]> Git Repo - linux.git/blob - drivers/usb/host/xhci.c
Merge series "Use raw spinlocks in the ls-extirq driver" from Vladimir Oltean <vladim...
[linux.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
69 {
70         u32     result;
71         int     ret;
72
73         ret = readl_poll_timeout_atomic(ptr, result,
74                                         (result & mask) == done ||
75                                         result == U32_MAX,
76                                         1, usec);
77         if (result == U32_MAX)          /* card removed */
78                 return -ENODEV;
79
80         return ret;
81 }
82
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88         u32 halted;
89         u32 cmd;
90         u32 mask;
91
92         mask = ~(XHCI_IRQS);
93         halted = readl(&xhci->op_regs->status) & STS_HALT;
94         if (!halted)
95                 mask &= ~CMD_RUN;
96
97         cmd = readl(&xhci->op_regs->command);
98         cmd &= mask;
99         writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112         int ret;
113         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114         xhci_quiesce(xhci);
115
116         ret = xhci_handshake(&xhci->op_regs->status,
117                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118         if (ret) {
119                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
120                 return ret;
121         }
122         xhci->xhc_state |= XHCI_STATE_HALTED;
123         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124         return ret;
125 }
126
127 /*
128  * Set the run bit and wait for the host to be running.
129  */
130 int xhci_start(struct xhci_hcd *xhci)
131 {
132         u32 temp;
133         int ret;
134
135         temp = readl(&xhci->op_regs->command);
136         temp |= (CMD_RUN);
137         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138                         temp);
139         writel(temp, &xhci->op_regs->command);
140
141         /*
142          * Wait for the HCHalted Status bit to be 0 to indicate the host is
143          * running.
144          */
145         ret = xhci_handshake(&xhci->op_regs->status,
146                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
147         if (ret == -ETIMEDOUT)
148                 xhci_err(xhci, "Host took too long to start, "
149                                 "waited %u microseconds.\n",
150                                 XHCI_MAX_HALT_USEC);
151         if (!ret)
152                 /* clear state flags. Including dying, halted or removing */
153                 xhci->xhc_state = 0;
154
155         return ret;
156 }
157
158 /*
159  * Reset a halted HC.
160  *
161  * This resets pipelines, timers, counters, state machines, etc.
162  * Transactions will be terminated immediately, and operational registers
163  * will be set to their defaults.
164  */
165 int xhci_reset(struct xhci_hcd *xhci)
166 {
167         u32 command;
168         u32 state;
169         int ret;
170
171         state = readl(&xhci->op_regs->status);
172
173         if (state == ~(u32)0) {
174                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
175                 return -ENODEV;
176         }
177
178         if ((state & STS_HALT) == 0) {
179                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180                 return 0;
181         }
182
183         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184         command = readl(&xhci->op_regs->command);
185         command |= CMD_RESET;
186         writel(command, &xhci->op_regs->command);
187
188         /* Existing Intel xHCI controllers require a delay of 1 mS,
189          * after setting the CMD_RESET bit, and before accessing any
190          * HC registers. This allows the HC to complete the
191          * reset operation and be ready for HC register access.
192          * Without this delay, the subsequent HC register access,
193          * may result in a system hang very rarely.
194          */
195         if (xhci->quirks & XHCI_INTEL_HOST)
196                 udelay(1000);
197
198         ret = xhci_handshake(&xhci->op_regs->command,
199                         CMD_RESET, 0, 10 * 1000 * 1000);
200         if (ret)
201                 return ret;
202
203         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
204                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
205
206         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
207                          "Wait for controller to be ready for doorbell rings");
208         /*
209          * xHCI cannot write to any doorbells or operational registers other
210          * than status until the "Controller Not Ready" flag is cleared.
211          */
212         ret = xhci_handshake(&xhci->op_regs->status,
213                         STS_CNR, 0, 10 * 1000 * 1000);
214
215         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
216         xhci->usb2_rhub.bus_state.suspended_ports = 0;
217         xhci->usb2_rhub.bus_state.resuming_ports = 0;
218         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
219         xhci->usb3_rhub.bus_state.suspended_ports = 0;
220         xhci->usb3_rhub.bus_state.resuming_ports = 0;
221
222         return ret;
223 }
224
225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
226 {
227         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
228         int err, i;
229         u64 val;
230         u32 intrs;
231
232         /*
233          * Some Renesas controllers get into a weird state if they are
234          * reset while programmed with 64bit addresses (they will preserve
235          * the top half of the address in internal, non visible
236          * registers). You end up with half the address coming from the
237          * kernel, and the other half coming from the firmware. Also,
238          * changing the programming leads to extra accesses even if the
239          * controller is supposed to be halted. The controller ends up with
240          * a fatal fault, and is then ripe for being properly reset.
241          *
242          * Special care is taken to only apply this if the device is behind
243          * an iommu. Doing anything when there is no iommu is definitely
244          * unsafe...
245          */
246         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247                 return;
248
249         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251         /* Clear HSEIE so that faults do not get signaled */
252         val = readl(&xhci->op_regs->command);
253         val &= ~CMD_HSEIE;
254         writel(val, &xhci->op_regs->command);
255
256         /* Clear HSE (aka FATAL) */
257         val = readl(&xhci->op_regs->status);
258         val |= STS_FATAL;
259         writel(val, &xhci->op_regs->status);
260
261         /* Now zero the registers, and brace for impact */
262         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263         if (upper_32_bits(val))
264                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
270                       ARRAY_SIZE(xhci->run_regs->ir_set));
271
272         for (i = 0; i < intrs; i++) {
273                 struct xhci_intr_reg __iomem *ir;
274
275                 ir = &xhci->run_regs->ir_set[i];
276                 val = xhci_read_64(xhci, &ir->erst_base);
277                 if (upper_32_bits(val))
278                         xhci_write_64(xhci, 0, &ir->erst_base);
279                 val= xhci_read_64(xhci, &ir->erst_dequeue);
280                 if (upper_32_bits(val))
281                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
282         }
283
284         /* Wait for the fault to appear. It will be cleared on reset */
285         err = xhci_handshake(&xhci->op_regs->status,
286                              STS_FATAL, STS_FATAL,
287                              XHCI_MAX_HALT_USEC);
288         if (!err)
289                 xhci_info(xhci, "Fault detected\n");
290 }
291
292 #ifdef CONFIG_USB_PCI
293 /*
294  * Set up MSI
295  */
296 static int xhci_setup_msi(struct xhci_hcd *xhci)
297 {
298         int ret;
299         /*
300          * TODO:Check with MSI Soc for sysdev
301          */
302         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
303
304         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
305         if (ret < 0) {
306                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
307                                 "failed to allocate MSI entry");
308                 return ret;
309         }
310
311         ret = request_irq(pdev->irq, xhci_msi_irq,
312                                 0, "xhci_hcd", xhci_to_hcd(xhci));
313         if (ret) {
314                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315                                 "disable MSI interrupt");
316                 pci_free_irq_vectors(pdev);
317         }
318
319         return ret;
320 }
321
322 /*
323  * Set up MSI-X
324  */
325 static int xhci_setup_msix(struct xhci_hcd *xhci)
326 {
327         int i, ret = 0;
328         struct usb_hcd *hcd = xhci_to_hcd(xhci);
329         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330
331         /*
332          * calculate number of msi-x vectors supported.
333          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
334          *   with max number of interrupters based on the xhci HCSPARAMS1.
335          * - num_online_cpus: maximum msi-x vectors per CPUs core.
336          *   Add additional 1 vector to ensure always available interrupt.
337          */
338         xhci->msix_count = min(num_online_cpus() + 1,
339                                 HCS_MAX_INTRS(xhci->hcs_params1));
340
341         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
342                         PCI_IRQ_MSIX);
343         if (ret < 0) {
344                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
345                                 "Failed to enable MSI-X");
346                 return ret;
347         }
348
349         for (i = 0; i < xhci->msix_count; i++) {
350                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
351                                 "xhci_hcd", xhci_to_hcd(xhci));
352                 if (ret)
353                         goto disable_msix;
354         }
355
356         hcd->msix_enabled = 1;
357         return ret;
358
359 disable_msix:
360         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
361         while (--i >= 0)
362                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
363         pci_free_irq_vectors(pdev);
364         return ret;
365 }
366
367 /* Free any IRQs and disable MSI-X */
368 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
369 {
370         struct usb_hcd *hcd = xhci_to_hcd(xhci);
371         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
372
373         if (xhci->quirks & XHCI_PLAT)
374                 return;
375
376         /* return if using legacy interrupt */
377         if (hcd->irq > 0)
378                 return;
379
380         if (hcd->msix_enabled) {
381                 int i;
382
383                 for (i = 0; i < xhci->msix_count; i++)
384                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
385         } else {
386                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
387         }
388
389         pci_free_irq_vectors(pdev);
390         hcd->msix_enabled = 0;
391 }
392
393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395         struct usb_hcd *hcd = xhci_to_hcd(xhci);
396
397         if (hcd->msix_enabled) {
398                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
399                 int i;
400
401                 for (i = 0; i < xhci->msix_count; i++)
402                         synchronize_irq(pci_irq_vector(pdev, i));
403         }
404 }
405
406 static int xhci_try_enable_msi(struct usb_hcd *hcd)
407 {
408         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
409         struct pci_dev  *pdev;
410         int ret;
411
412         /* The xhci platform device has set up IRQs through usb_add_hcd. */
413         if (xhci->quirks & XHCI_PLAT)
414                 return 0;
415
416         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
417         /*
418          * Some Fresco Logic host controllers advertise MSI, but fail to
419          * generate interrupts.  Don't even try to enable MSI.
420          */
421         if (xhci->quirks & XHCI_BROKEN_MSI)
422                 goto legacy_irq;
423
424         /* unregister the legacy interrupt */
425         if (hcd->irq)
426                 free_irq(hcd->irq, hcd);
427         hcd->irq = 0;
428
429         ret = xhci_setup_msix(xhci);
430         if (ret)
431                 /* fall back to msi*/
432                 ret = xhci_setup_msi(xhci);
433
434         if (!ret) {
435                 hcd->msi_enabled = 1;
436                 return 0;
437         }
438
439         if (!pdev->irq) {
440                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
441                 return -EINVAL;
442         }
443
444  legacy_irq:
445         if (!strlen(hcd->irq_descr))
446                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
447                          hcd->driver->description, hcd->self.busnum);
448
449         /* fall back to legacy interrupt*/
450         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
451                         hcd->irq_descr, hcd);
452         if (ret) {
453                 xhci_err(xhci, "request interrupt %d failed\n",
454                                 pdev->irq);
455                 return ret;
456         }
457         hcd->irq = pdev->irq;
458         return 0;
459 }
460
461 #else
462
463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
464 {
465         return 0;
466 }
467
468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
469 {
470 }
471
472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
473 {
474 }
475
476 #endif
477
478 static void compliance_mode_recovery(struct timer_list *t)
479 {
480         struct xhci_hcd *xhci;
481         struct usb_hcd *hcd;
482         struct xhci_hub *rhub;
483         u32 temp;
484         int i;
485
486         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
487         rhub = &xhci->usb3_rhub;
488
489         for (i = 0; i < rhub->num_ports; i++) {
490                 temp = readl(rhub->ports[i]->addr);
491                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
492                         /*
493                          * Compliance Mode Detected. Letting USB Core
494                          * handle the Warm Reset
495                          */
496                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                                         "Compliance mode detected->port %d",
498                                         i + 1);
499                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
500                                         "Attempting compliance mode recovery");
501                         hcd = xhci->shared_hcd;
502
503                         if (hcd->state == HC_STATE_SUSPENDED)
504                                 usb_hcd_resume_root_hub(hcd);
505
506                         usb_hcd_poll_rh_status(hcd);
507                 }
508         }
509
510         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
511                 mod_timer(&xhci->comp_mode_recovery_timer,
512                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
513 }
514
515 /*
516  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
517  * that causes ports behind that hardware to enter compliance mode sometimes.
518  * The quirk creates a timer that polls every 2 seconds the link state of
519  * each host controller's port and recovers it by issuing a Warm reset
520  * if Compliance mode is detected, otherwise the port will become "dead" (no
521  * device connections or disconnections will be detected anymore). Becasue no
522  * status event is generated when entering compliance mode (per xhci spec),
523  * this quirk is needed on systems that have the failing hardware installed.
524  */
525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
526 {
527         xhci->port_status_u0 = 0;
528         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
529                     0);
530         xhci->comp_mode_recovery_timer.expires = jiffies +
531                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
532
533         add_timer(&xhci->comp_mode_recovery_timer);
534         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
535                         "Compliance mode recovery timer initialized");
536 }
537
538 /*
539  * This function identifies the systems that have installed the SN65LVPE502CP
540  * USB3.0 re-driver and that need the Compliance Mode Quirk.
541  * Systems:
542  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
543  */
544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
545 {
546         const char *dmi_product_name, *dmi_sys_vendor;
547
548         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
549         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
550         if (!dmi_product_name || !dmi_sys_vendor)
551                 return false;
552
553         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
554                 return false;
555
556         if (strstr(dmi_product_name, "Z420") ||
557                         strstr(dmi_product_name, "Z620") ||
558                         strstr(dmi_product_name, "Z820") ||
559                         strstr(dmi_product_name, "Z1 Workstation"))
560                 return true;
561
562         return false;
563 }
564
565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
566 {
567         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
568 }
569
570
571 /*
572  * Initialize memory for HCD and xHC (one-time init).
573  *
574  * Program the PAGESIZE register, initialize the device context array, create
575  * device contexts (?), set up a command ring segment (or two?), create event
576  * ring (one for now).
577  */
578 static int xhci_init(struct usb_hcd *hcd)
579 {
580         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
581         int retval = 0;
582
583         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
584         spin_lock_init(&xhci->lock);
585         if (xhci->hci_version == 0x95 && link_quirk) {
586                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
587                                 "QUIRK: Not clearing Link TRB chain bits.");
588                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
589         } else {
590                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591                                 "xHCI doesn't need link TRB QUIRK");
592         }
593         retval = xhci_mem_init(xhci, GFP_KERNEL);
594         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
595
596         /* Initializing Compliance Mode Recovery Data If Needed */
597         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
598                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
599                 compliance_mode_recovery_timer_init(xhci);
600         }
601
602         return retval;
603 }
604
605 /*-------------------------------------------------------------------------*/
606
607
608 static int xhci_run_finished(struct xhci_hcd *xhci)
609 {
610         if (xhci_start(xhci)) {
611                 xhci_halt(xhci);
612                 return -ENODEV;
613         }
614         xhci->shared_hcd->state = HC_STATE_RUNNING;
615         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
616
617         if (xhci->quirks & XHCI_NEC_HOST)
618                 xhci_ring_cmd_db(xhci);
619
620         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621                         "Finished xhci_run for USB3 roothub");
622         return 0;
623 }
624
625 /*
626  * Start the HC after it was halted.
627  *
628  * This function is called by the USB core when the HC driver is added.
629  * Its opposite is xhci_stop().
630  *
631  * xhci_init() must be called once before this function can be called.
632  * Reset the HC, enable device slot contexts, program DCBAAP, and
633  * set command ring pointer and event ring pointer.
634  *
635  * Setup MSI-X vectors and enable interrupts.
636  */
637 int xhci_run(struct usb_hcd *hcd)
638 {
639         u32 temp;
640         u64 temp_64;
641         int ret;
642         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
643
644         /* Start the xHCI host controller running only after the USB 2.0 roothub
645          * is setup.
646          */
647
648         hcd->uses_new_polling = 1;
649         if (!usb_hcd_is_primary_hcd(hcd))
650                 return xhci_run_finished(xhci);
651
652         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
653
654         ret = xhci_try_enable_msi(hcd);
655         if (ret)
656                 return ret;
657
658         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
659         temp_64 &= ~ERST_PTR_MASK;
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
662
663         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664                         "// Set the interrupt modulation register");
665         temp = readl(&xhci->ir_set->irq_control);
666         temp &= ~ER_IRQ_INTERVAL_MASK;
667         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
668         writel(temp, &xhci->ir_set->irq_control);
669
670         /* Set the HCD state before we enable the irqs */
671         temp = readl(&xhci->op_regs->command);
672         temp |= (CMD_EIE);
673         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
674                         "// Enable interrupts, cmd = 0x%x.", temp);
675         writel(temp, &xhci->op_regs->command);
676
677         temp = readl(&xhci->ir_set->irq_pending);
678         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
680                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
681         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
682
683         if (xhci->quirks & XHCI_NEC_HOST) {
684                 struct xhci_command *command;
685
686                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
687                 if (!command)
688                         return -ENOMEM;
689
690                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
691                                 TRB_TYPE(TRB_NEC_GET_FW));
692                 if (ret)
693                         xhci_free_command(xhci, command);
694         }
695         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696                         "Finished xhci_run for USB2 roothub");
697
698         xhci_dbc_init(xhci);
699
700         xhci_debugfs_init(xhci);
701
702         return 0;
703 }
704 EXPORT_SYMBOL_GPL(xhci_run);
705
706 /*
707  * Stop xHCI driver.
708  *
709  * This function is called by the USB core when the HC driver is removed.
710  * Its opposite is xhci_run().
711  *
712  * Disable device contexts, disable IRQs, and quiesce the HC.
713  * Reset the HC, finish any completed transactions, and cleanup memory.
714  */
715 static void xhci_stop(struct usb_hcd *hcd)
716 {
717         u32 temp;
718         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
719
720         mutex_lock(&xhci->mutex);
721
722         /* Only halt host and free memory after both hcds are removed */
723         if (!usb_hcd_is_primary_hcd(hcd)) {
724                 mutex_unlock(&xhci->mutex);
725                 return;
726         }
727
728         xhci_dbc_exit(xhci);
729
730         spin_lock_irq(&xhci->lock);
731         xhci->xhc_state |= XHCI_STATE_HALTED;
732         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
733         xhci_halt(xhci);
734         xhci_reset(xhci);
735         spin_unlock_irq(&xhci->lock);
736
737         xhci_cleanup_msix(xhci);
738
739         /* Deleting Compliance Mode Recovery Timer */
740         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
741                         (!(xhci_all_ports_seen_u0(xhci)))) {
742                 del_timer_sync(&xhci->comp_mode_recovery_timer);
743                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
744                                 "%s: compliance mode recovery timer deleted",
745                                 __func__);
746         }
747
748         if (xhci->quirks & XHCI_AMD_PLL_FIX)
749                 usb_amd_dev_put();
750
751         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
752                         "// Disabling event ring interrupts");
753         temp = readl(&xhci->op_regs->status);
754         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
755         temp = readl(&xhci->ir_set->irq_pending);
756         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
757
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
759         xhci_mem_cleanup(xhci);
760         xhci_debugfs_exit(xhci);
761         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762                         "xhci_stop completed - status = %x",
763                         readl(&xhci->op_regs->status));
764         mutex_unlock(&xhci->mutex);
765 }
766
767 /*
768  * Shutdown HC (not bus-specific)
769  *
770  * This is called when the machine is rebooting or halting.  We assume that the
771  * machine will be powered off, and the HC's internal state will be reset.
772  * Don't bother to free memory.
773  *
774  * This will only ever be called with the main usb_hcd (the USB3 roothub).
775  */
776 void xhci_shutdown(struct usb_hcd *hcd)
777 {
778         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
779
780         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
781                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
782
783         spin_lock_irq(&xhci->lock);
784         xhci_halt(xhci);
785         /* Workaround for spurious wakeups at shutdown with HSW */
786         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
787                 xhci_reset(xhci);
788         spin_unlock_irq(&xhci->lock);
789
790         xhci_cleanup_msix(xhci);
791
792         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
793                         "xhci_shutdown completed - status = %x",
794                         readl(&xhci->op_regs->status));
795 }
796 EXPORT_SYMBOL_GPL(xhci_shutdown);
797
798 #ifdef CONFIG_PM
799 static void xhci_save_registers(struct xhci_hcd *xhci)
800 {
801         xhci->s3.command = readl(&xhci->op_regs->command);
802         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
803         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
804         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
805         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
806         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
807         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
808         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
809         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
810 }
811
812 static void xhci_restore_registers(struct xhci_hcd *xhci)
813 {
814         writel(xhci->s3.command, &xhci->op_regs->command);
815         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
816         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
817         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
818         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
819         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
820         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
821         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
822         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
823 }
824
825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
826 {
827         u64     val_64;
828
829         /* step 2: initialize command ring buffer */
830         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
831         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
832                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
833                                       xhci->cmd_ring->dequeue) &
834                  (u64) ~CMD_RING_RSVD_BITS) |
835                 xhci->cmd_ring->cycle_state;
836         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
837                         "// Setting command ring address to 0x%llx",
838                         (long unsigned long) val_64);
839         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
840 }
841
842 /*
843  * The whole command ring must be cleared to zero when we suspend the host.
