]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v4_0.c
Merge drm/drm-next into drm-intel-gt-next
[linux.git] / drivers / gpu / drm / amd / amdgpu / sdma_v4_0.c
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "sdma0/sdma0_4_1_default.h"
50
51 #include "soc15_common.h"
52 #include "soc15.h"
53 #include "vega10_sdma_pkt_open.h"
54
55 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
56 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
57
58 #include "amdgpu_ras.h"
59
60 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
61 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
62 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
64 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
66 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
67 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
72
73 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
74 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
75
76 #define WREG32_SDMA(instance, offset, value) \
77         WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
78 #define RREG32_SDMA(instance, offset) \
79         RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
80
81 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
82 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
83 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
85 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
86
87 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
88         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
89         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
90         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
91         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
92         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
93         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
94         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
95         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
96         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
97         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
98         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
100         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
101         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
102         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
103         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
104         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
105         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
107         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
108         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
109         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
110         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
112         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
113 };
114
115 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
116         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
117         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
118         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
119         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
120         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
121         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
122         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
123 };
124
125 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
126         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
127         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
128         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
129         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
130         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
131         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
132         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
133 };
134
135 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
136         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
137         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
138         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
139         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
140         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
141         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
142         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
144         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
146         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
147 };
148
149 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
150         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
151 };
152
153 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
154 {
155         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
156         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
157         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
158         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
159         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
160         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
164         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
165         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
166         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
181         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
182 };
183
184 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
185         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
186         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
187         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
188         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
189         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
190         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
191         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
194         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
195         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
196         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
198         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
211         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
212 };
213
214 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
215 {
216         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
217         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
218 };
219
220 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
221 {
222         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
223         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
224 };
225
226 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
227 {
228         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
229         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
230         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
231         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
232         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
233         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
234         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
235         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
236         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
237         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
238         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
239         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
240         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
241         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
242         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
243         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
244         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
245         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
246         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
247         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
248         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
249         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
250         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
251         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
252         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
253         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
254         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
255         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
256         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
257         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
258         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
259         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
260 };
261
262 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
263         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
264         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
265         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
266         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
267         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
268         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
269         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
270         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
271         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
272         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
273 };
274
275 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
276         { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
277         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
278         0, 0,
279         },
280         { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
281         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
282         0, 0,
283         },
284         { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
285         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
286         0, 0,
287         },
288         { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
289         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
290         0, 0,
291         },
292         { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
293         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
294         0, 0,
295         },
296         { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
297         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
298         0, 0,
299         },
300         { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
301         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
302         0, 0,
303         },
304         { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
305         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
306         0, 0,
307         },
308         { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
309         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
310         0, 0,
311         },
312         { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
313         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
314         0, 0,
315         },
316         { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
317         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
318         0, 0,
319         },
320         { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
321         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
322         0, 0,
323         },
324         { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
325         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
326         0, 0,
327         },
328         { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
329         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
330         0, 0,
331         },
332         { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
333         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
334         0, 0,
335         },
336         { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
337         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
338         0, 0,
339         },
340         { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
341         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
342         0, 0,
343         },
344         { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
345         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
346         0, 0,
347         },
348         { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
349         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
350         0, 0,
351         },
352         { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
353         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
354         0, 0,
355         },
356         { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
357         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
358         0, 0,
359         },
360         { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
361         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
362         0, 0,
363         },
364         { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
365         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
366         0, 0,
367         },
368         { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
369         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
370         0, 0,
371         },
372 };
373
374 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
375                 u32 instance, u32 offset)
376 {
377         switch (instance) {
378         case 0:
379                 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
380         case 1:
381                 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
382         case 2:
383                 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
384         case 3:
385                 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
386         case 4:
387                 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
388         case 5:
389                 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
390         case 6:
391                 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
392         case 7:
393                 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
394         default:
395                 break;
396         }
397         return 0;
398 }
399
400 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
401 {
402         switch (seq_num) {
403         case 0:
404                 return SOC15_IH_CLIENTID_SDMA0;
405         case 1:
406                 return SOC15_IH_CLIENTID_SDMA1;
407         case 2:
408                 return SOC15_IH_CLIENTID_SDMA2;
409         case 3:
410                 return SOC15_IH_CLIENTID_SDMA3;
411         case 4:
412                 return SOC15_IH_CLIENTID_SDMA4;
413         case 5:
414                 return SOC15_IH_CLIENTID_SDMA5;
415         case 6:
416                 return SOC15_IH_CLIENTID_SDMA6;
417         case 7:
418                 return SOC15_IH_CLIENTID_SDMA7;
419         default:
420                 break;
421         }
422         return -EINVAL;
423 }
424
425 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
426 {
427         switch (client_id) {
428         case SOC15_IH_CLIENTID_SDMA0:
429                 return 0;
430         case SOC15_IH_CLIENTID_SDMA1:
431                 return 1;
432         case SOC15_IH_CLIENTID_SDMA2:
433                 return 2;
434         case SOC15_IH_CLIENTID_SDMA3:
435                 return 3;
436         case SOC15_IH_CLIENTID_SDMA4:
437                 return 4;
438         case SOC15_IH_CLIENTID_SDMA5:
439                 return 5;
440         case SOC15_IH_CLIENTID_SDMA6:
441                 return 6;
442         case SOC15_IH_CLIENTID_SDMA7:
443                 return 7;
444         default:
445                 break;
446         }
447         return -EINVAL;
448 }
449
450 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
451 {
452         switch (adev->asic_type) {
453         case CHIP_VEGA10:
454                 soc15_program_register_sequence(adev,
455                                                 golden_settings_sdma_4,
456                                                 ARRAY_SIZE(golden_settings_sdma_4));
457                 soc15_program_register_sequence(adev,
458                                                 golden_settings_sdma_vg10,
459                                                 ARRAY_SIZE(golden_settings_sdma_vg10));
460                 break;
461         case CHIP_VEGA12:
462                 soc15_program_register_sequence(adev,
463                                                 golden_settings_sdma_4,
464                                                 ARRAY_SIZE(golden_settings_sdma_4));
465                 soc15_program_register_sequence(adev,
466                                                 golden_settings_sdma_vg12,
467                                                 ARRAY_SIZE(golden_settings_sdma_vg12));
468                 break;
469         case CHIP_VEGA20:
470                 soc15_program_register_sequence(adev,
471                                                 golden_settings_sdma0_4_2_init,
472                                                 ARRAY_SIZE(golden_settings_sdma0_4_2_init));
473                 soc15_program_register_sequence(adev,
474                                                 golden_settings_sdma0_4_2,
475                                                 ARRAY_SIZE(golden_settings_sdma0_4_2));
476                 soc15_program_register_sequence(adev,
477                                                 golden_settings_sdma1_4_2,
478                                                 ARRAY_SIZE(golden_settings_sdma1_4_2));
479                 break;
480         case CHIP_ARCTURUS:
481                 soc15_program_register_sequence(adev,
482                                                 golden_settings_sdma_arct,
483                                                 ARRAY_SIZE(golden_settings_sdma_arct));
484                 break;
485         case CHIP_RAVEN:
486                 soc15_program_register_sequence(adev,
487                                                 golden_settings_sdma_4_1,
488                                                 ARRAY_SIZE(golden_settings_sdma_4_1));
489                 if (adev->apu_flags & AMD_APU_IS_RAVEN2)
490                         soc15_program_register_sequence(adev,
491                                                         golden_settings_sdma_rv2,
492                                                         ARRAY_SIZE(golden_settings_sdma_rv2));
493                 else
494                         soc15_program_register_sequence(adev,
495                                                         golden_settings_sdma_rv1,
496                                                         ARRAY_SIZE(golden_settings_sdma_rv1));
497                 break;
498         case CHIP_RENOIR:
499                 soc15_program_register_sequence(adev,
500                                                 golden_settings_sdma_4_3,
501                                                 ARRAY_SIZE(golden_settings_sdma_4_3));
502                 break;
503         default:
504                 break;
505         }
506 }
507
508 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
509 {
510         int i;
511
512         /*
513          * The only chips with SDMAv4 and ULV are VG10 and VG20.
