructor before the call and restoring it
1894 * afterwards, then doing the skb_orphan() ourselves?
1901 struct sk_buff *nskb = skb->next;
1903 skb->next = nskb->next;
1907 * If device doesnt need nskb->dst, release it right now while
1908 * its hot in this cpu cache
1910 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1913 rc = ops->ndo_start_xmit(nskb, dev);
1914 if (unlikely(rc != NETDEV_TX_OK)) {
1915 if (rc & ~NETDEV_TX_MASK)
1916 goto out_kfree_gso_skb;
1917 nskb->next = skb->next;
1921 txq_trans_update(txq);
1922 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1923 return NETDEV_TX_BUSY;
1924 } while (skb->next);
1927 if (likely(skb->next == NULL))
1928 skb->destructor = DEV_GSO_CB(skb)->destructor;
1934 static u32 skb_tx_hashrnd;
1936 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1940 if (skb_rx_queue_recorded(skb)) {
1941 hash = skb_get_rx_queue(skb);
1942 while (unlikely(hash >= dev->real_num_tx_queues))
1943 hash -= dev->real_num_tx_queues;
1947 if (skb->sk && skb->sk->sk_hash)
1948 hash = skb->sk->sk_hash;
1950 hash = skb->protocol;
1952 hash = jhash_1word(hash, skb_tx_hashrnd);
1954 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1956 EXPORT_SYMBOL(skb_tx_hash);
1958 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1960 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1961 if (net_ratelimit()) {
1962 WARN(1, "%s selects TX queue %d, but "
1963 "real number of TX queues is %d\n",
1964 dev->name, queue_index,
1965 dev->real_num_tx_queues);
1972 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1973 struct sk_buff *skb)
1976 struct sock *sk = skb->sk;
1978 if (sk_tx_queue_recorded(sk)) {
1979 queue_index = sk_tx_queue_get(sk);
1981 const struct net_device_ops *ops = dev->netdev_ops;
1983 if (ops->ndo_select_queue) {
1984 queue_index = ops->ndo_select_queue(dev, skb);
1985 queue_index = dev_cap_txqueue(dev, queue_index);
1988 if (dev->real_num_tx_queues > 1)
1989 queue_index = skb_tx_hash(dev, skb);
1992 struct dst_entry *dst = rcu_dereference_bh(sk->sk_dst_cache);
1994 if (dst && skb_dst(skb) == dst)
1995 sk_tx_queue_set(sk, queue_index);
2000 skb_set_queue_mapping(skb, queue_index);
2001 return netdev_get_tx_queue(dev, queue_index);
2004 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2005 struct net_device *dev,
2006 struct netdev_queue *txq)
2008 spinlock_t *root_lock = qdisc_lock(q);
2011 spin_lock(root_lock);
2012 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2015 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2016 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2018 * This is a work-conserving queue; there are no old skbs
2019 * waiting to be sent out; and the qdisc is not running -
2020 * xmit the skb directly.
2022 __qdisc_update_bstats(q, skb->len);
2023 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2026 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2028 rc = NET_XMIT_SUCCESS;
2030 rc = qdisc_enqueue_root(skb, q);
2033 spin_unlock(root_lock);
2039 * Returns true if either:
2040 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2041 * 2. skb is fragmented and the device does not support SG, or if
2042 * at least one of fragments is in highmem and device does not
2043 * support DMA from it.
2045 static inline int skb_needs_linearize(struct sk_buff *skb,
2046 struct net_device *dev)
2048 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2049 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2050 illegal_highdma(dev, skb)));
2054 * dev_queue_xmit - transmit a buffer
2055 * @skb: buffer to transmit
2057 * Queue a buffer for transmission to a network device. The caller must
2058 * have set the device and priority and built the buffer before calling
2059 * this function. The function can be called from an interrupt.
2061 * A negative errno code is returned on a failure. A success does not
2062 * guarantee the frame will be transmitted as it may be dropped due
2063 * to congestion or traffic shaping.
2065 * -----------------------------------------------------------------------------------
2066 * I notice this method can also return errors from the queue disciplines,
2067 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2070 * Regardless of the return value, the skb is consumed, so it is currently
2071 * difficult to retry a send to this method. (You can bump the ref count
2072 * before sending to hold a reference for retry if you are careful.)
2074 * When calling this method, interrupts MUST be enabled. This is because
2075 * the BH enable code must have IRQs enabled so that it will not deadlock.
2078 int dev_queue_xmit(struct sk_buff *skb)
2080 struct net_device *dev = skb->dev;
2081 struct netdev_queue *txq;
2085 /* GSO will handle the following emulations directly. */
2086 if (netif_needs_gso(dev, skb))
2089 /* Convert a paged skb to linear, if required */
2090 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2093 /* If packet is not checksummed and device does not support
2094 * checksumming for this protocol, complete checksumming here.
2096 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2097 skb_set_transport_header(skb, skb->csum_start -
2099 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2104 /* Disable soft irqs for various locks below. Also
2105 * stops preemption for RCU.
2109 txq = dev_pick_tx(dev, skb);
2110 q = rcu_dereference_bh(txq->qdisc);
2112 #ifdef CONFIG_NET_CLS_ACT
2113 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2116 rc = __dev_xmit_skb(skb, q, dev, txq);
2120 /* The device has no queue. Common case for software devices:
2121 loopback, all the sorts of tunnels...
2123 Really, it is unlikely that netif_tx_lock protection is necessary
2124 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2126 However, it is possible, that they rely on protection
2129 Check this and shot the lock. It is not prone from deadlocks.
2130 Either shot noqueue qdisc, it is even simpler 8)
2132 if (dev->flags & IFF_UP) {
2133 int cpu = smp_processor_id(); /* ok because BHs are off */
2135 if (txq->xmit_lock_owner != cpu) {
2137 HARD_TX_LOCK(dev, txq, cpu);
2139 if (!netif_tx_queue_stopped(txq)) {
2140 rc = dev_hard_start_xmit(skb, dev, txq);
2141 if (dev_xmit_complete(rc)) {
2142 HARD_TX_UNLOCK(dev, txq);
2146 HARD_TX_UNLOCK(dev, txq);
2147 if (net_ratelimit())
2148 printk(KERN_CRIT "Virtual device %s asks to "
2149 "queue packet!\n", dev->name);
2151 /* Recursion is detected! It is possible,
2153 if (net_ratelimit())
2154 printk(KERN_CRIT "Dead loop on virtual device "
2155 "%s, fix it urgently!\n", dev->name);
2160 rcu_read_unlock_bh();
2166 rcu_read_unlock_bh();
2169 EXPORT_SYMBOL(dev_queue_xmit);
2172 /*=======================================================================
2174 =======================================================================*/
2176 int netdev_max_backlog __read_mostly = 1000;
2177 int netdev_budget __read_mostly = 300;
2178 int weight_p __read_mostly = 64; /* old backlog weight */
2180 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2184 * netif_rx - post buffer to the network code
2185 * @skb: buffer to post
2187 * This function receives a packet from a device driver and queues it for
2188 * the upper (protocol) levels to process. It always succeeds. The buffer
2189 * may be dropped during processing for congestion control or by the
2193 * NET_RX_SUCCESS (no congestion)
2194 * NET_RX_DROP (packet was dropped)
2198 int netif_rx(struct sk_buff *skb)
2200 struct softnet_data *queue;
2201 unsigned long flags;
2203 /* if netpoll wants it, pretend we never saw it */
2204 if (netpoll_rx(skb))
2207 if (!skb->tstamp.tv64)
2211 * The code is rearranged so that the path is the most
2212 * short when CPU is congested, but is still operating.
2214 local_irq_save(flags);
2215 queue = &__get_cpu_var(softnet_data);
2217 __get_cpu_var(netdev_rx_stat).total++;
2218 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2219 if (queue->input_pkt_queue.qlen) {
2221 __skb_queue_tail(&queue->input_pkt_queue, skb);
2222 local_irq_restore(flags);
2223 return NET_RX_SUCCESS;
2226 napi_schedule(&queue->backlog);
2230 __get_cpu_var(netdev_rx_stat).dropped++;
2231 local_irq_restore(flags);
2236 EXPORT_SYMBOL(netif_rx);
2238 int netif_rx_ni(struct sk_buff *skb)
2243 err = netif_rx(skb);
2244 if (local_softirq_pending())
2250 EXPORT_SYMBOL(netif_rx_ni);
2252 static void net_tx_action(struct softirq_action *h)
2254 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2256 if (sd->completion_queue) {
2257 struct sk_buff *clist;
2259 local_irq_disable();
2260 clist = sd->completion_queue;
2261 sd->completion_queue = NULL;
2265 struct sk_buff *skb = clist;
2266 clist = clist->next;
2268 WARN_ON(atomic_read(&skb->users));
2273 if (sd->output_queue) {
2276 local_irq_disable();
2277 head = sd->output_queue;
2278 sd->output_queue = NULL;
2282 struct Qdisc *q = head;
2283 spinlock_t *root_lock;
2285 head = head->next_sched;
2287 root_lock = qdisc_lock(q);
2288 if (spin_trylock(root_lock)) {
2289 smp_mb__before_clear_bit();
2290 clear_bit(__QDISC_STATE_SCHED,
2293 spin_unlock(root_lock);
2295 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2297 __netif_reschedule(q);
2299 smp_mb__before_clear_bit();
2300 clear_bit(__QDISC_STATE_SCHED,
2308 static inline int deliver_skb(struct sk_buff *skb,
2309 struct packet_type *pt_prev,
2310 struct net_device *orig_dev)
2312 atomic_inc(&skb->users);
2313 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2316 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2318 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2319 /* This hook is defined here for ATM LANE */
2320 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2321 unsigned char *addr) __read_mostly;
2322 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2326 * If bridge module is loaded call bridging hook.
2327 * returns NULL if packet was consumed.
2329 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2330 struct sk_buff *skb) __read_mostly;
2331 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2333 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2334 struct packet_type **pt_prev, int *ret,
2335 struct net_device *orig_dev)
2337 struct net_bridge_port *port;
2339 if (skb->pkt_type == PACKET_LOOPBACK ||
2340 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2344 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2348 return br_handle_frame_hook(port, skb);
2351 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2354 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2355 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2356 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2358 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2359 struct packet_type **pt_prev,
2361 struct net_device *orig_dev)
2363 if (skb->dev->macvlan_port == NULL)
2367 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2370 return macvlan_handle_frame_hook(skb);
2373 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2376 #ifdef CONFIG_NET_CLS_ACT
2377 /* TODO: Maybe we should just force sch_ingress to be compiled in
2378 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2379 * a compare and 2 stores extra right now if we dont have it on
2380 * but have CONFIG_NET_CLS_ACT
2381 * NOTE: This doesnt stop any functionality; if you dont have
2382 * the ingress scheduler, you just cant add policies on ingress.
