1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap_btree.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_space.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iomap.h"
25 #include "xfs_trace.h"
26 #include "xfs_quota.h"
27 #include "xfs_dquot_item.h"
28 #include "xfs_dquot.h"
29 #include "xfs_reflink.h"
32 #define XFS_ALLOC_ALIGN(mp, off) \
33 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
36 xfs_alert_fsblock_zero(
38 xfs_bmbt_irec_t *imap)
40 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
41 "Access to block zero in inode %llu "
42 "start_block: %llx start_off: %llx "
43 "blkcnt: %llx extent-state: %x",
44 (unsigned long long)ip->i_ino,
45 (unsigned long long)imap->br_startblock,
46 (unsigned long long)imap->br_startoff,
47 (unsigned long long)imap->br_blockcount,
56 struct xfs_bmbt_irec *imap,
59 struct xfs_mount *mp = ip->i_mount;
60 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
62 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
63 return xfs_alert_fsblock_zero(ip, imap);
65 if (imap->br_startblock == HOLESTARTBLOCK) {
66 iomap->addr = IOMAP_NULL_ADDR;
67 iomap->type = IOMAP_HOLE;
68 } else if (imap->br_startblock == DELAYSTARTBLOCK ||
69 isnullstartblock(imap->br_startblock)) {
70 iomap->addr = IOMAP_NULL_ADDR;
71 iomap->type = IOMAP_DELALLOC;
73 iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock));
74 if (imap->br_state == XFS_EXT_UNWRITTEN)
75 iomap->type = IOMAP_UNWRITTEN;
77 iomap->type = IOMAP_MAPPED;
79 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
80 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
81 iomap->bdev = target->bt_bdev;
82 iomap->dax_dev = target->bt_daxdev;
85 if (xfs_ipincount(ip) &&
86 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
87 iomap->flags |= IOMAP_F_DIRTY;
95 xfs_fileoff_t offset_fsb,
96 xfs_fileoff_t end_fsb)
98 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
100 iomap->addr = IOMAP_NULL_ADDR;
101 iomap->type = IOMAP_HOLE;
102 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
103 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
104 iomap->bdev = target->bt_bdev;
105 iomap->dax_dev = target->bt_daxdev;
108 static inline xfs_fileoff_t
110 struct xfs_mount *mp,
114 ASSERT(offset <= mp->m_super->s_maxbytes);
115 return min(XFS_B_TO_FSB(mp, offset + count),
116 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
121 struct xfs_inode *ip)
123 struct xfs_mount *mp = ip->i_mount;
124 xfs_extlen_t align = 0;
126 if (!XFS_IS_REALTIME_INODE(ip)) {
128 * Round up the allocation request to a stripe unit
129 * (m_dalign) boundary if the file size is >= stripe unit
130 * size, and we are allocating past the allocation eof.
132 * If mounted with the "-o swalloc" option the alignment is
133 * increased from the strip unit size to the stripe width.
135 if (mp->m_swidth && (mp->m_flags & XFS_MOUNT_SWALLOC))
136 align = mp->m_swidth;
137 else if (mp->m_dalign)
138 align = mp->m_dalign;
140 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
148 * Check if last_fsb is outside the last extent, and if so grow it to the next
149 * stripe unit boundary.
152 xfs_iomap_eof_align_last_fsb(
153 struct xfs_inode *ip,
154 xfs_fileoff_t end_fsb)
156 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
157 xfs_extlen_t extsz = xfs_get_extsz_hint(ip);
158 xfs_extlen_t align = xfs_eof_alignment(ip);
159 struct xfs_bmbt_irec irec;
160 struct xfs_iext_cursor icur;
162 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
165 * Always round up the allocation request to the extent hint boundary.
