4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
30 #include <trace/events/f2fs.h>
32 static bool __is_cp_guaranteed(struct page *page)
34 struct address_space *mapping = page->mapping;
36 struct f2fs_sb_info *sbi;
41 inode = mapping->host;
42 sbi = F2FS_I_SB(inode);
44 if (inode->i_ino == F2FS_META_INO(sbi) ||
45 inode->i_ino == F2FS_NODE_INO(sbi) ||
46 S_ISDIR(inode->i_mode) ||
52 static void f2fs_read_end_io(struct bio *bio)
57 #ifdef CONFIG_F2FS_FAULT_INJECTION
58 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO))
62 if (f2fs_bio_encrypted(bio)) {
64 fscrypt_release_ctx(bio->bi_private);
66 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
71 bio_for_each_segment_all(bvec, bio, i) {
72 struct page *page = bvec->bv_page;
75 if (!PageUptodate(page))
76 SetPageUptodate(page);
78 ClearPageUptodate(page);
86 static void f2fs_write_end_io(struct bio *bio)
88 struct f2fs_sb_info *sbi = bio->bi_private;
92 bio_for_each_segment_all(bvec, bio, i) {
93 struct page *page = bvec->bv_page;
94 enum count_type type = WB_DATA_TYPE(page);
96 fscrypt_pullback_bio_page(&page, true);
98 if (unlikely(bio->bi_error)) {
99 mapping_set_error(page->mapping, -EIO);
100 f2fs_stop_checkpoint(sbi, true);
102 dec_page_count(sbi, type);
103 clear_cold_data(page);
104 end_page_writeback(page);
106 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
107 wq_has_sleeper(&sbi->cp_wait))
108 wake_up(&sbi->cp_wait);
114 * Return true, if pre_bio's bdev is same as its target device.
116 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
117 block_t blk_addr, struct bio *bio)
119 struct block_device *bdev = sbi->sb->s_bdev;
122 for (i = 0; i < sbi->s_ndevs; i++) {
123 if (FDEV(i).start_blk <= blk_addr &&
124 FDEV(i).end_blk >= blk_addr) {
125 blk_addr -= FDEV(i).start_blk;
132 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
137 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
141 for (i = 0; i < sbi->s_ndevs; i++)
142 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
147 static bool __same_bdev(struct f2fs_sb_info *sbi,
148 block_t blk_addr, struct bio *bio)
150 return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev;
154 * Low-level block read/write IO operations.
156 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
157 int npages, bool is_read)
161 bio = f2fs_bio_alloc(npages);
163 f2fs_target_device(sbi, blk_addr, bio);
164 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
165 bio->bi_private = is_read ? NULL : sbi;
170 static inline void __submit_bio(struct f2fs_sb_info *sbi,
171 struct bio *bio, enum page_type type)
173 if (!is_read_io(bio_op(bio))) {
174 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
175 current->plug && (type == DATA || type == NODE))
176 blk_finish_plug(current->plug);
181 static void __submit_merged_bio(struct f2fs_bio_info *io)
183 struct f2fs_io_info *fio = &io->fio;
188 if (is_read_io(fio->op))
189 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
191 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
193 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
195 __submit_bio(io->sbi, io->bio, fio->type);
199 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
200 struct page *page, nid_t ino)
202 struct bio_vec *bvec;
209 if (!inode && !page && !ino)
212 bio_for_each_segment_all(bvec, io->bio, i) {
214 if (bvec->bv_page->mapping)
215 target = bvec->bv_page;
217 target = fscrypt_control_page(bvec->bv_page);
219 if (inode && inode == target->mapping->host)
221 if (page && page == target)
223 if (ino && ino == ino_of_node(target))
230 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
231 struct page *page, nid_t ino,
234 enum page_type btype = PAGE_TYPE_OF_BIO(type);
235 struct f2fs_bio_info *io = &sbi->write_io[btype];
238 down_read(&io->io_rwsem);
239 ret = __has_merged_page(io, inode, page, ino);
240 up_read(&io->io_rwsem);
244 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
245 struct inode *inode, struct page *page,
246 nid_t ino, enum page_type type, int rw)
248 enum page_type btype = PAGE_TYPE_OF_BIO(type);
249 struct f2fs_bio_info *io;
251 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
253 down_write(&io->io_rwsem);
255 if (!__has_merged_page(io, inode, page, ino))
258 /* change META to META_FLUSH in the checkpoint procedure */
259 if (type >= META_FLUSH) {
260 io->fio.type = META_FLUSH;
261 io->fio.op = REQ_OP_WRITE;
262 io->fio.op_flags = REQ_PREFLUSH | REQ_META | REQ_PRIO;
263 if (!test_opt(sbi, NOBARRIER))
264 io->fio.op_flags |= REQ_FUA;
266 __submit_merged_bio(io);
268 up_write(&io->io_rwsem);
271 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
274 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
277 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
278 struct inode *inode, struct page *page,
279 nid_t ino, enum page_type type, int rw)
281 if (has_merged_page(sbi, inode, page, ino, type))
282 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
285 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
287 f2fs_submit_merged_bio(sbi, DATA, WRITE);
288 f2fs_submit_merged_bio(sbi, NODE, WRITE);
289 f2fs_submit_merged_bio(sbi, META, WRITE);
293 * Fill the locked page with data located in the block address.