2385 static int ing_filter(struct sk_buff *skb)
2387 struct net_device *dev = skb->dev;
2388 u32 ttl = G_TC_RTTL(skb->tc_verd);
2389 struct netdev_queue *rxq;
2390 int result = TC_ACT_OK;
2393 if (MAX_RED_LOOP < ttl++) {
2395 "Redir loop detected Dropping packet (%d->%d)\n",
2396 skb->skb_iif, dev->ifindex);
2400 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2401 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2403 rxq = &dev->rx_queue;
2406 if (q != &noop_qdisc) {
2407 spin_lock(qdisc_lock(q));
2408 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2409 result = qdisc_enqueue_root(skb, q);
2410 spin_unlock(qdisc_lock(q));
2416 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2417 struct packet_type **pt_prev,
2418 int *ret, struct net_device *orig_dev)
2420 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2424 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2427 /* Huh? Why does turning on AF_PACKET affect this? */
2428 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2431 switch (ing_filter(skb)) {
2445 * netif_nit_deliver - deliver received packets to network taps
2448 * This function is used to deliver incoming packets to network
2449 * taps. It should be used when the normal netif_receive_skb path
2450 * is bypassed, for example because of VLAN acceleration.
2452 void netif_nit_deliver(struct sk_buff *skb)
2454 struct packet_type *ptype;
2456 if (list_empty(&ptype_all))
2459 skb_reset_network_header(skb);
2460 skb_reset_transport_header(skb);
2461 skb->mac_len = skb->network_header - skb->mac_header;
2464 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2465 if (!ptype->dev || ptype->dev == skb->dev)
2466 deliver_skb(skb, ptype, skb->dev);
2472 * netif_receive_skb - process receive buffer from network
2473 * @skb: buffer to process
2475 * netif_receive_skb() is the main receive data processing function.
2476 * It always succeeds. The buffer may be dropped during processing
2477 * for congestion control or by the protocol layers.
2479 * This function may only be called from softirq context and interrupts
2480 * should be enabled.
2482 * Return values (usually ignored):
2483 * NET_RX_SUCCESS: no congestion
2484 * NET_RX_DROP: packet was dropped
2486 int netif_receive_skb(struct sk_buff *skb)
2488 struct packet_type *ptype, *pt_prev;
2489 struct net_device *orig_dev;
2490 struct net_device *master;
2491 struct net_device *null_or_orig;
2492 struct net_device *null_or_bond;
2493 int ret = NET_RX_DROP;
2496 if (!skb->tstamp.tv64)
2499 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2500 return NET_RX_SUCCESS;
2502 /* if we've gotten here through NAPI, check netpoll */
2503 if (netpoll_receive_skb(skb))
2507 skb->skb_iif = skb->dev->ifindex;
2509 null_or_orig = NULL;
2510 orig_dev = skb->dev;
2511 master = ACCESS_ONCE(orig_dev->master);
2513 if (skb_bond_should_drop(skb, master))
2514 null_or_orig = orig_dev; /* deliver only exact match */
2519 __get_cpu_var(netdev_rx_stat).total++;
2521 skb_reset_network_header(skb);
2522 skb_reset_transport_header(skb);
2523 skb->mac_len = skb->network_header - skb->mac_header;
2529 #ifdef CONFIG_NET_CLS_ACT
2530 if (skb->tc_verd & TC_NCLS) {
2531 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2536 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2537 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2538 ptype->dev == orig_dev) {
2540 ret = deliver_skb(skb, pt_prev, orig_dev);
2545 #ifdef CONFIG_NET_CLS_ACT
2546 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2552 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2555 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2560 * Make sure frames received on VLAN interfaces stacked on
2561 * bonding interfaces still make their way to any base bonding
2562 * device that may have registered for a specific ptype. The
2563 * handler may have to adjust skb->dev and orig_dev.
2565 null_or_bond = NULL;
2566 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2567 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2568 null_or_bond = vlan_dev_real_dev(skb->dev);
2571 type = skb->protocol;
2572 list_for_each_entry_rcu(ptype,
2573 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2574 if (ptype->type == type && (ptype->dev == null_or_orig ||
2575 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2576 ptype->dev == null_or_bond)) {
2578 ret = deliver_skb(skb, pt_prev, orig_dev);
2584 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2587 /* Jamal, now you will not able to escape explaining
2588 * me how you were going to use this. :-)
2597 EXPORT_SYMBOL(netif_receive_skb);
2599 /* Network device is going away, flush any packets still pending */
2600 static void flush_backlog(void *arg)
2602 struct net_device *dev = arg;
2603 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2604 struct sk_buff *skb, *tmp;
2606 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2607 if (skb->dev == dev) {
2608 __skb_unlink(skb, &queue->input_pkt_queue);
2613 static int napi_gro_complete(struct sk_buff *skb)
2615 struct packet_type *ptype;
2616 __be16 type = skb->protocol;
2617 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2620 if (NAPI_GRO_CB(skb)->count == 1) {
2621 skb_shinfo(skb)->gso_size = 0;
2626 list_for_each_entry_rcu(ptype, head, list) {
2627 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2630 err = ptype->gro_complete(skb);
2636 WARN_ON(&ptype->list == head);
2638 return NET_RX_SUCCESS;
2642 return netif_receive_skb(skb);
2645 static void napi_gro_flush(struct napi_struct *napi)
2647 struct sk_buff *skb, *next;
2649 for (skb = napi->gro_list; skb; skb = next) {
2652 napi_gro_complete(skb);
2655 napi->gro_count = 0;
2656 napi->gro_list = NULL;
2659 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2661 struct sk_buff **pp = NULL;
2662 struct packet_type *ptype;
2663 __be16 type = skb->protocol;
2664 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2667 enum gro_result ret;
2669 if (!(skb->dev->features & NETIF_F_GRO))
2672 if (skb_is_gso(skb) || skb_has_frags(skb))
2676 list_for_each_entry_rcu(ptype, head, list) {
2677 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2680 skb_set_network_header(skb, skb_gro_offset(skb));
2681 mac_len = skb->network_header - skb->mac_header;
2682 skb->mac_len = mac_len;
2683 NAPI_GRO_CB(skb)->same_flow = 0;
2684 NAPI_GRO_CB(skb)->flush = 0;
2685 NAPI_GRO_CB(skb)->free = 0;
2687 pp = ptype->gro_receive(&napi->gro_list, skb);
2692 if (&ptype->list == head)
2695 same_flow = NAPI_GRO_CB(skb)->same_flow;
2696 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2699 struct sk_buff *nskb = *pp;
2703 napi_gro_complete(nskb);
2710 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2714 NAPI_GRO_CB(skb)->count = 1;
2715 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2716 skb->next = napi->gro_list;
2717 napi->gro_list = skb;
2721 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2722 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2724 BUG_ON(skb->end - skb->tail < grow);
2726 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2729 skb->data_len -= grow;
2731 skb_shinfo(skb)->frags[0].page_offset += grow;
2732 skb_shinfo(skb)->frags[0].size -= grow;
2734 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2735 put_page(skb_shinfo(skb)->frags[0].page);
2736 memmove(skb_shinfo(skb)->frags,
2737 skb_shinfo(skb)->frags + 1,
2738 --skb_shinfo(skb)->nr_frags);
2749 EXPORT_SYMBOL(dev_gro_receive);
2752 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2756 if (netpoll_rx_on(skb))
2759 for (p = napi->gro_list; p; p = p->next) {
2760 NAPI_GRO_CB(p)->same_flow =
2761 (p->dev == skb->dev) &&
2762 !compare_ether_header(skb_mac_header(p),
2763 skb_gro_mac_header(skb));
2764 NAPI_GRO_CB(p)->flush = 0;
2767 return dev_gro_receive(napi, skb);
2770 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2774 if (netif_receive_skb(skb))
2779 case GRO_MERGED_FREE:
2790 EXPORT_SYMBOL(napi_skb_finish);
2792 void skb_gro_reset_offset(struct sk_buff *skb)
2794 NAPI_GRO_CB(skb)->data_offset = 0;
2795 NAPI_GRO_CB(skb)->frag0 = NULL;
2796 NAPI_GRO_CB(skb)->frag0_len = 0;
2798 if (skb->mac_header == skb->tail &&
2799 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2800 NAPI_GRO_CB(skb)->frag0 =
2801 page_address(skb_shinfo(skb)->frags[0].page) +
2802 skb_shinfo(skb)->frags[0].page_offset;
2803 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2806 EXPORT_SYMBOL(skb_gro_reset_offset);
2808 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2810 skb_gro_reset_offset(skb);
2812 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2814 EXPORT_SYMBOL(napi_gro_receive);
2816 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2818 __skb_pull(skb, skb_headlen(skb));
2819 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2823 EXPORT_SYMBOL(napi_reuse_skb);
2825 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2827 struct sk_buff *skb = napi->skb;
2830 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2836 EXPORT_SYMBOL(napi_get_frags);
2838 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2844 skb->protocol = eth_type_trans(skb, skb->dev);
2846 if (ret == GRO_HELD)
2847 skb_gro_pull(skb, -ETH_HLEN);
2848 else if (netif_receive_skb(skb))
2853 case GRO_MERGED_FREE:
2854 napi_reuse_skb(napi, skb);
2863 EXPORT_SYMBOL(napi_frags_finish);
2865 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2867 struct sk_buff *skb = napi->skb;
2874 skb_reset_mac_header(skb);
2875 skb_gro_reset_offset(skb);
2877 off = skb_gro_offset(skb);
2878 hlen = off + sizeof(*eth);
2879 eth = skb_gro_header_fast(skb, off);
2880 if (skb_gro_header_hard(skb, hlen)) {
2881 eth = skb_gro_header_slow(skb, hlen, off);
2882 if (unlikely(!eth)) {
2883 napi_reuse_skb(napi, skb);
2889 skb_gro_pull(skb, sizeof(*eth));
2892 * This works because the only protocols we care about don't require
2893 * special handling. We'll fix it up properly at the end.