169 align = roundup_64(align, extsz);
175 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align);
177 xfs_iext_last(ifp, &icur);
178 if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
179 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
180 return aligned_end_fsb;
187 xfs_iomap_write_direct(
188 struct xfs_inode *ip,
189 xfs_fileoff_t offset_fsb,
190 xfs_fileoff_t count_fsb,
191 struct xfs_bmbt_irec *imap)
193 struct xfs_mount *mp = ip->i_mount;
194 struct xfs_trans *tp;
195 xfs_filblks_t resaligned;
198 uint qblocks, resblks;
199 unsigned int resrtextents = 0;
201 int bmapi_flags = XFS_BMAPI_PREALLOC;
204 ASSERT(count_fsb > 0);
206 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
207 xfs_get_extsz_hint(ip));
208 if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
209 resrtextents = qblocks = resaligned;
210 resrtextents /= mp->m_sb.sb_rextsize;
211 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
212 quota_flag = XFS_QMOPT_RES_RTBLKS;
214 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
215 quota_flag = XFS_QMOPT_RES_REGBLKS;
218 error = xfs_qm_dqattach(ip);
223 * For DAX, we do not allocate unwritten extents, but instead we zero
224 * the block before we commit the transaction. Ideally we'd like to do
225 * this outside the transaction context, but if we commit and then crash
226 * we may not have zeroed the blocks and this will be exposed on
227 * recovery of the allocation. Hence we must zero before commit.
229 * Further, if we are mapping unwritten extents here, we need to zero
230 * and convert them to written so that we don't need an unwritten extent
231 * callback for DAX. This also means that we need to be able to dip into
232 * the reserve block pool for bmbt block allocation if there is no space
233 * left but we need to do unwritten extent conversion.
235 if (IS_DAX(VFS_I(ip))) {
236 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
237 if (imap->br_state == XFS_EXT_UNWRITTEN) {
238 tflags |= XFS_TRANS_RESERVE;
239 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
242 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, resrtextents,
247 xfs_ilock(ip, XFS_ILOCK_EXCL);
249 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 0, quota_flag);
251 goto out_trans_cancel;
253 xfs_trans_ijoin(tp, ip, 0);
256 * From this point onwards we overwrite the imap pointer that the
260 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
266 * Complete the transaction
268 error = xfs_trans_commit(tp);
273 * Copy any maps to caller's array and return any error.
280 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
281 error = xfs_alert_fsblock_zero(ip, imap);
284 xfs_iunlock(ip, XFS_ILOCK_EXCL);
288 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
290 xfs_trans_cancel(tp);
295 xfs_quota_need_throttle(
296 struct xfs_inode *ip,
298 xfs_fsblock_t alloc_blocks)
300 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
302 if (!dq || !xfs_this_quota_on(ip->i_mount, type))
305 /* no hi watermark, no throttle */
306 if (!dq->q_prealloc_hi_wmark)
309 /* under the lo watermark, no throttle */
310 if (dq->q_blk.reserved + alloc_blocks < dq->q_prealloc_lo_wmark)
317 xfs_quota_calc_throttle(
318 struct xfs_inode *ip,
320 xfs_fsblock_t *qblocks,
324 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
328 /* no dq, or over hi wmark, squash the prealloc completely */
329 if (!dq || dq->q_blk.reserved >= dq->q_prealloc_hi_wmark) {
335 freesp = dq->q_prealloc_hi_wmark - dq->q_blk.reserved;
336 if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) {
338 if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT])
340 if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT])
344 if (freesp < *qfreesp)
347 /* only overwrite the throttle values if we are more aggressive */
348 if ((freesp >> shift) < (*qblocks >> *qshift)) {
355 * If we don't have a user specified preallocation size, dynamically increase
356 * the preallocation size as the size of the file grows. Cap the maximum size
357 * at a single extent or less if the filesystem is near full. The closer the
358 * filesystem is to being full, the smaller the maximum preallocation.