514          * Server SKUs take a different hysteresis setting from other SKUs.
515          */
516         switch (adev->asic_type) {
517         case CHIP_VEGA10:
518                 if (adev->pdev->device == 0x6860)
519                         break;
520                 return;
521         case CHIP_VEGA20:
522                 if (adev->pdev->device == 0x66a1)
523                         break;
524                 return;
525         default:
526                 return;
527         }
528
529         for (i = 0; i < adev->sdma.num_instances; i++) {
530                 uint32_t temp;
531
532                 temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
533                 temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
534                 WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
535         }
536 }
537
538 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
539 {
540         int err = 0;
541         const struct sdma_firmware_header_v1_0 *hdr;
542
543         err = amdgpu_ucode_validate(sdma_inst->fw);
544         if (err)
545                 return err;
546
547         hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
548         sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
549         sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
550
551         if (sdma_inst->feature_version >= 20)
552                 sdma_inst->burst_nop = true;
553
554         return 0;
555 }
556
557 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
558 {
559         int i;
560
561         for (i = 0; i < adev->sdma.num_instances; i++) {
562                 release_firmware(adev->sdma.instance[i].fw);
563                 adev->sdma.instance[i].fw = NULL;
564
565                 /* arcturus shares the same FW memory across
566                    all SDMA isntances */
567                 if (adev->asic_type == CHIP_ARCTURUS)
568                         break;
569         }
570
571         memset((void *)adev->sdma.instance, 0,
572                 sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
573 }
574
575 /**
576  * sdma_v4_0_init_microcode - load ucode images from disk
577  *
578  * @adev: amdgpu_device pointer
579  *
580  * Use the firmware interface to load the ucode images into
581  * the driver (not loaded into hw).
582  * Returns 0 on success, error on failure.
583  */
584
585 // emulation only, won't work on real chip
586 // vega10 real chip need to use PSP to load firmware
587 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
588 {
589         const char *chip_name;
590         char fw_name[30];
591         int err = 0, i;
592         struct amdgpu_firmware_info *info = NULL;
593         const struct common_firmware_header *header = NULL;
594
595         DRM_DEBUG("\n");
596
597         switch (adev->asic_type) {
598         case CHIP_VEGA10:
599                 chip_name = "vega10";
600                 break;
601         case CHIP_VEGA12:
602                 chip_name = "vega12";
603                 break;
604         case CHIP_VEGA20:
605                 chip_name = "vega20";
606                 break;
607         case CHIP_RAVEN:
608                 if (adev->apu_flags & AMD_APU_IS_RAVEN2)
609                         chip_name = "raven2";
610                 else if (adev->apu_flags & AMD_APU_IS_PICASSO)
611                         chip_name = "picasso";
612                 else
613                         chip_name = "raven";
614                 break;
615         case CHIP_ARCTURUS:
616                 chip_name = "arcturus";
617                 break;
618         case CHIP_RENOIR:
619                 if (adev->apu_flags & AMD_APU_IS_RENOIR)
620                         chip_name = "renoir";
621                 else
622                         chip_name = "green_sardine";
623                 break;
624         default:
625                 BUG();
626         }
627
628         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
629
630         err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
631         if (err)
632                 goto out;
633
634         err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
635         if (err)
636                 goto out;
637
638         for (i = 1; i < adev->sdma.num_instances; i++) {
639                 if (adev->asic_type == CHIP_ARCTURUS) {
640                         /* Acturus will leverage the same FW memory
641                            for every SDMA instance */
642                         memcpy((void *)&adev->sdma.instance[i],
643                                (void *)&adev->sdma.instance[0],
644                                sizeof(struct amdgpu_sdma_instance));
645                 }
646                 else {
647                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
648
649                         err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
650                         if (err)
651                                 goto out;
652
653                         err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
654                         if (err)
655                                 goto out;
656                 }
657         }
658
659         DRM_DEBUG("psp_load == '%s'\n",
660                 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
661
662         if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
663                 for (i = 0; i < adev->sdma.num_instances; i++) {
664                         info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
665                         info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
666                         info->fw = adev->sdma.instance[i].fw;
667                         header = (const struct common_firmware_header *)info->fw->data;
668                         adev->firmware.fw_size +=
669                                 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
670                 }
671         }
672
673 out:
674         if (err) {
675                 DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
676                 sdma_v4_0_destroy_inst_ctx(adev);
677         }
678         return err;
679 }
680
681 /**
682  * sdma_v4_0_ring_get_rptr - get the current read pointer
683  *
684  * @ring: amdgpu ring pointer
685  *
686  * Get the current rptr from the hardware (VEGA10+).
687  */
688 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
689 {
690         u64 *rptr;
691
692         /* XXX check if swapping is necessary on BE */
693         rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
694
695         DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
696         return ((*rptr) >> 2);
697 }
698
699 /**
700  * sdma_v4_0_ring_get_wptr - get the current write pointer
701  *
702  * @ring: amdgpu ring pointer
703  *
704  * Get the current wptr from the hardware (VEGA10+).