2895 skb->protocol = eth->h_proto;
2900 EXPORT_SYMBOL(napi_frags_skb);
2902 gro_result_t napi_gro_frags(struct napi_struct *napi)
2904 struct sk_buff *skb = napi_frags_skb(napi);
2909 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2911 EXPORT_SYMBOL(napi_gro_frags);
2913 static int process_backlog(struct napi_struct *napi, int quota)
2916 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2917 unsigned long start_time = jiffies;
2919 napi->weight = weight_p;
2921 struct sk_buff *skb;
2923 local_irq_disable();
2924 skb = __skb_dequeue(&queue->input_pkt_queue);
2926 __napi_complete(napi);
2932 netif_receive_skb(skb);
2933 } while (++work < quota && jiffies == start_time);
2939 * __napi_schedule - schedule for receive
2940 * @n: entry to schedule
2942 * The entry's receive function will be scheduled to run
2944 void __napi_schedule(struct napi_struct *n)
2946 unsigned long flags;
2948 local_irq_save(flags);
2949 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2950 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2951 local_irq_restore(flags);
2953 EXPORT_SYMBOL(__napi_schedule);
2955 void __napi_complete(struct napi_struct *n)
2957 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2958 BUG_ON(n->gro_list);
2960 list_del(&n->poll_list);
2961 smp_mb__before_clear_bit();
2962 clear_bit(NAPI_STATE_SCHED, &n->state);
2964 EXPORT_SYMBOL(__napi_complete);
2966 void napi_complete(struct napi_struct *n)
2968 unsigned long flags;
2971 * don't let napi dequeue from the cpu poll list
2972 * just in case its running on a different cpu
2974 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2978 local_irq_save(flags);
2980 local_irq_restore(flags);
2982 EXPORT_SYMBOL(napi_complete);
2984 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2985 int (*poll)(struct napi_struct *, int), int weight)
2987 INIT_LIST_HEAD(&napi->poll_list);
2988 napi->gro_count = 0;
2989 napi->gro_list = NULL;
2992 napi->weight = weight;
2993 list_add(&napi->dev_list, &dev->napi_list);
2995 #ifdef CONFIG_NETPOLL
2996 spin_lock_init(&napi->poll_lock);
2997 napi->poll_owner = -1;
2999 set_bit(NAPI_STATE_SCHED, &napi->state);
3001 EXPORT_SYMBOL(netif_napi_add);
3003 void netif_napi_del(struct napi_struct *napi)
3005 struct sk_buff *skb, *next;
3007 list_del_init(&napi->dev_list);
3008 napi_free_frags(napi);
3010 for (skb = napi->gro_list; skb; skb = next) {
3016 napi->gro_list = NULL;
3017 napi->gro_count = 0;
3019 EXPORT_SYMBOL(netif_napi_del);
3022 static void net_rx_action(struct softirq_action *h)
3024 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3025 unsigned long time_limit = jiffies + 2;
3026 int budget = netdev_budget;
3029 local_irq_disable();
3031 while (!list_empty(list)) {
3032 struct napi_struct *n;
3035 /* If softirq window is exhuasted then punt.
3036 * Allow this to run for 2 jiffies since which will allow
3037 * an average latency of 1.5/HZ.
3039 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3044 /* Even though interrupts have been re-enabled, this
3045 * access is safe because interrupts can only add new
3046 * entries to the tail of this list, and only ->poll()
3047 * calls can remove this head entry from the list.
3049 n = list_first_entry(list, struct napi_struct, poll_list);
3051 have = netpoll_poll_lock(n);
3055 /* This NAPI_STATE_SCHED test is for avoiding a race
3056 * with netpoll's poll_napi(). Only the entity which
3057 * obtains the lock and sees NAPI_STATE_SCHED set will
3058 * actually make the ->poll() call. Therefore we avoid
3059 * accidently calling ->poll() when NAPI is not scheduled.
3062 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3063 work = n->poll(n, weight);
3067 WARN_ON_ONCE(work > weight);
3071 local_irq_disable();
3073 /* Drivers must not modify the NAPI state if they
3074 * consume the entire weight. In such cases this code
3075 * still "owns" the NAPI instance and therefore can
3076 * move the instance around on the list at-will.
3078 if (unlikely(work == weight)) {
3079 if (unlikely(napi_disable_pending(n))) {
3082 local_irq_disable();
3084 list_move_tail(&n->poll_list, list);
3087 netpoll_poll_unlock(have);
3092 #ifdef CONFIG_NET_DMA
3094 * There may not be any more sk_buffs coming right now, so push
3095 * any pending DMA copies to hardware
3097 dma_issue_pending_all();
3103 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3104 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3108 static gifconf_func_t *gifconf_list[NPROTO];
3111 * register_gifconf - register a SIOCGIF handler
3112 * @family: Address family
3113 * @gifconf: Function handler
3115 * Register protocol dependent address dumping routines. The handler
3116 * that is passed must not be freed or reused until it has been replaced
3117 * by another handler.
3119 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3121 if (family >= NPROTO)
3123 gifconf_list[family] = gifconf;
3126 EXPORT_SYMBOL(register_gifconf);
3130 * Map an interface index to its name (SIOCGIFNAME)
3134 * We need this ioctl for efficient implementation of the
3135 * if_indextoname() function required by the IPv6 API. Without
3136 * it, we would have to search all the interfaces to find a
3140 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3142 struct net_device *dev;
3146 * Fetch the caller's info block.
3149 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3153 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3159 strcpy(ifr.ifr_name, dev->name);
3162 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3168 * Perform a SIOCGIFCONF call. This structure will change
3169 * size eventually, and there is nothing I can do about it.
3170 * Thus we will need a 'compatibility mode'.
3173 static int dev_ifconf(struct net *net, char __user *arg)
3176 struct net_device *dev;
3183 * Fetch the caller's info block.
3186 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3193 * Loop over the interfaces, and write an info block for each.
3197 for_each_netdev(net, dev) {
3198 for (i = 0; i < NPROTO; i++) {
3199 if (gifconf_list[i]) {
3202 done = gifconf_list[i](dev, NULL, 0);
3204 done = gifconf_list[i](dev, pos + total,
3214 * All done. Write the updated control block back to the caller.
3216 ifc.ifc_len = total;
3219 * Both BSD and Solaris return 0 here, so we do too.
3221 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3224 #ifdef CONFIG_PROC_FS
3226 * This is invoked by the /proc filesystem handler to display a device
3229 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3232 struct net *net = seq_file_net(seq);
3234 struct net_device *dev;
3238 return SEQ_START_TOKEN;
3241 for_each_netdev_rcu(net, dev)
3248 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3250 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3251 first_net_device(seq_file_net(seq)) :
3252 next_net_device((struct net_device *)v);
3255 return rcu_dereference(dev);
3258 void dev_seq_stop(struct seq_file *seq, void *v)
3264 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3266 const struct net_device_stats *stats = dev_get_stats(dev);
3268 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3269 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3270 dev->name, stats->rx_bytes, stats->rx_packets,
3272 stats->rx_dropped + stats->rx_missed_errors,
3273 stats->rx_fifo_errors,
3274 stats->rx_length_errors + stats->rx_over_errors +
3275 stats->rx_crc_errors + stats->rx_frame_errors,
3276 stats->rx_compressed, stats->multicast,
3277 stats->tx_bytes, stats->tx_packets,
3278 stats->tx_errors, stats->tx_dropped,
3279 stats->tx_fifo_errors, stats->collisions,
3280 stats->tx_carrier_errors +
3281 stats->tx_aborted_errors +
3282 stats->tx_window_errors +
3283 stats->tx_heartbeat_errors,
3284 stats->tx_compressed);
3288 * Called from the PROCfs module. This now uses the new arbitrary sized
3289 * /proc/net interface to create /proc/net/dev
3291 static int dev_seq_show(struct seq_file *seq, void *v)
3293 if (v == SEQ_START_TOKEN)
3294 seq_puts(seq, "Inter-| Receive "
3296 " face |bytes packets errs drop fifo frame "
3297 "compressed multicast|bytes packets errs "
3298 "drop fifo colls carrier compressed\n");
3300 dev_seq_printf_stats(seq, v);
3304 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3306 struct netif_rx_stats *rc = NULL;
3308 while (*pos < nr_cpu_ids)
3309 if (cpu_online(*pos)) {
3310 rc = &per_cpu(netdev_rx_stat, *pos);
3317 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3319 return softnet_get_online(pos);
3322 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3325 return softnet_get_online(pos);
3328 static void softnet_seq_stop(struct seq_file *seq, void *v)
3332 static int softnet_seq_show(struct seq_file *seq, void *v)
3334 struct netif_rx_stats *s = v;
3336 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3337 s->total, s->dropped, s->time_squeeze, 0,
3338 0, 0, 0, 0, /* was fastroute */
3343 static const struct seq_operations dev_seq_ops = {
3344 .start = dev_seq_start,
3345 .next = dev_seq_next,
3346 .stop = dev_seq_stop,
3347 .show = dev_seq_show,
3350 static int dev_seq_open(struct inode *inode, struct file *file)
3352 return seq_open_net(inode, file, &dev_seq_ops,
3353 sizeof(struct seq_net_private));
3356 static const struct file_operations dev_seq_fops = {
3357 .owner = THIS_MODULE,
3358 .open = dev_seq_open,
3360 .llseek = seq_lseek,
3361 .release = seq_release_net,
3364 static const struct seq_operations softnet_seq_ops = {
3365 .start = softnet_seq_start,
3366 .next = softnet_seq_next,
3367 .stop = softnet_seq_stop,
3368 .show = softnet_seq_show,
3371 static int softnet_seq_open(struct inode *inode, struct file *file)
3373 return seq_open(file, &softnet_seq_ops);
3376 static const struct file_operations softnet_seq_fops = {
3377 .owner = THIS_MODULE,
3378 .open = softnet_seq_open,
3380 .llseek = seq_lseek,
3381 .release = seq_release,
3384 static void *ptype_get_idx(loff_t pos)
3386 struct packet_type *pt = NULL;
3390 list_for_each_entry_rcu(pt, &ptype_all, list) {
3396 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3397 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3406 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3410 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3413 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3415 struct packet_type *pt;
3416 struct list_head *nxt;
3420 if (v == SEQ_START_TOKEN)
3421 return ptype_get_idx(0);
3424 nxt = pt->list.next;
3425 if (pt->type == htons(ETH_P_ALL)) {
3426 if (nxt != &ptype_all)
3429 nxt = ptype_base[0].next;
3431 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3433 while (nxt == &ptype_base[hash]) {
3434 if (++hash >= PTYPE_HASH_SIZE)
3436 nxt = ptype_base[hash].next;
3439 return list_entry(nxt, struct packet_type, list);
3442 static void ptype_seq_stop(struct seq_file *seq, void *v)
3448 static int ptype_seq_show(struct seq_file *seq, void *v)
3450 struct packet_type *pt = v;
3452 if (v == SEQ_START_TOKEN)
3453 seq_puts(seq, "Type Device Function\n");
3454 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3455 if (pt->type == htons(ETH_P_ALL))
3456 seq_puts(seq, "ALL ");
3458 seq_printf(seq, "%04x", ntohs(pt->type));
3460 seq_printf(seq, " %-8s %pF\n",
3461 pt->dev ? pt->dev->name : "", pt->func);
3467 static const struct seq_operations ptype_seq_ops = {
3468 .start = ptype_seq_start,
3469 .next = ptype_seq_next,
3470 .stop = ptype_seq_stop,
3471 .show = ptype_seq_show,
3474 static int ptype_seq_open(struct inode *inode, struct file *file)
3476 return seq_open_net(inode, file, &ptype_seq_ops,
3477 sizeof(struct seq_net_private));
3480 static const struct file_operations ptype_seq_fops = {
3481 .owner = THIS_MODULE,
3482 .open = ptype_seq_open,
3484 .llseek = seq_lseek,
3485 .release = seq_release_net,
3489 static int __net_init dev_proc_net_init(struct net *net)
3493 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3495 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3497 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3500 if (wext_proc_init(net))
3506 proc_net_remove(net, "ptype");
3508 proc_net_remove(net, "softnet_stat");
3510 proc_net_remove(net, "dev");
3514 static void __net_exit dev_proc_net_exit(struct net *net)
3516 wext_proc_exit(net);
3518 proc_net_remove(net, "ptype");
3519 proc_net_remove(net, "softnet_stat");
3520 proc_net_remove(net, "dev");
3523 static struct pernet_operations __net_initdata dev_proc_ops = {
3524 .init = dev_proc_net_init,
3525 .exit = dev_proc_net_exit,
3528 static int __init dev_proc_init(void)
3530 return register_pernet_subsys(&dev_proc_ops);
3533 #define dev_proc_init() 0
3534 #endif /* CONFIG_PROC_FS */
3538 * netdev_set_master - set up master/slave pair
3539 * @slave: slave device
3540 * @master: new master device
3542 * Changes the master device of the slave. Pass %NULL to break the
3543 * bonding. The caller must hold the RTNL semaphore. On a failure
3544 * a negative errno code is returned. On success the reference counts
3545 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3546 * function returns zero.