361 xfs_iomap_prealloc_size(
362 struct xfs_inode *ip,
366 struct xfs_iext_cursor *icur)
368 struct xfs_iext_cursor ncur = *icur;
369 struct xfs_bmbt_irec prev, got;
370 struct xfs_mount *mp = ip->i_mount;
371 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
372 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
374 xfs_fsblock_t qblocks;
375 xfs_fsblock_t alloc_blocks = 0;
381 * As an exception we don't do any preallocation at all if the file is
382 * smaller than the minimum preallocation and we are using the default
383 * dynamic preallocation scheme, as it is likely this is the only write
384 * to the file that is going to be done.
386 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
390 * Use the minimum preallocation size for small files or if we are
391 * writing right after a hole.
393 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
394 !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
395 prev.br_startoff + prev.br_blockcount < offset_fsb)
396 return mp->m_allocsize_blocks;
399 * Take the size of the preceding data extents as the basis for the
400 * preallocation size. Note that we don't care if the previous extents
401 * are written or not.
403 plen = prev.br_blockcount;
404 while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
405 if (plen > MAXEXTLEN / 2 ||
406 isnullstartblock(got.br_startblock) ||
407 got.br_startoff + got.br_blockcount != prev.br_startoff ||
408 got.br_startblock + got.br_blockcount != prev.br_startblock)
410 plen += got.br_blockcount;
415 * If the size of the extents is greater than half the maximum extent
416 * length, then use the current offset as the basis. This ensures that
417 * for large files the preallocation size always extends to MAXEXTLEN
418 * rather than falling short due to things like stripe unit/width
419 * alignment of real extents.
421 alloc_blocks = plen * 2;
422 if (alloc_blocks > MAXEXTLEN)
423 alloc_blocks = XFS_B_TO_FSB(mp, offset);
424 qblocks = alloc_blocks;
427 * MAXEXTLEN is not a power of two value but we round the prealloc down
428 * to the nearest power of two value after throttling. To prevent the
429 * round down from unconditionally reducing the maximum supported
430 * prealloc size, we round up first, apply appropriate throttling,
431 * round down and cap the value to MAXEXTLEN.
433 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(MAXEXTLEN),
436 freesp = percpu_counter_read_positive(&mp->m_fdblocks);
437 if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) {
439 if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT])
441 if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT])
443 if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT])
445 if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT])
450 * Check each quota to cap the prealloc size, provide a shift value to
451 * throttle with and adjust amount of available space.
453 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
454 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
456 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
457 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
459 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
460 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
464 * The final prealloc size is set to the minimum of free space available
465 * in each of the quotas and the overall filesystem.
467 * The shift throttle value is set to the maximum value as determined by
468 * the global low free space values and per-quota low free space values.
470 alloc_blocks = min(alloc_blocks, qblocks);
471 shift = max(shift, qshift);
474 alloc_blocks >>= shift;
476 * rounddown_pow_of_two() returns an undefined result if we pass in
480 alloc_blocks = rounddown_pow_of_two(alloc_blocks);
481 if (alloc_blocks > MAXEXTLEN)
482 alloc_blocks = MAXEXTLEN;
485 * If we are still trying to allocate more space than is
486 * available, squash the prealloc hard. This can happen if we
487 * have a large file on a small filesystem and the above
488 * lowspace thresholds are smaller than MAXEXTLEN.
490 while (alloc_blocks && alloc_blocks >= freesp)
492 if (alloc_blocks < mp->m_allocsize_blocks)
493 alloc_blocks = mp->m_allocsize_blocks;
494 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
495 mp->m_allocsize_blocks);
500 xfs_iomap_write_unwritten(
506 xfs_mount_t *mp = ip->i_mount;
507 xfs_fileoff_t offset_fsb;
508 xfs_filblks_t count_fsb;
509 xfs_filblks_t numblks_fsb;
512 xfs_bmbt_irec_t imap;
513 struct inode *inode = VFS_I(ip);
518 trace_xfs_unwritten_convert(ip, offset, count);
520 offset_fsb = XFS_B_TO_FSBT(mp, offset);
521 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
522 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
525 * Reserve enough blocks in this transaction for two complete extent
526 * btree splits. We may be converting the middle part of an unwritten
527 * extent and in this case we will insert two new extents in the btree
528 * each of which could cause a full split.