844  *
845  * The host doesn't save the command ring pointer in the suspend well, so we
846  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
847  * aligned, because of the reserved bits in the command ring dequeue pointer
848  * register.  Therefore, we can't just set the dequeue pointer back in the
849  * middle of the ring (TRBs are 16-byte aligned).
850  */
851 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
852 {
853         struct xhci_ring *ring;
854         struct xhci_segment *seg;
855
856         ring = xhci->cmd_ring;
857         seg = ring->deq_seg;
858         do {
859                 memset(seg->trbs, 0,
860                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
861                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
862                         cpu_to_le32(~TRB_CYCLE);
863                 seg = seg->next;
864         } while (seg != ring->deq_seg);
865
866         /* Reset the software enqueue and dequeue pointers */
867         ring->deq_seg = ring->first_seg;
868         ring->dequeue = ring->first_seg->trbs;
869         ring->enq_seg = ring->deq_seg;
870         ring->enqueue = ring->dequeue;
871
872         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
873         /*
874          * Ring is now zeroed, so the HW should look for change of ownership
875          * when the cycle bit is set to 1.
876          */
877         ring->cycle_state = 1;
878
879         /*
880          * Reset the hardware dequeue pointer.
881          * Yes, this will need to be re-written after resume, but we're paranoid
882          * and want to make sure the hardware doesn't access bogus memory
883          * because, say, the BIOS or an SMI started the host without changing
884          * the command ring pointers.
885          */
886         xhci_set_cmd_ring_deq(xhci);
887 }
888
889 /*
890  * Disable port wake bits if do_wakeup is not set.
891  *
892  * Also clear a possible internal port wake state left hanging for ports that
893  * detected termination but never successfully enumerated (trained to 0U).
894  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
895  * at enumeration clears this wake, force one here as well for unconnected ports
896  */
897
898 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
899                                        struct xhci_hub *rhub,
900                                        bool do_wakeup)
901 {
902         unsigned long flags;
903         u32 t1, t2, portsc;
904         int i;
905
906         spin_lock_irqsave(&xhci->lock, flags);
907
908         for (i = 0; i < rhub->num_ports; i++) {
909                 portsc = readl(rhub->ports[i]->addr);
910                 t1 = xhci_port_state_to_neutral(portsc);
911                 t2 = t1;
912
913                 /* clear wake bits if do_wake is not set */
914                 if (!do_wakeup)
915                         t2 &= ~PORT_WAKE_BITS;
916
917                 /* Don't touch csc bit if connected or connect change is set */
918                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
919                         t2 |= PORT_CSC;
920
921                 if (t1 != t2) {
922                         writel(t2, rhub->ports[i]->addr);
923                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
924                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
925                 }
926         }
927         spin_unlock_irqrestore(&xhci->lock, flags);
928 }
929
930 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
931 {
932         struct xhci_port        **ports;
933         int                     port_index;
934         u32                     status;
935         u32                     portsc;
936
937         status = readl(&xhci->op_regs->status);
938         if (status & STS_EINT)
939                 return true;
940         /*
941          * Checking STS_EINT is not enough as there is a lag between a change
942          * bit being set and the Port Status Change Event that it generated
943          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
944          */
945
946         port_index = xhci->usb2_rhub.num_ports;
947         ports = xhci->usb2_rhub.ports;
948         while (port_index--) {
949                 portsc = readl(ports[port_index]->addr);
950                 if (portsc & PORT_CHANGE_MASK ||
951                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
952                         return true;
953         }
954         port_index = xhci->usb3_rhub.num_ports;
955         ports = xhci->usb3_rhub.ports;
956         while (port_index--) {
957                 portsc = readl(ports[port_index]->addr);
958                 if (portsc & PORT_CHANGE_MASK ||
959                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
960                         return true;
961         }
962         return false;
963 }
964
965 /*
966  * Stop HC (not bus-specific)
967  *
968  * This is called when the machine transition into S3/S4 mode.
969  *
970  */
971 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
972 {
973         int                     rc = 0;
974         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
975         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
976         u32                     command;
977         u32                     res;
978
979         if (!hcd->state)
980                 return 0;
981
982         if (hcd->state != HC_STATE_SUSPENDED ||
983                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
984                 return -EINVAL;
985
986         /* Clear root port wake on bits if wakeup not allowed. */
987         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
988         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
989
990         if (!HCD_HW_ACCESSIBLE(hcd))
991                 return 0;
992
993         xhci_dbc_suspend(xhci);
994
995         /* Don't poll the roothubs on bus suspend. */
996         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
997         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
998         del_timer_sync(&hcd->rh_timer);
999         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1000         del_timer_sync(&xhci->shared_hcd->rh_timer);
1001
1002         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1003                 usleep_range(1000, 1500);
1004
1005         spin_lock_irq(&xhci->lock);
1006         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1007         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1008         /* step 1: stop endpoint */
1009         /* skipped assuming that port suspend has done */
1010
1011         /* step 2: clear Run/Stop bit */
1012         command = readl(&xhci->op_regs->command);
1013         command &= ~CMD_RUN;
1014         writel(command, &xhci->op_regs->command);
1015
1016         /* Some chips from Fresco Logic need an extraordinary delay */
1017         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1018
1019         if (xhci_handshake(&xhci->op_regs->status,
1020                       STS_HALT, STS_HALT, delay)) {
1021                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1022                 spin_unlock_irq(&xhci->lock);
1023                 return -ETIMEDOUT;
1024         }
1025         xhci_clear_command_ring(xhci);
1026
1027         /* step 3: save registers */
1028         xhci_save_registers(xhci);
1029
1030         /* step 4: set CSS flag */
1031         command = readl(&xhci->op_regs->command);
1032         command |= CMD_CSS;
1033         writel(command, &xhci->op_regs->command);
1034         xhci->broken_suspend = 0;
1035         if (xhci_handshake(&xhci->op_regs->status,
1036                                 STS_SAVE, 0, 20 * 1000)) {
1037         /*
1038          * AMD SNPS xHC 3.0 occasionally does not clear the
1039          * SSS bit of USBSTS and when driver tries to poll
1040          * to see if the xHC clears BIT(8) which never happens
1041          * and driver assumes that controller is not responding
1042          * and times out. To workaround this, its good to check
1043          * if SRE and HCE bits are not set (as per xhci
1044          * Section 5.4.2) and bypass the timeout.
1045          */
1046                 res = readl(&xhci->op_regs->status);
1047                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1048                     (((res & STS_SRE) == 0) &&
1049                                 ((res & STS_HCE) == 0))) {
1050                         xhci->broken_suspend = 1;
1051                 } else {
1052                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1053                         spin_unlock_irq(&xhci->lock);
1054                         return -ETIMEDOUT;
1055                 }
1056         }
1057         spin_unlock_irq(&xhci->lock);
1058
1059         /*
1060          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1061          * is about to be suspended.
1062          */
1063         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1064                         (!(xhci_all_ports_seen_u0(xhci)))) {
1065                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1066                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1067                                 "%s: compliance mode recovery timer deleted",
1068                                 __func__);
1069         }
1070
1071         /* step 5: remove core well power */
1072         /* synchronize irq when using MSI-X */
1073         xhci_msix_sync_irqs(xhci);
1074
1075         return rc;
1076 }
1077 EXPORT_SYMBOL_GPL(xhci_suspend);
1078
1079 /*
1080  * start xHC (not bus-specific)
1081  *
1082  * This is called when the machine transition from S3/S4 mode.
1083  *
1084  */
1085 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1086 {
1087         u32                     command, temp = 0;
1088         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1089         struct usb_hcd          *secondary_hcd;
1090         int                     retval = 0;
1091         bool                    comp_timer_running = false;
1092         bool                    pending_portevent = false;
1093
1094         if (!hcd->state)
1095                 return 0;
1096
1097         /* Wait a bit if either of the roothubs need to settle from the
1098          * transition into bus suspend.
1099          */
1100
1101         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1102             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1103                 msleep(100);
1104
1105         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1106         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1107
1108         spin_lock_irq(&xhci->lock);
1109         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1110                 hibernated = true;
1111
1112         if (!hibernated) {
1113                 /*
1114                  * Some controllers might lose power during suspend, so wait
1115                  * for controller not ready bit to clear, just as in xHC init.
1116                  */
1117                 retval = xhci_handshake(&xhci->op_regs->status,
1118                                         STS_CNR, 0, 10 * 1000 * 1000);
1119                 if (retval) {
1120                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1121                                   retval);
1122                         spin_unlock_irq(&xhci->lock);
1123                         return retval;
1124                 }
1125                 /* step 1: restore register */
1126                 xhci_restore_registers(xhci);
1127                 /* step 2: initialize command ring buffer */
1128                 xhci_set_cmd_ring_deq(xhci);
1129                 /* step 3: restore state and start state*/
1130                 /* step 3: set CRS flag */
1131                 command = readl(&xhci->op_regs->command);
1132                 command |= CMD_CRS;
1133                 writel(command, &xhci->op_regs->command);
1134                 /*
1135                  * Some controllers take up to 55+ ms to complete the controller
1136                  * restore so setting the timeout to 100ms. Xhci specification
1137                  * doesn't mention any timeout value.
1138                  */
1139                 if (xhci_handshake(&xhci->op_regs->status,
1140                               STS_RESTORE, 0, 100 * 1000)) {
1141                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1142                         spin_unlock_irq(&xhci->lock);
1143                         return -ETIMEDOUT;
1144                 }
1145                 temp = readl(&xhci->op_regs->status);
1146         }
1147
1148         /* If restore operation fails, re-initialize the HC during resume */
1149         if ((temp & STS_SRE) || hibernated) {
1150
1151                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1152                                 !(xhci_all_ports_seen_u0(xhci))) {
1153                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1154                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1155                                 "Compliance Mode Recovery Timer deleted!");
1156                 }
1157
1158                 /* Let the USB core know _both_ roothubs lost power. */
1159                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1160                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1161
1162                 xhci_dbg(xhci, "Stop HCD\n");
1163                 xhci_halt(xhci);
1164                 xhci_zero_64b_regs(xhci);
1165                 retval = xhci_reset(xhci);
1166                 spin_unlock_irq(&xhci->lock);
1167                 if (retval)
1168                         return retval;
1169                 xhci_cleanup_msix(xhci);
1170
1171                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1172                 temp = readl(&xhci->op_regs->status);
1173                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1174                 temp = readl(&xhci->ir_set->irq_pending);
1175                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1176
1177                 xhci_dbg(xhci, "cleaning up memory\n");
1178                 xhci_mem_cleanup(xhci);
1179                 xhci_debugfs_exit(xhci);
1180                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1181                             readl(&xhci->op_regs->status));
1182
1183                 /* USB core calls the PCI reinit and start functions twice:
1184                  * first with the primary HCD, and then with the secondary HCD.
1185                  * If we don't do the same, the host will never be started.
1186                  */
1187                 if (!usb_hcd_is_primary_hcd(hcd))
1188                         secondary_hcd = hcd;
1189                 else
1190                         secondary_hcd = xhci->shared_hcd;
1191
1192                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1193                 retval = xhci_init(hcd->primary_hcd);
1194                 if (retval)
1195                         return retval;
1196                 comp_timer_running = true;
1197
1198                 xhci_dbg(xhci, "Start the primary HCD\n");
1199                 retval = xhci_run(hcd->primary_hcd);
1200                 if (!retval) {
1201                         xhci_dbg(xhci, "Start the secondary HCD\n");
1202                         retval = xhci_run(secondary_hcd);
1203                 }
1204                 hcd->state = HC_STATE_SUSPENDED;
1205                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1206                 goto done;
1207         }
1208
1209         /* step 4: set Run/Stop bit */
1210         command = readl(&xhci->op_regs->command);
1211         command |= CMD_RUN;
1212         writel(command, &xhci->op_regs->command);
1213         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1214                   0, 250 * 1000);
1215
1216         /* step 5: walk topology and initialize portsc,
1217          * portpmsc and portli
1218          */
1219         /* this is done in bus_resume */
1220
1221         /* step 6: restart each of the previously
1222          * Running endpoints by ringing their doorbells
1223          */
1224
1225         spin_unlock_irq(&xhci->lock);
1226
1227         xhci_dbc_resume(xhci);
1228
1229  done:
1230         if (retval == 0) {
1231                 /*
1232                  * Resume roothubs only if there are pending events.
1233                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1234                  * the first wake signalling failed, give it that chance.
1235                  */
1236                 pending_portevent = xhci_pending_portevent(xhci);
1237                 if (!pending_portevent) {
1238                         msleep(120);
1239                         pending_portevent = xhci_pending_portevent(xhci);
1240                 }
1241
1242                 if (pending_portevent) {
1243                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1244                         usb_hcd_resume_root_hub(hcd);
1245                 }
1246         }
1247         /*
1248          * If system is subject to the Quirk, Compliance Mode Timer needs to
1249          * be re-initialized Always after a system resume. Ports are subject
1250          * to suffer the Compliance Mode issue again. It doesn't matter if
1251          * ports have entered previously to U0 before system's suspension.
1252          */
1253         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1254                 compliance_mode_recovery_timer_init(xhci);
1255
1256         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1257                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1258
1259         /* Re-enable port polling. */
1260         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1261         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1262         usb_hcd_poll_rh_status(xhci->shared_hcd);
1263         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1264         usb_hcd_poll_rh_status(hcd);
1265
1266         return retval;
1267 }
1268 EXPORT_SYMBOL_GPL(xhci_resume);
1269 #endif  /* CONFIG_PM */
1270
1271 /*-------------------------------------------------------------------------*/
1272
1273 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1274 {
1275         void *temp;
1276         int ret = 0;
1277         unsigned int buf_len;
1278         enum dma_data_direction dir;
1279
1280         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1281         buf_len = urb->transfer_buffer_length;
1282
1283         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1284                             dev_to_node(hcd->self.sysdev));
1285
1286         if (usb_urb_dir_out(urb))
1287                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1288                                    temp, buf_len, 0);
1289
1290         urb->transfer_buffer = temp;
1291         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1292                                            urb->transfer_buffer,
1293                                            urb->transfer_buffer_length,
1294                                            dir);
1295
1296         if (dma_mapping_error(hcd->self.sysdev,
1297                               urb->transfer_dma)) {
1298                 ret = -EAGAIN;
1299                 kfree(temp);
1300         } else {
1301                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1302         }
1303
1304         return ret;
1305 }
1306
1307 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1308                                           struct urb *urb)
1309 {
1310         bool ret = false;
1311         unsigned int i;
1312         unsigned int len = 0;
1313         unsigned int trb_size;
1314         unsigned int max_pkt;
1315         struct scatterlist *sg;
1316         struct scatterlist *tail_sg;
1317
1318         tail_sg = urb->sg;
1319         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1320
1321         if (!urb->num_sgs)
1322                 return ret;
1323
1324         if (urb->dev->speed >= USB_SPEED_SUPER)
1325                 trb_size = TRB_CACHE_SIZE_SS;
1326         else
1327                 trb_size = TRB_CACHE_SIZE_HS;
1328
1329         if (urb->transfer_buffer_length != 0 &&
1330             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1331                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1332                         len = len + sg->length;
1333                         if (i > trb_size - 2) {
1334                                 len = len - tail_sg->length;
1335                                 if (len < max_pkt) {
1336                                         ret = true;
1337                                         break;
1338                                 }
1339
1340                                 tail_sg = sg_next(tail_sg);
1341                         }
1342                 }
1343         }
1344         return ret;
1345 }
1346
1347 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1348 {
1349         unsigned int len;
1350         unsigned int buf_len;
1351         enum dma_data_direction dir;
1352
1353         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1354
1355         buf_len = urb->transfer_buffer_length;
1356
1357         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1358             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1359                 dma_unmap_single(hcd->self.sysdev,
1360                                  urb->transfer_dma,
1361                                  urb->transfer_buffer_length,
1362                                  dir);
1363
1364         if (usb_urb_dir_in(urb)) {
1365                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1366                                            urb->transfer_buffer,
1367                                            buf_len,
1368                                            0);
1369                 if (len != buf_len) {
1370                         xhci_dbg(hcd_to_xhci(hcd),
1371                                  "Copy from tmp buf to urb sg list failed\n");
1372                         urb->actual_length = len;
1373                 }
1374         }
1375         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1376         kfree(urb->transfer_buffer);
1377         urb->transfer_buffer = NULL;
1378 }
1379
1380 /*
1381  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1382  * we'll copy the actual data into the TRB address register. This is limited to
1383  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1384  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1385  */
1386 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1387                                 gfp_t mem_flags)
1388 {
1389         struct xhci_hcd *xhci;
1390
1391         xhci = hcd_to_xhci(hcd);
1392
1393         if (xhci_urb_suitable_for_idt(urb))
1394                 return 0;
1395
1396         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1397                 if (xhci_urb_temp_buffer_required(hcd, urb))
1398                         return xhci_map_temp_buffer(hcd, urb);
1399         }
1400         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1401 }
1402
1403 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1404 {
1405         struct xhci_hcd *xhci;
1406         bool unmap_temp_buf = false;
1407
1408         xhci = hcd_to_xhci(hcd);
1409
1410         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1411                 unmap_temp_buf = true;
1412
1413         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1414                 xhci_unmap_temp_buf(hcd, urb);
1415         else
1416                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1417 }
1418
1419 /**
1420  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1421  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1422  * value to right shift 1 for the bitmask.
1423  *
1424  * Index  = (epnum * 2) + direction - 1,
1425  * where direction = 0 for OUT, 1 for IN.
1426  * For control endpoints, the IN index is used (OUT index is unused), so
1427  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1428  */
1429 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1430 {
1431         unsigned int index;
1432         if (usb_endpoint_xfer_control(desc))
1433                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1434         else
1435                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1436                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1437         return index;
1438 }
1439 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1440
1441 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1442  * address from the XHCI endpoint index.
1443  */
1444 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1445 {
1446         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1447         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1448         return direction | number;
1449 }
1450
1451 /* Find the flag for this endpoint (for use in the control context).  Use the
1452  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1453  * bit 1, etc.
1454  */
1455 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1456 {
1457         return 1 << (xhci_get_endpoint_index(desc) + 1);
1458 }
1459
1460 /* Compute the last valid endpoint context index.  Basically, this is the
1461  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1462  * we find the most significant bit set in the added contexts flags.
1463  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1464  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1465  */
1466 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1467 {
1468         return fls(added_ctxs) - 1;
1469 }
1470
1471 /* Returns 1 if the arguments are OK;
1472  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1473  */
1474 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1475                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1476                 const char *func) {
1477         struct xhci_hcd *xhci;
1478         struct xhci_virt_device *virt_dev;
1479
1480         if (!hcd || (check_ep && !ep) || !udev) {
1481                 pr_debug("xHCI %s called with invalid args\n", func);
1482                 return -EINVAL;
1483         }
1484         if (!udev->parent) {
1485                 pr_debug("xHCI %s called for root hub\n", func);
1486                 return 0;
1487         }
1488
1489         xhci = hcd_to_xhci(hcd);
1490         if (check_virt_dev) {
1491                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1492                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1493                                         func);
1494                         return -EINVAL;
1495                 }
1496
1497                 virt_dev = xhci->devs[udev->slot_id];
1498                 if (virt_dev->udev != udev) {
1499                         xhci_dbg(xhci, "xHCI %s called with udev and "
1500                                           "virt_dev does not match\n", func);
1501                         return -EINVAL;
1502                 }
1503         }
1504
1505         if (xhci->xhc_state & XHCI_STATE_HALTED)
1506                 return -ENODEV;
1507
1508         return 1;
1509 }
1510
1511 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1512                 struct usb_device *udev, struct xhci_command *command,
1513                 bool ctx_change, bool must_succeed);
1514
1515 /*
1516  * Full speed devices may have a max packet size greater than 8 bytes, but the
1517  * USB core doesn't know that until it reads the first 8 bytes of the
1518  * descriptor.  If the usb_device's max packet size changes after that point,
1519  * we need to issue an evaluate context command and wait on it.
1520  */
1521 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1522                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1523 {
1524         struct xhci_container_ctx *out_ctx;
1525         struct xhci_input_control_ctx *ctrl_ctx;
1526         struct xhci_ep_ctx *ep_ctx;
1527         struct xhci_command *command;
1528         int max_packet_size;
1529         int hw_max_packet_size;
1530         int ret = 0;
1531
1532         out_ctx = xhci->devs[slot_id]->out_ctx;
1533         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1534         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1535         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1536         if (hw_max_packet_size != max_packet_size) {
1537                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1538                                 "Max Packet Size for ep 0 changed.");
1539                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1540                                 "Max packet size in usb_device = %d",
1541                                 max_packet_size);
1542                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1543                                 "Max packet size in xHCI HW = %d",
1544                                 hw_max_packet_size);
1545                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1546                                 "Issuing evaluate context command.");
1547
1548                 /* Set up the input context flags for the command */
1549                 /* FIXME: This won't work if a non-default control endpoint
1550                  * changes max packet sizes.