3548 int netdev_set_master(struct net_device *slave, struct net_device *master)
3550 struct net_device *old = slave->master;
3560 slave->master = master;
3568 slave->flags |= IFF_SLAVE;
3570 slave->flags &= ~IFF_SLAVE;
3572 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3575 EXPORT_SYMBOL(netdev_set_master);
3577 static void dev_change_rx_flags(struct net_device *dev, int flags)
3579 const struct net_device_ops *ops = dev->netdev_ops;
3581 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3582 ops->ndo_change_rx_flags(dev, flags);
3585 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3587 unsigned short old_flags = dev->flags;
3593 dev->flags |= IFF_PROMISC;
3594 dev->promiscuity += inc;
3595 if (dev->promiscuity == 0) {
3598 * If inc causes overflow, untouch promisc and return error.
3601 dev->flags &= ~IFF_PROMISC;
3603 dev->promiscuity -= inc;
3604 printk(KERN_WARNING "%s: promiscuity touches roof, "
3605 "set promiscuity failed, promiscuity feature "
3606 "of device might be broken.\n", dev->name);
3610 if (dev->flags != old_flags) {
3611 printk(KERN_INFO "device %s %s promiscuous mode\n",
3612 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3614 if (audit_enabled) {
3615 current_uid_gid(&uid, &gid);
3616 audit_log(current->audit_context, GFP_ATOMIC,
3617 AUDIT_ANOM_PROMISCUOUS,
3618 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3619 dev->name, (dev->flags & IFF_PROMISC),
3620 (old_flags & IFF_PROMISC),
3621 audit_get_loginuid(current),
3623 audit_get_sessionid(current));
3626 dev_change_rx_flags(dev, IFF_PROMISC);
3632 * dev_set_promiscuity - update promiscuity count on a device
3636 * Add or remove promiscuity from a device. While the count in the device
3637 * remains above zero the interface remains promiscuous. Once it hits zero
3638 * the device reverts back to normal filtering operation. A negative inc
3639 * value is used to drop promiscuity on the device.
3640 * Return 0 if successful or a negative errno code on error.
3642 int dev_set_promiscuity(struct net_device *dev, int inc)
3644 unsigned short old_flags = dev->flags;
3647 err = __dev_set_promiscuity(dev, inc);
3650 if (dev->flags != old_flags)
3651 dev_set_rx_mode(dev);
3654 EXPORT_SYMBOL(dev_set_promiscuity);
3657 * dev_set_allmulti - update allmulti count on a device
3661 * Add or remove reception of all multicast frames to a device. While the
3662 * count in the device remains above zero the interface remains listening
3663 * to all interfaces. Once it hits zero the device reverts back to normal
3664 * filtering operation. A negative @inc value is used to drop the counter
3665 * when releasing a resource needing all multicasts.
3666 * Return 0 if successful or a negative errno code on error.
3669 int dev_set_allmulti(struct net_device *dev, int inc)
3671 unsigned short old_flags = dev->flags;
3675 dev->flags |= IFF_ALLMULTI;
3676 dev->allmulti += inc;
3677 if (dev->allmulti == 0) {
3680 * If inc causes overflow, untouch allmulti and return error.
3683 dev->flags &= ~IFF_ALLMULTI;
3685 dev->allmulti -= inc;
3686 printk(KERN_WARNING "%s: allmulti touches roof, "
3687 "set allmulti failed, allmulti feature of "
3688 "device might be broken.\n", dev->name);
3692 if (dev->flags ^ old_flags) {
3693 dev_change_rx_flags(dev, IFF_ALLMULTI);
3694 dev_set_rx_mode(dev);
3698 EXPORT_SYMBOL(dev_set_allmulti);
3701 * Upload unicast and multicast address lists to device and
3702 * configure RX filtering. When the device doesn't support unicast
3703 * filtering it is put in promiscuous mode while unicast addresses
3706 void __dev_set_rx_mode(struct net_device *dev)
3708 const struct net_device_ops *ops = dev->netdev_ops;
3710 /* dev_open will call this function so the list will stay sane. */
3711 if (!(dev->flags&IFF_UP))
3714 if (!netif_device_present(dev))
3717 if (ops->ndo_set_rx_mode)
3718 ops->ndo_set_rx_mode(dev);
3720 /* Unicast addresses changes may only happen under the rtnl,
3721 * therefore calling __dev_set_promiscuity here is safe.
3723 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
3724 __dev_set_promiscuity(dev, 1);
3725 dev->uc_promisc = 1;
3726 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
3727 __dev_set_promiscuity(dev, -1);
3728 dev->uc_promisc = 0;
3731 if (ops->ndo_set_multicast_list)
3732 ops->ndo_set_multicast_list(dev);
3736 void dev_set_rx_mode(struct net_device *dev)
3738 netif_addr_lock_bh(dev);
3739 __dev_set_rx_mode(dev);
3740 netif_addr_unlock_bh(dev);
3743 /* hw addresses list handling functions */
3745 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3746 int addr_len, unsigned char addr_type)
3748 struct netdev_hw_addr *ha;
3751 if (addr_len > MAX_ADDR_LEN)
3754 list_for_each_entry(ha, &list->list, list) {
3755 if (!memcmp(ha->addr, addr, addr_len) &&
3756 ha->type == addr_type) {
3763 alloc_size = sizeof(*ha);
3764 if (alloc_size < L1_CACHE_BYTES)
3765 alloc_size = L1_CACHE_BYTES;
3766 ha = kmalloc(alloc_size, GFP_ATOMIC);
3769 memcpy(ha->addr, addr, addr_len);
3770 ha->type = addr_type;
3773 list_add_tail_rcu(&ha->list, &list->list);
3778 static void ha_rcu_free(struct rcu_head *head)
3780 struct netdev_hw_addr *ha;
3782 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3786 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3787 int addr_len, unsigned char addr_type)
3789 struct netdev_hw_addr *ha;
3791 list_for_each_entry(ha, &list->list, list) {
3792 if (!memcmp(ha->addr, addr, addr_len) &&
3793 (ha->type == addr_type || !addr_type)) {
3796 list_del_rcu(&ha->list);
3797 call_rcu(&ha->rcu_head, ha_rcu_free);
3805 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3806 struct netdev_hw_addr_list *from_list,
3808 unsigned char addr_type)
3811 struct netdev_hw_addr *ha, *ha2;
3814 list_for_each_entry(ha, &from_list->list, list) {
3815 type = addr_type ? addr_type : ha->type;
3816 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3823 list_for_each_entry(ha2, &from_list->list, list) {
3826 type = addr_type ? addr_type : ha2->type;
3827 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3832 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3833 struct netdev_hw_addr_list *from_list,
3835 unsigned char addr_type)
3837 struct netdev_hw_addr *ha;
3840 list_for_each_entry(ha, &from_list->list, list) {
3841 type = addr_type ? addr_type : ha->type;
3842 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3846 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3847 struct netdev_hw_addr_list *from_list,
3851 struct netdev_hw_addr *ha, *tmp;
3853 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3855 err = __hw_addr_add(to_list, ha->addr,
3856 addr_len, ha->type);
3861 } else if (ha->refcount == 1) {
3862 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3863 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3869 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3870 struct netdev_hw_addr_list *from_list,
3873 struct netdev_hw_addr *ha, *tmp;
3875 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3877 __hw_addr_del(to_list, ha->addr,
3878 addr_len, ha->type);
3880 __hw_addr_del(from_list, ha->addr,
3881 addr_len, ha->type);
3886 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3888 struct netdev_hw_addr *ha, *tmp;
3890 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3891 list_del_rcu(&ha->list);
3892 call_rcu(&ha->rcu_head, ha_rcu_free);
3897 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3899 INIT_LIST_HEAD(&list->list);
3903 /* Device addresses handling functions */
3905 static void dev_addr_flush(struct net_device *dev)
3907 /* rtnl_mutex must be held here */
3909 __hw_addr_flush(&dev->dev_addrs);
3910 dev->dev_addr = NULL;
3913 static int dev_addr_init(struct net_device *dev)
3915 unsigned char addr[MAX_ADDR_LEN];
3916 struct netdev_hw_addr *ha;
3919 /* rtnl_mutex must be held here */
3921 __hw_addr_init(&dev->dev_addrs);
3922 memset(addr, 0, sizeof(addr));
3923 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3924 NETDEV_HW_ADDR_T_LAN);
3927 * Get the first (previously created) address from the list
3928 * and set dev_addr pointer to this location.
3930 ha = list_first_entry(&dev->dev_addrs.list,
3931 struct netdev_hw_addr, list);
3932 dev->dev_addr = ha->addr;
3938 * dev_addr_add - Add a device address
3940 * @addr: address to add
3941 * @addr_type: address type
3943 * Add a device address to the device or increase the reference count if
3944 * it already exists.
3946 * The caller must hold the rtnl_mutex.
3948 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3949 unsigned char addr_type)
3955 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3957 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3960 EXPORT_SYMBOL(dev_addr_add);
3963 * dev_addr_del - Release a device address.
3965 * @addr: address to delete
3966 * @addr_type: address type
3968 * Release reference to a device address and remove it from the device
3969 * if the reference count drops to zero.
3971 * The caller must hold the rtnl_mutex.
3973 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3974 unsigned char addr_type)
3977 struct netdev_hw_addr *ha;
3982 * We can not remove the first address from the list because
3983 * dev->dev_addr points to that.