530 * This reservation amount will be used in the first call to
531 * xfs_bmbt_split() to select an AG with enough space to satisfy the
532 * rest of the operation.
534 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
536 /* Attach dquots so that bmbt splits are accounted correctly. */
537 error = xfs_qm_dqattach(ip);
543 * Set up a transaction to convert the range of extents
544 * from unwritten to real. Do allocations in a loop until
545 * we have covered the range passed in.
547 * Note that we can't risk to recursing back into the filesystem
548 * here as we might be asked to write out the same inode that we
549 * complete here and might deadlock on the iolock.
551 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
552 XFS_TRANS_RESERVE, &tp);
556 xfs_ilock(ip, XFS_ILOCK_EXCL);
557 xfs_trans_ijoin(tp, ip, 0);
559 error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
560 XFS_QMOPT_RES_REGBLKS | XFS_QMOPT_FORCE_RES);
562 goto error_on_bmapi_transaction;
565 * Modify the unwritten extent state of the buffer.
568 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
569 XFS_BMAPI_CONVERT, resblks, &imap,
572 goto error_on_bmapi_transaction;
575 * Log the updated inode size as we go. We have to be careful
576 * to only log it up to the actual write offset if it is
577 * halfway into a block.
579 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
580 if (i_size > offset + count)
581 i_size = offset + count;
582 if (update_isize && i_size > i_size_read(inode))
583 i_size_write(inode, i_size);
584 i_size = xfs_new_eof(ip, i_size);
586 ip->i_d.di_size = i_size;
587 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
590 error = xfs_trans_commit(tp);
591 xfs_iunlock(ip, XFS_ILOCK_EXCL);
595 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock)))
596 return xfs_alert_fsblock_zero(ip, &imap);
598 if ((numblks_fsb = imap.br_blockcount) == 0) {
600 * The numblks_fsb value should always get
601 * smaller, otherwise the loop is stuck.
603 ASSERT(imap.br_blockcount);
606 offset_fsb += numblks_fsb;
607 count_fsb -= numblks_fsb;
608 } while (count_fsb > 0);
612 error_on_bmapi_transaction:
613 xfs_trans_cancel(tp);
614 xfs_iunlock(ip, XFS_ILOCK_EXCL);
622 struct xfs_bmbt_irec *imap,
625 /* don't allocate blocks when just zeroing */
626 if (flags & IOMAP_ZERO)
629 imap->br_startblock == HOLESTARTBLOCK ||
630 imap->br_startblock == DELAYSTARTBLOCK)
632 /* we convert unwritten extents before copying the data for DAX */
633 if (IS_DAX(inode) && imap->br_state == XFS_EXT_UNWRITTEN)
640 struct xfs_inode *ip,
642 struct xfs_bmbt_irec *imap,
645 if (!xfs_is_cow_inode(ip))
648 /* when zeroing we don't have to COW holes or unwritten extents */
649 if (flags & IOMAP_ZERO) {
651 imap->br_startblock == HOLESTARTBLOCK ||
652 imap->br_state == XFS_EXT_UNWRITTEN)
661 struct xfs_inode *ip,
665 unsigned mode = XFS_ILOCK_SHARED;
666 bool is_write = flags & (IOMAP_WRITE | IOMAP_ZERO);
669 * COW writes may allocate delalloc space or convert unwritten COW
670 * extents, so we need to make sure to take the lock exclusively here.
672 if (xfs_is_cow_inode(ip) && is_write)
673 mode = XFS_ILOCK_EXCL;
676 * Extents not yet cached requires exclusive access, don't block. This
677 * is an opencoded xfs_ilock_data_map_shared() call but with
678 * non-blocking behaviour.