1551                  */
1552
1553                 command = xhci_alloc_command(xhci, true, mem_flags);
1554                 if (!command)
1555                         return -ENOMEM;
1556
1557                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1558                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1559                 if (!ctrl_ctx) {
1560                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1561                                         __func__);
1562                         ret = -ENOMEM;
1563                         goto command_cleanup;
1564                 }
1565                 /* Set up the modified control endpoint 0 */
1566                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1567                                 xhci->devs[slot_id]->out_ctx, ep_index);
1568
1569                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1570                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1571                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1572                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1573
1574                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1575                 ctrl_ctx->drop_flags = 0;
1576
1577                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1578                                 true, false);
1579
1580                 /* Clean up the input context for later use by bandwidth
1581                  * functions.
1582                  */
1583                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1584 command_cleanup:
1585                 kfree(command->completion);
1586                 kfree(command);
1587         }
1588         return ret;
1589 }
1590
1591 /*
1592  * non-error returns are a promise to giveback() the urb later
1593  * we drop ownership so next owner (or urb unlink) can get it
1594  */
1595 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1596 {
1597         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1598         unsigned long flags;
1599         int ret = 0;
1600         unsigned int slot_id, ep_index;
1601         unsigned int *ep_state;
1602         struct urb_priv *urb_priv;
1603         int num_tds;
1604
1605         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1606                                         true, true, __func__) <= 0)
1607                 return -EINVAL;
1608
1609         slot_id = urb->dev->slot_id;
1610         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1611         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1612
1613         if (!HCD_HW_ACCESSIBLE(hcd))
1614                 return -ESHUTDOWN;
1615
1616         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1617                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1618                 return -ENODEV;
1619         }
1620
1621         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1622                 num_tds = urb->number_of_packets;
1623         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1624             urb->transfer_buffer_length > 0 &&
1625             urb->transfer_flags & URB_ZERO_PACKET &&
1626             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1627                 num_tds = 2;
1628         else
1629                 num_tds = 1;
1630
1631         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1632         if (!urb_priv)
1633                 return -ENOMEM;
1634
1635         urb_priv->num_tds = num_tds;
1636         urb_priv->num_tds_done = 0;
1637         urb->hcpriv = urb_priv;
1638
1639         trace_xhci_urb_enqueue(urb);
1640
1641         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1642                 /* Check to see if the max packet size for the default control
1643                  * endpoint changed during FS device enumeration
1644                  */
1645                 if (urb->dev->speed == USB_SPEED_FULL) {
1646                         ret = xhci_check_maxpacket(xhci, slot_id,
1647                                         ep_index, urb, mem_flags);
1648                         if (ret < 0) {
1649                                 xhci_urb_free_priv(urb_priv);
1650                                 urb->hcpriv = NULL;
1651                                 return ret;
1652                         }
1653                 }
1654         }
1655
1656         spin_lock_irqsave(&xhci->lock, flags);
1657
1658         if (xhci->xhc_state & XHCI_STATE_DYING) {
1659                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1660                          urb->ep->desc.bEndpointAddress, urb);
1661                 ret = -ESHUTDOWN;
1662                 goto free_priv;
1663         }
1664         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1665                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1666                           *ep_state);
1667                 ret = -EINVAL;
1668                 goto free_priv;
1669         }
1670         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1671                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1672                 ret = -EINVAL;
1673                 goto free_priv;
1674         }
1675
1676         switch (usb_endpoint_type(&urb->ep->desc)) {
1677
1678         case USB_ENDPOINT_XFER_CONTROL:
1679                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1680                                          slot_id, ep_index);
1681                 break;
1682         case USB_ENDPOINT_XFER_BULK:
1683                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1684                                          slot_id, ep_index);
1685                 break;
1686         case USB_ENDPOINT_XFER_INT:
1687                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1688                                 slot_id, ep_index);
1689                 break;
1690         case USB_ENDPOINT_XFER_ISOC:
1691                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1692                                 slot_id, ep_index);
1693         }
1694
1695         if (ret) {
1696 free_priv:
1697                 xhci_urb_free_priv(urb_priv);
1698                 urb->hcpriv = NULL;
1699         }
1700         spin_unlock_irqrestore(&xhci->lock, flags);
1701         return ret;
1702 }
1703
1704 /*
1705  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1706  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1707  * should pick up where it left off in the TD, unless a Set Transfer Ring
1708  * Dequeue Pointer is issued.
1709  *
1710  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1711  * the ring.  Since the ring is a contiguous structure, they can't be physically
1712  * removed.  Instead, there are two options:
1713  *
1714  *  1) If the HC is in the middle of processing the URB to be canceled, we
1715  *     simply move the ring's dequeue pointer past those TRBs using the Set
1716  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1717  *     when drivers timeout on the last submitted URB and attempt to cancel.
1718  *
1719  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1720  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1721  *     HC will need to invalidate the any TRBs it has cached after the stop
1722  *     endpoint command, as noted in the xHCI 0.95 errata.
1723  *
1724  *  3) The TD may have completed by the time the Stop Endpoint Command
1725  *     completes, so software needs to handle that case too.
1726  *
1727  * This function should protect against the TD enqueueing code ringing the
1728  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1729  * It also needs to account for multiple cancellations on happening at the same
1730  * time for the same endpoint.
1731  *
1732  * Note that this function can be called in any context, or so says
1733  * usb_hcd_unlink_urb()
1734  */
1735 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1736 {
1737         unsigned long flags;
1738         int ret, i;
1739         u32 temp;
1740         struct xhci_hcd *xhci;
1741         struct urb_priv *urb_priv;
1742         struct xhci_td *td;
1743         unsigned int ep_index;
1744         struct xhci_ring *ep_ring;
1745         struct xhci_virt_ep *ep;
1746         struct xhci_command *command;
1747         struct xhci_virt_device *vdev;
1748
1749         xhci = hcd_to_xhci(hcd);
1750         spin_lock_irqsave(&xhci->lock, flags);
1751
1752         trace_xhci_urb_dequeue(urb);
1753
1754         /* Make sure the URB hasn't completed or been unlinked already */
1755         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1756         if (ret)
1757                 goto done;
1758
1759         /* give back URB now if we can't queue it for cancel */
1760         vdev = xhci->devs[urb->dev->slot_id];
1761         urb_priv = urb->hcpriv;
1762         if (!vdev || !urb_priv)
1763                 goto err_giveback;
1764
1765         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1766         ep = &vdev->eps[ep_index];
1767         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1768         if (!ep || !ep_ring)
1769                 goto err_giveback;
1770
1771         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1772         temp = readl(&xhci->op_regs->status);
1773         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1774                 xhci_hc_died(xhci);
1775                 goto done;
1776         }
1777
1778         /*
1779          * check ring is not re-allocated since URB was enqueued. If it is, then
1780          * make sure none of the ring related pointers in this URB private data
1781          * are touched, such as td_list, otherwise we overwrite freed data
1782          */
1783         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1784                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1785                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1786                         td = &urb_priv->td[i];
1787                         if (!list_empty(&td->cancelled_td_list))
1788                                 list_del_init(&td->cancelled_td_list);
1789                 }
1790                 goto err_giveback;
1791         }
1792
1793         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1794                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1795                                 "HC halted, freeing TD manually.");
1796                 for (i = urb_priv->num_tds_done;
1797                      i < urb_priv->num_tds;
1798                      i++) {
1799                         td = &urb_priv->td[i];
1800                         if (!list_empty(&td->td_list))
1801                                 list_del_init(&td->td_list);
1802                         if (!list_empty(&td->cancelled_td_list))
1803                                 list_del_init(&td->cancelled_td_list);
1804                 }
1805                 goto err_giveback;
1806         }
1807
1808         i = urb_priv->num_tds_done;
1809         if (i < urb_priv->num_tds)
1810                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1811                                 "Cancel URB %p, dev %s, ep 0x%x, "
1812                                 "starting at offset 0x%llx",
1813                                 urb, urb->dev->devpath,
1814                                 urb->ep->desc.bEndpointAddress,
1815                                 (unsigned long long) xhci_trb_virt_to_dma(
1816                                         urb_priv->td[i].start_seg,
1817                                         urb_priv->td[i].first_trb));
1818
1819         for (; i < urb_priv->num_tds; i++) {
1820                 td = &urb_priv->td[i];
1821                 /* TD can already be on cancelled list if ep halted on it */
1822                 if (list_empty(&td->cancelled_td_list)) {
1823                         td->cancel_status = TD_DIRTY;
1824                         list_add_tail(&td->cancelled_td_list,
1825                                       &ep->cancelled_td_list);
1826                 }
1827         }
1828
1829         /* Queue a stop endpoint command, but only if this is
1830          * the first cancellation to be handled.
1831          */
1832         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1833                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1834                 if (!command) {
1835                         ret = -ENOMEM;
1836                         goto done;
1837                 }
1838                 ep->ep_state |= EP_STOP_CMD_PENDING;
1839                 ep->stop_cmd_timer.expires = jiffies +
1840                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1841                 add_timer(&ep->stop_cmd_timer);
1842                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1843                                          ep_index, 0);
1844                 xhci_ring_cmd_db(xhci);
1845         }
1846 done:
1847         spin_unlock_irqrestore(&xhci->lock, flags);
1848         return ret;
1849
1850 err_giveback:
1851         if (urb_priv)
1852                 xhci_urb_free_priv(urb_priv);
1853         usb_hcd_unlink_urb_from_ep(hcd, urb);
1854         spin_unlock_irqrestore(&xhci->lock, flags);
1855         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1856         return ret;
1857 }
1858
1859 /* Drop an endpoint from a new bandwidth configuration for this device.
1860  * Only one call to this function is allowed per endpoint before
1861  * check_bandwidth() or reset_bandwidth() must be called.
1862  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1863  * add the endpoint to the schedule with possibly new parameters denoted by a
1864  * different endpoint descriptor in usb_host_endpoint.
1865  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1866  * not allowed.
1867  *
1868  * The USB core will not allow URBs to be queued to an endpoint that is being
1869  * disabled, so there's no need for mutual exclusion to protect
1870  * the xhci->devs[slot_id] structure.
1871  */
1872 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1873                        struct usb_host_endpoint *ep)
1874 {
1875         struct xhci_hcd *xhci;
1876         struct xhci_container_ctx *in_ctx, *out_ctx;
1877         struct xhci_input_control_ctx *ctrl_ctx;
1878         unsigned int ep_index;
1879         struct xhci_ep_ctx *ep_ctx;
1880         u32 drop_flag;
1881         u32 new_add_flags, new_drop_flags;
1882         int ret;
1883
1884         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1885         if (ret <= 0)
1886                 return ret;
1887         xhci = hcd_to_xhci(hcd);
1888         if (xhci->xhc_state & XHCI_STATE_DYING)
1889                 return -ENODEV;
1890
1891         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1892         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1893         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1894                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1895                                 __func__, drop_flag);
1896                 return 0;
1897         }
1898
1899         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1900         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1901         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1902         if (!ctrl_ctx) {
1903                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1904                                 __func__);
1905                 return 0;
1906         }
1907
1908         ep_index = xhci_get_endpoint_index(&ep->desc);
1909         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1910         /* If the HC already knows the endpoint is disabled,
1911          * or the HCD has noted it is disabled, ignore this request
1912          */
1913         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1914             le32_to_cpu(ctrl_ctx->drop_flags) &
1915             xhci_get_endpoint_flag(&ep->desc)) {
1916                 /* Do not warn when called after a usb_device_reset */
1917                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1918                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1919                                   __func__, ep);
1920                 return 0;
1921         }
1922
1923         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1924         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1925
1926         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1927         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1928
1929         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1930
1931         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1932
1933         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1934                         (unsigned int) ep->desc.bEndpointAddress,
1935                         udev->slot_id,
1936                         (unsigned int) new_drop_flags,
1937                         (unsigned int) new_add_flags);
1938         return 0;
1939 }
1940 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1941
1942 /* Add an endpoint to a new possible bandwidth configuration for this device.
1943  * Only one call to this function is allowed per endpoint before
1944  * check_bandwidth() or reset_bandwidth() must be called.
1945  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1946  * add the endpoint to the schedule with possibly new parameters denoted by a
1947  * different endpoint descriptor in usb_host_endpoint.
1948  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1949  * not allowed.
1950  *
1951  * The USB core will not allow URBs to be queued to an endpoint until the
1952  * configuration or alt setting is installed in the device, so there's no need
1953  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1954  */
1955 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1956                       struct usb_host_endpoint *ep)
1957 {
1958         struct xhci_hcd *xhci;
1959         struct xhci_container_ctx *in_ctx;
1960         unsigned int ep_index;
1961         struct xhci_input_control_ctx *ctrl_ctx;
1962         struct xhci_ep_ctx *ep_ctx;
1963         u32 added_ctxs;
1964         u32 new_add_flags, new_drop_flags;
1965         struct xhci_virt_device *virt_dev;
1966         int ret = 0;
1967
1968         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1969         if (ret <= 0) {
1970                 /* So we won't queue a reset ep command for a root hub */
1971                 ep->hcpriv = NULL;
1972                 return ret;
1973         }
1974         xhci = hcd_to_xhci(hcd);
1975         if (xhci->xhc_state & XHCI_STATE_DYING)
1976                 return -ENODEV;
1977
1978         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1979         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1980                 /* FIXME when we have to issue an evaluate endpoint command to
1981                  * deal with ep0 max packet size changing once we get the
1982                  * descriptors
1983                  */
1984                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1985                                 __func__, added_ctxs);
1986                 return 0;
1987         }
1988
1989         virt_dev = xhci->devs[udev->slot_id];
1990         in_ctx = virt_dev->in_ctx;
1991         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1992         if (!ctrl_ctx) {
1993                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1994                                 __func__);
1995                 return 0;
1996         }
1997
1998         ep_index = xhci_get_endpoint_index(&ep->desc);
1999         /* If this endpoint is already in use, and the upper layers are trying
2000          * to add it again without dropping it, reject the addition.
2001          */
2002         if (virt_dev->eps[ep_index].ring &&
2003                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2004                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2005                                 "without dropping it.\n",
2006                                 (unsigned int) ep->desc.bEndpointAddress);
2007                 return -EINVAL;
2008         }
2009
2010         /* If the HCD has already noted the endpoint is enabled,
2011          * ignore this request.
2012          */
2013         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2014                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2015                                 __func__, ep);
2016                 return 0;
2017         }
2018
2019         /*
2020          * Configuration and alternate setting changes must be done in
2021          * process context, not interrupt context (or so documenation
2022          * for usb_set_interface() and usb_set_configuration() claim).
2023          */
2024         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2025                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2026                                 __func__, ep->desc.bEndpointAddress);
2027                 return -ENOMEM;
2028         }
2029
2030         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2031         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2032
2033         /* If xhci_endpoint_disable() was called for this endpoint, but the
2034          * xHC hasn't been notified yet through the check_bandwidth() call,
2035          * this re-adds a new state for the endpoint from the new endpoint
2036          * descriptors.  We must drop and re-add this endpoint, so we leave the
2037          * drop flags alone.
2038          */
2039         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2040
2041         /* Store the usb_device pointer for later use */
2042         ep->hcpriv = udev;
2043
2044         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2045         trace_xhci_add_endpoint(ep_ctx);
2046
2047         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2048                         (unsigned int) ep->desc.bEndpointAddress,
2049                         udev->slot_id,
2050                         (unsigned int) new_drop_flags,
2051                         (unsigned int) new_add_flags);
2052         return 0;
2053 }
2054 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2055
2056 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2057 {
2058         struct xhci_input_control_ctx *ctrl_ctx;
2059         struct xhci_ep_ctx *ep_ctx;
2060         struct xhci_slot_ctx *slot_ctx;
2061         int i;
2062
2063         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2064         if (!ctrl_ctx) {
2065                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2066                                 __func__);
2067                 return;
2068         }
2069
2070         /* When a device's add flag and drop flag are zero, any subsequent
2071          * configure endpoint command will leave that endpoint's state
2072          * untouched.  Make sure we don't leave any old state in the input
2073          * endpoint contexts.
2074          */
2075         ctrl_ctx->drop_flags = 0;
2076         ctrl_ctx->add_flags = 0;
2077         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2078         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2079         /* Endpoint 0 is always valid */
2080         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2081         for (i = 1; i < 31; i++) {
2082                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2083                 ep_ctx->ep_info = 0;
2084                 ep_ctx->ep_info2 = 0;
2085                 ep_ctx->deq = 0;
2086                 ep_ctx->tx_info = 0;
2087         }
2088 }
2089
2090 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2091                 struct usb_device *udev, u32 *cmd_status)
2092 {
2093         int ret;
2094
2095         switch (*cmd_status) {
2096         case COMP_COMMAND_ABORTED:
2097         case COMP_COMMAND_RING_STOPPED:
2098                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2099                 ret = -ETIME;
2100                 break;
2101         case COMP_RESOURCE_ERROR:
2102                 dev_warn(&udev->dev,
2103                          "Not enough host controller resources for new device state.\n");
2104                 ret = -ENOMEM;
2105                 /* FIXME: can we allocate more resources for the HC? */
2106                 break;
2107         case COMP_BANDWIDTH_ERROR:
2108         case COMP_SECONDARY_BANDWIDTH_ERROR:
2109                 dev_warn(&udev->dev,
2110                          "Not enough bandwidth for new device state.\n");
2111                 ret = -ENOSPC;
2112                 /* FIXME: can we go back to the old state? */
2113                 break;
2114         case COMP_TRB_ERROR:
2115                 /* the HCD set up something wrong */
2116                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2117                                 "add flag = 1, "
2118                                 "and endpoint is not disabled.\n");
2119                 ret = -EINVAL;
2120                 break;
2121         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2122                 dev_warn(&udev->dev,
2123                          "ERROR: Incompatible device for endpoint configure command.\n");
2124                 ret = -ENODEV;
2125                 break;
2126         case COMP_SUCCESS:
2127                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2128                                 "Successful Endpoint Configure command");
2129                 ret = 0;
2130                 break;
2131         default:
2132                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2133                                 *cmd_status);
2134                 ret = -EINVAL;
2135                 break;
2136         }
2137         return ret;
2138 }
2139
2140 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2141                 struct usb_device *udev, u32 *cmd_status)
2142 {
2143         int ret;
2144
2145         switch (*cmd_status) {
2146         case COMP_COMMAND_ABORTED:
2147         case COMP_COMMAND_RING_STOPPED:
2148                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2149                 ret = -ETIME;
2150                 break;
2151         case COMP_PARAMETER_ERROR:
2152                 dev_warn(&udev->dev,
2153                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2154                 ret = -EINVAL;
2155                 break;
2156         case COMP_SLOT_NOT_ENABLED_ERROR:
2157                 dev_warn(&udev->dev,
2158                         "WARN: slot not enabled for evaluate context command.\n");
2159                 ret = -EINVAL;
2160                 break;
2161         case COMP_CONTEXT_STATE_ERROR:
2162                 dev_warn(&udev->dev,
2163                         "WARN: invalid context state for evaluate context command.\n");
2164                 ret = -EINVAL;
2165                 break;
2166         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2167                 dev_warn(&udev->dev,
2168                         "ERROR: Incompatible device for evaluate context command.\n");
2169                 ret = -ENODEV;
2170                 break;
2171         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2172                 /* Max Exit Latency too large error */
2173                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2174                 ret = -EINVAL;
2175                 break;
2176         case COMP_SUCCESS:
2177                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2178                                 "Successful evaluate context command");
2179                 ret = 0;
2180                 break;
2181         default:
2182                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2183                         *cmd_status);
2184                 ret = -EINVAL;
2185                 break;
2186         }
2187         return ret;
2188 }
2189
2190 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2191                 struct xhci_input_control_ctx *ctrl_ctx)
2192 {
2193         u32 valid_add_flags;
2194         u32 valid_drop_flags;
2195
2196         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2197          * (bit 1).  The default control endpoint is added during the Address
2198          * Device command and is never removed until the slot is disabled.
2199          */
2200         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2201         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2202
2203         /* Use hweight32 to count the number of ones in the add flags, or
2204          * number of endpoints added.  Don't count endpoints that are changed
2205          * (both added and dropped).