294 * Return unlocked page.
296 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
299 struct page *page = fio->encrypted_page ?
300 fio->encrypted_page : fio->page;
302 trace_f2fs_submit_page_bio(page, fio);
303 f2fs_trace_ios(fio, 0);
305 /* Allocate a new bio */
306 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
308 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
312 bio_set_op_attrs(bio, fio->op, fio->op_flags);
314 __submit_bio(fio->sbi, bio, fio->type);
318 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
320 struct f2fs_sb_info *sbi = fio->sbi;
321 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
322 struct f2fs_bio_info *io;
323 bool is_read = is_read_io(fio->op);
324 struct page *bio_page;
326 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
328 if (fio->old_blkaddr != NEW_ADDR)
329 verify_block_addr(sbi, fio->old_blkaddr);
330 verify_block_addr(sbi, fio->new_blkaddr);
332 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
335 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
337 down_write(&io->io_rwsem);
339 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
340 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
341 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
342 __submit_merged_bio(io);
344 if (io->bio == NULL) {
345 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
346 BIO_MAX_PAGES, is_read);
350 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
352 __submit_merged_bio(io);
356 io->last_block_in_bio = fio->new_blkaddr;
357 f2fs_trace_ios(fio, 0);
359 up_write(&io->io_rwsem);
360 trace_f2fs_submit_page_mbio(fio->page, fio);
363 static void __set_data_blkaddr(struct dnode_of_data *dn)
365 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
368 /* Get physical address of data block */
369 addr_array = blkaddr_in_node(rn);
370 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
374 * Lock ordering for the change of data block address:
377 * update block addresses in the node page
379 void set_data_blkaddr(struct dnode_of_data *dn)
381 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
382 __set_data_blkaddr(dn);
383 if (set_page_dirty(dn->node_page))
384 dn->node_changed = true;
387 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
389 dn->data_blkaddr = blkaddr;
390 set_data_blkaddr(dn);
391 f2fs_update_extent_cache(dn);
394 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
395 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
397 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
402 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
404 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
407 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
408 dn->ofs_in_node, count);
410 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
412 for (; count > 0; dn->ofs_in_node++) {
414 datablock_addr(dn->node_page, dn->ofs_in_node);
415 if (blkaddr == NULL_ADDR) {
416 dn->data_blkaddr = NEW_ADDR;
417 __set_data_blkaddr(dn);
422 if (set_page_dirty(dn->node_page))
423 dn->node_changed = true;
427 /* Should keep dn->ofs_in_node unchanged */
428 int reserve_new_block(struct dnode_of_data *dn)
430 unsigned int ofs_in_node = dn->ofs_in_node;
433 ret = reserve_new_blocks(dn, 1);
434 dn->ofs_in_node = ofs_in_node;
438 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
440 bool need_put = dn->inode_page ? false : true;
443 err = get_dnode_of_data(dn, index, ALLOC_NODE);
447 if (dn->data_blkaddr == NULL_ADDR)
448 err = reserve_new_block(dn);
454 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
456 struct extent_info ei;
457 struct inode *inode = dn->inode;
459 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
460 dn->data_blkaddr = ei.blk + index - ei.fofs;
464 return f2fs_reserve_block(dn, index);
467 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
468 int op_flags, bool for_write)
470 struct address_space *mapping = inode->i_mapping;
471 struct dnode_of_data dn;
473 struct extent_info ei;
475 struct f2fs_io_info fio = {
476 .sbi = F2FS_I_SB(inode),
479 .op_flags = op_flags,
480 .encrypted_page = NULL,
483 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
484 return read_mapping_page(mapping, index, NULL);
486 page = f2fs_grab_cache_page(mapping, index, for_write);
488 return ERR_PTR(-ENOMEM);
490 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
491 dn.data_blkaddr = ei.blk + index - ei.fofs;
495 set_new_dnode(&dn, inode, NULL, NULL, 0);
496 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
501 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
506 if (PageUptodate(page)) {
512 * A new dentry page is allocated but not able to be written, since its
513 * new inode page couldn't be allocated due to -ENOSPC.
514 * In such the case, its blkaddr can be remained as NEW_ADDR.
515 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
517 if (dn.data_blkaddr == NEW_ADDR) {
518 zero_user_segment(page, 0, PAGE_SIZE);
519 if (!PageUptodate(page))
520 SetPageUptodate(page);
525 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
527 err = f2fs_submit_page_bio(&fio);
533 f2fs_put_page(page, 1);
537 struct page *find_data_page(struct inode *inode, pgoff_t index)
539 struct address_space *mapping = inode->i_mapping;
542 page = find_get_page(mapping, index);
543 if (page && PageUptodate(page))
545 f2fs_put_page(page, 0);
547 page = get_read_data_page(inode, index, 0, false);
551 if (PageUptodate(page))
554 wait_on_page_locked(page);
555 if (unlikely(!PageUptodate(page))) {
556 f2fs_put_page(page, 0);
557 return ERR_PTR(-EIO);
563 * If it tries to access a hole, return an error.