705  */
706 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
707 {
708         struct amdgpu_device *adev = ring->adev;
709         u64 wptr;
710
711         if (ring->use_doorbell) {
712                 /* XXX check if swapping is necessary on BE */
713                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
714                 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
715         } else {
716                 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
717                 wptr = wptr << 32;
718                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
719                 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
720                                 ring->me, wptr);
721         }
722
723         return wptr >> 2;
724 }
725
726 /**
727  * sdma_v4_0_page_ring_set_wptr - commit the write pointer
728  *
729  * @ring: amdgpu ring pointer
730  *
731  * Write the wptr back to the hardware (VEGA10+).
732  */
733 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
734 {
735         struct amdgpu_device *adev = ring->adev;
736
737         DRM_DEBUG("Setting write pointer\n");
738         if (ring->use_doorbell) {
739                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
740
741                 DRM_DEBUG("Using doorbell -- "
742                                 "wptr_offs == 0x%08x "
743                                 "lower_32_bits(ring->wptr) << 2 == 0x%08x "
744                                 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
745                                 ring->wptr_offs,
746                                 lower_32_bits(ring->wptr << 2),
747                                 upper_32_bits(ring->wptr << 2));
748                 /* XXX check if swapping is necessary on BE */
749                 WRITE_ONCE(*wb, (ring->wptr << 2));
750                 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
751                                 ring->doorbell_index, ring->wptr << 2);
752                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
753         } else {
754                 DRM_DEBUG("Not using doorbell -- "
755                                 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
756                                 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
757                                 ring->me,
758                                 lower_32_bits(ring->wptr << 2),
759                                 ring->me,
760                                 upper_32_bits(ring->wptr << 2));
761                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
762                             lower_32_bits(ring->wptr << 2));
763                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
764                             upper_32_bits(ring->wptr << 2));
765         }
766 }
767
768 /**
769  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
770  *
771  * @ring: amdgpu ring pointer
772  *
773  * Get the current wptr from the hardware (VEGA10+).
774  */
775 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
776 {
777         struct amdgpu_device *adev = ring->adev;
778         u64 wptr;
779
780         if (ring->use_doorbell) {
781                 /* XXX check if swapping is necessary on BE */
782                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
783         } else {
784                 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
785                 wptr = wptr << 32;
786                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
787         }
788
789         return wptr >> 2;
790 }
791
792 /**
793  * sdma_v4_0_ring_set_wptr - commit the write pointer
794  *
795  * @ring: amdgpu ring pointer
796  *
797  * Write the wptr back to the hardware (VEGA10+).
798  */
799 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
800 {
801         struct amdgpu_device *adev = ring->adev;
802
803         if (ring->use_doorbell) {
804                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
805
806                 /* XXX check if swapping is necessary on BE */
807                 WRITE_ONCE(*wb, (ring->wptr << 2));
808                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
809         } else {
810                 uint64_t wptr = ring->wptr << 2;
811
812                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
813                             lower_32_bits(wptr));
814                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
815                             upper_32_bits(wptr));
816         }
817 }
818
819 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
820 {
821         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
822         int i;
823
824         for (i = 0; i < count; i++)
825                 if (sdma && sdma->burst_nop && (i == 0))
826                         amdgpu_ring_write(ring, ring->funcs->nop |
827                                 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
828                 else
829                         amdgpu_ring_write(ring, ring->funcs->nop);
830 }
831
832 /**
833  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
834  *
835  * @ring: amdgpu ring pointer
836  * @job: job to retrieve vmid from
837  * @ib: IB object to schedule
838  * @flags: unused
839  *
840  * Schedule an IB in the DMA ring (VEGA10).
841  */
842 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
843                                    struct amdgpu_job *job,
844                                    struct amdgpu_ib *ib,
845                                    uint32_t flags)
846 {
847         unsigned vmid = AMDGPU_JOB_GET_VMID(job);
848
849         /* IB packet must end on a 8 DW boundary */
850         sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
851
852         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
853                           SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
854         /* base must be 32 byte aligned */
855         amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
856         amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
857         amdgpu_ring_write(ring, ib->length_dw);
858         amdgpu_ring_write(ring, 0);
859         amdgpu_ring_write(ring, 0);
860
861 }
862
863 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
864                                    int mem_space, int hdp,
865                                    uint32_t addr0, uint32_t addr1,
866                                    uint32_t ref, uint32_t mask,
867                                    uint32_t inv)
868 {
869         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
870                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
871                           SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
872                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
873         if (mem_space) {
874                 /* memory */
875                 amdgpu_ring_write(ring, addr0);
876                 amdgpu_ring_write(ring, addr1);
877         } else {
878                 /* registers */
879                 amdgpu_ring_write(ring, addr0 << 2);
880                 amdgpu_ring_write(ring, addr1 << 2);
881         }
882         amdgpu_ring_write(ring, ref); /* reference */
883         amdgpu_ring_write(ring, mask); /* mask */
884         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
885                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
886 }
887
888 /**
889  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
890  *
891  * @ring: amdgpu ring pointer
892  *
893  * Emit an hdp flush packet on the requested DMA ring.
894  */
895 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
896 {
897         struct amdgpu_device *adev = ring->adev;
898         u32 ref_and_mask = 0;
899         const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
900
901         ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
902
903         sdma_v4_0_wait_reg_mem(ring, 0, 1,
904                                adev->nbio.funcs->get_hdp_flush_done_offset(adev),
905                                adev->nbio.funcs->get_hdp_flush_req_offset(adev),
906                                ref_and_mask, ref_and_mask, 10);
907 }
908
909 /**
910  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
911  *
912  * @ring: amdgpu ring pointer
913  * @addr: address
914  * @seq: sequence number
915  * @flags: fence related flags
916  *
917  * Add a DMA fence packet to the ring to write
918  * the fence seq number and DMA trap packet to generate
919  * an interrupt if needed (VEGA10).
920  */
921 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
922                                       unsigned flags)
923 {
924         bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
925         /* write the fence */
926         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
927         /* zero in first two bits */
928         BUG_ON(addr & 0x3);
929         amdgpu_ring_write(ring, lower_32_bits(addr));
930         amdgpu_ring_write(ring, upper_32_bits(addr));
931         amdgpu_ring_write(ring, lower_32_bits(seq));
932
933         /* optionally write high bits as well */
934         if (write64bit) {
935                 addr += 4;
936                 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
937                 /* zero in first two bits */
938                 BUG_ON(addr & 0x3);
939                 amdgpu_ring_write(ring, lower_32_bits(addr));
940                 amdgpu_ring_write(ring, upper_32_bits(addr));
941                 amdgpu_ring_write(ring, upper_32_bits(seq));
942         }
943
944         /* generate an interrupt */
945         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
946         amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
947 }
948
949
950 /**
951  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
952  *
953  * @adev: amdgpu_device pointer
954  *
955  * Stop the gfx async dma ring buffers (VEGA10).