2206          */
2207         return hweight32(valid_add_flags) -
2208                 hweight32(valid_add_flags & valid_drop_flags);
2209 }
2210
2211 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2212                 struct xhci_input_control_ctx *ctrl_ctx)
2213 {
2214         u32 valid_add_flags;
2215         u32 valid_drop_flags;
2216
2217         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2218         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2219
2220         return hweight32(valid_drop_flags) -
2221                 hweight32(valid_add_flags & valid_drop_flags);
2222 }
2223
2224 /*
2225  * We need to reserve the new number of endpoints before the configure endpoint
2226  * command completes.  We can't subtract the dropped endpoints from the number
2227  * of active endpoints until the command completes because we can oversubscribe
2228  * the host in this case:
2229  *
2230  *  - the first configure endpoint command drops more endpoints than it adds
2231  *  - a second configure endpoint command that adds more endpoints is queued
2232  *  - the first configure endpoint command fails, so the config is unchanged
2233  *  - the second command may succeed, even though there isn't enough resources
2234  *
2235  * Must be called with xhci->lock held.
2236  */
2237 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2238                 struct xhci_input_control_ctx *ctrl_ctx)
2239 {
2240         u32 added_eps;
2241
2242         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2243         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2244                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2245                                 "Not enough ep ctxs: "
2246                                 "%u active, need to add %u, limit is %u.",
2247                                 xhci->num_active_eps, added_eps,
2248                                 xhci->limit_active_eps);
2249                 return -ENOMEM;
2250         }
2251         xhci->num_active_eps += added_eps;
2252         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2253                         "Adding %u ep ctxs, %u now active.", added_eps,
2254                         xhci->num_active_eps);
2255         return 0;
2256 }
2257
2258 /*
2259  * The configure endpoint was failed by the xHC for some other reason, so we
2260  * need to revert the resources that failed configuration would have used.
2261  *
2262  * Must be called with xhci->lock held.
2263  */
2264 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2265                 struct xhci_input_control_ctx *ctrl_ctx)
2266 {
2267         u32 num_failed_eps;
2268
2269         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2270         xhci->num_active_eps -= num_failed_eps;
2271         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2272                         "Removing %u failed ep ctxs, %u now active.",
2273                         num_failed_eps,
2274                         xhci->num_active_eps);
2275 }
2276
2277 /*
2278  * Now that the command has completed, clean up the active endpoint count by
2279  * subtracting out the endpoints that were dropped (but not changed).
2280  *
2281  * Must be called with xhci->lock held.
2282  */
2283 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2284                 struct xhci_input_control_ctx *ctrl_ctx)
2285 {
2286         u32 num_dropped_eps;
2287
2288         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2289         xhci->num_active_eps -= num_dropped_eps;
2290         if (num_dropped_eps)
2291                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2292                                 "Removing %u dropped ep ctxs, %u now active.",
2293                                 num_dropped_eps,
2294                                 xhci->num_active_eps);
2295 }
2296
2297 static unsigned int xhci_get_block_size(struct usb_device *udev)
2298 {
2299         switch (udev->speed) {
2300         case USB_SPEED_LOW:
2301         case USB_SPEED_FULL:
2302                 return FS_BLOCK;
2303         case USB_SPEED_HIGH:
2304                 return HS_BLOCK;
2305         case USB_SPEED_SUPER:
2306         case USB_SPEED_SUPER_PLUS:
2307                 return SS_BLOCK;
2308         case USB_SPEED_UNKNOWN:
2309         case USB_SPEED_WIRELESS:
2310         default:
2311                 /* Should never happen */
2312                 return 1;
2313         }
2314 }
2315
2316 static unsigned int
2317 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2318 {
2319         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2320                 return LS_OVERHEAD;
2321         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2322                 return FS_OVERHEAD;
2323         return HS_OVERHEAD;
2324 }
2325
2326 /* If we are changing a LS/FS device under a HS hub,
2327  * make sure (if we are activating a new TT) that the HS bus has enough
2328  * bandwidth for this new TT.
2329  */
2330 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2331                 struct xhci_virt_device *virt_dev,
2332                 int old_active_eps)
2333 {
2334         struct xhci_interval_bw_table *bw_table;
2335         struct xhci_tt_bw_info *tt_info;
2336
2337         /* Find the bandwidth table for the root port this TT is attached to. */
2338         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2339         tt_info = virt_dev->tt_info;
2340         /* If this TT already had active endpoints, the bandwidth for this TT
2341          * has already been added.  Removing all periodic endpoints (and thus
2342          * making the TT enactive) will only decrease the bandwidth used.
2343          */
2344         if (old_active_eps)
2345                 return 0;
2346         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2347                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2348                         return -ENOMEM;
2349                 return 0;
2350         }
2351         /* Not sure why we would have no new active endpoints...
2352          *
2353          * Maybe because of an Evaluate Context change for a hub update or a
2354          * control endpoint 0 max packet size change?
2355          * FIXME: skip the bandwidth calculation in that case.
2356          */
2357         return 0;
2358 }
2359
2360 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2361                 struct xhci_virt_device *virt_dev)
2362 {
2363         unsigned int bw_reserved;
2364
2365         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2366         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2367                 return -ENOMEM;
2368
2369         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2370         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2371                 return -ENOMEM;
2372
2373         return 0;
2374 }
2375
2376 /*
2377  * This algorithm is a very conservative estimate of the worst-case scheduling
2378  * scenario for any one interval.  The hardware dynamically schedules the
2379  * packets, so we can't tell which microframe could be the limiting factor in
2380  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2381  *
2382  * Obviously, we can't solve an NP complete problem to find the minimum worst
2383  * case scenario.  Instead, we come up with an estimate that is no less than
2384  * the worst case bandwidth used for any one microframe, but may be an
2385  * over-estimate.
2386  *
2387  * We walk the requirements for each endpoint by interval, starting with the
2388  * smallest interval, and place packets in the schedule where there is only one
2389  * possible way to schedule packets for that interval.  In order to simplify
2390  * this algorithm, we record the largest max packet size for each interval, and
2391  * assume all packets will be that size.
2392  *
2393  * For interval 0, we obviously must schedule all packets for each interval.
2394  * The bandwidth for interval 0 is just the amount of data to be transmitted
2395  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2396  * the number of packets).
2397  *
2398  * For interval 1, we have two possible microframes to schedule those packets
2399  * in.  For this algorithm, if we can schedule the same number of packets for
2400  * each possible scheduling opportunity (each microframe), we will do so.  The
2401  * remaining number of packets will be saved to be transmitted in the gaps in
2402  * the next interval's scheduling sequence.
2403  *
2404  * As we move those remaining packets to be scheduled with interval 2 packets,
2405  * we have to double the number of remaining packets to transmit.  This is
2406  * because the intervals are actually powers of 2, and we would be transmitting
2407  * the previous interval's packets twice in this interval.  We also have to be
2408  * sure that when we look at the largest max packet size for this interval, we
2409  * also look at the largest max packet size for the remaining packets and take
2410  * the greater of the two.
2411  *
2412  * The algorithm continues to evenly distribute packets in each scheduling
2413  * opportunity, and push the remaining packets out, until we get to the last
2414  * interval.  Then those packets and their associated overhead are just added
2415  * to the bandwidth used.
2416  */
2417 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2418                 struct xhci_virt_device *virt_dev,
2419                 int old_active_eps)
2420 {
2421         unsigned int bw_reserved;
2422         unsigned int max_bandwidth;
2423         unsigned int bw_used;
2424         unsigned int block_size;
2425         struct xhci_interval_bw_table *bw_table;
2426         unsigned int packet_size = 0;
2427         unsigned int overhead = 0;
2428         unsigned int packets_transmitted = 0;
2429         unsigned int packets_remaining = 0;
2430         unsigned int i;
2431
2432         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2433                 return xhci_check_ss_bw(xhci, virt_dev);
2434
2435         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2436                 max_bandwidth = HS_BW_LIMIT;
2437                 /* Convert percent of bus BW reserved to blocks reserved */
2438                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2439         } else {
2440                 max_bandwidth = FS_BW_LIMIT;
2441                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2442         }
2443
2444         bw_table = virt_dev->bw_table;
2445         /* We need to translate the max packet size and max ESIT payloads into
2446          * the units the hardware uses.
2447          */
2448         block_size = xhci_get_block_size(virt_dev->udev);
2449
2450         /* If we are manipulating a LS/FS device under a HS hub, double check
2451          * that the HS bus has enough bandwidth if we are activing a new TT.
2452          */
2453         if (virt_dev->tt_info) {
2454                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2455                                 "Recalculating BW for rootport %u",
2456                                 virt_dev->real_port);
2457                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2458                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2459                                         "newly activated TT.\n");
2460                         return -ENOMEM;
2461                 }
2462                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2463                                 "Recalculating BW for TT slot %u port %u",
2464                                 virt_dev->tt_info->slot_id,
2465                                 virt_dev->tt_info->ttport);
2466         } else {
2467                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2468                                 "Recalculating BW for rootport %u",
2469                                 virt_dev->real_port);
2470         }
2471
2472         /* Add in how much bandwidth will be used for interval zero, or the
2473          * rounded max ESIT payload + number of packets * largest overhead.
2474          */
2475         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2476                 bw_table->interval_bw[0].num_packets *
2477                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2478
2479         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2480                 unsigned int bw_added;
2481                 unsigned int largest_mps;
2482                 unsigned int interval_overhead;
2483
2484                 /*
2485                  * How many packets could we transmit in this interval?
2486                  * If packets didn't fit in the previous interval, we will need
2487                  * to transmit that many packets twice within this interval.
2488                  */
2489                 packets_remaining = 2 * packets_remaining +
2490                         bw_table->interval_bw[i].num_packets;
2491
2492                 /* Find the largest max packet size of this or the previous
2493                  * interval.
2494                  */
2495                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2496                         largest_mps = 0;
2497                 else {
2498                         struct xhci_virt_ep *virt_ep;
2499                         struct list_head *ep_entry;
2500
2501                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2502                         virt_ep = list_entry(ep_entry,
2503                                         struct xhci_virt_ep, bw_endpoint_list);
2504                         /* Convert to blocks, rounding up */
2505                         largest_mps = DIV_ROUND_UP(
2506                                         virt_ep->bw_info.max_packet_size,
2507                                         block_size);
2508                 }
2509                 if (largest_mps > packet_size)
2510                         packet_size = largest_mps;
2511
2512                 /* Use the larger overhead of this or the previous interval. */
2513                 interval_overhead = xhci_get_largest_overhead(
2514                                 &bw_table->interval_bw[i]);
2515                 if (interval_overhead > overhead)
2516                         overhead = interval_overhead;
2517
2518                 /* How many packets can we evenly distribute across
2519                  * (1 << (i + 1)) possible scheduling opportunities?
2520                  */
2521                 packets_transmitted = packets_remaining >> (i + 1);
2522
2523                 /* Add in the bandwidth used for those scheduled packets */
2524                 bw_added = packets_transmitted * (overhead + packet_size);
2525
2526                 /* How many packets do we have remaining to transmit? */
2527                 packets_remaining = packets_remaining % (1 << (i + 1));
2528
2529                 /* What largest max packet size should those packets have? */
2530                 /* If we've transmitted all packets, don't carry over the
2531                  * largest packet size.
2532                  */
2533                 if (packets_remaining == 0) {
2534                         packet_size = 0;
2535                         overhead = 0;
2536                 } else if (packets_transmitted > 0) {
2537                         /* Otherwise if we do have remaining packets, and we've
2538                          * scheduled some packets in this interval, take the
2539                          * largest max packet size from endpoints with this
2540                          * interval.
2541                          */
2542                         packet_size = largest_mps;
2543                         overhead = interval_overhead;
2544                 }
2545                 /* Otherwise carry over packet_size and overhead from the last
2546                  * time we had a remainder.
2547                  */
2548                 bw_used += bw_added;
2549                 if (bw_used > max_bandwidth) {
2550                         xhci_warn(xhci, "Not enough bandwidth. "
2551                                         "Proposed: %u, Max: %u\n",
2552                                 bw_used, max_bandwidth);
2553                         return -ENOMEM;
2554                 }
2555         }
2556         /*
2557          * Ok, we know we have some packets left over after even-handedly
2558          * scheduling interval 15.  We don't know which microframes they will
2559          * fit into, so we over-schedule and say they will be scheduled every
2560          * microframe.
2561          */
2562         if (packets_remaining > 0)
2563                 bw_used += overhead + packet_size;
2564
2565         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2566                 unsigned int port_index = virt_dev->real_port - 1;
2567
2568                 /* OK, we're manipulating a HS device attached to a
2569                  * root port bandwidth domain.  Include the number of active TTs
2570                  * in the bandwidth used.
2571                  */
2572                 bw_used += TT_HS_OVERHEAD *
2573                         xhci->rh_bw[port_index].num_active_tts;
2574         }
2575
2576         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2577                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2578                 "Available: %u " "percent",
2579                 bw_used, max_bandwidth, bw_reserved,
2580                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2581                 max_bandwidth);
2582
2583         bw_used += bw_reserved;
2584         if (bw_used > max_bandwidth) {
2585                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2586                                 bw_used, max_bandwidth);
2587                 return -ENOMEM;
2588         }
2589
2590         bw_table->bw_used = bw_used;
2591         return 0;
2592 }
2593
2594 static bool xhci_is_async_ep(unsigned int ep_type)
2595 {
2596         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2597                                         ep_type != ISOC_IN_EP &&
2598                                         ep_type != INT_IN_EP);
2599 }
2600
2601 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2602 {
2603         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2604 }
2605
2606 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2607 {
2608         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2609
2610         if (ep_bw->ep_interval == 0)
2611                 return SS_OVERHEAD_BURST +
2612                         (ep_bw->mult * ep_bw->num_packets *
2613                                         (SS_OVERHEAD + mps));
2614         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2615                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2616                                 1 << ep_bw->ep_interval);
2617
2618 }
2619
2620 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2621                 struct xhci_bw_info *ep_bw,
2622                 struct xhci_interval_bw_table *bw_table,
2623                 struct usb_device *udev,
2624                 struct xhci_virt_ep *virt_ep,
2625                 struct xhci_tt_bw_info *tt_info)
2626 {
2627         struct xhci_interval_bw *interval_bw;
2628         int normalized_interval;
2629
2630         if (xhci_is_async_ep(ep_bw->type))
2631                 return;
2632
2633         if (udev->speed >= USB_SPEED_SUPER) {
2634                 if (xhci_is_sync_in_ep(ep_bw->type))
2635                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2636                                 xhci_get_ss_bw_consumed(ep_bw);
2637                 else
2638                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2639                                 xhci_get_ss_bw_consumed(ep_bw);
2640                 return;
2641         }
2642
2643         /* SuperSpeed endpoints never get added to intervals in the table, so
2644          * this check is only valid for HS/FS/LS devices.
2645          */
2646         if (list_empty(&virt_ep->bw_endpoint_list))
2647                 return;
2648         /* For LS/FS devices, we need to translate the interval expressed in
2649          * microframes to frames.
2650          */
2651         if (udev->speed == USB_SPEED_HIGH)
2652                 normalized_interval = ep_bw->ep_interval;
2653         else
2654                 normalized_interval = ep_bw->ep_interval - 3;
2655
2656         if (normalized_interval == 0)
2657                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2658         interval_bw = &bw_table->interval_bw[normalized_interval];
2659         interval_bw->num_packets -= ep_bw->num_packets;
2660         switch (udev->speed) {
2661         case USB_SPEED_LOW:
2662                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2663                 break;
2664         case USB_SPEED_FULL:
2665                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2666                 break;
2667         case USB_SPEED_HIGH:
2668                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2669                 break;
2670         case USB_SPEED_SUPER:
2671         case USB_SPEED_SUPER_PLUS:
2672         case USB_SPEED_UNKNOWN:
2673         case USB_SPEED_WIRELESS:
2674                 /* Should never happen because only LS/FS/HS endpoints will get
2675                  * added to the endpoint list.
2676                  */
2677                 return;
2678         }
2679         if (tt_info)
2680                 tt_info->active_eps -= 1;
2681         list_del_init(&virt_ep->bw_endpoint_list);
2682 }
2683
2684 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2685                 struct xhci_bw_info *ep_bw,
2686                 struct xhci_interval_bw_table *bw_table,
2687                 struct usb_device *udev,
2688                 struct xhci_virt_ep *virt_ep,
2689                 struct xhci_tt_bw_info *tt_info)
2690 {
2691         struct xhci_interval_bw *interval_bw;
2692         struct xhci_virt_ep *smaller_ep;
2693         int normalized_interval;
2694
2695         if (xhci_is_async_ep(ep_bw->type))
2696                 return;
2697
2698         if (udev->speed == USB_SPEED_SUPER) {
2699                 if (xhci_is_sync_in_ep(ep_bw->type))
2700                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2701                                 xhci_get_ss_bw_consumed(ep_bw);
2702                 else
2703                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2704                                 xhci_get_ss_bw_consumed(ep_bw);
2705                 return;
2706         }
2707
2708         /* For LS/FS devices, we need to translate the interval expressed in
2709          * microframes to frames.
2710          */
2711         if (udev->speed == USB_SPEED_HIGH)
2712                 normalized_interval = ep_bw->ep_interval;
2713         else
2714                 normalized_interval = ep_bw->ep_interval - 3;
2715
2716         if (normalized_interval == 0)
2717                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2718         interval_bw = &bw_table->interval_bw[normalized_interval];
2719         interval_bw->num_packets += ep_bw->num_packets;
2720         switch (udev->speed) {
2721         case USB_SPEED_LOW:
2722                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2723                 break;
2724         case USB_SPEED_FULL:
2725                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2726                 break;
2727         case USB_SPEED_HIGH:
2728                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2729                 break;
2730         case USB_SPEED_SUPER:
2731         case USB_SPEED_SUPER_PLUS:
2732         case USB_SPEED_UNKNOWN:
2733         case USB_SPEED_WIRELESS:
2734                 /* Should never happen because only LS/FS/HS endpoints will get
2735                  * added to the endpoint list.
2736                  */
2737                 return;
2738         }
2739
2740         if (tt_info)
2741                 tt_info->active_eps += 1;
2742         /* Insert the endpoint into the list, largest max packet size first. */
2743         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2744                         bw_endpoint_list) {
2745                 if (ep_bw->max_packet_size >=
2746                                 smaller_ep->bw_info.max_packet_size) {
2747                         /* Add the new ep before the smaller endpoint */
2748                         list_add_tail(&virt_ep->bw_endpoint_list,
2749                                         &smaller_ep->bw_endpoint_list);
2750                         return;
2751                 }
2752         }
2753         /* Add the new endpoint at the end of the list. */
2754         list_add_tail(&virt_ep->bw_endpoint_list,
2755                         &interval_bw->endpoints);
2756 }
2757
2758 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2759                 struct xhci_virt_device *virt_dev,
2760                 int old_active_eps)
2761 {
2762         struct xhci_root_port_bw_info *rh_bw_info;
2763         if (!virt_dev->tt_info)
2764                 return;
2765
2766         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2767         if (old_active_eps == 0 &&
2768                                 virt_dev->tt_info->active_eps != 0) {
2769                 rh_bw_info->num_active_tts += 1;
2770                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2771         } else if (old_active_eps != 0 &&
2772                                 virt_dev->tt_info->active_eps == 0) {
2773                 rh_bw_info->num_active_tts -= 1;
2774                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2775         }
2776 }
2777
2778 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2779                 struct xhci_virt_device *virt_dev,
2780                 struct xhci_container_ctx *in_ctx)
2781 {
2782         struct xhci_bw_info ep_bw_info[31];
2783         int i;
2784         struct xhci_input_control_ctx *ctrl_ctx;
2785         int old_active_eps = 0;
2786
2787         if (virt_dev->tt_info)
2788                 old_active_eps = virt_dev->tt_info->active_eps;
2789
2790         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2791         if (!ctrl_ctx) {
2792                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2793                                 __func__);
2794                 return -ENOMEM;
2795         }
2796
2797         for (i = 0; i < 31; i++) {
2798                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2799                         continue;
2800
2801                 /* Make a copy of the BW info in case we need to revert this */
2802                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2803                                 sizeof(ep_bw_info[i]));
2804                 /* Drop the endpoint from the interval table if the endpoint is
2805                  * being dropped or changed.