3985 ha = list_first_entry(&dev->dev_addrs.list,
3986 struct netdev_hw_addr, list);
3987 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3990 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3993 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3996 EXPORT_SYMBOL(dev_addr_del);
3999 * dev_addr_add_multiple - Add device addresses from another device
4000 * @to_dev: device to which addresses will be added
4001 * @from_dev: device from which addresses will be added
4002 * @addr_type: address type - 0 means type will be used from from_dev
4004 * Add device addresses of the one device to another.
4006 * The caller must hold the rtnl_mutex.
4008 int dev_addr_add_multiple(struct net_device *to_dev,
4009 struct net_device *from_dev,
4010 unsigned char addr_type)
4016 if (from_dev->addr_len != to_dev->addr_len)
4018 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4019 to_dev->addr_len, addr_type);
4021 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4024 EXPORT_SYMBOL(dev_addr_add_multiple);
4027 * dev_addr_del_multiple - Delete device addresses by another device
4028 * @to_dev: device where the addresses will be deleted
4029 * @from_dev: device by which addresses the addresses will be deleted
4030 * @addr_type: address type - 0 means type will used from from_dev
4032 * Deletes addresses in to device by the list of addresses in from device.
4034 * The caller must hold the rtnl_mutex.
4036 int dev_addr_del_multiple(struct net_device *to_dev,
4037 struct net_device *from_dev,
4038 unsigned char addr_type)
4042 if (from_dev->addr_len != to_dev->addr_len)
4044 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4045 to_dev->addr_len, addr_type);
4046 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4049 EXPORT_SYMBOL(dev_addr_del_multiple);
4051 /* multicast addresses handling functions */
4053 int __dev_addr_delete(struct dev_addr_list **list, int *count,
4054 void *addr, int alen, int glbl)
4056 struct dev_addr_list *da;
4058 for (; (da = *list) != NULL; list = &da->next) {
4059 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4060 alen == da->da_addrlen) {
4062 int old_glbl = da->da_gusers;
4079 int __dev_addr_add(struct dev_addr_list **list, int *count,
4080 void *addr, int alen, int glbl)
4082 struct dev_addr_list *da;
4084 for (da = *list; da != NULL; da = da->next) {
4085 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4086 da->da_addrlen == alen) {
4088 int old_glbl = da->da_gusers;
4098 da = kzalloc(sizeof(*da), GFP_ATOMIC);
4101 memcpy(da->da_addr, addr, alen);
4102 da->da_addrlen = alen;
4104 da->da_gusers = glbl ? 1 : 0;
4112 * dev_unicast_delete - Release secondary unicast address.
4114 * @addr: address to delete
4116 * Release reference to a secondary unicast address and remove it
4117 * from the device if the reference count drops to zero.
4119 * The caller must hold the rtnl_mutex.
4121 int dev_unicast_delete(struct net_device *dev, void *addr)
4127 netif_addr_lock_bh(dev);
4128 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4129 NETDEV_HW_ADDR_T_UNICAST);
4131 __dev_set_rx_mode(dev);
4132 netif_addr_unlock_bh(dev);
4135 EXPORT_SYMBOL(dev_unicast_delete);
4138 * dev_unicast_add - add a secondary unicast address
4140 * @addr: address to add
4142 * Add a secondary unicast address to the device or increase
4143 * the reference count if it already exists.
4145 * The caller must hold the rtnl_mutex.
4147 int dev_unicast_add(struct net_device *dev, void *addr)
4153 netif_addr_lock_bh(dev);
4154 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4155 NETDEV_HW_ADDR_T_UNICAST);
4157 __dev_set_rx_mode(dev);
4158 netif_addr_unlock_bh(dev);
4161 EXPORT_SYMBOL(dev_unicast_add);
4163 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4164 struct dev_addr_list **from, int *from_count)
4166 struct dev_addr_list *da, *next;
4170 while (da != NULL) {
4172 if (!da->da_synced) {
4173 err = __dev_addr_add(to, to_count,
4174 da->da_addr, da->da_addrlen, 0);
4179 } else if (da->da_users == 1) {
4180 __dev_addr_delete(to, to_count,
4181 da->da_addr, da->da_addrlen, 0);
4182 __dev_addr_delete(from, from_count,
4183 da->da_addr, da->da_addrlen, 0);
4189 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4191 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4192 struct dev_addr_list **from, int *from_count)
4194 struct dev_addr_list *da, *next;
4197 while (da != NULL) {
4199 if (da->da_synced) {
4200 __dev_addr_delete(to, to_count,
4201 da->da_addr, da->da_addrlen, 0);
4203 __dev_addr_delete(from, from_count,
4204 da->da_addr, da->da_addrlen, 0);
4209 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4212 * dev_unicast_sync - Synchronize device's unicast list to another device
4213 * @to: destination device
4214 * @from: source device
4216 * Add newly added addresses to the destination device and release
4217 * addresses that have no users left. The source device must be
4218 * locked by netif_tx_lock_bh.
4220 * This function is intended to be called from the dev->set_rx_mode
4221 * function of layered software devices.
4223 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4227 if (to->addr_len != from->addr_len)
4230 netif_addr_lock_bh(to);
4231 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4233 __dev_set_rx_mode(to);
4234 netif_addr_unlock_bh(to);
4237 EXPORT_SYMBOL(dev_unicast_sync);
4240 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4241 * @to: destination device
4242 * @from: source device
4244 * Remove all addresses that were added to the destination device by
4245 * dev_unicast_sync(). This function is intended to be called from the
4246 * dev->stop function of layered software devices.
4248 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4250 if (to->addr_len != from->addr_len)
4253 netif_addr_lock_bh(from);
4254 netif_addr_lock(to);
4255 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4256 __dev_set_rx_mode(to);
4257 netif_addr_unlock(to);
4258 netif_addr_unlock_bh(from);
4260 EXPORT_SYMBOL(dev_unicast_unsync);
4262 static void dev_unicast_flush(struct net_device *dev)
4264 netif_addr_lock_bh(dev);
4265 __hw_addr_flush(&dev->uc);
4266 netif_addr_unlock_bh(dev);
4269 static void dev_unicast_init(struct net_device *dev)
4271 __hw_addr_init(&dev->uc);
4275 static void __dev_addr_discard(struct dev_addr_list **list)
4277 struct dev_addr_list *tmp;
4279 while (*list != NULL) {
4282 if (tmp->da_users > tmp->da_gusers)
4283 printk("__dev_addr_discard: address leakage! "
4284 "da_users=%d\n", tmp->da_users);
4289 static void dev_addr_discard(struct net_device *dev)
4291 netif_addr_lock_bh(dev);
4293 __dev_addr_discard(&dev->mc_list);
4294 netdev_mc_count(dev) = 0;
4296 netif_addr_unlock_bh(dev);
4300 * dev_get_flags - get flags reported to userspace
4303 * Get the combination of flag bits exported through APIs to userspace.
4305 unsigned dev_get_flags(const struct net_device *dev)
4309 flags = (dev->flags & ~(IFF_PROMISC |
4314 (dev->gflags & (IFF_PROMISC |
4317 if (netif_running(dev)) {
4318 if (netif_oper_up(dev))
4319 flags |= IFF_RUNNING;
4320 if (netif_carrier_ok(dev))
4321 flags |= IFF_LOWER_UP;
4322 if (netif_dormant(dev))
4323 flags |= IFF_DORMANT;
4328 EXPORT_SYMBOL(dev_get_flags);
4330 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4332 int old_flags = dev->flags;
4338 * Set the flags on our device.
4341 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4342 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4344 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4348 * Load in the correct multicast list now the flags have changed.
4351 if ((old_flags ^ flags) & IFF_MULTICAST)
4352 dev_change_rx_flags(dev, IFF_MULTICAST);
4354 dev_set_rx_mode(dev);
4357 * Have we downed the interface. We handle IFF_UP ourselves
4358 * according to user attempts to set it, rather than blindly
4363 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4364 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4367 dev_set_rx_mode(dev);
4370 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4371 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4373 dev->gflags ^= IFF_PROMISC;
4374 dev_set_promiscuity(dev, inc);
4377 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4378 is important. Some (broken) drivers set IFF_PROMISC, when
4379 IFF_ALLMULTI is requested not asking us and not reporting.
4381 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4382 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4384 dev->gflags ^= IFF_ALLMULTI;
4385 dev_set_allmulti(dev, inc);
4391 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4393 unsigned int changes = dev->flags ^ old_flags;
4395 if (changes & IFF_UP) {
4396 if (dev->flags & IFF_UP)
4397 call_netdevice_notifiers(NETDEV_UP, dev);
4399 call_netdevice_notifiers(NETDEV_DOWN, dev);
4402 if (dev->flags & IFF_UP &&
4403 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4404 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4408 * dev_change_flags - change device settings
4410 * @flags: device state flags
4412 * Change settings on device based state flags. The flags are
4413 * in the userspace exported format.
4415 int dev_change_flags(struct net_device *dev, unsigned flags)
4418 int old_flags = dev->flags;
4420 ret = __dev_change_flags(dev, flags);
4424 changes = old_flags ^ dev->flags;
4426 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4428 __dev_notify_flags(dev, old_flags);
4431 EXPORT_SYMBOL(dev_change_flags);
4434 * dev_set_mtu - Change maximum transfer unit
4436 * @new_mtu: new transfer unit
4438 * Change the maximum transfer size of the network device.