680 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) {
681 if (flags & IOMAP_NOWAIT)
683 mode = XFS_ILOCK_EXCL;
687 if (flags & IOMAP_NOWAIT) {
688 if (!xfs_ilock_nowait(ip, mode))
695 * The reflink iflag could have changed since the earlier unlocked
696 * check, so if we got ILOCK_SHARED for a write and but we're now a
697 * reflink inode we have to switch to ILOCK_EXCL and relock.
699 if (mode == XFS_ILOCK_SHARED && is_write && xfs_is_cow_inode(ip)) {
700 xfs_iunlock(ip, mode);
701 mode = XFS_ILOCK_EXCL;
710 * Check that the imap we are going to return to the caller spans the entire
711 * range that the caller requested for the IO.
715 struct xfs_bmbt_irec *imap,
716 xfs_fileoff_t offset_fsb,
717 xfs_fileoff_t end_fsb)
719 if (imap->br_startoff > offset_fsb)
721 if (imap->br_startoff + imap->br_blockcount < end_fsb)
727 xfs_direct_write_iomap_begin(
733 struct iomap *srcmap)
735 struct xfs_inode *ip = XFS_I(inode);
736 struct xfs_mount *mp = ip->i_mount;
737 struct xfs_bmbt_irec imap, cmap;
738 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
739 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
740 int nimaps = 1, error = 0;
745 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
747 if (XFS_FORCED_SHUTDOWN(mp))
751 * Writes that span EOF might trigger an IO size update on completion,
752 * so consider them to be dirty for the purposes of O_DSYNC even if
753 * there is no other metadata changes pending or have been made here.
755 if (offset + length > i_size_read(inode))
756 iomap_flags |= IOMAP_F_DIRTY;
758 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
762 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
767 if (imap_needs_cow(ip, flags, &imap, nimaps)) {
769 if (flags & IOMAP_NOWAIT)
772 /* may drop and re-acquire the ilock */
773 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
774 &lockmode, flags & IOMAP_DIRECT);
779 end_fsb = imap.br_startoff + imap.br_blockcount;
780 length = XFS_FSB_TO_B(mp, end_fsb) - offset;
783 if (imap_needs_alloc(inode, flags, &imap, nimaps))
784 goto allocate_blocks;
787 * NOWAIT IO needs to span the entire requested IO with a single map so
788 * that we avoid partial IO failures due to the rest of the IO range not
789 * covered by this map triggering an EAGAIN condition when it is
790 * subsequently mapped and aborting the IO.
792 if ((flags & IOMAP_NOWAIT) &&
793 !imap_spans_range(&imap, offset_fsb, end_fsb)) {
798 xfs_iunlock(ip, lockmode);
799 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
800 return xfs_bmbt_to_iomap(ip, iomap, &imap, iomap_flags);
804 if (flags & IOMAP_NOWAIT)
808 * We cap the maximum length we map to a sane size to keep the chunks
809 * of work done where somewhat symmetric with the work writeback does.
810 * This is a completely arbitrary number pulled out of thin air as a
811 * best guess for initial testing.
813 * Note that the values needs to be less than 32-bits wide until the
814 * lower level functions are updated.