956  */
957 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
958 {
959         struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
960         u32 rb_cntl, ib_cntl;
961         int i, unset = 0;
962
963         for (i = 0; i < adev->sdma.num_instances; i++) {
964                 sdma[i] = &adev->sdma.instance[i].ring;
965
966                 if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
967                         amdgpu_ttm_set_buffer_funcs_status(adev, false);
968                         unset = 1;
969                 }
970
971                 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
972                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
973                 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
974                 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
975                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
976                 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
977         }
978 }
979
980 /**
981  * sdma_v4_0_rlc_stop - stop the compute async dma engines
982  *
983  * @adev: amdgpu_device pointer
984  *
985  * Stop the compute async dma queues (VEGA10).
986  */
987 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
988 {
989         /* XXX todo */
990 }
991
992 /**
993  * sdma_v4_0_page_stop - stop the page async dma engines
994  *
995  * @adev: amdgpu_device pointer
996  *
997  * Stop the page async dma ring buffers (VEGA10).
998  */
999 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
1000 {
1001         struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
1002         u32 rb_cntl, ib_cntl;
1003         int i;
1004         bool unset = false;
1005
1006         for (i = 0; i < adev->sdma.num_instances; i++) {
1007                 sdma[i] = &adev->sdma.instance[i].page;
1008
1009                 if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
1010                         (!unset)) {
1011                         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1012                         unset = true;
1013                 }
1014
1015                 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1016                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1017                                         RB_ENABLE, 0);
1018                 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1019                 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1020                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
1021                                         IB_ENABLE, 0);
1022                 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1023         }
1024 }
1025
1026 /**
1027  * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
1028  *
1029  * @adev: amdgpu_device pointer
1030  * @enable: enable/disable the DMA MEs context switch.
1031  *
1032  * Halt or unhalt the async dma engines context switch (VEGA10).
1033  */
1034 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
1035 {
1036         u32 f32_cntl, phase_quantum = 0;
1037         int i;
1038
1039         if (amdgpu_sdma_phase_quantum) {
1040                 unsigned value = amdgpu_sdma_phase_quantum;
1041                 unsigned unit = 0;
1042
1043                 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1044                                 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
1045                         value = (value + 1) >> 1;
1046                         unit++;
1047                 }
1048                 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1049                             SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
1050                         value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1051                                  SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
1052                         unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1053                                 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1054                         WARN_ONCE(1,
1055                         "clamping sdma_phase_quantum to %uK clock cycles\n",
1056                                   value << unit);
1057                 }
1058                 phase_quantum =
1059                         value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1060                         unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1061         }
1062
1063         for (i = 0; i < adev->sdma.num_instances; i++) {
1064                 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1065                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1066                                 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1067                 if (enable && amdgpu_sdma_phase_quantum) {
1068                         WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1069                         WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1070                         WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1071                 }
1072                 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1073
1074                 /*
1075                  * Enable SDMA utilization. Its only supported on
1076                  * Arcturus for the moment and firmware version 14
1077                  * and above.
1078                  */
1079                 if (adev->asic_type == CHIP_ARCTURUS &&
1080                     adev->sdma.instance[i].fw_version >= 14)
1081                         WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
1082         }
1083
1084 }
1085
1086 /**
1087  * sdma_v4_0_enable - stop the async dma engines
1088  *
1089  * @adev: amdgpu_device pointer
1090  * @enable: enable/disable the DMA MEs.
1091  *
1092  * Halt or unhalt the async dma engines (VEGA10).
1093  */
1094 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1095 {
1096         u32 f32_cntl;
1097         int i;
1098
1099         if (!enable) {
1100                 sdma_v4_0_gfx_stop(adev);
1101                 sdma_v4_0_rlc_stop(adev);
1102                 if (adev->sdma.has_page_queue)
1103                         sdma_v4_0_page_stop(adev);
1104         }
1105
1106         for (i = 0; i < adev->sdma.num_instances; i++) {
1107                 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1108                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1109                 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1110         }
1111 }
1112
1113 /*
1114  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1115  */
1116 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1117 {
1118         /* Set ring buffer size in dwords */
1119         uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1120
1121         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1122 #ifdef __BIG_ENDIAN
1123         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1124         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1125                                 RPTR_WRITEBACK_SWAP_ENABLE, 1);
1126 #endif
1127         return rb_cntl;
1128 }
1129
1130 /**
1131  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1132  *
1133  * @adev: amdgpu_device pointer
1134  * @i: instance to resume
1135  *
1136  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1137  * Returns 0 for success, error for failure.
1138  */
1139 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1140 {
1141         struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1142         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1143         u32 wb_offset;
1144         u32 doorbell;
1145         u32 doorbell_offset;
1146         u64 wptr_gpu_addr;
1147
1148         wb_offset = (ring->rptr_offs * 4);
1149
1150         rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1151         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1152         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1153
1154         /* Initialize the ring buffer's read and write pointers */
1155         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1156         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1157         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1158         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1159
1160         /* set the wb address whether it's enabled or not */
1161         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1162                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1163         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1164                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1165
1166         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1167                                 RPTR_WRITEBACK_ENABLE, 1);
1168
1169         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1170         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1171
1172         ring->wptr = 0;
1173
1174         /* before programing wptr to a less value, need set minor_ptr_update first */
1175         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1176
1177         doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1178         doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1179
1180         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1181                                  ring->use_doorbell);
1182         doorbell_offset = REG_SET_FIELD(doorbell_offset,
1183                                         SDMA0_GFX_DOORBELL_OFFSET,
1184                                         OFFSET, ring->doorbell_index);
1185         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1186         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1187
1188         sdma_v4_0_ring_set_wptr(ring);
1189
1190         /* set minor_ptr_update to 0 after wptr programed */
1191         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1192
1193         /* setup the wptr shadow polling */
1194         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1195         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1196                     lower_32_bits(wptr_gpu_addr));
1197         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1198                     upper_32_bits(wptr_gpu_addr));
1199         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1200         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1201                                        SDMA0_GFX_RB_WPTR_POLL_CNTL,
1202                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1203         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1204
1205         /* enable DMA RB */
1206         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1207         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1208
1209         ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1210         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1211 #ifdef __BIG_ENDIAN
1212         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1213 #endif
1214         /* enable DMA IBs */
1215         WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1216
1217         ring->sched.ready = true;
1218 }
1219
1220 /**
1221  * sdma_v4_0_page_resume - setup and start the async dma engines
1222  *
1223  * @adev: amdgpu_device pointer
1224  * @i: instance to resume
1225  *
1226  * Set up the page DMA ring buffers and enable them (VEGA10).