4440 int dev_set_mtu(struct net_device *dev, int new_mtu)
4442 const struct net_device_ops *ops = dev->netdev_ops;
4445 if (new_mtu == dev->mtu)
4448 /* MTU must be positive. */
4452 if (!netif_device_present(dev))
4456 if (ops->ndo_change_mtu)
4457 err = ops->ndo_change_mtu(dev, new_mtu);
4461 if (!err && dev->flags & IFF_UP)
4462 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4465 EXPORT_SYMBOL(dev_set_mtu);
4468 * dev_set_mac_address - Change Media Access Control Address
4472 * Change the hardware (MAC) address of the device
4474 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4476 const struct net_device_ops *ops = dev->netdev_ops;
4479 if (!ops->ndo_set_mac_address)
4481 if (sa->sa_family != dev->type)
4483 if (!netif_device_present(dev))
4485 err = ops->ndo_set_mac_address(dev, sa);
4487 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4490 EXPORT_SYMBOL(dev_set_mac_address);
4493 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4495 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4498 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4504 case SIOCGIFFLAGS: /* Get interface flags */
4505 ifr->ifr_flags = (short) dev_get_flags(dev);
4508 case SIOCGIFMETRIC: /* Get the metric on the interface
4509 (currently unused) */
4510 ifr->ifr_metric = 0;
4513 case SIOCGIFMTU: /* Get the MTU of a device */
4514 ifr->ifr_mtu = dev->mtu;
4519 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4521 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4522 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4523 ifr->ifr_hwaddr.sa_family = dev->type;
4531 ifr->ifr_map.mem_start = dev->mem_start;
4532 ifr->ifr_map.mem_end = dev->mem_end;
4533 ifr->ifr_map.base_addr = dev->base_addr;
4534 ifr->ifr_map.irq = dev->irq;
4535 ifr->ifr_map.dma = dev->dma;
4536 ifr->ifr_map.port = dev->if_port;
4540 ifr->ifr_ifindex = dev->ifindex;
4544 ifr->ifr_qlen = dev->tx_queue_len;
4548 /* dev_ioctl() should ensure this case
4560 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4562 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4565 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4566 const struct net_device_ops *ops;
4571 ops = dev->netdev_ops;
4574 case SIOCSIFFLAGS: /* Set interface flags */
4575 return dev_change_flags(dev, ifr->ifr_flags);
4577 case SIOCSIFMETRIC: /* Set the metric on the interface
4578 (currently unused) */
4581 case SIOCSIFMTU: /* Set the MTU of a device */
4582 return dev_set_mtu(dev, ifr->ifr_mtu);
4585 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4587 case SIOCSIFHWBROADCAST:
4588 if (ifr->ifr_hwaddr.sa_family != dev->type)
4590 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4591 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4592 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4596 if (ops->ndo_set_config) {
4597 if (!netif_device_present(dev))
4599 return ops->ndo_set_config(dev, &ifr->ifr_map);
4604 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4605 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4607 if (!netif_device_present(dev))
4609 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4613 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4614 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4616 if (!netif_device_present(dev))
4618 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4622 if (ifr->ifr_qlen < 0)
4624 dev->tx_queue_len = ifr->ifr_qlen;
4628 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4629 return dev_change_name(dev, ifr->ifr_newname);
4632 * Unknown or private ioctl
4635 if ((cmd >= SIOCDEVPRIVATE &&
4636 cmd <= SIOCDEVPRIVATE + 15) ||
4637 cmd == SIOCBONDENSLAVE ||
4638 cmd == SIOCBONDRELEASE ||
4639 cmd == SIOCBONDSETHWADDR ||
4640 cmd == SIOCBONDSLAVEINFOQUERY ||
4641 cmd == SIOCBONDINFOQUERY ||
4642 cmd == SIOCBONDCHANGEACTIVE ||
4643 cmd == SIOCGMIIPHY ||
4644 cmd == SIOCGMIIREG ||
4645 cmd == SIOCSMIIREG ||
4646 cmd == SIOCBRADDIF ||
4647 cmd == SIOCBRDELIF ||
4648 cmd == SIOCSHWTSTAMP ||
4649 cmd == SIOCWANDEV) {
4651 if (ops->ndo_do_ioctl) {
4652 if (netif_device_present(dev))
4653 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4665 * This function handles all "interface"-type I/O control requests. The actual
4666 * 'doing' part of this is dev_ifsioc above.
4670 * dev_ioctl - network device ioctl
4671 * @net: the applicable net namespace
4672 * @cmd: command to issue
4673 * @arg: pointer to a struct ifreq in user space
4675 * Issue ioctl functions to devices. This is normally called by the
4676 * user space syscall interfaces but can sometimes be useful for
4677 * other purposes. The return value is the return from the syscall if
4678 * positive or a negative errno code on error.
4681 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4687 /* One special case: SIOCGIFCONF takes ifconf argument
4688 and requires shared lock, because it sleeps writing
4692 if (cmd == SIOCGIFCONF) {
4694 ret = dev_ifconf(net, (char __user *) arg);
4698 if (cmd == SIOCGIFNAME)
4699 return dev_ifname(net, (struct ifreq __user *)arg);
4701 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4704 ifr.ifr_name[IFNAMSIZ-1] = 0;
4706 colon = strchr(ifr.ifr_name, ':');
4711 * See which interface the caller is talking about.
4716 * These ioctl calls:
4717 * - can be done by all.
4718 * - atomic and do not require locking.
4729 dev_load(net, ifr.ifr_name);
4731 ret = dev_ifsioc_locked(net, &ifr, cmd);
4736 if (copy_to_user(arg, &ifr,
4737 sizeof(struct ifreq)))
4743 dev_load(net, ifr.ifr_name);
4745 ret = dev_ethtool(net, &ifr);
4750 if (copy_to_user(arg, &ifr,
4751 sizeof(struct ifreq)))
4757 * These ioctl calls:
4758 * - require superuser power.
4759 * - require strict serialization.
4765 if (!capable(CAP_NET_ADMIN))
4767 dev_load(net, ifr.ifr_name);
4769 ret = dev_ifsioc(net, &ifr, cmd);
4774 if (copy_to_user(arg, &ifr,
4775 sizeof(struct ifreq)))
4781 * These ioctl calls:
4782 * - require superuser power.
4783 * - require strict serialization.
4784 * - do not return a value
4794 case SIOCSIFHWBROADCAST:
4797 case SIOCBONDENSLAVE:
4798 case SIOCBONDRELEASE:
4799 case SIOCBONDSETHWADDR:
4800 case SIOCBONDCHANGEACTIVE:
4804 if (!capable(CAP_NET_ADMIN))
4807 case SIOCBONDSLAVEINFOQUERY:
4808 case SIOCBONDINFOQUERY:
4809 dev_load(net, ifr.ifr_name);
4811 ret = dev_ifsioc(net, &ifr, cmd);
4816 /* Get the per device memory space. We can add this but
4817 * currently do not support it */
4819 /* Set the per device memory buffer space.
4820 * Not applicable in our case */
4825 * Unknown or private ioctl.
4828 if (cmd == SIOCWANDEV ||
4829 (cmd >= SIOCDEVPRIVATE &&
4830 cmd <= SIOCDEVPRIVATE + 15)) {
4831 dev_load(net, ifr.ifr_name);
4833 ret = dev_ifsioc(net, &ifr, cmd);
4835 if (!ret && copy_to_user(arg, &ifr,
4836 sizeof(struct ifreq)))
4840 /* Take care of Wireless Extensions */
4841 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4842 return wext_handle_ioctl(net, &ifr, cmd, arg);
4849 * dev_new_index - allocate an ifindex
4850 * @net: the applicable net namespace
4852 * Returns a suitable unique value for a new device interface
4853 * number. The caller must hold the rtnl semaphore or the
4854 * dev_base_lock to be sure it remains unique.
4856 static int dev_new_index(struct net *net)
4862 if (!__dev_get_by_index(net, ifindex))
4867 /* Delayed registration/unregisteration */
4868 static LIST_HEAD(net_todo_list);
4870 static void net_set_todo(struct net_device *dev)
4872 list_add_tail(&dev->todo_list, &net_todo_list);
4875 static void rollback_registered_many(struct list_head *head)
4877 struct net_device *dev, *tmp;
4879 BUG_ON(dev_boot_phase);
4882 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4883 /* Some devices call without registering
4884 * for initialization unwind. Remove those
4885 * devices and proceed with the remaining.
4887 if (dev->reg_state == NETREG_UNINITIALIZED) {
4888 pr_debug("unregister_netdevice: device %s/%p never "
4889 "was registered\n", dev->name, dev);
4892 list_del(&dev->unreg_list);
4896 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4898 /* If device is running, close it first. */
4901 /* And unlink it from device chain. */
4902 unlist_netdevice(dev);
4904 dev->reg_state = NETREG_UNREGISTERING;
4909 list_for_each_entry(dev, head, unreg_list) {
4910 /* Shutdown queueing discipline. */
4914 /* Notify protocols, that we are about to destroy
4915 this device. They should clean all the things.
4917 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4919 if (!dev->rtnl_link_ops ||
4920 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4921 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4924 * Flush the unicast and multicast chains
4926 dev_unicast_flush(dev);
4927 dev_addr_discard(dev);
4929 if (dev->netdev_ops->ndo_uninit)
4930 dev->netdev_ops->ndo_uninit(dev);
4932 /* Notifier chain MUST detach us from master device. */
4933 WARN_ON(dev->master);
4935 /* Remove entries from kobject tree */
4936 netdev_unregister_kobject(dev);
4939 /* Process any work delayed until the end of the batch */
4940 dev = list_first_entry(head, struct net_device, unreg_list);
4941 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4945 list_for_each_entry(dev, head, unreg_list)
4949 static void rollback_registered(struct net_device *dev)
4953 list_add(&dev->unreg_list, &single);
4954 rollback_registered_many(&single);
4957 static void __netdev_init_queue_locks_one(struct net_device *dev,
4958 struct netdev_queue *dev_queue,
4961 spin_lock_init(&dev_queue->_xmit_lock);
4962 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4963 dev_queue->xmit_lock_owner = -1;
4966 static void netdev_init_queue_locks(struct net_device *dev)
4968 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4969 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4972 unsigned long netdev_fix_features(unsigned long features, const char *name)
4974 /* Fix illegal SG+CSUM combinations. */
4975 if ((features & NETIF_F_SG) &&
4976 !(features & NETIF_F_ALL_CSUM)) {
4978 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4979 "checksum feature.\n", name);
4980 features &= ~NETIF_F_SG;
4983 /* TSO requires that SG is present as well. */
4984 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4986 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4987 "SG feature.\n", name);
4988 features &= ~NETIF_F_TSO;
4991 if (features & NETIF_F_UFO) {
4992 if (!(features & NETIF_F_GEN_CSUM)) {
4994 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4995 "since no NETIF_F_HW_CSUM feature.\n",
4997 features &= ~NETIF_F_UFO;
5000 if (!(features & NETIF_F_SG)) {
5002 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5003 "since no NETIF_F_SG feature.\n", name);
5004 features &= ~NETIF_F_UFO;
5010 EXPORT_SYMBOL(netdev_fix_features);
5013 * netif_stacked_transfer_operstate - transfer operstate
5014 * @rootdev: the root or lower level device to transfer state from
5015 * @dev: the device to transfer operstate to
5017 * Transfer operational state from root to device. This is normally
5018 * called when a stacking relationship exists between the root
5019 * device and the device(a leaf device).
5021 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5022 struct net_device *dev)
5024 if (rootdev->operstate == IF_OPER_DORMANT)
5025 netif_dormant_on(dev);
5027 netif_dormant_off(dev);
5029 if (netif_carrier_ok(rootdev)) {
5030 if (!netif_carrier_ok(dev))
5031 netif_carrier_on(dev);
5033 if (netif_carrier_ok(dev))
5034 netif_carrier_off(dev);
5037 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5040 * register_netdevice - register a network device
5041 * @dev: device to register
5043 * Take a completed network device structure and add it to the kernel
5044 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5045 * chain. 0 is returned on success. A negative errno code is returned
5046 * on a failure to set up the device, or if the name is a duplicate.
5048 * Callers must hold the rtnl semaphore. You may want
5049 * register_netdev() instead of this.
5052 * The locking appears insufficient to guarantee two parallel registers
5053 * will not get the same name.