816 length = min_t(loff_t, length, 1024 * PAGE_SIZE);
817 end_fsb = xfs_iomap_end_fsb(mp, offset, length);
819 if (offset + length > XFS_ISIZE(ip))
820 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
821 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
822 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
823 xfs_iunlock(ip, lockmode);
825 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
830 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
831 return xfs_bmbt_to_iomap(ip, iomap, &imap, iomap_flags | IOMAP_F_NEW);
834 xfs_iunlock(ip, lockmode);
835 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
836 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
837 if (imap.br_startblock != HOLESTARTBLOCK) {
838 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, 0);
842 return xfs_bmbt_to_iomap(ip, iomap, &cmap, IOMAP_F_SHARED);
845 xfs_iunlock(ip, lockmode);
849 const struct iomap_ops xfs_direct_write_iomap_ops = {
850 .iomap_begin = xfs_direct_write_iomap_begin,
854 xfs_buffered_write_iomap_begin(
860 struct iomap *srcmap)
862 struct xfs_inode *ip = XFS_I(inode);
863 struct xfs_mount *mp = ip->i_mount;
864 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
865 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
866 struct xfs_bmbt_irec imap, cmap;
867 struct xfs_iext_cursor icur, ccur;
868 xfs_fsblock_t prealloc_blocks = 0;
869 bool eof = false, cow_eof = false, shared = false;
870 int allocfork = XFS_DATA_FORK;
873 /* we can't use delayed allocations when using extent size hints */
874 if (xfs_get_extsz_hint(ip))
875 return xfs_direct_write_iomap_begin(inode, offset, count,
876 flags, iomap, srcmap);
878 ASSERT(!XFS_IS_REALTIME_INODE(ip));
880 xfs_ilock(ip, XFS_ILOCK_EXCL);
882 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
883 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
884 error = -EFSCORRUPTED;
888 XFS_STATS_INC(mp, xs_blk_mapw);
890 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) {
891 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
897 * Search the data fork first to look up our source mapping. We
898 * always need the data fork map, as we have to return it to the
899 * iomap code so that the higher level write code can read data in to
900 * perform read-modify-write cycles for unaligned writes.
902 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
904 imap.br_startoff = end_fsb; /* fake hole until the end */
906 /* We never need to allocate blocks for zeroing a hole. */
907 if ((flags & IOMAP_ZERO) && imap.br_startoff > offset_fsb) {
908 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
913 * Search the COW fork extent list even if we did not find a data fork
914 * extent. This serves two purposes: first this implements the
915 * speculative preallocation using cowextsize, so that we also unshare
916 * block adjacent to shared blocks instead of just the shared blocks
917 * themselves. Second the lookup in the extent list is generally faster
918 * than going out to the shared extent tree.
920 if (xfs_is_cow_inode(ip)) {
922 ASSERT(!xfs_is_reflink_inode(ip));
923 xfs_ifork_init_cow(ip);
925 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
927 if (!cow_eof && cmap.br_startoff <= offset_fsb) {
928 trace_xfs_reflink_cow_found(ip, &cmap);
933 if (imap.br_startoff <= offset_fsb) {
935 * For reflink files we may need a delalloc reservation when
936 * overwriting shared extents. This includes zeroing of
937 * existing extents that contain data.
939 if (!xfs_is_cow_inode(ip) ||
940 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
941 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
946 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
948 /* Trim the mapping to the nearest shared extent boundary. */
949 error = xfs_bmap_trim_cow(ip, &imap, &shared);
953 /* Not shared? Just report the (potentially capped) extent. */
955 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
961 * Fork all the shared blocks from our write offset until the
964 allocfork = XFS_COW_FORK;
965 end_fsb = imap.br_startoff + imap.br_blockcount;
968 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
969 * pages to keep the chunks of work done where somewhat
970 * symmetric with the work writeback does. This is a completely
971 * arbitrary number pulled out of thin air.
973 * Note that the values needs to be less than 32-bits wide until
974 * the lower level functions are updated.
976 count = min_t(loff_t, count, 1024 * PAGE_SIZE);
977 end_fsb = xfs_iomap_end_fsb(mp, offset, count);
979 if (xfs_is_always_cow_inode(ip))
980 allocfork = XFS_COW_FORK;
983 error = xfs_qm_dqattach_locked(ip, false);
987 if (eof && offset + count > XFS_ISIZE(ip)) {
989 * Determine the initial size of the preallocation.
990 * We clean up any extra preallocation when the file is closed.