2806                  */
2807                 if (EP_IS_DROPPED(ctrl_ctx, i))
2808                         xhci_drop_ep_from_interval_table(xhci,
2809                                         &virt_dev->eps[i].bw_info,
2810                                         virt_dev->bw_table,
2811                                         virt_dev->udev,
2812                                         &virt_dev->eps[i],
2813                                         virt_dev->tt_info);
2814         }
2815         /* Overwrite the information stored in the endpoints' bw_info */
2816         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2817         for (i = 0; i < 31; i++) {
2818                 /* Add any changed or added endpoints to the interval table */
2819                 if (EP_IS_ADDED(ctrl_ctx, i))
2820                         xhci_add_ep_to_interval_table(xhci,
2821                                         &virt_dev->eps[i].bw_info,
2822                                         virt_dev->bw_table,
2823                                         virt_dev->udev,
2824                                         &virt_dev->eps[i],
2825                                         virt_dev->tt_info);
2826         }
2827
2828         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2829                 /* Ok, this fits in the bandwidth we have.
2830                  * Update the number of active TTs.
2831                  */
2832                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2833                 return 0;
2834         }
2835
2836         /* We don't have enough bandwidth for this, revert the stored info. */
2837         for (i = 0; i < 31; i++) {
2838                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2839                         continue;
2840
2841                 /* Drop the new copies of any added or changed endpoints from
2842                  * the interval table.
2843                  */
2844                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2845                         xhci_drop_ep_from_interval_table(xhci,
2846                                         &virt_dev->eps[i].bw_info,
2847                                         virt_dev->bw_table,
2848                                         virt_dev->udev,
2849                                         &virt_dev->eps[i],
2850                                         virt_dev->tt_info);
2851                 }
2852                 /* Revert the endpoint back to its old information */
2853                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2854                                 sizeof(ep_bw_info[i]));
2855                 /* Add any changed or dropped endpoints back into the table */
2856                 if (EP_IS_DROPPED(ctrl_ctx, i))
2857                         xhci_add_ep_to_interval_table(xhci,
2858                                         &virt_dev->eps[i].bw_info,
2859                                         virt_dev->bw_table,
2860                                         virt_dev->udev,
2861                                         &virt_dev->eps[i],
2862                                         virt_dev->tt_info);
2863         }
2864         return -ENOMEM;
2865 }
2866
2867
2868 /* Issue a configure endpoint command or evaluate context command
2869  * and wait for it to finish.
2870  */
2871 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2872                 struct usb_device *udev,
2873                 struct xhci_command *command,
2874                 bool ctx_change, bool must_succeed)
2875 {
2876         int ret;
2877         unsigned long flags;
2878         struct xhci_input_control_ctx *ctrl_ctx;
2879         struct xhci_virt_device *virt_dev;
2880         struct xhci_slot_ctx *slot_ctx;
2881
2882         if (!command)
2883                 return -EINVAL;
2884
2885         spin_lock_irqsave(&xhci->lock, flags);
2886
2887         if (xhci->xhc_state & XHCI_STATE_DYING) {
2888                 spin_unlock_irqrestore(&xhci->lock, flags);
2889                 return -ESHUTDOWN;
2890         }
2891
2892         virt_dev = xhci->devs[udev->slot_id];
2893
2894         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2895         if (!ctrl_ctx) {
2896                 spin_unlock_irqrestore(&xhci->lock, flags);
2897                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2898                                 __func__);
2899                 return -ENOMEM;
2900         }
2901
2902         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2903                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2904                 spin_unlock_irqrestore(&xhci->lock, flags);
2905                 xhci_warn(xhci, "Not enough host resources, "
2906                                 "active endpoint contexts = %u\n",
2907                                 xhci->num_active_eps);
2908                 return -ENOMEM;
2909         }
2910         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2911             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2912                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2913                         xhci_free_host_resources(xhci, ctrl_ctx);
2914                 spin_unlock_irqrestore(&xhci->lock, flags);
2915                 xhci_warn(xhci, "Not enough bandwidth\n");
2916                 return -ENOMEM;
2917         }
2918
2919         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2920
2921         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2922         trace_xhci_configure_endpoint(slot_ctx);
2923
2924         if (!ctx_change)
2925                 ret = xhci_queue_configure_endpoint(xhci, command,
2926                                 command->in_ctx->dma,
2927                                 udev->slot_id, must_succeed);
2928         else
2929                 ret = xhci_queue_evaluate_context(xhci, command,
2930                                 command->in_ctx->dma,
2931                                 udev->slot_id, must_succeed);
2932         if (ret < 0) {
2933                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2934                         xhci_free_host_resources(xhci, ctrl_ctx);
2935                 spin_unlock_irqrestore(&xhci->lock, flags);
2936                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2937                                 "FIXME allocate a new ring segment");
2938                 return -ENOMEM;
2939         }
2940         xhci_ring_cmd_db(xhci);
2941         spin_unlock_irqrestore(&xhci->lock, flags);
2942
2943         /* Wait for the configure endpoint command to complete */
2944         wait_for_completion(command->completion);
2945
2946         if (!ctx_change)
2947                 ret = xhci_configure_endpoint_result(xhci, udev,
2948                                                      &command->status);
2949         else
2950                 ret = xhci_evaluate_context_result(xhci, udev,
2951                                                    &command->status);
2952
2953         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2954                 spin_lock_irqsave(&xhci->lock, flags);
2955                 /* If the command failed, remove the reserved resources.
2956                  * Otherwise, clean up the estimate to include dropped eps.
2957                  */
2958                 if (ret)
2959                         xhci_free_host_resources(xhci, ctrl_ctx);
2960                 else
2961                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2962                 spin_unlock_irqrestore(&xhci->lock, flags);
2963         }
2964         return ret;
2965 }
2966
2967 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2968         struct xhci_virt_device *vdev, int i)
2969 {
2970         struct xhci_virt_ep *ep = &vdev->eps[i];
2971
2972         if (ep->ep_state & EP_HAS_STREAMS) {
2973                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2974                                 xhci_get_endpoint_address(i));
2975                 xhci_free_stream_info(xhci, ep->stream_info);
2976                 ep->stream_info = NULL;
2977                 ep->ep_state &= ~EP_HAS_STREAMS;
2978         }
2979 }
2980
2981 /* Called after one or more calls to xhci_add_endpoint() or
2982  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2983  * to call xhci_reset_bandwidth().
2984  *
2985  * Since we are in the middle of changing either configuration or
2986  * installing a new alt setting, the USB core won't allow URBs to be
2987  * enqueued for any endpoint on the old config or interface.  Nothing
2988  * else should be touching the xhci->devs[slot_id] structure, so we
2989  * don't need to take the xhci->lock for manipulating that.
2990  */
2991 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2992 {
2993         int i;
2994         int ret = 0;
2995         struct xhci_hcd *xhci;
2996         struct xhci_virt_device *virt_dev;
2997         struct xhci_input_control_ctx *ctrl_ctx;
2998         struct xhci_slot_ctx *slot_ctx;
2999         struct xhci_command *command;
3000
3001         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3002         if (ret <= 0)
3003                 return ret;
3004         xhci = hcd_to_xhci(hcd);
3005         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3006                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3007                 return -ENODEV;
3008
3009         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3010         virt_dev = xhci->devs[udev->slot_id];
3011
3012         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3013         if (!command)
3014                 return -ENOMEM;
3015
3016         command->in_ctx = virt_dev->in_ctx;
3017
3018         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3019         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3020         if (!ctrl_ctx) {
3021                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3022                                 __func__);
3023                 ret = -ENOMEM;
3024                 goto command_cleanup;
3025         }
3026         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3027         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3028         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3029
3030         /* Don't issue the command if there's no endpoints to update. */
3031         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3032             ctrl_ctx->drop_flags == 0) {
3033                 ret = 0;
3034                 goto command_cleanup;
3035         }
3036         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3037         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3038         for (i = 31; i >= 1; i--) {
3039                 __le32 le32 = cpu_to_le32(BIT(i));
3040
3041                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3042                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3043                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3044                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3045                         break;
3046                 }
3047         }
3048
3049         ret = xhci_configure_endpoint(xhci, udev, command,
3050                         false, false);
3051         if (ret)
3052                 /* Callee should call reset_bandwidth() */
3053                 goto command_cleanup;
3054
3055         /* Free any rings that were dropped, but not changed. */
3056         for (i = 1; i < 31; i++) {
3057                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3058                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3059                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3060                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3061                 }
3062         }
3063         xhci_zero_in_ctx(xhci, virt_dev);
3064         /*
3065          * Install any rings for completely new endpoints or changed endpoints,
3066          * and free any old rings from changed endpoints.
3067          */
3068         for (i = 1; i < 31; i++) {
3069                 if (!virt_dev->eps[i].new_ring)
3070                         continue;
3071                 /* Only free the old ring if it exists.
3072                  * It may not if this is the first add of an endpoint.
3073                  */
3074                 if (virt_dev->eps[i].ring) {
3075                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3076                 }
3077                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3078                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3079                 virt_dev->eps[i].new_ring = NULL;
3080                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3081         }
3082 command_cleanup:
3083         kfree(command->completion);
3084         kfree(command);
3085
3086         return ret;
3087 }
3088 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3089
3090 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3091 {
3092         struct xhci_hcd *xhci;
3093         struct xhci_virt_device *virt_dev;
3094         int i, ret;
3095
3096         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3097         if (ret <= 0)
3098                 return;
3099         xhci = hcd_to_xhci(hcd);
3100
3101         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3102         virt_dev = xhci->devs[udev->slot_id];
3103         /* Free any rings allocated for added endpoints */
3104         for (i = 0; i < 31; i++) {
3105                 if (virt_dev->eps[i].new_ring) {
3106                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3107                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3108                         virt_dev->eps[i].new_ring = NULL;
3109                 }
3110         }
3111         xhci_zero_in_ctx(xhci, virt_dev);
3112 }
3113 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3114
3115 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3116                 struct xhci_container_ctx *in_ctx,
3117                 struct xhci_container_ctx *out_ctx,
3118                 struct xhci_input_control_ctx *ctrl_ctx,
3119                 u32 add_flags, u32 drop_flags)
3120 {
3121         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3122         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3123         xhci_slot_copy(xhci, in_ctx, out_ctx);
3124         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3125 }
3126
3127 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3128                                   struct usb_host_endpoint *host_ep)
3129 {
3130         struct xhci_hcd         *xhci;
3131         struct xhci_virt_device *vdev;
3132         struct xhci_virt_ep     *ep;
3133         struct usb_device       *udev;
3134         unsigned long           flags;
3135         unsigned int            ep_index;
3136
3137         xhci = hcd_to_xhci(hcd);
3138 rescan:
3139         spin_lock_irqsave(&xhci->lock, flags);
3140
3141         udev = (struct usb_device *)host_ep->hcpriv;
3142         if (!udev || !udev->slot_id)
3143                 goto done;
3144
3145         vdev = xhci->devs[udev->slot_id];
3146         if (!vdev)
3147                 goto done;
3148
3149         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3150         ep = &vdev->eps[ep_index];
3151         if (!ep)
3152                 goto done;
3153
3154         /* wait for hub_tt_work to finish clearing hub TT */
3155         if (ep->ep_state & EP_CLEARING_TT) {
3156                 spin_unlock_irqrestore(&xhci->lock, flags);
3157                 schedule_timeout_uninterruptible(1);
3158                 goto rescan;
3159         }
3160
3161         if (ep->ep_state)
3162                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3163                          ep->ep_state);
3164 done:
3165         host_ep->hcpriv = NULL;
3166         spin_unlock_irqrestore(&xhci->lock, flags);
3167 }
3168
3169 /*
3170  * Called after usb core issues a clear halt control message.
3171  * The host side of the halt should already be cleared by a reset endpoint
3172  * command issued when the STALL event was received.
3173  *
3174  * The reset endpoint command may only be issued to endpoints in the halted
3175  * state. For software that wishes to reset the data toggle or sequence number
3176  * of an endpoint that isn't in the halted state this function will issue a
3177  * configure endpoint command with the Drop and Add bits set for the target
3178  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3179  */
3180
3181 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3182                 struct usb_host_endpoint *host_ep)
3183 {
3184         struct xhci_hcd *xhci;
3185         struct usb_device *udev;
3186         struct xhci_virt_device *vdev;
3187         struct xhci_virt_ep *ep;
3188         struct xhci_input_control_ctx *ctrl_ctx;
3189         struct xhci_command *stop_cmd, *cfg_cmd;
3190         unsigned int ep_index;
3191         unsigned long flags;
3192         u32 ep_flag;
3193         int err;
3194
3195         xhci = hcd_to_xhci(hcd);
3196         if (!host_ep->hcpriv)
3197                 return;
3198         udev = (struct usb_device *) host_ep->hcpriv;
3199         vdev = xhci->devs[udev->slot_id];
3200
3201         /*
3202          * vdev may be lost due to xHC restore error and re-initialization
3203          * during S3/S4 resume. A new vdev will be allocated later by
3204          * xhci_discover_or_reset_device()
3205          */
3206         if (!udev->slot_id || !vdev)
3207                 return;
3208         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3209         ep = &vdev->eps[ep_index];
3210         if (!ep)
3211                 return;
3212
3213         /* Bail out if toggle is already being cleared by a endpoint reset */
3214         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3215                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3216                 return;
3217         }
3218         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3219         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3220             usb_endpoint_xfer_isoc(&host_ep->desc))
3221                 return;
3222
3223         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3224
3225         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3226                 return;
3227
3228         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3229         if (!stop_cmd)
3230                 return;
3231
3232         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3233         if (!cfg_cmd)
3234                 goto cleanup;
3235
3236         spin_lock_irqsave(&xhci->lock, flags);
3237
3238         /* block queuing new trbs and ringing ep doorbell */
3239         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3240
3241         /*
3242          * Make sure endpoint ring is empty before resetting the toggle/seq.
3243          * Driver is required to synchronously cancel all transfer request.
3244          * Stop the endpoint to force xHC to update the output context
3245          */
3246
3247         if (!list_empty(&ep->ring->td_list)) {
3248                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3249                 spin_unlock_irqrestore(&xhci->lock, flags);
3250                 xhci_free_command(xhci, cfg_cmd);
3251                 goto cleanup;
3252         }
3253
3254         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3255                                         ep_index, 0);
3256         if (err < 0) {
3257                 spin_unlock_irqrestore(&xhci->lock, flags);
3258                 xhci_free_command(xhci, cfg_cmd);
3259                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3260                                 __func__, err);
3261                 goto cleanup;
3262         }
3263
3264         xhci_ring_cmd_db(xhci);
3265         spin_unlock_irqrestore(&xhci->lock, flags);
3266
3267         wait_for_completion(stop_cmd->completion);
3268
3269         spin_lock_irqsave(&xhci->lock, flags);
3270
3271         /* config ep command clears toggle if add and drop ep flags are set */
3272         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3273         if (!ctrl_ctx) {
3274                 spin_unlock_irqrestore(&xhci->lock, flags);
3275                 xhci_free_command(xhci, cfg_cmd);
3276                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3277                                 __func__);
3278                 goto cleanup;
3279         }
3280
3281         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3282                                            ctrl_ctx, ep_flag, ep_flag);
3283         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3284
3285         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3286                                       udev->slot_id, false);
3287         if (err < 0) {
3288                 spin_unlock_irqrestore(&xhci->lock, flags);
3289                 xhci_free_command(xhci, cfg_cmd);
3290                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3291                                 __func__, err);
3292                 goto cleanup;
3293         }
3294
3295         xhci_ring_cmd_db(xhci);
3296         spin_unlock_irqrestore(&xhci->lock, flags);
3297
3298         wait_for_completion(cfg_cmd->completion);
3299
3300         xhci_free_command(xhci, cfg_cmd);
3301 cleanup:
3302         xhci_free_command(xhci, stop_cmd);
3303         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3304                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3305 }
3306
3307 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3308                 struct usb_device *udev, struct usb_host_endpoint *ep,
3309                 unsigned int slot_id)
3310 {
3311         int ret;
3312         unsigned int ep_index;
3313         unsigned int ep_state;
3314
3315         if (!ep)
3316                 return -EINVAL;
3317         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3318         if (ret <= 0)
3319                 return -EINVAL;
3320         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3321                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3322                                 " descriptor for ep 0x%x does not support streams\n",
3323                                 ep->desc.bEndpointAddress);
3324                 return -EINVAL;
3325         }
3326
3327         ep_index = xhci_get_endpoint_index(&ep->desc);
3328         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3329         if (ep_state & EP_HAS_STREAMS ||
3330                         ep_state & EP_GETTING_STREAMS) {
3331                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3332                                 "already has streams set up.\n",
3333                                 ep->desc.bEndpointAddress);
3334                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3335                                 "dynamic stream context array reallocation.\n");
3336                 return -EINVAL;
3337         }
3338         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3339                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3340                                 "endpoint 0x%x; URBs are pending.\n",
3341                                 ep->desc.bEndpointAddress);
3342                 return -EINVAL;
3343         }
3344         return 0;
3345 }
3346
3347 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3348                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3349 {
3350         unsigned int max_streams;
3351
3352         /* The stream context array size must be a power of two */
3353         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3354         /*
3355          * Find out how many primary stream array entries the host controller
3356          * supports.  Later we may use secondary stream arrays (similar to 2nd
3357          * level page entries), but that's an optional feature for xHCI host
3358          * controllers. xHCs must support at least 4 stream IDs.
3359          */
3360         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3361         if (*num_stream_ctxs > max_streams) {
3362                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3363                                 max_streams);
3364                 *num_stream_ctxs = max_streams;
3365                 *num_streams = max_streams;
3366         }
3367 }
3368
3369 /* Returns an error code if one of the endpoint already has streams.
3370  * This does not change any data structures, it only checks and gathers
3371  * information.
3372  */
3373 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3374                 struct usb_device *udev,
3375                 struct usb_host_endpoint **eps, unsigned int num_eps,
3376                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3377 {
3378         unsigned int max_streams;
3379         unsigned int endpoint_flag;
3380         int i;
3381         int ret;
3382
3383         for (i = 0; i < num_eps; i++) {
3384                 ret = xhci_check_streams_endpoint(xhci, udev,
3385                                 eps[i], udev->slot_id);
3386                 if (ret < 0)
3387                         return ret;
3388
3389                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3390                 if (max_streams < (*num_streams - 1)) {
3391                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3392                                         eps[i]->desc.bEndpointAddress,
3393                                         max_streams);
3394                         *num_streams = max_streams+1;
3395                 }
3396
3397                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3398                 if (*changed_ep_bitmask & endpoint_flag)
3399                         return -EINVAL;
3400                 *changed_ep_bitmask |= endpoint_flag;
3401         }
3402         return 0;
3403 }
3404
3405 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3406                 struct usb_device *udev,
3407                 struct usb_host_endpoint **eps, unsigned int num_eps)
3408 {
3409         u32 changed_ep_bitmask = 0;
3410         unsigned int slot_id;
3411         unsigned int ep_index;
3412         unsigned int ep_state;
3413         int i;
3414
3415         slot_id = udev->slot_id;
3416         if (!xhci->devs[slot_id])
3417                 return 0;
3418
3419         for (i = 0; i < num_eps; i++) {
3420                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3421                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3422                 /* Are streams already being freed for the endpoint? */
3423                 if (ep_state & EP_GETTING_NO_STREAMS) {
3424                         xhci_warn(xhci, "WARN Can't disable streams for "
3425                                         "endpoint 0x%x, "
3426                                         "streams are being disabled already\n",
3427                                         eps[i]->desc.bEndpointAddress);
3428                         return 0;
3429                 }
3430                 /* Are there actually any streams to free? */
3431                 if (!(ep_state & EP_HAS_STREAMS) &&
3432                                 !(ep_state & EP_GETTING_STREAMS)) {
3433                         xhci_warn(xhci, "WARN Can't disable streams for "
3434                                         "endpoint 0x%x, "
3435                                         "streams are already disabled!\n",
3436                                         eps[i]->desc.bEndpointAddress);
3437                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3438                                         "with non-streams endpoint\n");
3439                         return 0;
3440                 }
3441                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3442         }
3443         return changed_ep_bitmask;
3444 }
3445
3446 /*
3447  * The USB device drivers use this function (through the HCD interface in USB
3448  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3449  * coordinate mass storage command queueing across multiple endpoints (basically
3450  * a stream ID == a task ID).
3451  *
3452  * Setting up streams involves allocating the same size stream context array
3453  * for each endpoint and issuing a configure endpoint command for all endpoints.
3454  *
3455  * Don't allow the call to succeed if one endpoint only supports one stream
3456  * (which means it doesn't support streams at all).
3457  *
3458  * Drivers may get less stream IDs than they asked for, if the host controller
3459  * hardware or endpoints claim they can't support the number of requested
3460  * stream IDs.