5056 int register_netdevice(struct net_device *dev)
5059 struct net *net = dev_net(dev);
5061 BUG_ON(dev_boot_phase);
5066 /* When net_device's are persistent, this will be fatal. */
5067 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5070 spin_lock_init(&dev->addr_list_lock);
5071 netdev_set_addr_lockdep_class(dev);
5072 netdev_init_queue_locks(dev);
5076 /* Init, if this function is available */
5077 if (dev->netdev_ops->ndo_init) {
5078 ret = dev->netdev_ops->ndo_init(dev);
5086 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5090 dev->ifindex = dev_new_index(net);
5091 if (dev->iflink == -1)
5092 dev->iflink = dev->ifindex;
5094 /* Fix illegal checksum combinations */
5095 if ((dev->features & NETIF_F_HW_CSUM) &&
5096 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5097 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5099 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5102 if ((dev->features & NETIF_F_NO_CSUM) &&
5103 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5104 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5106 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5109 dev->features = netdev_fix_features(dev->features, dev->name);
5111 /* Enable software GSO if SG is supported. */
5112 if (dev->features & NETIF_F_SG)
5113 dev->features |= NETIF_F_GSO;
5115 netdev_initialize_kobject(dev);
5117 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5118 ret = notifier_to_errno(ret);
5122 ret = netdev_register_kobject(dev);
5125 dev->reg_state = NETREG_REGISTERED;
5128 * Default initial state at registry is that the
5129 * device is present.
5132 set_bit(__LINK_STATE_PRESENT, &dev->state);
5134 dev_init_scheduler(dev);
5136 list_netdevice(dev);
5138 /* Notify protocols, that a new device appeared. */
5139 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5140 ret = notifier_to_errno(ret);
5142 rollback_registered(dev);
5143 dev->reg_state = NETREG_UNREGISTERED;
5146 * Prevent userspace races by waiting until the network
5147 * device is fully setup before sending notifications.
5149 if (!dev->rtnl_link_ops ||
5150 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5151 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5157 if (dev->netdev_ops->ndo_uninit)
5158 dev->netdev_ops->ndo_uninit(dev);
5161 EXPORT_SYMBOL(register_netdevice);
5164 * init_dummy_netdev - init a dummy network device for NAPI
5165 * @dev: device to init
5167 * This takes a network device structure and initialize the minimum
5168 * amount of fields so it can be used to schedule NAPI polls without
5169 * registering a full blown interface. This is to be used by drivers
5170 * that need to tie several hardware interfaces to a single NAPI
5171 * poll scheduler due to HW limitations.
5173 int init_dummy_netdev(struct net_device *dev)
5175 /* Clear everything. Note we don't initialize spinlocks
5176 * are they aren't supposed to be taken by any of the
5177 * NAPI code and this dummy netdev is supposed to be
5178 * only ever used for NAPI polls
5180 memset(dev, 0, sizeof(struct net_device));
5182 /* make sure we BUG if trying to hit standard
5183 * register/unregister code path
5185 dev->reg_state = NETREG_DUMMY;
5187 /* initialize the ref count */
5188 atomic_set(&dev->refcnt, 1);
5190 /* NAPI wants this */
5191 INIT_LIST_HEAD(&dev->napi_list);
5193 /* a dummy interface is started by default */
5194 set_bit(__LINK_STATE_PRESENT, &dev->state);
5195 set_bit(__LINK_STATE_START, &dev->state);
5199 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5203 * register_netdev - register a network device
5204 * @dev: device to register
5206 * Take a completed network device structure and add it to the kernel
5207 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5208 * chain. 0 is returned on success. A negative errno code is returned
5209 * on a failure to set up the device, or if the name is a duplicate.
5211 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5212 * and expands the device name if you passed a format string to
5215 int register_netdev(struct net_device *dev)
5222 * If the name is a format string the caller wants us to do a
5225 if (strchr(dev->name, '%')) {
5226 err = dev_alloc_name(dev, dev->name);
5231 err = register_netdevice(dev);
5236 EXPORT_SYMBOL(register_netdev);
5239 * netdev_wait_allrefs - wait until all references are gone.
5241 * This is called when unregistering network devices.
5243 * Any protocol or device that holds a reference should register
5244 * for netdevice notification, and cleanup and put back the
5245 * reference if they receive an UNREGISTER event.
5246 * We can get stuck here if buggy protocols don't correctly
5249 static void netdev_wait_allrefs(struct net_device *dev)
5251 unsigned long rebroadcast_time, warning_time;
5253 linkwatch_forget_dev(dev);
5255 rebroadcast_time = warning_time = jiffies;
5256 while (atomic_read(&dev->refcnt) != 0) {
5257 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5260 /* Rebroadcast unregister notification */
5261 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5262 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5263 * should have already handle it the first time */
5265 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5267 /* We must not have linkwatch events
5268 * pending on unregister. If this
5269 * happens, we simply run the queue
5270 * unscheduled, resulting in a noop
5273 linkwatch_run_queue();
5278 rebroadcast_time = jiffies;
5283 if (time_after(jiffies, warning_time + 10 * HZ)) {
5284 printk(KERN_EMERG "unregister_netdevice: "
5285 "waiting for %s to become free. Usage "
5287 dev->name, atomic_read(&dev->refcnt));
5288 warning_time = jiffies;
5297 * register_netdevice(x1);
5298 * register_netdevice(x2);
5300 * unregister_netdevice(y1);
5301 * unregister_netdevice(y2);
5307 * We are invoked by rtnl_unlock().
5308 * This allows us to deal with problems:
5309 * 1) We can delete sysfs objects which invoke hotplug
5310 * without deadlocking with linkwatch via keventd.
5311 * 2) Since we run with the RTNL semaphore not held, we can sleep
5312 * safely in order to wait for the netdev refcnt to drop to zero.
5314 * We must not return until all unregister events added during
5315 * the interval the lock was held have been completed.
5317 void netdev_run_todo(void)
5319 struct list_head list;
5321 /* Snapshot list, allow later requests */
5322 list_replace_init(&net_todo_list, &list);
5326 while (!list_empty(&list)) {
5327 struct net_device *dev
5328 = list_first_entry(&list, struct net_device, todo_list);
5329 list_del(&dev->todo_list);
5331 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5332 printk(KERN_ERR "network todo '%s' but state %d\n",
5333 dev->name, dev->reg_state);
5338 dev->reg_state = NETREG_UNREGISTERED;
5340 on_each_cpu(flush_backlog, dev, 1);
5342 netdev_wait_allrefs(dev);
5345 BUG_ON(atomic_read(&dev->refcnt));
5346 WARN_ON(dev->ip_ptr);
5347 WARN_ON(dev->ip6_ptr);
5348 WARN_ON(dev->dn_ptr);
5350 if (dev->destructor)
5351 dev->destructor(dev);
5353 /* Free network device */
5354 kobject_put(&dev->dev.kobj);
5359 * dev_txq_stats_fold - fold tx_queues stats
5360 * @dev: device to get statistics from
5361 * @stats: struct net_device_stats to hold results
5363 void dev_txq_stats_fold(const struct net_device *dev,
5364 struct net_device_stats *stats)
5366 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5368 struct netdev_queue *txq;
5370 for (i = 0; i < dev->num_tx_queues; i++) {
5371 txq = netdev_get_tx_queue(dev, i);
5372 tx_bytes += txq->tx_bytes;
5373 tx_packets += txq->tx_packets;
5374 tx_dropped += txq->tx_dropped;
5376 if (tx_bytes || tx_packets || tx_dropped) {
5377 stats->tx_bytes = tx_bytes;
5378 stats->tx_packets = tx_packets;
5379 stats->tx_dropped = tx_dropped;
5382 EXPORT_SYMBOL(dev_txq_stats_fold);
5385 * dev_get_stats - get network device statistics
5386 * @dev: device to get statistics from
5388 * Get network statistics from device. The device driver may provide
5389 * its own method by setting dev->netdev_ops->get_stats; otherwise
5390 * the internal statistics structure is used.
5392 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5394 const struct net_device_ops *ops = dev->netdev_ops;
5396 if (ops->ndo_get_stats)
5397 return ops->ndo_get_stats(dev);
5399 dev_txq_stats_fold(dev, &dev->stats);
5402 EXPORT_SYMBOL(dev_get_stats);
5404 static void netdev_init_one_queue(struct net_device *dev,
5405 struct netdev_queue *queue,
5411 static void netdev_init_queues(struct net_device *dev)
5413 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5414 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5415 spin_lock_init(&dev->tx_global_lock);
5419 * alloc_netdev_mq - allocate network device
5420 * @sizeof_priv: size of private data to allocate space for
5421 * @name: device name format string
5422 * @setup: callback to initialize device
5423 * @queue_count: the number of subqueues to allocate
5425 * Allocates a struct net_device with private data area for driver use
5426 * and performs basic initialization. Also allocates subquue structs
5427 * for each queue on the device at the end of the netdevice.
5429 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5430 void (*setup)(struct net_device *), unsigned int queue_count)
5432 struct netdev_queue *tx;
5433 struct net_device *dev;
5435 struct net_device *p;
5437 BUG_ON(strlen(name) >= sizeof(dev->name));
5439 alloc_size = sizeof(struct net_device);
5441 /* ensure 32-byte alignment of private area */
5442 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5443 alloc_size += sizeof_priv;
5445 /* ensure 32-byte alignment of whole construct */
5446 alloc_size += NETDEV_ALIGN - 1;
5448 p = kzalloc(alloc_size, GFP_KERNEL);
5450 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5454 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5456 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5461 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5462 dev->padded = (char *)dev - (char *)p;
5464 if (dev_addr_init(dev))
5467 dev_unicast_init(dev);
5469 dev_net_set(dev, &init_net);
5472 dev->num_tx_queues = queue_count;
5473 dev->real_num_tx_queues = queue_count;
5475 dev->gso_max_size = GSO_MAX_SIZE;
5477 netdev_init_queues(dev);
5479 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5480 dev->ethtool_ntuple_list.count = 0;
5481 INIT_LIST_HEAD(&dev->napi_list);
5482 INIT_LIST_HEAD(&dev->unreg_list);
5483 INIT_LIST_HEAD(&dev->link_watch_list);
5484 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5486 strcpy(dev->name, name);
5496 EXPORT_SYMBOL(alloc_netdev_mq);
5499 * free_netdev - free network device
5502 * This function does the last stage of destroying an allocated device
5503 * interface. The reference to the device object is released.
5504 * If this is the last reference then it will be freed.
5506 void free_netdev(struct net_device *dev)
5508 struct napi_struct *p, *n;
5510 release_net(dev_net(dev));
5514 /* Flush device addresses */
5515 dev_addr_flush(dev);
5517 /* Clear ethtool n-tuple list */
5518 ethtool_ntuple_flush(dev);
5520 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5523 /* Compatibility with error handling in drivers */
5524 if (dev->reg_state == NETREG_UNINITIALIZED) {
5525 kfree((char *)dev - dev->padded);
5529 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5530 dev->reg_state = NETREG_RELEASED;
5532 /* will free via device release */
5533 put_device(&dev->dev);
5535 EXPORT_SYMBOL(free_netdev);
5538 * synchronize_net - Synchronize with packet receive processing
5540 * Wait for packets currently being received to be done.