992 if (mp->m_flags & XFS_MOUNT_ALLOCSIZE)
993 prealloc_blocks = mp->m_allocsize_blocks;
995 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
996 offset, count, &icur);
997 if (prealloc_blocks) {
999 xfs_off_t end_offset;
1000 xfs_fileoff_t p_end_fsb;
1002 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1003 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1006 align = xfs_eof_alignment(ip);
1008 p_end_fsb = roundup_64(p_end_fsb, align);
1010 p_end_fsb = min(p_end_fsb,
1011 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1012 ASSERT(p_end_fsb > offset_fsb);
1013 prealloc_blocks = p_end_fsb - end_fsb;
1018 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1019 end_fsb - offset_fsb, prealloc_blocks,
1020 allocfork == XFS_DATA_FORK ? &imap : &cmap,
1021 allocfork == XFS_DATA_FORK ? &icur : &ccur,
1022 allocfork == XFS_DATA_FORK ? eof : cow_eof);
1028 /* retry without any preallocation */
1029 trace_xfs_delalloc_enospc(ip, offset, count);
1030 if (prealloc_blocks) {
1031 prealloc_blocks = 0;
1039 if (allocfork == XFS_COW_FORK) {
1040 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1045 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1046 * them out if the write happens to fail.
1048 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1049 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1050 return xfs_bmbt_to_iomap(ip, iomap, &imap, IOMAP_F_NEW);
1053 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1054 return xfs_bmbt_to_iomap(ip, iomap, &imap, 0);
1057 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1058 if (imap.br_startoff <= offset_fsb) {
1059 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, 0);
1063 xfs_trim_extent(&cmap, offset_fsb,
1064 imap.br_startoff - offset_fsb);
1066 return xfs_bmbt_to_iomap(ip, iomap, &cmap, IOMAP_F_SHARED);
1069 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1074 xfs_buffered_write_iomap_end(
1075 struct inode *inode,
1080 struct iomap *iomap)
1082 struct xfs_inode *ip = XFS_I(inode);
1083 struct xfs_mount *mp = ip->i_mount;
1084 xfs_fileoff_t start_fsb;
1085 xfs_fileoff_t end_fsb;
1088 if (iomap->type != IOMAP_DELALLOC)
1092 * Behave as if the write failed if drop writes is enabled. Set the NEW
1093 * flag to force delalloc cleanup.
1095 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_DROP_WRITES)) {
1096 iomap->flags |= IOMAP_F_NEW;
1101 * start_fsb refers to the first unused block after a short write. If
1102 * nothing was written, round offset down to point at the first block in
1105 if (unlikely(!written))
1106 start_fsb = XFS_B_TO_FSBT(mp, offset);
1108 start_fsb = XFS_B_TO_FSB(mp, offset + written);
1109 end_fsb = XFS_B_TO_FSB(mp, offset + length);
1112 * Trim delalloc blocks if they were allocated by this write and we
1113 * didn't manage to write the whole range.
1115 * We don't need to care about racing delalloc as we hold i_mutex
1116 * across the reserve/allocate/unreserve calls. If there are delalloc
1117 * blocks in the range, they are ours.