1227  * Returns 0 for success, error for failure.
1228  */
1229 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1230 {
1231         struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1232         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1233         u32 wb_offset;
1234         u32 doorbell;
1235         u32 doorbell_offset;
1236         u64 wptr_gpu_addr;
1237
1238         wb_offset = (ring->rptr_offs * 4);
1239
1240         rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1241         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1242         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1243
1244         /* Initialize the ring buffer's read and write pointers */
1245         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1246         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1247         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1248         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1249
1250         /* set the wb address whether it's enabled or not */
1251         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1252                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1253         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1254                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1255
1256         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1257                                 RPTR_WRITEBACK_ENABLE, 1);
1258
1259         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1260         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1261
1262         ring->wptr = 0;
1263
1264         /* before programing wptr to a less value, need set minor_ptr_update first */
1265         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1266
1267         doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1268         doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1269
1270         doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1271                                  ring->use_doorbell);
1272         doorbell_offset = REG_SET_FIELD(doorbell_offset,
1273                                         SDMA0_PAGE_DOORBELL_OFFSET,
1274                                         OFFSET, ring->doorbell_index);
1275         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1276         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1277
1278         /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1279         sdma_v4_0_page_ring_set_wptr(ring);
1280
1281         /* set minor_ptr_update to 0 after wptr programed */
1282         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1283
1284         /* setup the wptr shadow polling */
1285         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1286         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1287                     lower_32_bits(wptr_gpu_addr));
1288         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1289                     upper_32_bits(wptr_gpu_addr));
1290         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1291         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1292                                        SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1293                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1294         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1295
1296         /* enable DMA RB */
1297         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1298         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1299
1300         ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1301         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1302 #ifdef __BIG_ENDIAN
1303         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1304 #endif
1305         /* enable DMA IBs */
1306         WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1307
1308         ring->sched.ready = true;
1309 }
1310
1311 static void
1312 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1313 {
1314         uint32_t def, data;
1315
1316         if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1317                 /* enable idle interrupt */
1318                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1319                 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1320
1321                 if (data != def)
1322                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1323         } else {
1324                 /* disable idle interrupt */
1325                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1326                 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1327                 if (data != def)
1328                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1329         }
1330 }
1331
1332 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1333 {
1334         uint32_t def, data;
1335
1336         /* Enable HW based PG. */
1337         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1338         data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1339         if (data != def)
1340                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1341
1342         /* enable interrupt */
1343         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1344         data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1345         if (data != def)
1346                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1347
1348         /* Configure hold time to filter in-valid power on/off request. Use default right now */
1349         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1350         data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1351         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1352         /* Configure switch time for hysteresis purpose. Use default right now */
1353         data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1354         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1355         if(data != def)
1356                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1357 }
1358
1359 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1360 {
1361         if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1362                 return;
1363
1364         switch (adev->asic_type) {
1365         case CHIP_RAVEN:
1366         case CHIP_RENOIR:
1367                 sdma_v4_1_init_power_gating(adev);
1368                 sdma_v4_1_update_power_gating(adev, true);
1369                 break;
1370         default:
1371                 break;
1372         }
1373 }
1374
1375 /**
1376  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1377  *
1378  * @adev: amdgpu_device pointer
1379  *
1380  * Set up the compute DMA queues and enable them (VEGA10).
1381  * Returns 0 for success, error for failure.
1382  */
1383 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1384 {
1385         sdma_v4_0_init_pg(adev);
1386
1387         return 0;
1388 }
1389
1390 /**
1391  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1392  *
1393  * @adev: amdgpu_device pointer
1394  *
1395  * Loads the sDMA0/1 ucode.
1396  * Returns 0 for success, -EINVAL if the ucode is not available.
1397  */
1398 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1399 {
1400         const struct sdma_firmware_header_v1_0 *hdr;
1401         const __le32 *fw_data;
1402         u32 fw_size;
1403         int i, j;
1404
1405         /* halt the MEs */
1406         sdma_v4_0_enable(adev, false);
1407
1408         for (i = 0; i < adev->sdma.num_instances; i++) {
1409                 if (!adev->sdma.instance[i].fw)
1410                         return -EINVAL;
1411
1412                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1413                 amdgpu_ucode_print_sdma_hdr(&hdr->header);
1414                 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1415
1416                 fw_data = (const __le32 *)
1417                         (adev->sdma.instance[i].fw->data +
1418                                 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1419
1420                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1421
1422                 for (j = 0; j < fw_size; j++)
1423                         WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1424                                     le32_to_cpup(fw_data++));
1425
1426                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1427                             adev->sdma.instance[i].fw_version);
1428         }
1429
1430         return 0;
1431 }
1432
1433 /**
1434  * sdma_v4_0_start - setup and start the async dma engines
1435  *
1436  * @adev: amdgpu_device pointer
1437  *
1438  * Set up the DMA engines and enable them (VEGA10).
1439  * Returns 0 for success, error for failure.
1440  */
1441 static int sdma_v4_0_start(struct amdgpu_device *adev)
1442 {
1443         struct amdgpu_ring *ring;
1444         int i, r = 0;
1445
1446         if (amdgpu_sriov_vf(adev)) {
1447                 sdma_v4_0_ctx_switch_enable(adev, false);
1448                 sdma_v4_0_enable(adev, false);
1449         } else {
1450
1451                 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1452                         r = sdma_v4_0_load_microcode(adev);
1453                         if (r)
1454                                 return r;
1455                 }
1456
1457                 /* unhalt the MEs */
1458                 sdma_v4_0_enable(adev, true);
1459                 /* enable sdma ring preemption */
1460                 sdma_v4_0_ctx_switch_enable(adev, true);
1461         }
1462
1463         /* start the gfx rings and rlc compute queues */
1464         for (i = 0; i < adev->sdma.num_instances; i++) {
1465                 uint32_t temp;
1466
1467                 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1468                 sdma_v4_0_gfx_resume(adev, i);
1469                 if (adev->sdma.has_page_queue)
1470                         sdma_v4_0_page_resume(adev, i);
1471
1472                 /* set utc l1 enable flag always to 1 */
1473                 temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1474                 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1475                 WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1476
1477                 if (!amdgpu_sriov_vf(adev)) {
1478                         /* unhalt engine */
1479                         temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1480                         temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1481                         WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1482                 }
1483         }
1484
1485         if (amdgpu_sriov_vf(adev)) {
1486                 sdma_v4_0_ctx_switch_enable(adev, true);
1487                 sdma_v4_0_enable(adev, true);
1488         } else {
1489                 r = sdma_v4_0_rlc_resume(adev);
1490                 if (r)
1491                         return r;
1492         }
1493
1494         for (i = 0; i < adev->sdma.num_instances; i++) {
1495                 ring = &adev->sdma.instance[i].ring;
1496
1497                 r = amdgpu_ring_test_helper(ring);
1498                 if (r)
1499                         return r;
1500
1501                 if (adev->sdma.has_page_queue) {
1502                         struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1503
1504                         r = amdgpu_ring_test_helper(page);
1505                         if (r)
1506                                 return r;
1507
1508                         if (adev->mman.buffer_funcs_ring == page)
1509                                 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1510                 }
1511
1512                 if (adev->mman.buffer_funcs_ring == ring)
1513                         amdgpu_ttm_set_buffer_funcs_status(adev, true);
1514         }
1515
1516         return r;
1517 }
1518
1519 /**
1520  * sdma_v4_0_ring_test_ring - simple async dma engine test
1521  *
1522  * @ring: amdgpu_ring structure holding ring information
1523  *
1524  * Test the DMA engine by writing using it to write an
1525  * value to memory. (VEGA10).