564 * Because, the callers, functions in dir.c and GC, should be able to know
565 * whether this page exists or not.
567 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
570 struct address_space *mapping = inode->i_mapping;
573 page = get_read_data_page(inode, index, 0, for_write);
577 /* wait for read completion */
579 if (unlikely(page->mapping != mapping)) {
580 f2fs_put_page(page, 1);
583 if (unlikely(!PageUptodate(page))) {
584 f2fs_put_page(page, 1);
585 return ERR_PTR(-EIO);
591 * Caller ensures that this data page is never allocated.
592 * A new zero-filled data page is allocated in the page cache.
594 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
596 * Note that, ipage is set only by make_empty_dir, and if any error occur,
597 * ipage should be released by this function.
599 struct page *get_new_data_page(struct inode *inode,
600 struct page *ipage, pgoff_t index, bool new_i_size)
602 struct address_space *mapping = inode->i_mapping;
604 struct dnode_of_data dn;
607 page = f2fs_grab_cache_page(mapping, index, true);
610 * before exiting, we should make sure ipage will be released
611 * if any error occur.
613 f2fs_put_page(ipage, 1);
614 return ERR_PTR(-ENOMEM);
617 set_new_dnode(&dn, inode, ipage, NULL, 0);
618 err = f2fs_reserve_block(&dn, index);
620 f2fs_put_page(page, 1);
626 if (PageUptodate(page))
629 if (dn.data_blkaddr == NEW_ADDR) {
630 zero_user_segment(page, 0, PAGE_SIZE);
631 if (!PageUptodate(page))
632 SetPageUptodate(page);
634 f2fs_put_page(page, 1);
636 /* if ipage exists, blkaddr should be NEW_ADDR */
637 f2fs_bug_on(F2FS_I_SB(inode), ipage);
638 page = get_lock_data_page(inode, index, true);
643 if (new_i_size && i_size_read(inode) <
644 ((loff_t)(index + 1) << PAGE_SHIFT))
645 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
649 static int __allocate_data_block(struct dnode_of_data *dn)
651 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
652 struct f2fs_summary sum;
657 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
660 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
661 if (dn->data_blkaddr == NEW_ADDR)
664 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
668 get_node_info(sbi, dn->nid, &ni);
669 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
671 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
672 &sum, CURSEG_WARM_DATA);
673 set_data_blkaddr(dn);
676 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
678 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
679 f2fs_i_size_write(dn->inode,
680 ((loff_t)(fofs + 1) << PAGE_SHIFT));
684 static inline bool __force_buffered_io(struct inode *inode, int rw)
686 return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
687 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
688 F2FS_I_SB(inode)->s_ndevs);
691 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
693 struct inode *inode = file_inode(iocb->ki_filp);
694 struct f2fs_map_blocks map;
697 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
698 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
699 if (map.m_len > map.m_lblk)
700 map.m_len -= map.m_lblk;
704 map.m_next_pgofs = NULL;
706 if (iocb->ki_flags & IOCB_DIRECT) {
707 err = f2fs_convert_inline_inode(inode);
710 return f2fs_map_blocks(inode, &map, 1,
711 __force_buffered_io(inode, WRITE) ?
712 F2FS_GET_BLOCK_PRE_AIO :
713 F2FS_GET_BLOCK_PRE_DIO);
715 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
716 err = f2fs_convert_inline_inode(inode);
720 if (!f2fs_has_inline_data(inode))
721 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
726 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
727 * f2fs_map_blocks structure.
728 * If original data blocks are allocated, then give them to blockdev.
730 * a. preallocate requested block addresses
731 * b. do not use extent cache for better performance
732 * c. give the block addresses to blockdev
734 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
735 int create, int flag)
737 unsigned int maxblocks = map->m_len;
738 struct dnode_of_data dn;
739 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
740 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
741 pgoff_t pgofs, end_offset, end;
742 int err = 0, ofs = 1;
743 unsigned int ofs_in_node, last_ofs_in_node;
745 struct extent_info ei;
754 /* it only supports block size == page size */
755 pgofs = (pgoff_t)map->m_lblk;
756 end = pgofs + maxblocks;
758 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
759 map->m_pblk = ei.blk + pgofs - ei.fofs;
760 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
761 map->m_flags = F2FS_MAP_MAPPED;
769 /* When reading holes, we need its node page */
770 set_new_dnode(&dn, inode, NULL, NULL, 0);
771 err = get_dnode_of_data(&dn, pgofs, mode);
773 if (flag == F2FS_GET_BLOCK_BMAP)
775 if (err == -ENOENT) {
777 if (map->m_next_pgofs)
779 get_next_page_offset(&dn, pgofs);
785 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
786 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
789 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