3461  */
3462 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3463                 struct usb_host_endpoint **eps, unsigned int num_eps,
3464                 unsigned int num_streams, gfp_t mem_flags)
3465 {
3466         int i, ret;
3467         struct xhci_hcd *xhci;
3468         struct xhci_virt_device *vdev;
3469         struct xhci_command *config_cmd;
3470         struct xhci_input_control_ctx *ctrl_ctx;
3471         unsigned int ep_index;
3472         unsigned int num_stream_ctxs;
3473         unsigned int max_packet;
3474         unsigned long flags;
3475         u32 changed_ep_bitmask = 0;
3476
3477         if (!eps)
3478                 return -EINVAL;
3479
3480         /* Add one to the number of streams requested to account for
3481          * stream 0 that is reserved for xHCI usage.
3482          */
3483         num_streams += 1;
3484         xhci = hcd_to_xhci(hcd);
3485         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3486                         num_streams);
3487
3488         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3489         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3490                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3491                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3492                 return -ENOSYS;
3493         }
3494
3495         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3496         if (!config_cmd)
3497                 return -ENOMEM;
3498
3499         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3500         if (!ctrl_ctx) {
3501                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3502                                 __func__);
3503                 xhci_free_command(xhci, config_cmd);
3504                 return -ENOMEM;
3505         }
3506
3507         /* Check to make sure all endpoints are not already configured for
3508          * streams.  While we're at it, find the maximum number of streams that
3509          * all the endpoints will support and check for duplicate endpoints.
3510          */
3511         spin_lock_irqsave(&xhci->lock, flags);
3512         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3513                         num_eps, &num_streams, &changed_ep_bitmask);
3514         if (ret < 0) {
3515                 xhci_free_command(xhci, config_cmd);
3516                 spin_unlock_irqrestore(&xhci->lock, flags);
3517                 return ret;
3518         }
3519         if (num_streams <= 1) {
3520                 xhci_warn(xhci, "WARN: endpoints can't handle "
3521                                 "more than one stream.\n");
3522                 xhci_free_command(xhci, config_cmd);
3523                 spin_unlock_irqrestore(&xhci->lock, flags);
3524                 return -EINVAL;
3525         }
3526         vdev = xhci->devs[udev->slot_id];
3527         /* Mark each endpoint as being in transition, so
3528          * xhci_urb_enqueue() will reject all URBs.
3529          */
3530         for (i = 0; i < num_eps; i++) {
3531                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3532                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3533         }
3534         spin_unlock_irqrestore(&xhci->lock, flags);
3535
3536         /* Setup internal data structures and allocate HW data structures for
3537          * streams (but don't install the HW structures in the input context
3538          * until we're sure all memory allocation succeeded).
3539          */
3540         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3541         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3542                         num_stream_ctxs, num_streams);
3543
3544         for (i = 0; i < num_eps; i++) {
3545                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3546                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3547                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3548                                 num_stream_ctxs,
3549                                 num_streams,
3550                                 max_packet, mem_flags);
3551                 if (!vdev->eps[ep_index].stream_info)
3552                         goto cleanup;
3553                 /* Set maxPstreams in endpoint context and update deq ptr to
3554                  * point to stream context array. FIXME
3555                  */
3556         }
3557
3558         /* Set up the input context for a configure endpoint command. */
3559         for (i = 0; i < num_eps; i++) {
3560                 struct xhci_ep_ctx *ep_ctx;
3561
3562                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3563                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3564
3565                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3566                                 vdev->out_ctx, ep_index);
3567                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3568                                 vdev->eps[ep_index].stream_info);
3569         }
3570         /* Tell the HW to drop its old copy of the endpoint context info
3571          * and add the updated copy from the input context.
3572          */
3573         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3574                         vdev->out_ctx, ctrl_ctx,
3575                         changed_ep_bitmask, changed_ep_bitmask);
3576
3577         /* Issue and wait for the configure endpoint command */
3578         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3579                         false, false);
3580
3581         /* xHC rejected the configure endpoint command for some reason, so we
3582          * leave the old ring intact and free our internal streams data
3583          * structure.
3584          */
3585         if (ret < 0)
3586                 goto cleanup;
3587
3588         spin_lock_irqsave(&xhci->lock, flags);
3589         for (i = 0; i < num_eps; i++) {
3590                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3591                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3592                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3593                          udev->slot_id, ep_index);
3594                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3595         }
3596         xhci_free_command(xhci, config_cmd);
3597         spin_unlock_irqrestore(&xhci->lock, flags);
3598
3599         for (i = 0; i < num_eps; i++) {
3600                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3601                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3602         }
3603         /* Subtract 1 for stream 0, which drivers can't use */
3604         return num_streams - 1;
3605
3606 cleanup:
3607         /* If it didn't work, free the streams! */
3608         for (i = 0; i < num_eps; i++) {
3609                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3610                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3611                 vdev->eps[ep_index].stream_info = NULL;
3612                 /* FIXME Unset maxPstreams in endpoint context and
3613                  * update deq ptr to point to normal string ring.
3614                  */
3615                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3616                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3617                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3618         }
3619         xhci_free_command(xhci, config_cmd);
3620         return -ENOMEM;
3621 }
3622
3623 /* Transition the endpoint from using streams to being a "normal" endpoint
3624  * without streams.
3625  *
3626  * Modify the endpoint context state, submit a configure endpoint command,
3627  * and free all endpoint rings for streams if that completes successfully.
3628  */
3629 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3630                 struct usb_host_endpoint **eps, unsigned int num_eps,
3631                 gfp_t mem_flags)
3632 {
3633         int i, ret;
3634         struct xhci_hcd *xhci;
3635         struct xhci_virt_device *vdev;
3636         struct xhci_command *command;
3637         struct xhci_input_control_ctx *ctrl_ctx;
3638         unsigned int ep_index;
3639         unsigned long flags;
3640         u32 changed_ep_bitmask;
3641
3642         xhci = hcd_to_xhci(hcd);
3643         vdev = xhci->devs[udev->slot_id];
3644
3645         /* Set up a configure endpoint command to remove the streams rings */
3646         spin_lock_irqsave(&xhci->lock, flags);
3647         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3648                         udev, eps, num_eps);
3649         if (changed_ep_bitmask == 0) {
3650                 spin_unlock_irqrestore(&xhci->lock, flags);
3651                 return -EINVAL;
3652         }
3653
3654         /* Use the xhci_command structure from the first endpoint.  We may have
3655          * allocated too many, but the driver may call xhci_free_streams() for
3656          * each endpoint it grouped into one call to xhci_alloc_streams().
3657          */
3658         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3659         command = vdev->eps[ep_index].stream_info->free_streams_command;
3660         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3661         if (!ctrl_ctx) {
3662                 spin_unlock_irqrestore(&xhci->lock, flags);
3663                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3664                                 __func__);
3665                 return -EINVAL;
3666         }
3667
3668         for (i = 0; i < num_eps; i++) {
3669                 struct xhci_ep_ctx *ep_ctx;
3670
3671                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3672                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3673                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3674                         EP_GETTING_NO_STREAMS;
3675
3676                 xhci_endpoint_copy(xhci, command->in_ctx,
3677                                 vdev->out_ctx, ep_index);
3678                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3679                                 &vdev->eps[ep_index]);
3680         }
3681         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3682                         vdev->out_ctx, ctrl_ctx,
3683                         changed_ep_bitmask, changed_ep_bitmask);
3684         spin_unlock_irqrestore(&xhci->lock, flags);
3685
3686         /* Issue and wait for the configure endpoint command,
3687          * which must succeed.
3688          */
3689         ret = xhci_configure_endpoint(xhci, udev, command,
3690                         false, true);
3691
3692         /* xHC rejected the configure endpoint command for some reason, so we
3693          * leave the streams rings intact.
3694          */
3695         if (ret < 0)
3696                 return ret;
3697
3698         spin_lock_irqsave(&xhci->lock, flags);
3699         for (i = 0; i < num_eps; i++) {
3700                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3701                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3702                 vdev->eps[ep_index].stream_info = NULL;
3703                 /* FIXME Unset maxPstreams in endpoint context and
3704                  * update deq ptr to point to normal string ring.
3705                  */
3706                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3707                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3708         }
3709         spin_unlock_irqrestore(&xhci->lock, flags);
3710
3711         return 0;
3712 }
3713
3714 /*
3715  * Deletes endpoint resources for endpoints that were active before a Reset
3716  * Device command, or a Disable Slot command.  The Reset Device command leaves
3717  * the control endpoint intact, whereas the Disable Slot command deletes it.
3718  *
3719  * Must be called with xhci->lock held.
3720  */
3721 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3722         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3723 {
3724         int i;
3725         unsigned int num_dropped_eps = 0;
3726         unsigned int drop_flags = 0;
3727
3728         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3729                 if (virt_dev->eps[i].ring) {
3730                         drop_flags |= 1 << i;
3731                         num_dropped_eps++;
3732                 }
3733         }
3734         xhci->num_active_eps -= num_dropped_eps;
3735         if (num_dropped_eps)
3736                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3737                                 "Dropped %u ep ctxs, flags = 0x%x, "
3738                                 "%u now active.",
3739                                 num_dropped_eps, drop_flags,
3740                                 xhci->num_active_eps);
3741 }
3742
3743 /*
3744  * This submits a Reset Device Command, which will set the device state to 0,
3745  * set the device address to 0, and disable all the endpoints except the default
3746  * control endpoint.  The USB core should come back and call
3747  * xhci_address_device(), and then re-set up the configuration.  If this is
3748  * called because of a usb_reset_and_verify_device(), then the old alternate
3749  * settings will be re-installed through the normal bandwidth allocation
3750  * functions.
3751  *
3752  * Wait for the Reset Device command to finish.  Remove all structures
3753  * associated with the endpoints that were disabled.  Clear the input device
3754  * structure? Reset the control endpoint 0 max packet size?
3755  *
3756  * If the virt_dev to be reset does not exist or does not match the udev,
3757  * it means the device is lost, possibly due to the xHC restore error and
3758  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3759  * re-allocate the device.
3760  */
3761 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3762                 struct usb_device *udev)
3763 {
3764         int ret, i;
3765         unsigned long flags;
3766         struct xhci_hcd *xhci;
3767         unsigned int slot_id;
3768         struct xhci_virt_device *virt_dev;
3769         struct xhci_command *reset_device_cmd;
3770         struct xhci_slot_ctx *slot_ctx;
3771         int old_active_eps = 0;
3772
3773         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3774         if (ret <= 0)
3775                 return ret;
3776         xhci = hcd_to_xhci(hcd);
3777         slot_id = udev->slot_id;
3778         virt_dev = xhci->devs[slot_id];
3779         if (!virt_dev) {
3780                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3781                                 "not exist. Re-allocate the device\n", slot_id);
3782                 ret = xhci_alloc_dev(hcd, udev);
3783                 if (ret == 1)
3784                         return 0;
3785                 else
3786                         return -EINVAL;
3787         }
3788
3789         if (virt_dev->tt_info)
3790                 old_active_eps = virt_dev->tt_info->active_eps;
3791
3792         if (virt_dev->udev != udev) {
3793                 /* If the virt_dev and the udev does not match, this virt_dev
3794                  * may belong to another udev.
3795                  * Re-allocate the device.
3796                  */
3797                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3798                                 "not match the udev. Re-allocate the device\n",
3799                                 slot_id);
3800                 ret = xhci_alloc_dev(hcd, udev);
3801                 if (ret == 1)
3802                         return 0;
3803                 else
3804                         return -EINVAL;
3805         }
3806
3807         /* If device is not setup, there is no point in resetting it */
3808         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3809         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3810                                                 SLOT_STATE_DISABLED)
3811                 return 0;
3812
3813         trace_xhci_discover_or_reset_device(slot_ctx);
3814
3815         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3816         /* Allocate the command structure that holds the struct completion.
3817          * Assume we're in process context, since the normal device reset
3818          * process has to wait for the device anyway.  Storage devices are
3819          * reset as part of error handling, so use GFP_NOIO instead of
3820          * GFP_KERNEL.
3821          */
3822         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3823         if (!reset_device_cmd) {
3824                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3825                 return -ENOMEM;
3826         }
3827
3828         /* Attempt to submit the Reset Device command to the command ring */
3829         spin_lock_irqsave(&xhci->lock, flags);
3830
3831         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3832         if (ret) {
3833                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3834                 spin_unlock_irqrestore(&xhci->lock, flags);
3835                 goto command_cleanup;
3836         }
3837         xhci_ring_cmd_db(xhci);
3838         spin_unlock_irqrestore(&xhci->lock, flags);
3839
3840         /* Wait for the Reset Device command to finish */
3841         wait_for_completion(reset_device_cmd->completion);
3842
3843         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3844          * unless we tried to reset a slot ID that wasn't enabled,
3845          * or the device wasn't in the addressed or configured state.
3846          */
3847         ret = reset_device_cmd->status;
3848         switch (ret) {
3849         case COMP_COMMAND_ABORTED:
3850         case COMP_COMMAND_RING_STOPPED:
3851                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3852                 ret = -ETIME;
3853                 goto command_cleanup;
3854         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3855         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3856                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3857                                 slot_id,
3858                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3859                 xhci_dbg(xhci, "Not freeing device rings.\n");
3860                 /* Don't treat this as an error.  May change my mind later. */
3861                 ret = 0;
3862                 goto command_cleanup;
3863         case COMP_SUCCESS:
3864                 xhci_dbg(xhci, "Successful reset device command.\n");
3865                 break;
3866         default:
3867                 if (xhci_is_vendor_info_code(xhci, ret))
3868                         break;
3869                 xhci_warn(xhci, "Unknown completion code %u for "
3870                                 "reset device command.\n", ret);
3871                 ret = -EINVAL;
3872                 goto command_cleanup;
3873         }
3874
3875         /* Free up host controller endpoint resources */
3876         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3877                 spin_lock_irqsave(&xhci->lock, flags);
3878                 /* Don't delete the default control endpoint resources */
3879                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3880                 spin_unlock_irqrestore(&xhci->lock, flags);
3881         }
3882
3883         /* Everything but endpoint 0 is disabled, so free the rings. */
3884         for (i = 1; i < 31; i++) {
3885                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3886
3887                 if (ep->ep_state & EP_HAS_STREAMS) {
3888                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3889                                         xhci_get_endpoint_address(i));
3890                         xhci_free_stream_info(xhci, ep->stream_info);
3891                         ep->stream_info = NULL;
3892                         ep->ep_state &= ~EP_HAS_STREAMS;
3893                 }
3894
3895                 if (ep->ring) {
3896                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3897                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3898                 }
3899                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3900                         xhci_drop_ep_from_interval_table(xhci,
3901                                         &virt_dev->eps[i].bw_info,
3902                                         virt_dev->bw_table,
3903                                         udev,
3904                                         &virt_dev->eps[i],
3905                                         virt_dev->tt_info);
3906                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3907         }
3908         /* If necessary, update the number of active TTs on this root port */
3909         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3910         virt_dev->flags = 0;
3911         ret = 0;
3912
3913 command_cleanup:
3914         xhci_free_command(xhci, reset_device_cmd);
3915         return ret;
3916 }
3917
3918 /*
3919  * At this point, the struct usb_device is about to go away, the device has
3920  * disconnected, and all traffic has been stopped and the endpoints have been
3921  * disabled.  Free any HC data structures associated with that device.
3922  */
3923 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3924 {
3925         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3926         struct xhci_virt_device *virt_dev;
3927         struct xhci_slot_ctx *slot_ctx;
3928         int i, ret;
3929
3930 #ifndef CONFIG_USB_DEFAULT_PERSIST
3931         /*
3932          * We called pm_runtime_get_noresume when the device was attached.
3933          * Decrement the counter here to allow controller to runtime suspend
3934          * if no devices remain.
3935          */
3936         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3937                 pm_runtime_put_noidle(hcd->self.controller);
3938 #endif
3939
3940         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3941         /* If the host is halted due to driver unload, we still need to free the
3942          * device.
3943          */
3944         if (ret <= 0 && ret != -ENODEV)
3945                 return;
3946
3947         virt_dev = xhci->devs[udev->slot_id];
3948         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3949         trace_xhci_free_dev(slot_ctx);
3950
3951         /* Stop any wayward timer functions (which may grab the lock) */
3952         for (i = 0; i < 31; i++) {
3953                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3954                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3955         }
3956         virt_dev->udev = NULL;
3957         ret = xhci_disable_slot(xhci, udev->slot_id);
3958         if (ret)
3959                 xhci_free_virt_device(xhci, udev->slot_id);
3960 }
3961
3962 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3963 {
3964         struct xhci_command *command;
3965         unsigned long flags;
3966         u32 state;
3967         int ret = 0;
3968
3969         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3970         if (!command)
3971                 return -ENOMEM;
3972
3973         xhci_debugfs_remove_slot(xhci, slot_id);
3974
3975         spin_lock_irqsave(&xhci->lock, flags);
3976         /* Don't disable the slot if the host controller is dead. */
3977         state = readl(&xhci->op_regs->status);
3978         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3979                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3980                 spin_unlock_irqrestore(&xhci->lock, flags);
3981                 kfree(command);
3982                 return -ENODEV;
3983         }
3984
3985         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3986                                 slot_id);
3987         if (ret) {
3988                 spin_unlock_irqrestore(&xhci->lock, flags);
3989                 kfree(command);
3990                 return ret;
3991         }
3992         xhci_ring_cmd_db(xhci);
3993         spin_unlock_irqrestore(&xhci->lock, flags);
3994         return ret;
3995 }
3996
3997 /*
3998  * Checks if we have enough host controller resources for the default control
3999  * endpoint.
4000  *
4001  * Must be called with xhci->lock held.
4002  */
4003 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4004 {
4005         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4006                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4007                                 "Not enough ep ctxs: "
4008                                 "%u active, need to add 1, limit is %u.",
4009                                 xhci->num_active_eps, xhci->limit_active_eps);
4010                 return -ENOMEM;
4011         }
4012         xhci->num_active_eps += 1;
4013         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4014                         "Adding 1 ep ctx, %u now active.",
4015                         xhci->num_active_eps);
4016         return 0;
4017 }
4018
4019
4020 /*
4021  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4022  * timed out, or allocating memory failed.  Returns 1 on success.
4023  */
4024 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4025 {
4026         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4027         struct xhci_virt_device *vdev;
4028         struct xhci_slot_ctx *slot_ctx;
4029         unsigned long flags;
4030         int ret, slot_id;
4031         struct xhci_command *command;
4032
4033         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4034         if (!command)
4035                 return 0;
4036
4037         spin_lock_irqsave(&xhci->lock, flags);
4038         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4039         if (ret) {
4040                 spin_unlock_irqrestore(&xhci->lock, flags);
4041                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4042                 xhci_free_command(xhci, command);
4043                 return 0;
4044         }
4045         xhci_ring_cmd_db(xhci);
4046         spin_unlock_irqrestore(&xhci->lock, flags);
4047
4048         wait_for_completion(command->completion);
4049         slot_id = command->slot_id;
4050
4051         if (!slot_id || command->status != COMP_SUCCESS) {
4052                 xhci_err(xhci, "Error while assigning device slot ID\n");
4053                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4054                                 HCS_MAX_SLOTS(
4055                                         readl(&xhci->cap_regs->hcs_params1)));
4056                 xhci_free_command(xhci, command);
4057                 return 0;
4058         }
4059
4060         xhci_free_command(xhci, command);
4061
4062         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4063                 spin_lock_irqsave(&xhci->lock, flags);
4064                 ret = xhci_reserve_host_control_ep_resources(xhci);
4065                 if (ret) {
4066                         spin_unlock_irqrestore(&xhci->lock, flags);
4067                         xhci_warn(xhci, "Not enough host resources, "
4068                                         "active endpoint contexts = %u\n",
4069                                         xhci->num_active_eps);
4070                         goto disable_slot;
4071                 }
4072                 spin_unlock_irqrestore(&xhci->lock, flags);
4073         }
4074         /* Use GFP_NOIO, since this function can be called from
4075          * xhci_discover_or_reset_device(), which may be called as part of
4076          * mass storage driver error handling.
4077          */
4078         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4079                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4080                 goto disable_slot;
4081         }
4082         vdev = xhci->devs[slot_id];
4083         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4084         trace_xhci_alloc_dev(slot_ctx);
4085
4086         udev->slot_id = slot_id;
4087
4088         xhci_debugfs_create_slot(xhci, slot_id);
4089
4090 #ifndef CONFIG_USB_DEFAULT_PERSIST
4091         /*
4092          * If resetting upon resume, we can't put the controller into runtime
4093          * suspend if there is a device attached.
4094          */
4095         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4096                 pm_runtime_get_noresume(hcd->self.controller);
4097 #endif
4098
4099         /* Is this a LS or FS device under a HS hub? */
4100         /* Hub or peripherial? */
4101         return 1;
4102
4103 disable_slot:
4104         ret = xhci_disable_slot(xhci, udev->slot_id);
4105         if (ret)
4106                 xhci_free_virt_device(xhci, udev->slot_id);
4107
4108         return 0;
4109 }
4110
4111 /*
4112  * Issue an Address Device command and optionally send a corresponding
4113  * SetAddress request to the device.