1526  * Returns 0 for success, error for failure.
1527  */
1528 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1529 {
1530         struct amdgpu_device *adev = ring->adev;
1531         unsigned i;
1532         unsigned index;
1533         int r;
1534         u32 tmp;
1535         u64 gpu_addr;
1536
1537         r = amdgpu_device_wb_get(adev, &index);
1538         if (r)
1539                 return r;
1540
1541         gpu_addr = adev->wb.gpu_addr + (index * 4);
1542         tmp = 0xCAFEDEAD;
1543         adev->wb.wb[index] = cpu_to_le32(tmp);
1544
1545         r = amdgpu_ring_alloc(ring, 5);
1546         if (r)
1547                 goto error_free_wb;
1548
1549         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1550                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1551         amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1552         amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1553         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1554         amdgpu_ring_write(ring, 0xDEADBEEF);
1555         amdgpu_ring_commit(ring);
1556
1557         for (i = 0; i < adev->usec_timeout; i++) {
1558                 tmp = le32_to_cpu(adev->wb.wb[index]);
1559                 if (tmp == 0xDEADBEEF)
1560                         break;
1561                 udelay(1);
1562         }
1563
1564         if (i >= adev->usec_timeout)
1565                 r = -ETIMEDOUT;
1566
1567 error_free_wb:
1568         amdgpu_device_wb_free(adev, index);
1569         return r;
1570 }
1571
1572 /**
1573  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1574  *
1575  * @ring: amdgpu_ring structure holding ring information
1576  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1577  *
1578  * Test a simple IB in the DMA ring (VEGA10).
1579  * Returns 0 on success, error on failure.
1580  */
1581 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1582 {
1583         struct amdgpu_device *adev = ring->adev;
1584         struct amdgpu_ib ib;
1585         struct dma_fence *f = NULL;
1586         unsigned index;
1587         long r;
1588         u32 tmp = 0;
1589         u64 gpu_addr;
1590
1591         r = amdgpu_device_wb_get(adev, &index);
1592         if (r)
1593                 return r;
1594
1595         gpu_addr = adev->wb.gpu_addr + (index * 4);
1596         tmp = 0xCAFEDEAD;
1597         adev->wb.wb[index] = cpu_to_le32(tmp);
1598         memset(&ib, 0, sizeof(ib));
1599         r = amdgpu_ib_get(adev, NULL, 256,
1600                                         AMDGPU_IB_POOL_DIRECT, &ib);
1601         if (r)
1602                 goto err0;
1603
1604         ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1605                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1606         ib.ptr[1] = lower_32_bits(gpu_addr);
1607         ib.ptr[2] = upper_32_bits(gpu_addr);
1608         ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1609         ib.ptr[4] = 0xDEADBEEF;
1610         ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1611         ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1612         ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1613         ib.length_dw = 8;
1614
1615         r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1616         if (r)
1617                 goto err1;
1618
1619         r = dma_fence_wait_timeout(f, false, timeout);
1620         if (r == 0) {
1621                 r = -ETIMEDOUT;
1622                 goto err1;
1623         } else if (r < 0) {
1624                 goto err1;
1625         }
1626         tmp = le32_to_cpu(adev->wb.wb[index]);
1627         if (tmp == 0xDEADBEEF)
1628                 r = 0;
1629         else
1630                 r = -EINVAL;
1631
1632 err1:
1633         amdgpu_ib_free(adev, &ib, NULL);
1634         dma_fence_put(f);
1635 err0:
1636         amdgpu_device_wb_free(adev, index);
1637         return r;
1638 }
1639
1640
1641 /**
1642  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1643  *
1644  * @ib: indirect buffer to fill with commands
1645  * @pe: addr of the page entry
1646  * @src: src addr to copy from
1647  * @count: number of page entries to update
1648  *
1649  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1650  */
1651 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1652                                   uint64_t pe, uint64_t src,
1653                                   unsigned count)
1654 {
1655         unsigned bytes = count * 8;
1656
1657         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1658                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1659         ib->ptr[ib->length_dw++] = bytes - 1;
1660         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1661         ib->ptr[ib->length_dw++] = lower_32_bits(src);
1662         ib->ptr[ib->length_dw++] = upper_32_bits(src);
1663         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1664         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1665
1666 }
1667
1668 /**
1669  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1670  *
1671  * @ib: indirect buffer to fill with commands
1672  * @pe: addr of the page entry
1673  * @value: dst addr to write into pe
1674  * @count: number of page entries to update
1675  * @incr: increase next addr by incr bytes
1676  *
1677  * Update PTEs by writing them manually using sDMA (VEGA10).
1678  */
1679 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1680                                    uint64_t value, unsigned count,
1681                                    uint32_t incr)
1682 {
1683         unsigned ndw = count * 2;
1684
1685         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1686                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1687         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1688         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1689         ib->ptr[ib->length_dw++] = ndw - 1;
1690         for (; ndw > 0; ndw -= 2) {
1691                 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1692                 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1693                 value += incr;
1694         }
1695 }
1696
1697 /**
1698  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1699  *
1700  * @ib: indirect buffer to fill with commands
1701  * @pe: addr of the page entry
1702  * @addr: dst addr to write into pe
1703  * @count: number of page entries to update
1704  * @incr: increase next addr by incr bytes
1705  * @flags: access flags
1706  *
1707  * Update the page tables using sDMA (VEGA10).