791 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
793 if (unlikely(f2fs_cp_error(sbi))) {
797 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
798 if (blkaddr == NULL_ADDR) {
800 last_ofs_in_node = dn.ofs_in_node;
803 err = __allocate_data_block(&dn);
805 set_inode_flag(inode, FI_APPEND_WRITE);
809 map->m_flags = F2FS_MAP_NEW;
810 blkaddr = dn.data_blkaddr;
812 if (flag == F2FS_GET_BLOCK_BMAP) {
816 if (flag == F2FS_GET_BLOCK_FIEMAP &&
817 blkaddr == NULL_ADDR) {
818 if (map->m_next_pgofs)
819 *map->m_next_pgofs = pgofs + 1;
821 if (flag != F2FS_GET_BLOCK_FIEMAP ||
827 if (flag == F2FS_GET_BLOCK_PRE_AIO)
830 if (map->m_len == 0) {
831 /* preallocated unwritten block should be mapped for fiemap. */
832 if (blkaddr == NEW_ADDR)
833 map->m_flags |= F2FS_MAP_UNWRITTEN;
834 map->m_flags |= F2FS_MAP_MAPPED;
836 map->m_pblk = blkaddr;
838 } else if ((map->m_pblk != NEW_ADDR &&
839 blkaddr == (map->m_pblk + ofs)) ||
840 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
841 flag == F2FS_GET_BLOCK_PRE_DIO) {
852 /* preallocate blocks in batch for one dnode page */
853 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
854 (pgofs == end || dn.ofs_in_node == end_offset)) {
856 dn.ofs_in_node = ofs_in_node;
857 err = reserve_new_blocks(&dn, prealloc);
861 map->m_len += dn.ofs_in_node - ofs_in_node;
862 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
866 dn.ofs_in_node = end_offset;
871 else if (dn.ofs_in_node < end_offset)
878 f2fs_balance_fs(sbi, dn.node_changed);
887 f2fs_balance_fs(sbi, dn.node_changed);
890 trace_f2fs_map_blocks(inode, map, err);
894 static int __get_data_block(struct inode *inode, sector_t iblock,
895 struct buffer_head *bh, int create, int flag,
898 struct f2fs_map_blocks map;
902 map.m_len = bh->b_size >> inode->i_blkbits;
903 map.m_next_pgofs = next_pgofs;
905 err = f2fs_map_blocks(inode, &map, create, flag);
907 map_bh(bh, inode->i_sb, map.m_pblk);
908 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
909 bh->b_size = map.m_len << inode->i_blkbits;
914 static int get_data_block(struct inode *inode, sector_t iblock,
915 struct buffer_head *bh_result, int create, int flag,
918 return __get_data_block(inode, iblock, bh_result, create,
922 static int get_data_block_dio(struct inode *inode, sector_t iblock,
923 struct buffer_head *bh_result, int create)
925 return __get_data_block(inode, iblock, bh_result, create,
926 F2FS_GET_BLOCK_DIO, NULL);
929 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
930 struct buffer_head *bh_result, int create)
932 /* Block number less than F2FS MAX BLOCKS */
933 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
936 return __get_data_block(inode, iblock, bh_result, create,
937 F2FS_GET_BLOCK_BMAP, NULL);
940 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
942 return (offset >> inode->i_blkbits);
945 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
947 return (blk << inode->i_blkbits);
950 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
953 struct buffer_head map_bh;
954 sector_t start_blk, last_blk;
956 u64 logical = 0, phys = 0, size = 0;
960 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
964 if (f2fs_has_inline_data(inode)) {
965 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
972 if (logical_to_blk(inode, len) == 0)
973 len = blk_to_logical(inode, 1);
975 start_blk = logical_to_blk(inode, start);
976 last_blk = logical_to_blk(inode, start + len - 1);
979 memset(&map_bh, 0, sizeof(struct buffer_head));
982 ret = get_data_block(inode, start_blk, &map_bh, 0,
983 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
988 if (!buffer_mapped(&map_bh)) {
989 start_blk = next_pgofs;
991 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
992 F2FS_I_SB(inode)->max_file_blocks))
995 flags |= FIEMAP_EXTENT_LAST;
999 if (f2fs_encrypted_inode(inode))
1000 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1002 ret = fiemap_fill_next_extent(fieinfo, logical,
1006 if (start_blk > last_blk || ret)
1009 logical = blk_to_logical(inode, start_blk);
1010 phys = blk_to_logical(inode, map_bh.b_blocknr);
1011 size = map_bh.b_size;
1013 if (buffer_unwritten(&map_bh))
1014 flags = FIEMAP_EXTENT_UNWRITTEN;
1016 start_blk += logical_to_blk(inode, size);
1020 if (fatal_signal_pending(current))
1028 inode_unlock(inode);
1032 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1035 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1036 struct fscrypt_ctx *ctx = NULL;
1039 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1040 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1042 return ERR_CAST(ctx);
1044 /* wait the page to be moved by cleaning */
1045 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1048 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1051 fscrypt_release_ctx(ctx);
1052 return ERR_PTR(-ENOMEM);
1054 f2fs_target_device(sbi, blkaddr, bio);
1055 bio->bi_end_io = f2fs_read_end_io;
1056 bio->bi_private = ctx;
1062 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1063 * Major change was from block_size == page_size in f2fs by default.