4114  */
4115 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4116                              enum xhci_setup_dev setup)
4117 {
4118         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4119         unsigned long flags;
4120         struct xhci_virt_device *virt_dev;
4121         int ret = 0;
4122         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4123         struct xhci_slot_ctx *slot_ctx;
4124         struct xhci_input_control_ctx *ctrl_ctx;
4125         u64 temp_64;
4126         struct xhci_command *command = NULL;
4127
4128         mutex_lock(&xhci->mutex);
4129
4130         if (xhci->xhc_state) {  /* dying, removing or halted */
4131                 ret = -ESHUTDOWN;
4132                 goto out;
4133         }
4134
4135         if (!udev->slot_id) {
4136                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4137                                 "Bad Slot ID %d", udev->slot_id);
4138                 ret = -EINVAL;
4139                 goto out;
4140         }
4141
4142         virt_dev = xhci->devs[udev->slot_id];
4143
4144         if (WARN_ON(!virt_dev)) {
4145                 /*
4146                  * In plug/unplug torture test with an NEC controller,
4147                  * a zero-dereference was observed once due to virt_dev = 0.
4148                  * Print useful debug rather than crash if it is observed again!
4149                  */
4150                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4151                         udev->slot_id);
4152                 ret = -EINVAL;
4153                 goto out;
4154         }
4155         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4156         trace_xhci_setup_device_slot(slot_ctx);
4157
4158         if (setup == SETUP_CONTEXT_ONLY) {
4159                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4160                     SLOT_STATE_DEFAULT) {
4161                         xhci_dbg(xhci, "Slot already in default state\n");
4162                         goto out;
4163                 }
4164         }
4165
4166         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4167         if (!command) {
4168                 ret = -ENOMEM;
4169                 goto out;
4170         }
4171
4172         command->in_ctx = virt_dev->in_ctx;
4173
4174         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4175         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4176         if (!ctrl_ctx) {
4177                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4178                                 __func__);
4179                 ret = -EINVAL;
4180                 goto out;
4181         }
4182         /*
4183          * If this is the first Set Address since device plug-in or
4184          * virt_device realloaction after a resume with an xHCI power loss,
4185          * then set up the slot context.
4186          */
4187         if (!slot_ctx->dev_info)
4188                 xhci_setup_addressable_virt_dev(xhci, udev);
4189         /* Otherwise, update the control endpoint ring enqueue pointer. */
4190         else
4191                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4192         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4193         ctrl_ctx->drop_flags = 0;
4194
4195         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4196                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4197
4198         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4199         spin_lock_irqsave(&xhci->lock, flags);
4200         trace_xhci_setup_device(virt_dev);
4201         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4202                                         udev->slot_id, setup);
4203         if (ret) {
4204                 spin_unlock_irqrestore(&xhci->lock, flags);
4205                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4206                                 "FIXME: allocate a command ring segment");
4207                 goto out;
4208         }
4209         xhci_ring_cmd_db(xhci);
4210         spin_unlock_irqrestore(&xhci->lock, flags);
4211
4212         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4213         wait_for_completion(command->completion);
4214
4215         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4216          * the SetAddress() "recovery interval" required by USB and aborting the
4217          * command on a timeout.
4218          */
4219         switch (command->status) {
4220         case COMP_COMMAND_ABORTED:
4221         case COMP_COMMAND_RING_STOPPED:
4222                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4223                 ret = -ETIME;
4224                 break;
4225         case COMP_CONTEXT_STATE_ERROR:
4226         case COMP_SLOT_NOT_ENABLED_ERROR:
4227                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4228                          act, udev->slot_id);
4229                 ret = -EINVAL;
4230                 break;
4231         case COMP_USB_TRANSACTION_ERROR:
4232                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4233
4234                 mutex_unlock(&xhci->mutex);
4235                 ret = xhci_disable_slot(xhci, udev->slot_id);
4236                 if (!ret)
4237                         xhci_alloc_dev(hcd, udev);
4238                 kfree(command->completion);
4239                 kfree(command);
4240                 return -EPROTO;
4241         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4242                 dev_warn(&udev->dev,
4243                          "ERROR: Incompatible device for setup %s command\n", act);
4244                 ret = -ENODEV;
4245                 break;
4246         case COMP_SUCCESS:
4247                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4248                                "Successful setup %s command", act);
4249                 break;
4250         default:
4251                 xhci_err(xhci,
4252                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4253                          act, command->status);
4254                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4255                 ret = -EINVAL;
4256                 break;
4257         }
4258         if (ret)
4259                 goto out;
4260         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4261         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4262                         "Op regs DCBAA ptr = %#016llx", temp_64);
4263         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4264                 "Slot ID %d dcbaa entry @%p = %#016llx",
4265                 udev->slot_id,
4266                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4267                 (unsigned long long)
4268                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4269         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4270                         "Output Context DMA address = %#08llx",
4271                         (unsigned long long)virt_dev->out_ctx->dma);
4272         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4273                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4274         /*
4275          * USB core uses address 1 for the roothubs, so we add one to the
4276          * address given back to us by the HC.
4277          */
4278         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4279                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4280         /* Zero the input context control for later use */
4281         ctrl_ctx->add_flags = 0;
4282         ctrl_ctx->drop_flags = 0;
4283         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4284         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4285
4286         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4287                        "Internal device address = %d",
4288                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4289 out:
4290         mutex_unlock(&xhci->mutex);
4291         if (command) {
4292                 kfree(command->completion);
4293                 kfree(command);
4294         }
4295         return ret;
4296 }
4297
4298 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4299 {
4300         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4301 }
4302
4303 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4304 {
4305         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4306 }
4307
4308 /*
4309  * Transfer the port index into real index in the HW port status
4310  * registers. Caculate offset between the port's PORTSC register
4311  * and port status base. Divide the number of per port register
4312  * to get the real index. The raw port number bases 1.
4313  */
4314 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4315 {
4316         struct xhci_hub *rhub;
4317
4318         rhub = xhci_get_rhub(hcd);
4319         return rhub->ports[port1 - 1]->hw_portnum + 1;
4320 }
4321
4322 /*
4323  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4324  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4325  */
4326 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4327                         struct usb_device *udev, u16 max_exit_latency)
4328 {
4329         struct xhci_virt_device *virt_dev;
4330         struct xhci_command *command;
4331         struct xhci_input_control_ctx *ctrl_ctx;
4332         struct xhci_slot_ctx *slot_ctx;
4333         unsigned long flags;
4334         int ret;
4335
4336         spin_lock_irqsave(&xhci->lock, flags);
4337
4338         virt_dev = xhci->devs[udev->slot_id];
4339
4340         /*
4341          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4342          * xHC was re-initialized. Exit latency will be set later after
4343          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4344          */
4345
4346         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4347                 spin_unlock_irqrestore(&xhci->lock, flags);
4348                 return 0;
4349         }
4350
4351         /* Attempt to issue an Evaluate Context command to change the MEL. */
4352         command = xhci->lpm_command;
4353         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4354         if (!ctrl_ctx) {
4355                 spin_unlock_irqrestore(&xhci->lock, flags);
4356                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4357                                 __func__);
4358                 return -ENOMEM;
4359         }
4360
4361         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4362         spin_unlock_irqrestore(&xhci->lock, flags);
4363
4364         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4365         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4366         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4367         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4368         slot_ctx->dev_state = 0;
4369
4370         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4371                         "Set up evaluate context for LPM MEL change.");
4372
4373         /* Issue and wait for the evaluate context command. */
4374         ret = xhci_configure_endpoint(xhci, udev, command,
4375                         true, true);
4376
4377         if (!ret) {
4378                 spin_lock_irqsave(&xhci->lock, flags);
4379                 virt_dev->current_mel = max_exit_latency;
4380                 spin_unlock_irqrestore(&xhci->lock, flags);
4381         }
4382         return ret;
4383 }
4384
4385 #ifdef CONFIG_PM
4386
4387 /* BESL to HIRD Encoding array for USB2 LPM */
4388 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4389         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4390
4391 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4392 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4393                                         struct usb_device *udev)
4394 {
4395         int u2del, besl, besl_host;
4396         int besl_device = 0;
4397         u32 field;
4398
4399         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4400         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4401
4402         if (field & USB_BESL_SUPPORT) {
4403                 for (besl_host = 0; besl_host < 16; besl_host++) {
4404                         if (xhci_besl_encoding[besl_host] >= u2del)
4405                                 break;
4406                 }
4407                 /* Use baseline BESL value as default */
4408                 if (field & USB_BESL_BASELINE_VALID)
4409                         besl_device = USB_GET_BESL_BASELINE(field);
4410                 else if (field & USB_BESL_DEEP_VALID)
4411                         besl_device = USB_GET_BESL_DEEP(field);
4412         } else {
4413                 if (u2del <= 50)
4414                         besl_host = 0;
4415                 else
4416                         besl_host = (u2del - 51) / 75 + 1;
4417         }
4418
4419         besl = besl_host + besl_device;
4420         if (besl > 15)
4421                 besl = 15;
4422
4423         return besl;
4424 }
4425
4426 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4427 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4428 {
4429         u32 field;
4430         int l1;
4431         int besld = 0;
4432         int hirdm = 0;
4433
4434         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4435
4436         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4437         l1 = udev->l1_params.timeout / 256;
4438
4439         /* device has preferred BESLD */
4440         if (field & USB_BESL_DEEP_VALID) {
4441                 besld = USB_GET_BESL_DEEP(field);
4442                 hirdm = 1;
4443         }
4444
4445         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4446 }
4447
4448 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4449                         struct usb_device *udev, int enable)
4450 {
4451         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4452         struct xhci_port **ports;
4453         __le32 __iomem  *pm_addr, *hlpm_addr;
4454         u32             pm_val, hlpm_val, field;
4455         unsigned int    port_num;
4456         unsigned long   flags;
4457         int             hird, exit_latency;
4458         int             ret;
4459
4460         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4461                 return -EPERM;
4462
4463         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4464                         !udev->lpm_capable)
4465                 return -EPERM;
4466
4467         if (!udev->parent || udev->parent->parent ||
4468                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4469                 return -EPERM;
4470
4471         if (udev->usb2_hw_lpm_capable != 1)
4472                 return -EPERM;
4473
4474         spin_lock_irqsave(&xhci->lock, flags);
4475
4476         ports = xhci->usb2_rhub.ports;
4477         port_num = udev->portnum - 1;
4478         pm_addr = ports[port_num]->addr + PORTPMSC;
4479         pm_val = readl(pm_addr);
4480         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4481
4482         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4483                         enable ? "enable" : "disable", port_num + 1);
4484
4485         if (enable) {
4486                 /* Host supports BESL timeout instead of HIRD */
4487                 if (udev->usb2_hw_lpm_besl_capable) {
4488                         /* if device doesn't have a preferred BESL value use a
4489                          * default one which works with mixed HIRD and BESL
4490                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4491                          */
4492                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4493                         if ((field & USB_BESL_SUPPORT) &&
4494                             (field & USB_BESL_BASELINE_VALID))
4495                                 hird = USB_GET_BESL_BASELINE(field);
4496                         else
4497                                 hird = udev->l1_params.besl;
4498
4499                         exit_latency = xhci_besl_encoding[hird];
4500                         spin_unlock_irqrestore(&xhci->lock, flags);
4501
4502                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4503                          * input context for link powermanagement evaluate
4504                          * context commands. It is protected by hcd->bandwidth
4505                          * mutex and is shared by all devices. We need to set
4506                          * the max ext latency in USB 2 BESL LPM as well, so
4507                          * use the same mutex and xhci_change_max_exit_latency()
4508                          */
4509                         mutex_lock(hcd->bandwidth_mutex);
4510                         ret = xhci_change_max_exit_latency(xhci, udev,
4511                                                            exit_latency);
4512                         mutex_unlock(hcd->bandwidth_mutex);
4513
4514                         if (ret < 0)
4515                                 return ret;
4516                         spin_lock_irqsave(&xhci->lock, flags);
4517
4518                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4519                         writel(hlpm_val, hlpm_addr);
4520                         /* flush write */
4521                         readl(hlpm_addr);
4522                 } else {
4523                         hird = xhci_calculate_hird_besl(xhci, udev);
4524                 }
4525
4526                 pm_val &= ~PORT_HIRD_MASK;
4527                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4528                 writel(pm_val, pm_addr);
4529                 pm_val = readl(pm_addr);
4530                 pm_val |= PORT_HLE;
4531                 writel(pm_val, pm_addr);
4532                 /* flush write */
4533                 readl(pm_addr);
4534         } else {
4535                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4536                 writel(pm_val, pm_addr);
4537                 /* flush write */
4538                 readl(pm_addr);
4539                 if (udev->usb2_hw_lpm_besl_capable) {
4540                         spin_unlock_irqrestore(&xhci->lock, flags);
4541                         mutex_lock(hcd->bandwidth_mutex);
4542                         xhci_change_max_exit_latency(xhci, udev, 0);
4543                         mutex_unlock(hcd->bandwidth_mutex);
4544                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4545                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4546                                            100, 10000);
4547                         return 0;
4548                 }
4549         }
4550
4551         spin_unlock_irqrestore(&xhci->lock, flags);
4552         return 0;
4553 }
4554
4555 /* check if a usb2 port supports a given extened capability protocol
4556  * only USB2 ports extended protocol capability values are cached.
4557  * Return 1 if capability is supported
4558  */
4559 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4560                                            unsigned capability)
4561 {
4562         u32 port_offset, port_count;
4563         int i;
4564
4565         for (i = 0; i < xhci->num_ext_caps; i++) {
4566                 if (xhci->ext_caps[i] & capability) {
4567                         /* port offsets starts at 1 */
4568                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4569                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4570                         if (port >= port_offset &&
4571                             port < port_offset + port_count)
4572                                 return 1;
4573                 }
4574         }
4575         return 0;
4576 }
4577
4578 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4579 {
4580         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4581         int             portnum = udev->portnum - 1;
4582
4583         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4584                 return 0;
4585
4586         /* we only support lpm for non-hub device connected to root hub yet */
4587         if (!udev->parent || udev->parent->parent ||
4588                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4589                 return 0;
4590
4591         if (xhci->hw_lpm_support == 1 &&
4592                         xhci_check_usb2_port_capability(
4593                                 xhci, portnum, XHCI_HLC)) {
4594                 udev->usb2_hw_lpm_capable = 1;
4595                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4596                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4597                 if (xhci_check_usb2_port_capability(xhci, portnum,
4598                                         XHCI_BLC))
4599                         udev->usb2_hw_lpm_besl_capable = 1;
4600         }
4601
4602         return 0;
4603 }
4604
4605 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4606
4607 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4608 static unsigned long long xhci_service_interval_to_ns(
4609                 struct usb_endpoint_descriptor *desc)
4610 {
4611         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4612 }
4613
4614 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4615                 enum usb3_link_state state)
4616 {
4617         unsigned long long sel;
4618         unsigned long long pel;
4619         unsigned int max_sel_pel;
4620         char *state_name;
4621
4622         switch (state) {
4623         case USB3_LPM_U1:
4624                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4625                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4626                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4627                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4628                 state_name = "U1";
4629                 break;
4630         case USB3_LPM_U2:
4631                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4632                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4633                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4634                 state_name = "U2";
4635                 break;
4636         default:
4637                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4638                                 __func__);
4639                 return USB3_LPM_DISABLED;
4640         }
4641
4642         if (sel <= max_sel_pel && pel <= max_sel_pel)
4643                 return USB3_LPM_DEVICE_INITIATED;
4644
4645         if (sel > max_sel_pel)
4646                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4647                                 "due to long SEL %llu ms\n",
4648                                 state_name, sel);
4649         else
4650                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4651                                 "due to long PEL %llu ms\n",
4652                                 state_name, pel);
4653         return USB3_LPM_DISABLED;
4654 }
4655
4656 /* The U1 timeout should be the maximum of the following values:
4657  *  - For control endpoints, U1 system exit latency (SEL) * 3
4658  *  - For bulk endpoints, U1 SEL * 5
4659  *  - For interrupt endpoints:
4660  *    - Notification EPs, U1 SEL * 3
4661  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4662  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4663  */
4664 static unsigned long long xhci_calculate_intel_u1_timeout(
4665                 struct usb_device *udev,
4666                 struct usb_endpoint_descriptor *desc)
4667 {
4668         unsigned long long timeout_ns;
4669         int ep_type;
4670         int intr_type;
4671
4672         ep_type = usb_endpoint_type(desc);
4673         switch (ep_type) {
4674         case USB_ENDPOINT_XFER_CONTROL:
4675                 timeout_ns = udev->u1_params.sel * 3;
4676                 break;
4677         case USB_ENDPOINT_XFER_BULK:
4678                 timeout_ns = udev->u1_params.sel * 5;
4679                 break;
4680         case USB_ENDPOINT_XFER_INT:
4681                 intr_type = usb_endpoint_interrupt_type(desc);
4682                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4683                         timeout_ns = udev->u1_params.sel * 3;
4684                         break;
4685                 }
4686                 /* Otherwise the calculation is the same as isoc eps */
4687                 fallthrough;
4688         case USB_ENDPOINT_XFER_ISOC:
4689                 timeout_ns = xhci_service_interval_to_ns(desc);
4690                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4691                 if (timeout_ns < udev->u1_params.sel * 2)
4692                         timeout_ns = udev->u1_params.sel * 2;
4693                 break;
4694         default:
4695                 return 0;
4696         }
4697
4698         return timeout_ns;
4699 }
4700
4701 /* Returns the hub-encoded U1 timeout value. */
4702 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4703                 struct usb_device *udev,
4704                 struct usb_endpoint_descriptor *desc)
4705 {
4706         unsigned long long timeout_ns;
4707
4708         if (xhci->quirks & XHCI_INTEL_HOST)
4709                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4710         else
4711                 timeout_ns = udev->u1_params.sel;
4712
4713         /* Prevent U1 if service interval is shorter than U1 exit latency */
4714         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4715                 if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4716                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4717                         return USB3_LPM_DISABLED;
4718                 }
4719         }
4720
4721         /* The U1 timeout is encoded in 1us intervals.
4722          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4723          */
4724         if (timeout_ns == USB3_LPM_DISABLED)
4725                 timeout_ns = 1;
4726         else
4727                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4728
4729         /* If the necessary timeout value is bigger than what we can set in the
4730          * USB 3.0 hub, we have to disable hub-initiated U1.
4731          */
4732         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4733                 return timeout_ns;
4734         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4735                         "due to long timeout %llu ms\n", timeout_ns);
4736         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4737 }
4738
4739 /* The U2 timeout should be the maximum of:
4740  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4741  *  - largest bInterval of any active periodic endpoint (to avoid going
4742  *    into lower power link states between intervals).
4743  *  - the U2 Exit Latency of the device
4744  */
4745 static unsigned long long xhci_calculate_intel_u2_timeout(
4746                 struct usb_device *udev,
4747                 struct usb_endpoint_descriptor *desc)
4748 {
4749         unsigned long long timeout_ns;
4750         unsigned long long u2_del_ns;
4751
4752         timeout_ns = 10 * 1000 * 1000;
4753
4754         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4755                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4756                 timeout_ns = xhci_service_interval_to_ns(desc);
4757
4758         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4759         if (u2_del_ns > timeout_ns)
4760                 timeout_ns = u2_del_ns;
4761
4762         return timeout_ns;
4763 }
4764
4765 /* Returns the hub-encoded U2 timeout value. */
4766 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4767                 struct usb_device *udev,
4768                 struct usb_endpoint_descriptor *desc)
4769 {
4770         unsigned long long timeout_ns;
4771
4772         if (xhci->quirks & XHCI_INTEL_HOST)
4773                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4774         else
4775                 timeout_ns = udev->u2_params.sel;
4776
4777         /* Prevent U2 if service interval is shorter than U2 exit latency */
4778         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4779                 if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4780                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4781                         return USB3_LPM_DISABLED;
4782                 }
4783         }
4784
4785         /* The U2 timeout is encoded in 256us intervals */
4786         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4787         /* If the necessary timeout value is bigger than what we can set in the
4788          * USB 3.0 hub, we have to disable hub-initiated U2.