1708  */
1709 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1710                                      uint64_t pe,
1711                                      uint64_t addr, unsigned count,
1712                                      uint32_t incr, uint64_t flags)
1713 {
1714         /* for physically contiguous pages (vram) */
1715         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1716         ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1717         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1718         ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1719         ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1720         ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1721         ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1722         ib->ptr[ib->length_dw++] = incr; /* increment size */
1723         ib->ptr[ib->length_dw++] = 0;
1724         ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1725 }
1726
1727 /**
1728  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1729  *
1730  * @ring: amdgpu_ring structure holding ring information
1731  * @ib: indirect buffer to fill with padding
1732  */
1733 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1734 {
1735         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1736         u32 pad_count;
1737         int i;
1738
1739         pad_count = (-ib->length_dw) & 7;
1740         for (i = 0; i < pad_count; i++)
1741                 if (sdma && sdma->burst_nop && (i == 0))
1742                         ib->ptr[ib->length_dw++] =
1743                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1744                                 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1745                 else
1746                         ib->ptr[ib->length_dw++] =
1747                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1748 }
1749
1750
1751 /**
1752  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1753  *
1754  * @ring: amdgpu_ring pointer
1755  *
1756  * Make sure all previous operations are completed (CIK).
1757  */
1758 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1759 {
1760         uint32_t seq = ring->fence_drv.sync_seq;
1761         uint64_t addr = ring->fence_drv.gpu_addr;
1762
1763         /* wait for idle */
1764         sdma_v4_0_wait_reg_mem(ring, 1, 0,
1765                                addr & 0xfffffffc,
1766                                upper_32_bits(addr) & 0xffffffff,
1767                                seq, 0xffffffff, 4);
1768 }
1769
1770
1771 /**
1772  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1773  *
1774  * @ring: amdgpu_ring pointer
1775  * @vmid: vmid number to use
1776  * @pd_addr: address
1777  *
1778  * Update the page table base and flush the VM TLB
1779  * using sDMA (VEGA10).
1780  */
1781 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1782                                          unsigned vmid, uint64_t pd_addr)
1783 {
1784         amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1785 }
1786
1787 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1788                                      uint32_t reg, uint32_t val)
1789 {
1790         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1791                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1792         amdgpu_ring_write(ring, reg);
1793         amdgpu_ring_write(ring, val);
1794 }
1795
1796 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1797                                          uint32_t val, uint32_t mask)
1798 {
1799         sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1800 }
1801
1802 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1803 {
1804         uint fw_version = adev->sdma.instance[0].fw_version;
1805
1806         switch (adev->asic_type) {
1807         case CHIP_VEGA10:
1808                 return fw_version >= 430;
1809         case CHIP_VEGA12:
1810                 /*return fw_version >= 31;*/
1811                 return false;
1812         case CHIP_VEGA20:
1813                 return fw_version >= 123;
1814         default:
1815                 return false;
1816         }
1817 }
1818
1819 static int sdma_v4_0_early_init(void *handle)
1820 {
1821         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1822         int r;
1823
1824         if (adev->flags & AMD_IS_APU)
1825                 adev->sdma.num_instances = 1;
1826         else if (adev->asic_type == CHIP_ARCTURUS)
1827                 adev->sdma.num_instances = 8;
1828         else
1829                 adev->sdma.num_instances = 2;
1830
1831         r = sdma_v4_0_init_microcode(adev);
1832         if (r) {
1833                 DRM_ERROR("Failed to load sdma firmware!\n");
1834                 return r;
1835         }
1836
1837         /* TODO: Page queue breaks driver reload under SRIOV */
1838         if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1839                 adev->sdma.has_page_queue = false;
1840         else if (sdma_v4_0_fw_support_paging_queue(adev))
1841                 adev->sdma.has_page_queue = true;
1842
1843         sdma_v4_0_set_ring_funcs(adev);
1844         sdma_v4_0_set_buffer_funcs(adev);
1845         sdma_v4_0_set_vm_pte_funcs(adev);
1846         sdma_v4_0_set_irq_funcs(adev);
1847         sdma_v4_0_set_ras_funcs(adev);
1848
1849         return 0;
1850 }
1851
1852 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1853                 void *err_data,
1854                 struct amdgpu_iv_entry *entry);
1855
1856 static int sdma_v4_0_late_init(void *handle)
1857 {
1858         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1859         struct ras_ih_if ih_info = {
1860                 .cb = sdma_v4_0_process_ras_data_cb,
1861         };
1862
1863         sdma_v4_0_setup_ulv(adev);
1864
1865         if (adev->sdma.funcs && adev->sdma.funcs->reset_ras_error_count)
1866                 adev->sdma.funcs->reset_ras_error_count(adev);
1867
1868         if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init)
1869                 return adev->sdma.funcs->ras_late_init(adev, &ih_info);
1870         else
1871                 return 0;
1872 }
1873
1874 static int sdma_v4_0_sw_init(void *handle)
1875 {
1876         struct amdgpu_ring *ring;
1877         int r, i;
1878         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1879
1880         /* SDMA trap event */
1881         for (i = 0; i < adev->sdma.num_instances; i++) {
1882                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1883                                       SDMA0_4_0__SRCID__SDMA_TRAP,
1884                                       &adev->sdma.trap_irq);
1885                 if (r)
1886                         return r;
1887         }
1888
1889         /* SDMA SRAM ECC event */
1890         for (i = 0; i < adev->sdma.num_instances; i++) {
1891                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1892                                       SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1893                                       &adev->sdma.ecc_irq);
1894                 if (r)
1895                         return r;
1896         }
1897
1898         for (i = 0; i < adev->sdma.num_instances; i++) {
1899                 ring = &adev->sdma.instance[i].ring;
1900                 ring->ring_obj = NULL;
1901                 ring->use_doorbell = true;
1902
1903                 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1904                                 ring->use_doorbell?"true":"false");
1905
1906                 /* doorbell size is 2 dwords, get DWORD offset */
1907                 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1908
1909                 sprintf(ring->name, "sdma%d", i);
1910                 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1911                                      AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1912                                      AMDGPU_RING_PRIO_DEFAULT);
1913                 if (r)
1914                         return r;
1915
1916                 if (adev->sdma.has_page_queue) {
1917                         ring = &adev->sdma.instance[i].page;
1918                         ring->ring_obj = NULL;
1919                         ring->use_doorbell = true;
1920
1921                         /* paging queue use same doorbell index/routing as gfx queue
1922                          * with 0x400 (4096 dwords) offset on second doorbell page
1923                          */
1924                         ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1925                         ring->doorbell_index += 0x400;
1926
1927                         sprintf(ring->name, "page%d", i);
1928                         r = amdgpu_ring_init(adev, ring, 1024,
1929                                              &adev->sdma.trap_irq,
1930                                              AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1931                                              AMDGPU_RING_PRIO_DEFAULT);
1932                         if (r)
1933                                 return r;
1934                 }
1935         }
1936
1937         return r;
1938 }
1939
1940 static int sdma_v4_0_sw_fini(void *handle)
1941 {
1942         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1943         int i;
1944
1945         if (adev->sdma.funcs && adev->sdma.funcs->ras_fini)
1946                 adev->sdma.funcs->ras_fini(adev);
1947