1065 static int f2fs_mpage_readpages(struct address_space *mapping,
1066 struct list_head *pages, struct page *page,
1069 struct bio *bio = NULL;
1071 sector_t last_block_in_bio = 0;
1072 struct inode *inode = mapping->host;
1073 const unsigned blkbits = inode->i_blkbits;
1074 const unsigned blocksize = 1 << blkbits;
1075 sector_t block_in_file;
1076 sector_t last_block;
1077 sector_t last_block_in_file;
1079 struct f2fs_map_blocks map;
1085 map.m_next_pgofs = NULL;
1087 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1089 prefetchw(&page->flags);
1091 page = list_entry(pages->prev, struct page, lru);
1092 list_del(&page->lru);
1093 if (add_to_page_cache_lru(page, mapping,
1095 readahead_gfp_mask(mapping)))
1099 block_in_file = (sector_t)page->index;
1100 last_block = block_in_file + nr_pages;
1101 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1103 if (last_block > last_block_in_file)
1104 last_block = last_block_in_file;
1107 * Map blocks using the previous result first.
1109 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1110 block_in_file > map.m_lblk &&
1111 block_in_file < (map.m_lblk + map.m_len))
1115 * Then do more f2fs_map_blocks() calls until we are
1116 * done with this page.
1120 if (block_in_file < last_block) {
1121 map.m_lblk = block_in_file;
1122 map.m_len = last_block - block_in_file;
1124 if (f2fs_map_blocks(inode, &map, 0,
1125 F2FS_GET_BLOCK_READ))
1126 goto set_error_page;
1129 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1130 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1131 SetPageMappedToDisk(page);
1133 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1134 SetPageUptodate(page);
1138 zero_user_segment(page, 0, PAGE_SIZE);
1139 if (!PageUptodate(page))
1140 SetPageUptodate(page);
1146 * This page will go to BIO. Do we need to send this
1149 if (bio && (last_block_in_bio != block_nr - 1 ||
1150 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1152 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1156 bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1159 goto set_error_page;
1161 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1164 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1165 goto submit_and_realloc;
1167 last_block_in_bio = block_nr;
1171 zero_user_segment(page, 0, PAGE_SIZE);
1176 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1184 BUG_ON(pages && !list_empty(pages));
1186 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1190 static int f2fs_read_data_page(struct file *file, struct page *page)
1192 struct inode *inode = page->mapping->host;
1195 trace_f2fs_readpage(page, DATA);
1197 /* If the file has inline data, try to read it directly */
1198 if (f2fs_has_inline_data(inode))
1199 ret = f2fs_read_inline_data(inode, page);
1201 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1205 static int f2fs_read_data_pages(struct file *file,
1206 struct address_space *mapping,
1207 struct list_head *pages, unsigned nr_pages)
1209 struct inode *inode = file->f_mapping->host;
1210 struct page *page = list_entry(pages->prev, struct page, lru);
1212 trace_f2fs_readpages(inode, page, nr_pages);
1214 /* If the file has inline data, skip readpages */
1215 if (f2fs_has_inline_data(inode))
1218 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1221 int do_write_data_page(struct f2fs_io_info *fio)
1223 struct page *page = fio->page;
1224 struct inode *inode = page->mapping->host;
1225 struct dnode_of_data dn;
1228 set_new_dnode(&dn, inode, NULL, NULL, 0);
1229 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1233 fio->old_blkaddr = dn.data_blkaddr;
1235 /* This page is already truncated */
1236 if (fio->old_blkaddr == NULL_ADDR) {
1237 ClearPageUptodate(page);
1241 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1242 gfp_t gfp_flags = GFP_NOFS;
1244 /* wait for GCed encrypted page writeback */
1245 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1248 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1252 if (IS_ERR(fio->encrypted_page)) {
1253 err = PTR_ERR(fio->encrypted_page);
1254 if (err == -ENOMEM) {
1255 /* flush pending ios and wait for a while */
1256 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1257 congestion_wait(BLK_RW_ASYNC, HZ/50);
1258 gfp_flags |= __GFP_NOFAIL;
1266 set_page_writeback(page);
1269 * If current allocation needs SSR,
1270 * it had better in-place writes for updated data.
1272 if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1273 !is_cold_data(page) &&
1274 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1275 need_inplace_update(inode))) {
1276 rewrite_data_page(fio);
1277 set_inode_flag(inode, FI_UPDATE_WRITE);
1278 trace_f2fs_do_write_data_page(page, IPU);
1280 write_data_page(&dn, fio);
1281 trace_f2fs_do_write_data_page(page, OPU);
1282 set_inode_flag(inode, FI_APPEND_WRITE);
1283 if (page->index == 0)
1284 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1287 f2fs_put_dnode(&dn);
1291 static int f2fs_write_data_page(struct page *page,
1292 struct writeback_control *wbc)
1294 struct inode *inode = page->mapping->host;
1295 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1296 loff_t i_size = i_size_read(inode);
1297 const pgoff_t end_index = ((unsigned long long) i_size)
1299 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1300 unsigned offset = 0;
1301 bool need_balance_fs = false;
1303 struct f2fs_io_info fio = {
1307 .op_flags = wbc_to_write_flags(wbc),
1309 .encrypted_page = NULL,
1312 trace_f2fs_writepage(page, DATA);
1314 if (page->index < end_index)
1318 * If the offset is out-of-range of file size,
1319 * this page does not have to be written to disk.