5541 * Does not block later packets from starting.
5543 void synchronize_net(void)
5548 EXPORT_SYMBOL(synchronize_net);
5551 * unregister_netdevice_queue - remove device from the kernel
5555 * This function shuts down a device interface and removes it
5556 * from the kernel tables.
5557 * If head not NULL, device is queued to be unregistered later.
5559 * Callers must hold the rtnl semaphore. You may want
5560 * unregister_netdev() instead of this.
5563 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5568 list_move_tail(&dev->unreg_list, head);
5570 rollback_registered(dev);
5571 /* Finish processing unregister after unlock */
5575 EXPORT_SYMBOL(unregister_netdevice_queue);
5578 * unregister_netdevice_many - unregister many devices
5579 * @head: list of devices
5581 void unregister_netdevice_many(struct list_head *head)
5583 struct net_device *dev;
5585 if (!list_empty(head)) {
5586 rollback_registered_many(head);
5587 list_for_each_entry(dev, head, unreg_list)
5591 EXPORT_SYMBOL(unregister_netdevice_many);
5594 * unregister_netdev - remove device from the kernel
5597 * This function shuts down a device interface and removes it
5598 * from the kernel tables.
5600 * This is just a wrapper for unregister_netdevice that takes
5601 * the rtnl semaphore. In general you want to use this and not
5602 * unregister_netdevice.
5604 void unregister_netdev(struct net_device *dev)
5607 unregister_netdevice(dev);
5610 EXPORT_SYMBOL(unregister_netdev);
5613 * dev_change_net_namespace - move device to different nethost namespace
5615 * @net: network namespace
5616 * @pat: If not NULL name pattern to try if the current device name
5617 * is already taken in the destination network namespace.
5619 * This function shuts down a device interface and moves it
5620 * to a new network namespace. On success 0 is returned, on
5621 * a failure a netagive errno code is returned.
5623 * Callers must hold the rtnl semaphore.
5626 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5632 /* Don't allow namespace local devices to be moved. */
5634 if (dev->features & NETIF_F_NETNS_LOCAL)
5638 /* Don't allow real devices to be moved when sysfs
5642 if (dev->dev.parent)
5646 /* Ensure the device has been registrered */
5648 if (dev->reg_state != NETREG_REGISTERED)
5651 /* Get out if there is nothing todo */
5653 if (net_eq(dev_net(dev), net))
5656 /* Pick the destination device name, and ensure
5657 * we can use it in the destination network namespace.
5660 if (__dev_get_by_name(net, dev->name)) {
5661 /* We get here if we can't use the current device name */
5664 if (dev_get_valid_name(net, pat, dev->name, 1))
5669 * And now a mini version of register_netdevice unregister_netdevice.
5672 /* If device is running close it first. */
5675 /* And unlink it from device chain */
5677 unlist_netdevice(dev);
5681 /* Shutdown queueing discipline. */
5684 /* Notify protocols, that we are about to destroy
5685 this device. They should clean all the things.
5687 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5688 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5691 * Flush the unicast and multicast chains
5693 dev_unicast_flush(dev);
5694 dev_addr_discard(dev);
5696 netdev_unregister_kobject(dev);
5698 /* Actually switch the network namespace */
5699 dev_net_set(dev, net);
5701 /* If there is an ifindex conflict assign a new one */
5702 if (__dev_get_by_index(net, dev->ifindex)) {
5703 int iflink = (dev->iflink == dev->ifindex);
5704 dev->ifindex = dev_new_index(net);
5706 dev->iflink = dev->ifindex;
5709 /* Fixup kobjects */
5710 err = netdev_register_kobject(dev);
5713 /* Add the device back in the hashes */
5714 list_netdevice(dev);
5716 /* Notify protocols, that a new device appeared. */
5717 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5720 * Prevent userspace races by waiting until the network
5721 * device is fully setup before sending notifications.
5723 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5730 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5732 static int dev_cpu_callback(struct notifier_block *nfb,
5733 unsigned long action,
5736 struct sk_buff **list_skb;
5737 struct Qdisc **list_net;
5738 struct sk_buff *skb;
5739 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5740 struct softnet_data *sd, *oldsd;
5742 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5745 local_irq_disable();
5746 cpu = smp_processor_id();
5747 sd = &per_cpu(softnet_data, cpu);
5748 oldsd = &per_cpu(softnet_data, oldcpu);
5750 /* Find end of our completion_queue. */
5751 list_skb = &sd->completion_queue;
5753 list_skb = &(*list_skb)->next;
5754 /* Append completion queue from offline CPU. */
5755 *list_skb = oldsd->completion_queue;
5756 oldsd->completion_queue = NULL;
5758 /* Find end of our output_queue. */
5759 list_net = &sd->output_queue;
5761 list_net = &(*list_net)->next_sched;
5762 /* Append output queue from offline CPU. */
5763 *list_net = oldsd->output_queue;
5764 oldsd->output_queue = NULL;
5766 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5769 /* Process offline CPU's input_pkt_queue */
5770 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5778 * netdev_increment_features - increment feature set by one
5779 * @all: current feature set
5780 * @one: new feature set
5781 * @mask: mask feature set
5783 * Computes a new feature set after adding a device with feature set
5784 * @one to the master device with current feature set @all. Will not
5785 * enable anything that is off in @mask. Returns the new feature set.
5787 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5790 /* If device needs checksumming, downgrade to it. */
5791 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5792 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5793 else if (mask & NETIF_F_ALL_CSUM) {
5794 /* If one device supports v4/v6 checksumming, set for all. */
5795 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5796 !(all & NETIF_F_GEN_CSUM)) {
5797 all &= ~NETIF_F_ALL_CSUM;
5798 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5801 /* If one device supports hw checksumming, set for all. */
5802 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5803 all &= ~NETIF_F_ALL_CSUM;
5804 all |= NETIF_F_HW_CSUM;
5808 one |= NETIF_F_ALL_CSUM;
5810 one |= all & NETIF_F_ONE_FOR_ALL;
5811 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5812 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5816 EXPORT_SYMBOL(netdev_increment_features);
5818 static struct hlist_head *netdev_create_hash(void)
5821 struct hlist_head *hash;
5823 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5825 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5826 INIT_HLIST_HEAD(&hash[i]);
5831 /* Initialize per network namespace state */
5832 static int __net_init netdev_init(struct net *net)
5834 INIT_LIST_HEAD(&net->dev_base_head);
5836 net->dev_name_head = netdev_create_hash();
5837 if (net->dev_name_head == NULL)
5840 net->dev_index_head = netdev_create_hash();
5841 if (net->dev_index_head == NULL)
5847 kfree(net->dev_name_head);
5853 * netdev_drivername - network driver for the device
5854 * @dev: network device
5855 * @buffer: buffer for resulting name
5856 * @len: size of buffer
5858 * Determine network driver for device.
5860 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5862 const struct device_driver *driver;
5863 const struct device *parent;
5865 if (len <= 0 || !buffer)
5869 parent = dev->dev.parent;
5874 driver = parent->driver;
5875 if (driver && driver->name)
5876 strlcpy(buffer, driver->name, len);
5880 static void __net_exit netdev_exit(struct net *net)
5882 kfree(net->dev_name_head);
5883 kfree(net->dev_index_head);
5886 static struct pernet_operations __net_initdata netdev_net_ops = {
5887 .init = netdev_init,
5888 .exit = netdev_exit,
5891 static void __net_exit default_device_exit(struct net *net)
5893 struct net_device *dev, *aux;
5895 * Push all migratable network devices back to the
5896 * initial network namespace
5899 for_each_netdev_safe(net, dev, aux) {
5901 char fb_name[IFNAMSIZ];
5903 /* Ignore unmoveable devices (i.e. loopback) */
5904 if (dev->features & NETIF_F_NETNS_LOCAL)
5907 /* Leave virtual devices for the generic cleanup */
5908 if (dev->rtnl_link_ops)
5911 /* Push remaing network devices to init_net */
5912 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5913 err = dev_change_net_namespace(dev, &init_net, fb_name);
5915 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5916 __func__, dev->name, err);
5923 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5925 /* At exit all network devices most be removed from a network
5926 * namespace. Do this in the reverse order of registeration.
5927 * Do this across as many network namespaces as possible to
5928 * improve batching efficiency.
5930 struct net_device *dev;
5932 LIST_HEAD(dev_kill_list);
5935 list_for_each_entry(net, net_list, exit_list) {
5936 for_each_netdev_reverse(net, dev) {
5937 if (dev->rtnl_link_ops)
5938 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5940 unregister_netdevice_queue(dev, &dev_kill_list);
5943 unregister_netdevice_many(&dev_kill_list);
5947 static struct pernet_operations __net_initdata default_device_ops = {
5948 .exit = default_device_exit,
5949 .exit_batch = default_device_exit_batch,
5953 * Initialize the DEV module. At boot time this walks the device list and
5954 * unhooks any devices that fail to initialise (normally hardware not
5955 * present) and leaves us with a valid list of present and active devices.
5960 * This is called single threaded during boot, so no need
5961 * to take the rtnl semaphore.
5963 static int __init net_dev_init(void)
5965 int i, rc = -ENOMEM;
5967 BUG_ON(!dev_boot_phase);
5969 if (dev_proc_init())
5972 if (netdev_kobject_init())
5975 INIT_LIST_HEAD(&ptype_all);
5976 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5977 INIT_LIST_HEAD(&ptype_base[i]);
5979 if (register_pernet_subsys(&netdev_net_ops))
5983 * Initialise the packet receive queues.
5986 for_each_possible_cpu(i) {
5987 struct softnet_data *queue;
5989 queue = &per_cpu(softnet_data, i);
5990 skb_queue_head_init(&queue->input_pkt_queue);
5991 queue->completion_queue = NULL;
5992 INIT_LIST_HEAD(&queue->poll_list);
5994 queue->backlog.poll = process_backlog;
5995 queue->backlog.weight = weight_p;
5996 queue->backlog.gro_list = NULL;
5997 queue->backlog.gro_count = 0;
6002 /* The loopback device is special if any other network devices
6003 * is present in a network namespace the loopback device must
6004 * be present. Since we now dynamically allocate and free the
6005 * loopback device ensure this invariant is maintained by
6006 * keeping the loopback device as the first device on the
6007 * list of network devices. Ensuring the loopback devices
6008 * is the first device that appears and the last network device
6011 if (register_pernet_device(&loopback_net_ops))
6014 if (register_pernet_device(&default_device_ops))
6017 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6018 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6020 hotcpu_notifier(dev_cpu_callback, 0);
6028 subsys_initcall(net_dev_init);
6030 static int __init initialize_hashrnd(void)
6032 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
6036 late_initcall_sync(initialize_hashrnd);