1119 if ((iomap->flags & IOMAP_F_NEW) && start_fsb < end_fsb) {
1120 truncate_pagecache_range(VFS_I(ip), XFS_FSB_TO_B(mp, start_fsb),
1121 XFS_FSB_TO_B(mp, end_fsb) - 1);
1123 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1124 end_fsb - start_fsb);
1125 if (error && !XFS_FORCED_SHUTDOWN(mp)) {
1126 xfs_alert(mp, "%s: unable to clean up ino %lld",
1127 __func__, ip->i_ino);
1135 const struct iomap_ops xfs_buffered_write_iomap_ops = {
1136 .iomap_begin = xfs_buffered_write_iomap_begin,
1137 .iomap_end = xfs_buffered_write_iomap_end,
1141 xfs_read_iomap_begin(
1142 struct inode *inode,
1146 struct iomap *iomap,
1147 struct iomap *srcmap)
1149 struct xfs_inode *ip = XFS_I(inode);
1150 struct xfs_mount *mp = ip->i_mount;
1151 struct xfs_bmbt_irec imap;
1152 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1153 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1154 int nimaps = 1, error = 0;
1155 bool shared = false;
1158 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
1160 if (XFS_FORCED_SHUTDOWN(mp))
1163 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1166 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1168 if (!error && (flags & IOMAP_REPORT))
1169 error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
1170 xfs_iunlock(ip, lockmode);
1174 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
1175 return xfs_bmbt_to_iomap(ip, iomap, &imap, shared ? IOMAP_F_SHARED : 0);
1178 const struct iomap_ops xfs_read_iomap_ops = {
1179 .iomap_begin = xfs_read_iomap_begin,
1183 xfs_seek_iomap_begin(
1184 struct inode *inode,
1188 struct iomap *iomap,
1189 struct iomap *srcmap)
1191 struct xfs_inode *ip = XFS_I(inode);
1192 struct xfs_mount *mp = ip->i_mount;
1193 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1194 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1195 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
1196 struct xfs_iext_cursor icur;
1197 struct xfs_bmbt_irec imap, cmap;
1201 if (XFS_FORCED_SHUTDOWN(mp))
1204 lockmode = xfs_ilock_data_map_shared(ip);
1205 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) {
1206 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1211 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
1213 * If we found a data extent we are done.
1215 if (imap.br_startoff <= offset_fsb)
1217 data_fsb = imap.br_startoff;
1220 * Fake a hole until the end of the file.
1222 data_fsb = xfs_iomap_end_fsb(mp, offset, length);
1226 * If a COW fork extent covers the hole, report it - capped to the next
1229 if (xfs_inode_has_cow_data(ip) &&
1230 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1231 cow_fsb = cmap.br_startoff;
1232 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
1233 if (data_fsb < cow_fsb + cmap.br_blockcount)
1234 end_fsb = min(end_fsb, data_fsb);
1235 xfs_trim_extent(&cmap, offset_fsb, end_fsb);
1236 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, IOMAP_F_SHARED);
1238 * This is a COW extent, so we must probe the page cache
1239 * because there could be dirty page cache being backed
1242 iomap->type = IOMAP_UNWRITTEN;
1247 * Else report a hole, capped to the next found data or COW extent.
1249 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
1250 imap.br_blockcount = cow_fsb - offset_fsb;
1252 imap.br_blockcount = data_fsb - offset_fsb;
1253 imap.br_startoff = offset_fsb;
1254 imap.br_startblock = HOLESTARTBLOCK;
1255 imap.br_state = XFS_EXT_NORM;
1257 xfs_trim_extent(&imap, offset_fsb, end_fsb);
1258 error = xfs_bmbt_to_iomap(ip, iomap, &imap, 0);
1260 xfs_iunlock(ip, lockmode);
1264 const struct iomap_ops xfs_seek_iomap_ops = {
1265 .iomap_begin = xfs_seek_iomap_begin,
1269 xfs_xattr_iomap_begin(
1270 struct inode *inode,
1274 struct iomap *iomap,
1275 struct iomap *srcmap)
1277 struct xfs_inode *ip = XFS_I(inode);
1278 struct xfs_mount *mp = ip->i_mount;
1279 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1280 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1281 struct xfs_bmbt_irec imap;
1282 int nimaps = 1, error = 0;
1285 if (XFS_FORCED_SHUTDOWN(mp))
1288 lockmode = xfs_ilock_attr_map_shared(ip);
1290 /* if there are no attribute fork or extents, return ENOENT */
1291 if (!XFS_IFORK_Q(ip) || !ip->i_afp->if_nextents) {
1296 ASSERT(ip->i_afp->if_format != XFS_DINODE_FMT_LOCAL);
1297 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1298 &nimaps, XFS_BMAPI_ATTRFORK);
1300 xfs_iunlock(ip, lockmode);
1305 return xfs_bmbt_to_iomap(ip, iomap, &imap, 0);
1308 const struct iomap_ops xfs_xattr_iomap_ops = {
1309 .iomap_begin = xfs_xattr_iomap_begin,