1321 offset = i_size & (PAGE_SIZE - 1);
1322 if ((page->index >= end_index + 1) || !offset)
1325 zero_user_segment(page, offset, PAGE_SIZE);
1327 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1329 if (f2fs_is_drop_cache(inode))
1331 /* we should not write 0'th page having journal header */
1332 if (f2fs_is_volatile_file(inode) && (!page->index ||
1333 (!wbc->for_reclaim &&
1334 available_free_memory(sbi, BASE_CHECK))))
1337 /* we should bypass data pages to proceed the kworkder jobs */
1338 if (unlikely(f2fs_cp_error(sbi))) {
1339 mapping_set_error(page->mapping, -EIO);
1343 /* Dentry blocks are controlled by checkpoint */
1344 if (S_ISDIR(inode->i_mode)) {
1345 err = do_write_data_page(&fio);
1349 if (!wbc->for_reclaim)
1350 need_balance_fs = true;
1351 else if (has_not_enough_free_secs(sbi, 0, 0))
1356 if (f2fs_has_inline_data(inode))
1357 err = f2fs_write_inline_data(inode, page);
1359 err = do_write_data_page(&fio);
1360 if (F2FS_I(inode)->last_disk_size < psize)
1361 F2FS_I(inode)->last_disk_size = psize;
1362 f2fs_unlock_op(sbi);
1364 if (err && err != -ENOENT)
1368 inode_dec_dirty_pages(inode);
1370 ClearPageUptodate(page);
1372 if (wbc->for_reclaim) {
1373 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1374 remove_dirty_inode(inode);
1378 f2fs_balance_fs(sbi, need_balance_fs);
1380 if (unlikely(f2fs_cp_error(sbi)))
1381 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1386 redirty_page_for_writepage(wbc, page);
1388 return AOP_WRITEPAGE_ACTIVATE;
1394 * This function was copied from write_cche_pages from mm/page-writeback.c.
1395 * The major change is making write step of cold data page separately from
1396 * warm/hot data page.
1398 static int f2fs_write_cache_pages(struct address_space *mapping,
1399 struct writeback_control *wbc)
1403 struct pagevec pvec;
1405 pgoff_t uninitialized_var(writeback_index);
1407 pgoff_t end; /* Inclusive */
1410 int range_whole = 0;
1414 pagevec_init(&pvec, 0);
1416 if (wbc->range_cyclic) {
1417 writeback_index = mapping->writeback_index; /* prev offset */
1418 index = writeback_index;
1425 index = wbc->range_start >> PAGE_SHIFT;
1426 end = wbc->range_end >> PAGE_SHIFT;
1427 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1429 cycled = 1; /* ignore range_cyclic tests */
1431 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1432 tag = PAGECACHE_TAG_TOWRITE;
1434 tag = PAGECACHE_TAG_DIRTY;
1436 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1437 tag_pages_for_writeback(mapping, index, end);
1439 while (!done && (index <= end)) {
1442 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1443 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1447 for (i = 0; i < nr_pages; i++) {
1448 struct page *page = pvec.pages[i];
1450 if (page->index > end) {
1455 done_index = page->index;
1459 if (unlikely(page->mapping != mapping)) {
1465 if (!PageDirty(page)) {
1466 /* someone wrote it for us */
1467 goto continue_unlock;
1470 if (PageWriteback(page)) {
1471 if (wbc->sync_mode != WB_SYNC_NONE)
1472 f2fs_wait_on_page_writeback(page,
1475 goto continue_unlock;
1478 BUG_ON(PageWriteback(page));
1479 if (!clear_page_dirty_for_io(page))
1480 goto continue_unlock;
1482 ret = mapping->a_ops->writepage(page, wbc);
1483 if (unlikely(ret)) {
1485 * keep nr_to_write, since vfs uses this to
1486 * get # of written pages.
1488 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1493 done_index = page->index + 1;
1500 if (--wbc->nr_to_write <= 0 &&
1501 wbc->sync_mode == WB_SYNC_NONE) {
1506 pagevec_release(&pvec);
1510 if (!cycled && !done) {
1513 end = writeback_index - 1;
1516 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1517 mapping->writeback_index = done_index;
1520 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host,
1521 NULL, 0, DATA, WRITE);
1526 static int f2fs_write_data_pages(struct address_space *mapping,
1527 struct writeback_control *wbc)
1529 struct inode *inode = mapping->host;
1530 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1531 struct blk_plug plug;
1534 /* deal with chardevs and other special file */
1535 if (!mapping->a_ops->writepage)
1538 /* skip writing if there is no dirty page in this inode */
1539 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1542 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1543 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1544 available_free_memory(sbi, DIRTY_DENTS))
1547 /* skip writing during file defragment */
1548 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1551 /* during POR, we don't need to trigger writepage at all. */
1552 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1555 trace_f2fs_writepages(mapping->host, wbc, DATA);
1557 blk_start_plug(&plug);
1558 ret = f2fs_write_cache_pages(mapping, wbc);
1559 blk_finish_plug(&plug);
1561 * if some pages were truncated, we cannot guarantee its mapping->host
1562 * to detect pending bios.