4789          */
4790         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4791                 return timeout_ns;
4792         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4793                         "due to long timeout %llu ms\n", timeout_ns);
4794         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4795 }
4796
4797 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4798                 struct usb_device *udev,
4799                 struct usb_endpoint_descriptor *desc,
4800                 enum usb3_link_state state,
4801                 u16 *timeout)
4802 {
4803         if (state == USB3_LPM_U1)
4804                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4805         else if (state == USB3_LPM_U2)
4806                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4807
4808         return USB3_LPM_DISABLED;
4809 }
4810
4811 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4812                 struct usb_device *udev,
4813                 struct usb_endpoint_descriptor *desc,
4814                 enum usb3_link_state state,
4815                 u16 *timeout)
4816 {
4817         u16 alt_timeout;
4818
4819         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4820                 desc, state, timeout);
4821
4822         /* If we found we can't enable hub-initiated LPM, and
4823          * the U1 or U2 exit latency was too high to allow
4824          * device-initiated LPM as well, then we will disable LPM
4825          * for this device, so stop searching any further.
4826          */
4827         if (alt_timeout == USB3_LPM_DISABLED) {
4828                 *timeout = alt_timeout;
4829                 return -E2BIG;
4830         }
4831         if (alt_timeout > *timeout)
4832                 *timeout = alt_timeout;
4833         return 0;
4834 }
4835
4836 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4837                 struct usb_device *udev,
4838                 struct usb_host_interface *alt,
4839                 enum usb3_link_state state,
4840                 u16 *timeout)
4841 {
4842         int j;
4843
4844         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4845                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4846                                         &alt->endpoint[j].desc, state, timeout))
4847                         return -E2BIG;
4848         }
4849         return 0;
4850 }
4851
4852 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4853                 enum usb3_link_state state)
4854 {
4855         struct usb_device *parent;
4856         unsigned int num_hubs;
4857
4858         if (state == USB3_LPM_U2)
4859                 return 0;
4860
4861         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4862         for (parent = udev->parent, num_hubs = 0; parent->parent;
4863                         parent = parent->parent)
4864                 num_hubs++;
4865
4866         if (num_hubs < 2)
4867                 return 0;
4868
4869         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4870                         " below second-tier hub.\n");
4871         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4872                         "to decrease power consumption.\n");
4873         return -E2BIG;
4874 }
4875
4876 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4877                 struct usb_device *udev,
4878                 enum usb3_link_state state)
4879 {
4880         if (xhci->quirks & XHCI_INTEL_HOST)
4881                 return xhci_check_intel_tier_policy(udev, state);
4882         else
4883                 return 0;
4884 }
4885
4886 /* Returns the U1 or U2 timeout that should be enabled.
4887  * If the tier check or timeout setting functions return with a non-zero exit
4888  * code, that means the timeout value has been finalized and we shouldn't look
4889  * at any more endpoints.
4890  */
4891 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4892                         struct usb_device *udev, enum usb3_link_state state)
4893 {
4894         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4895         struct usb_host_config *config;
4896         char *state_name;
4897         int i;
4898         u16 timeout = USB3_LPM_DISABLED;
4899
4900         if (state == USB3_LPM_U1)
4901                 state_name = "U1";
4902         else if (state == USB3_LPM_U2)
4903                 state_name = "U2";
4904         else {
4905                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4906                                 state);
4907                 return timeout;
4908         }
4909
4910         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4911                 return timeout;
4912
4913         /* Gather some information about the currently installed configuration
4914          * and alternate interface settings.
4915          */
4916         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4917                         state, &timeout))
4918                 return timeout;
4919
4920         config = udev->actconfig;
4921         if (!config)
4922                 return timeout;
4923
4924         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4925                 struct usb_driver *driver;
4926                 struct usb_interface *intf = config->interface[i];
4927
4928                 if (!intf)
4929                         continue;
4930
4931                 /* Check if any currently bound drivers want hub-initiated LPM
4932                  * disabled.
4933                  */
4934                 if (intf->dev.driver) {
4935                         driver = to_usb_driver(intf->dev.driver);
4936                         if (driver && driver->disable_hub_initiated_lpm) {
4937                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4938                                         state_name, driver->name);
4939                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4940                                                                       state);
4941                                 if (timeout == USB3_LPM_DISABLED)
4942                                         return timeout;
4943                         }
4944                 }
4945
4946                 /* Not sure how this could happen... */
4947                 if (!intf->cur_altsetting)
4948                         continue;
4949
4950                 if (xhci_update_timeout_for_interface(xhci, udev,
4951                                         intf->cur_altsetting,
4952                                         state, &timeout))
4953                         return timeout;
4954         }
4955         return timeout;
4956 }
4957
4958 static int calculate_max_exit_latency(struct usb_device *udev,
4959                 enum usb3_link_state state_changed,
4960                 u16 hub_encoded_timeout)
4961 {
4962         unsigned long long u1_mel_us = 0;
4963         unsigned long long u2_mel_us = 0;
4964         unsigned long long mel_us = 0;
4965         bool disabling_u1;
4966         bool disabling_u2;
4967         bool enabling_u1;
4968         bool enabling_u2;
4969
4970         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4971                         hub_encoded_timeout == USB3_LPM_DISABLED);
4972         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4973                         hub_encoded_timeout == USB3_LPM_DISABLED);
4974
4975         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4976                         hub_encoded_timeout != USB3_LPM_DISABLED);
4977         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4978                         hub_encoded_timeout != USB3_LPM_DISABLED);
4979
4980         /* If U1 was already enabled and we're not disabling it,
4981          * or we're going to enable U1, account for the U1 max exit latency.
4982          */
4983         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4984                         enabling_u1)
4985                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4986         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4987                         enabling_u2)
4988                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4989
4990         if (u1_mel_us > u2_mel_us)
4991                 mel_us = u1_mel_us;
4992         else
4993                 mel_us = u2_mel_us;
4994         /* xHCI host controller max exit latency field is only 16 bits wide. */
4995         if (mel_us > MAX_EXIT) {
4996                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4997                                 "is too big.\n", mel_us);
4998                 return -E2BIG;
4999         }
5000         return mel_us;
5001 }
5002
5003 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5004 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5005                         struct usb_device *udev, enum usb3_link_state state)
5006 {
5007         struct xhci_hcd *xhci;
5008         u16 hub_encoded_timeout;
5009         int mel;
5010         int ret;
5011
5012         xhci = hcd_to_xhci(hcd);
5013         /* The LPM timeout values are pretty host-controller specific, so don't
5014          * enable hub-initiated timeouts unless the vendor has provided
5015          * information about their timeout algorithm.
5016          */
5017         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5018                         !xhci->devs[udev->slot_id])
5019                 return USB3_LPM_DISABLED;
5020
5021         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5022         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5023         if (mel < 0) {
5024                 /* Max Exit Latency is too big, disable LPM. */
5025                 hub_encoded_timeout = USB3_LPM_DISABLED;
5026                 mel = 0;
5027         }
5028
5029         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5030         if (ret)
5031                 return ret;
5032         return hub_encoded_timeout;
5033 }
5034
5035 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5036                         struct usb_device *udev, enum usb3_link_state state)
5037 {
5038         struct xhci_hcd *xhci;
5039         u16 mel;
5040
5041         xhci = hcd_to_xhci(hcd);
5042         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5043                         !xhci->devs[udev->slot_id])
5044                 return 0;
5045
5046         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5047         return xhci_change_max_exit_latency(xhci, udev, mel);
5048 }
5049 #else /* CONFIG_PM */
5050
5051 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5052                                 struct usb_device *udev, int enable)
5053 {
5054         return 0;
5055 }
5056
5057 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5058 {
5059         return 0;
5060 }
5061
5062 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5063                         struct usb_device *udev, enum usb3_link_state state)
5064 {
5065         return USB3_LPM_DISABLED;
5066 }
5067
5068 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5069                         struct usb_device *udev, enum usb3_link_state state)
5070 {
5071         return 0;
5072 }
5073 #endif  /* CONFIG_PM */
5074
5075 /*-------------------------------------------------------------------------*/
5076
5077 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5078  * internal data structures for the device.
5079  */
5080 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5081                         struct usb_tt *tt, gfp_t mem_flags)
5082 {
5083         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5084         struct xhci_virt_device *vdev;
5085         struct xhci_command *config_cmd;
5086         struct xhci_input_control_ctx *ctrl_ctx;
5087         struct xhci_slot_ctx *slot_ctx;
5088         unsigned long flags;
5089         unsigned think_time;
5090         int ret;
5091
5092         /* Ignore root hubs */
5093         if (!hdev->parent)
5094                 return 0;
5095
5096         vdev = xhci->devs[hdev->slot_id];
5097         if (!vdev) {
5098                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5099                 return -EINVAL;
5100         }
5101
5102         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5103         if (!config_cmd)
5104                 return -ENOMEM;
5105
5106         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5107         if (!ctrl_ctx) {
5108                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5109                                 __func__);
5110                 xhci_free_command(xhci, config_cmd);
5111                 return -ENOMEM;
5112         }
5113
5114         spin_lock_irqsave(&xhci->lock, flags);
5115         if (hdev->speed == USB_SPEED_HIGH &&
5116                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5117                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5118                 xhci_free_command(xhci, config_cmd);
5119                 spin_unlock_irqrestore(&xhci->lock, flags);
5120                 return -ENOMEM;
5121         }
5122
5123         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5124         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5125         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5126         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5127         /*
5128          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5129          * but it may be already set to 1 when setup an xHCI virtual
5130          * device, so clear it anyway.
5131          */
5132         if (tt->multi)
5133                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5134         else if (hdev->speed == USB_SPEED_FULL)
5135                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5136
5137         if (xhci->hci_version > 0x95) {
5138                 xhci_dbg(xhci, "xHCI version %x needs hub "
5139                                 "TT think time and number of ports\n",
5140                                 (unsigned int) xhci->hci_version);
5141                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5142                 /* Set TT think time - convert from ns to FS bit times.
5143                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5144                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5145                  *
5146                  * xHCI 1.0: this field shall be 0 if the device is not a
5147                  * High-spped hub.
5148                  */
5149                 think_time = tt->think_time;
5150                 if (think_time != 0)
5151                         think_time = (think_time / 666) - 1;
5152                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5153                         slot_ctx->tt_info |=
5154                                 cpu_to_le32(TT_THINK_TIME(think_time));
5155         } else {
5156                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5157                                 "TT think time or number of ports\n",
5158                                 (unsigned int) xhci->hci_version);
5159         }
5160         slot_ctx->dev_state = 0;
5161         spin_unlock_irqrestore(&xhci->lock, flags);
5162
5163         xhci_dbg(xhci, "Set up %s for hub device.\n",
5164                         (xhci->hci_version > 0x95) ?
5165                         "configure endpoint" : "evaluate context");
5166
5167         /* Issue and wait for the configure endpoint or
5168          * evaluate context command.
5169          */
5170         if (xhci->hci_version > 0x95)
5171                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5172                                 false, false);
5173         else
5174                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5175                                 true, false);
5176
5177         xhci_free_command(xhci, config_cmd);
5178         return ret;
5179 }
5180
5181 static int xhci_get_frame(struct usb_hcd *hcd)
5182 {
5183         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5184         /* EHCI mods by the periodic size.  Why? */
5185         return readl(&xhci->run_regs->microframe_index) >> 3;
5186 }
5187
5188 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5189 {
5190         struct xhci_hcd         *xhci;
5191         /*
5192          * TODO: Check with DWC3 clients for sysdev according to
5193          * quirks
5194          */
5195         struct device           *dev = hcd->self.sysdev;
5196         unsigned int            minor_rev;
5197         int                     retval;
5198
5199         /* Accept arbitrarily long scatter-gather lists */
5200         hcd->self.sg_tablesize = ~0;
5201
5202         /* support to build packet from discontinuous buffers */
5203         hcd->self.no_sg_constraint = 1;
5204
5205         /* XHCI controllers don't stop the ep queue on short packets :| */
5206         hcd->self.no_stop_on_short = 1;
5207
5208         xhci = hcd_to_xhci(hcd);
5209
5210         if (usb_hcd_is_primary_hcd(hcd)) {
5211                 xhci->main_hcd = hcd;
5212                 xhci->usb2_rhub.hcd = hcd;
5213                 /* Mark the first roothub as being USB 2.0.
5214                  * The xHCI driver will register the USB 3.0 roothub.
5215                  */
5216                 hcd->speed = HCD_USB2;
5217                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5218                 /*
5219                  * USB 2.0 roothub under xHCI has an integrated TT,
5220                  * (rate matching hub) as opposed to having an OHCI/UHCI
5221                  * companion controller.
5222                  */
5223                 hcd->has_tt = 1;
5224         } else {
5225                 /*
5226                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5227                  * should return 0x31 for sbrn, or that the minor revision
5228                  * is a two digit BCD containig minor and sub-minor numbers.
5229                  * This was later clarified in xHCI 1.2.
5230                  *
5231                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5232                  * minor revision set to 0x1 instead of 0x10.
5233                  */
5234                 if (xhci->usb3_rhub.min_rev == 0x1)
5235                         minor_rev = 1;
5236                 else
5237                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5238
5239                 switch (minor_rev) {
5240                 case 2:
5241                         hcd->speed = HCD_USB32;
5242                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5243                         hcd->self.root_hub->rx_lanes = 2;
5244                         hcd->self.root_hub->tx_lanes = 2;
5245                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5246                         break;
5247                 case 1:
5248                         hcd->speed = HCD_USB31;
5249                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5250                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5251                         break;
5252                 }
5253                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5254                           minor_rev,
5255                           minor_rev ? "Enhanced " : "");
5256
5257                 xhci->usb3_rhub.hcd = hcd;
5258                 /* xHCI private pointer was set in xhci_pci_probe for the second
5259                  * registered roothub.
5260                  */
5261                 return 0;
5262         }
5263
5264         mutex_init(&xhci->mutex);
5265         xhci->cap_regs = hcd->regs;
5266         xhci->op_regs = hcd->regs +
5267                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5268         xhci->run_regs = hcd->regs +
5269                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5270         /* Cache read-only capability registers */
5271         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5272         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5273         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5274         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5275         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5276         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5277         if (xhci->hci_version > 0x100)
5278                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5279
5280         xhci->quirks |= quirks;
5281
5282         get_quirks(dev, xhci);
5283
5284         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5285          * success event after a short transfer. This quirk will ignore such
5286          * spurious event.
5287          */
5288         if (xhci->hci_version > 0x96)
5289                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5290
5291         /* Make sure the HC is halted. */
5292         retval = xhci_halt(xhci);
5293         if (retval)
5294                 return retval;
5295
5296         xhci_zero_64b_regs(xhci);
5297
5298         xhci_dbg(xhci, "Resetting HCD\n");
5299         /* Reset the internal HC memory state and registers. */
5300         retval = xhci_reset(xhci);
5301         if (retval)
5302                 return retval;
5303         xhci_dbg(xhci, "Reset complete\n");
5304
5305         /*
5306          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5307          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5308          * address memory pointers actually. So, this driver clears the AC64
5309          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5310          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5311          */
5312         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5313                 xhci->hcc_params &= ~BIT(0);
5314
5315         /* Set dma_mask and coherent_dma_mask to 64-bits,
5316          * if xHC supports 64-bit addressing */
5317         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5318                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5319                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5320                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5321         } else {
5322                 /*
5323                  * This is to avoid error in cases where a 32-bit USB
5324                  * controller is used on a 64-bit capable system.
5325                  */
5326                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5327                 if (retval)
5328                         return retval;
5329                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5330                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5331         }
5332
5333         xhci_dbg(xhci, "Calling HCD init\n");
5334         /* Initialize HCD and host controller data structures. */
5335         retval = xhci_init(hcd);
5336         if (retval)
5337                 return retval;
5338         xhci_dbg(xhci, "Called HCD init\n");
5339
5340         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5341                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5342
5343         return 0;
5344 }
5345 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5346
5347 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5348                 struct usb_host_endpoint *ep)
5349 {
5350         struct xhci_hcd *xhci;
5351         struct usb_device *udev;
5352         unsigned int slot_id;
5353         unsigned int ep_index;
5354         unsigned long flags;
5355
5356         xhci = hcd_to_xhci(hcd);
5357
5358         spin_lock_irqsave(&xhci->lock, flags);
5359         udev = (struct usb_device *)ep->hcpriv;
5360         slot_id = udev->slot_id;
5361         ep_index = xhci_get_endpoint_index(&ep->desc);
5362
5363         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5364         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5365         spin_unlock_irqrestore(&xhci->lock, flags);
5366 }
5367
5368 static const struct hc_driver xhci_hc_driver = {
5369         .description =          "xhci-hcd",
5370         .product_desc =         "xHCI Host Controller",
5371         .hcd_priv_size =        sizeof(struct xhci_hcd),
5372
5373         /*
5374          * generic hardware linkage
5375          */
5376         .irq =                  xhci_irq,
5377         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5378                                 HCD_BH,
5379
5380         /*
5381          * basic lifecycle operations
5382          */
5383         .reset =                NULL, /* set in xhci_init_driver() */
5384         .start =                xhci_run,
5385         .stop =                 xhci_stop,
5386         .shutdown =             xhci_shutdown,
5387
5388         /*
5389          * managing i/o requests and associated device resources
5390          */
5391         .map_urb_for_dma =      xhci_map_urb_for_dma,
5392         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5393         .urb_enqueue =          xhci_urb_enqueue,
5394         .urb_dequeue =          xhci_urb_dequeue,
5395         .alloc_dev =            xhci_alloc_dev,
5396         .free_dev =             xhci_free_dev,
5397         .alloc_streams =        xhci_alloc_streams,
5398         .free_streams =         xhci_free_streams,
5399         .add_endpoint =         xhci_add_endpoint,
5400         .drop_endpoint =        xhci_drop_endpoint,
5401         .endpoint_disable =     xhci_endpoint_disable,
5402         .endpoint_reset =       xhci_endpoint_reset,
5403         .check_bandwidth =      xhci_check_bandwidth,
5404         .reset_bandwidth =      xhci_reset_bandwidth,
5405         .address_device =       xhci_address_device,
5406         .enable_device =        xhci_enable_device,
5407         .update_hub_device =    xhci_update_hub_device,
5408         .reset_device =         xhci_discover_or_reset_device,
5409
5410         /*
5411          * scheduling support
5412          */
5413         .get_frame_number =     xhci_get_frame,
5414
5415         /*
5416          * root hub support
5417          */
5418         .hub_control =          xhci_hub_control,
5419         .hub_status_data =      xhci_hub_status_data,
5420         .bus_suspend =          xhci_bus_suspend,
5421         .bus_resume =           xhci_bus_resume,
5422         .get_resuming_ports =   xhci_get_resuming_ports,
5423
5424         /*
5425          * call back when device connected and addressed
5426          */
5427         .update_device =        xhci_update_device,
5428         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5429         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5430         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5431         .find_raw_port_number = xhci_find_raw_port_number,
5432         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5433 };
5434
5435 void xhci_init_driver(struct hc_driver *drv,
5436                       const struct xhci_driver_overrides *over)
5437 {
5438         BUG_ON(!over);
5439
5440         /* Copy the generic table to drv then apply the overrides */
5441         *drv = xhci_hc_driver;
5442
5443         if (over) {
5444                 drv->hcd_priv_size += over->extra_priv_size;
5445                 if (over->reset)
5446                         drv->reset = over->reset;
5447                 if (over->start)
5448                         drv->start = over->start;
5449                 if (over->add_endpoint)
5450                         drv->add_endpoint = over->add_endpoint;
5451                 if (over->drop_endpoint)
5452                         drv->drop_endpoint = over->drop_endpoint;
5453                 if (over->check_bandwidth)
5454                         drv->check_bandwidth = over->check_bandwidth;
5455                 if (over->reset_bandwidth)
5456                         drv->reset_bandwidth = over->reset_bandwidth;
5457         }
5458 }
5459 EXPORT_SYMBOL_GPL(xhci_init_driver);
5460
5461 MODULE_DESCRIPTION(DRIVER_DESC);
5462 MODULE_AUTHOR(DRIVER_AUTHOR);
5463 MODULE_LICENSE("GPL");
5464
5465 static int __init xhci_hcd_init(void)
5466 {
5467         /*
5468          * Check the compiler generated sizes of structures that must be laid
5469          * out in specific ways for hardware access.
5470          */
5471         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5472         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5473         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5474         /* xhci_device_control has eight fields, and also
5475          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5476          */
5477         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5478         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5479         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5480         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5481         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5482         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5483         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5484
5485         if (usb_disabled())
5486                 return -ENODEV;
5487
5488         xhci_debugfs_create_root();
5489
5490         return 0;
5491 }
5492
5493 /*
5494  * If an init function is provided, an exit function must also be provided
5495  * to allow module unload.
5496  */
5497 static void __exit xhci_hcd_fini(void)
5498 {
5499         xhci_debugfs_remove_root();
5500 }
5501
5502 module_init(xhci_hcd_init);
5503 module_exit(xhci_hcd_fini);
This page took 0.363233 seconds and 4 git commands to generate.