1565 remove_dirty_inode(inode);
1569 wbc->pages_skipped += get_dirty_pages(inode);
1570 trace_f2fs_writepages(mapping->host, wbc, DATA);
1574 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1576 struct inode *inode = mapping->host;
1577 loff_t i_size = i_size_read(inode);
1580 truncate_pagecache(inode, i_size);
1581 truncate_blocks(inode, i_size, true);
1585 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1586 struct page *page, loff_t pos, unsigned len,
1587 block_t *blk_addr, bool *node_changed)
1589 struct inode *inode = page->mapping->host;
1590 pgoff_t index = page->index;
1591 struct dnode_of_data dn;
1593 bool locked = false;
1594 struct extent_info ei;
1598 * we already allocated all the blocks, so we don't need to get
1599 * the block addresses when there is no need to fill the page.
1601 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE)
1604 if (f2fs_has_inline_data(inode) ||
1605 (pos & PAGE_MASK) >= i_size_read(inode)) {
1610 /* check inline_data */
1611 ipage = get_node_page(sbi, inode->i_ino);
1612 if (IS_ERR(ipage)) {
1613 err = PTR_ERR(ipage);
1617 set_new_dnode(&dn, inode, ipage, ipage, 0);
1619 if (f2fs_has_inline_data(inode)) {
1620 if (pos + len <= MAX_INLINE_DATA) {
1621 read_inline_data(page, ipage);
1622 set_inode_flag(inode, FI_DATA_EXIST);
1624 set_inline_node(ipage);
1626 err = f2fs_convert_inline_page(&dn, page);
1629 if (dn.data_blkaddr == NULL_ADDR)
1630 err = f2fs_get_block(&dn, index);
1632 } else if (locked) {
1633 err = f2fs_get_block(&dn, index);
1635 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1636 dn.data_blkaddr = ei.blk + index - ei.fofs;
1639 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1640 if (err || dn.data_blkaddr == NULL_ADDR) {
1641 f2fs_put_dnode(&dn);
1649 /* convert_inline_page can make node_changed */
1650 *blk_addr = dn.data_blkaddr;
1651 *node_changed = dn.node_changed;
1653 f2fs_put_dnode(&dn);
1656 f2fs_unlock_op(sbi);
1660 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1661 loff_t pos, unsigned len, unsigned flags,
1662 struct page **pagep, void **fsdata)
1664 struct inode *inode = mapping->host;
1665 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1666 struct page *page = NULL;
1667 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1668 bool need_balance = false;
1669 block_t blkaddr = NULL_ADDR;
1672 trace_f2fs_write_begin(inode, pos, len, flags);
1675 * We should check this at this moment to avoid deadlock on inode page
1676 * and #0 page. The locking rule for inline_data conversion should be:
1677 * lock_page(page #0) -> lock_page(inode_page)
1680 err = f2fs_convert_inline_inode(inode);
1685 page = grab_cache_page_write_begin(mapping, index, flags);
1693 err = prepare_write_begin(sbi, page, pos, len,
1694 &blkaddr, &need_balance);
1698 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1700 f2fs_balance_fs(sbi, true);
1702 if (page->mapping != mapping) {
1703 /* The page got truncated from under us */
1704 f2fs_put_page(page, 1);
1709 f2fs_wait_on_page_writeback(page, DATA, false);
1711 /* wait for GCed encrypted page writeback */
1712 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1713 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1715 if (len == PAGE_SIZE || PageUptodate(page))
1718 if (blkaddr == NEW_ADDR) {
1719 zero_user_segment(page, 0, PAGE_SIZE);
1720 SetPageUptodate(page);
1724 bio = f2fs_grab_bio(inode, blkaddr, 1);
1729 bio->bi_opf = REQ_OP_READ;
1730 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1736 __submit_bio(sbi, bio, DATA);
1739 if (unlikely(page->mapping != mapping)) {
1740 f2fs_put_page(page, 1);
1743 if (unlikely(!PageUptodate(page))) {
1751 f2fs_put_page(page, 1);
1752 f2fs_write_failed(mapping, pos + len);
1756 static int f2fs_write_end(struct file *file,
1757 struct address_space *mapping,
1758 loff_t pos, unsigned len, unsigned copied,
1759 struct page *page, void *fsdata)
1761 struct inode *inode = page->mapping->host;
1763 trace_f2fs_write_end(inode, pos, len, copied);
1766 * This should be come from len == PAGE_SIZE, and we expect copied
1767 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
1768 * let generic_perform_write() try to copy data again through copied=0.
1770 if (!PageUptodate(page)) {
1771 if (unlikely(copied != PAGE_SIZE))
1774 SetPageUptodate(page);
1779 set_page_dirty(page);
1781 if (pos + copied > i_size_read(inode))
1782 f2fs_i_size_write(inode, pos + copied);
1784 f2fs_put_page(page, 1);
1785 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1789 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1792 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1794 if (offset & blocksize_mask)
1797 if (iov_iter_alignment(iter) & blocksize_mask)
1803 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1805 struct address_space *mapping = iocb->ki_filp->f_mapping;
1806 struct inode *inode = mapping->host;
1807 size_t count = iov_iter_count(iter);
1808 loff_t offset = iocb->ki_pos;
1809 int rw = iov_iter_rw(iter);
1812 err = check_direct_IO(inode, iter, offset);
1816 if (__force_buffered_io(inode, rw))
1819 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1821 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
1822 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1823 up_read(&F2FS_I(inode)->dio_rwsem[rw]);
1827 set_inode_flag(inode, FI_UPDATE_WRITE);
1829 f2fs_write_failed(mapping, offset + count);
1832 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1837 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1838 unsigned int length)
1840 struct inode *inode = page->mapping->host;
1841 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1843 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1844 (offset % PAGE_SIZE || length != PAGE_SIZE))
1847 if (PageDirty(page)) {
1848 if (inode->i_ino == F2FS_META_INO(sbi)) {
1849 dec_page_count(sbi, F2FS_DIRTY_META);
1850 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
1851 dec_page_count(sbi, F2FS_DIRTY_NODES);
1853 inode_dec_dirty_pages(inode);
1854 remove_dirty_inode(inode);
1858 /* This is atomic written page, keep Private */
1859 if (IS_ATOMIC_WRITTEN_PAGE(page))
1862 set_page_private(page, 0);
1863 ClearPagePrivate(page);
1866 int f2fs_release_page(struct page *page, gfp_t wait)
1868 /* If this is dirty page, keep PagePrivate */
1869 if (PageDirty(page))
1872 /* This is atomic written page, keep Private */
1873 if (IS_ATOMIC_WRITTEN_PAGE(page))
1876 set_page_private(page, 0);
1877 ClearPagePrivate(page);
1882 * This was copied from __set_page_dirty_buffers which gives higher performance
1883 * in very high speed storages. (e.g., pmem)
1885 void f2fs_set_page_dirty_nobuffers(struct page *page)
1887 struct address_space *mapping = page->mapping;
1888 unsigned long flags;
1890 if (unlikely(!mapping))
1893 spin_lock(&mapping->private_lock);
1894 lock_page_memcg(page);
1896 spin_unlock(&mapping->private_lock);
1898 spin_lock_irqsave(&mapping->tree_lock, flags);
1899 WARN_ON_ONCE(!PageUptodate(page));
1900 account_page_dirtied(page, mapping);
1901 radix_tree_tag_set(&mapping->page_tree,
1902 page_index(page), PAGECACHE_TAG_DIRTY);
1903 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1904 unlock_page_memcg(page);
1906 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1910 static int f2fs_set_data_page_dirty(struct page *page)
1912 struct address_space *mapping = page->mapping;
1913 struct inode *inode = mapping->host;
1915 trace_f2fs_set_page_dirty(page, DATA);
1917 if (!PageUptodate(page))
1918 SetPageUptodate(page);
1920 if (f2fs_is_atomic_file(inode)) {
1921 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1922 register_inmem_page(inode, page);
1926 * Previously, this page has been registered, we just
1932 if (!PageDirty(page)) {
1933 f2fs_set_page_dirty_nobuffers(page);
1934 update_dirty_page(inode, page);
1940 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1942 struct inode *inode = mapping->host;
1944 if (f2fs_has_inline_data(inode))
1947 /* make sure allocating whole blocks */
1948 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1949 filemap_write_and_wait(mapping);
1951 return generic_block_bmap(mapping, block, get_data_block_bmap);
1954 #ifdef CONFIG_MIGRATION
1955 #include <linux/migrate.h>
1957 int f2fs_migrate_page(struct address_space *mapping,
1958 struct page *newpage, struct page *page, enum migrate_mode mode)
1960 int rc, extra_count;
1961 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
1962 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
1964 BUG_ON(PageWriteback(page));
1966 /* migrating an atomic written page is safe with the inmem_lock hold */
1967 if (atomic_written && !mutex_trylock(&fi->inmem_lock))
1971 * A reference is expected if PagePrivate set when move mapping,
1972 * however F2FS breaks this for maintaining dirty page counts when
1973 * truncating pages. So here adjusting the 'extra_count' make it work.
1975 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
1976 rc = migrate_page_move_mapping(mapping, newpage,
1977 page, NULL, mode, extra_count);
1978 if (rc != MIGRATEPAGE_SUCCESS) {
1980 mutex_unlock(&fi->inmem_lock);
1984 if (atomic_written) {
1985 struct inmem_pages *cur;
1986 list_for_each_entry(cur, &fi->inmem_pages, list)
1987 if (cur->page == page) {
1988 cur->page = newpage;
1991 mutex_unlock(&fi->inmem_lock);
1996 if (PagePrivate(page))
1997 SetPagePrivate(newpage);
1998 set_page_private(newpage, page_private(page));
2000 migrate_page_copy(newpage, page);
2002 return MIGRATEPAGE_SUCCESS;
2006 const struct address_space_operations f2fs_dblock_aops = {
2007 .readpage = f2fs_read_data_page,
2008 .readpages = f2fs_read_data_pages,
2009 .writepage = f2fs_write_data_page,
2010 .writepages = f2fs_write_data_pages,
2011 .write_begin = f2fs_write_begin,
2012 .write_end = f2fs_write_end,
2013 .set_page_dirty = f2fs_set_data_page_dirty,
2014 .invalidatepage = f2fs_invalidate_page,
2015 .releasepage = f2fs_release_page,
2016 .direct_IO = f2fs_direct_IO,
2018 #ifdef CONFIG_MIGRATION
2019 .migratepage = f2fs_migrate_page,