1948         for (i = 0; i < adev->sdma.num_instances; i++) {
1949                 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1950                 if (adev->sdma.has_page_queue)
1951                         amdgpu_ring_fini(&adev->sdma.instance[i].page);
1952         }
1953
1954         sdma_v4_0_destroy_inst_ctx(adev);
1955
1956         return 0;
1957 }
1958
1959 static int sdma_v4_0_hw_init(void *handle)
1960 {
1961         int r;
1962         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1963
1964         if (adev->flags & AMD_IS_APU)
1965                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1966
1967         if (!amdgpu_sriov_vf(adev))
1968                 sdma_v4_0_init_golden_registers(adev);
1969
1970         r = sdma_v4_0_start(adev);
1971
1972         return r;
1973 }
1974
1975 static int sdma_v4_0_hw_fini(void *handle)
1976 {
1977         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1978         int i;
1979
1980         if (amdgpu_sriov_vf(adev))
1981                 return 0;
1982
1983         for (i = 0; i < adev->sdma.num_instances; i++) {
1984                 amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1985                                AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1986         }
1987
1988         sdma_v4_0_ctx_switch_enable(adev, false);
1989         sdma_v4_0_enable(adev, false);
1990
1991         if (adev->flags & AMD_IS_APU)
1992                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1993
1994         return 0;
1995 }
1996
1997 static int sdma_v4_0_suspend(void *handle)
1998 {
1999         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2000
2001         return sdma_v4_0_hw_fini(adev);
2002 }
2003
2004 static int sdma_v4_0_resume(void *handle)
2005 {
2006         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2007
2008         return sdma_v4_0_hw_init(adev);
2009 }
2010
2011 static bool sdma_v4_0_is_idle(void *handle)
2012 {
2013         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2014         u32 i;
2015
2016         for (i = 0; i < adev->sdma.num_instances; i++) {
2017                 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
2018
2019                 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
2020                         return false;
2021         }
2022
2023         return true;
2024 }
2025
2026 static int sdma_v4_0_wait_for_idle(void *handle)
2027 {
2028         unsigned i, j;
2029         u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
2030         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2031
2032         for (i = 0; i < adev->usec_timeout; i++) {
2033                 for (j = 0; j < adev->sdma.num_instances; j++) {
2034                         sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2035                         if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2036                                 break;
2037                 }
2038                 if (j == adev->sdma.num_instances)
2039                         return 0;
2040                 udelay(1);
2041         }
2042         return -ETIMEDOUT;
2043 }
2044
2045 static int sdma_v4_0_soft_reset(void *handle)
2046 {
2047         /* todo */
2048
2049         return 0;
2050 }
2051
2052 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2053                                         struct amdgpu_irq_src *source,
2054                                         unsigned type,
2055                                         enum amdgpu_interrupt_state state)
2056 {
2057         u32 sdma_cntl;
2058
2059         sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2060         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2061                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2062         WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2063
2064         return 0;
2065 }
2066
2067 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2068                                       struct amdgpu_irq_src *source,
2069                                       struct amdgpu_iv_entry *entry)
2070 {
2071         uint32_t instance;
2072
2073         DRM_DEBUG("IH: SDMA trap\n");
2074         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2075         switch (entry->ring_id) {
2076         case 0:
2077                 amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2078                 break;
2079         case 1:
2080                 if (adev->asic_type == CHIP_VEGA20)
2081                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
2082                 break;
2083         case 2:
2084                 /* XXX compute */
2085                 break;
2086         case 3:
2087                 if (adev->asic_type != CHIP_VEGA20)
2088                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
2089                 break;
2090         }
2091         return 0;
2092 }
2093
2094 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2095                 void *err_data,
2096                 struct amdgpu_iv_entry *entry)
2097 {
2098         int instance;
2099
2100         /* When “Full RAS” is enabled, the per-IP interrupt sources should
2101          * be disabled and the driver should only look for the aggregated
2102          * interrupt via sync flood
2103          */
2104         if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2105                 goto out;
2106
2107         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2108         if (instance < 0)
2109                 goto out;
2110
2111         amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2112
2113 out:
2114         return AMDGPU_RAS_SUCCESS;
2115 }
2116
2117 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2118                                               struct amdgpu_irq_src *source,
2119                                               struct amdgpu_iv_entry *entry)
2120 {
2121         int instance;
2122
2123         DRM_ERROR("Illegal instruction in SDMA command stream\n");
2124
2125         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2126         if (instance < 0)
2127                 return 0;
2128
2129         switch (entry->ring_id) {
2130         case 0:
2131                 drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2132                 break;
2133         }
2134         return 0;
2135 }
2136
2137 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2138                                         struct amdgpu_irq_src *source,
2139                                         unsigned type,
2140                                         enum amdgpu_interrupt_state state)
2141 {
2142         u32 sdma_edc_config;
2143
2144         sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2145         sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2146                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2147         WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2148
2149         return 0;
2150 }
2151
2152 static void sdma_v4_0_update_medium_grain_clock_gating(
2153                 struct amdgpu_device *adev,
2154                 bool enable)
2155 {
2156         uint32_t data, def;
2157         int i;
2158
2159         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2160                 for (i = 0; i < adev->sdma.num_instances; i++) {
2161                         def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2162                         data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2163                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2164                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2165                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2166                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2167                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2168                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2169                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2170                         if (def != data)
2171                                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2172                 }
2173         } else {
2174                 for (i = 0; i < adev->sdma.num_instances; i++) {
2175                         def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2176                         data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2177                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2178                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2179                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2180                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2181                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2182                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2183                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2184                         if (def != data)
2185                                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2186                 }
2187         }
2188 }
2189
2190
2191 static void sdma_v4_0_update_medium_grain_light_sleep(
2192                 struct amdgpu_device *adev,
2193                 bool enable)
2194 {
2195         uint32_t data, def;
2196         int i;
2197
2198         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2199                 for (i = 0; i < adev->sdma.num_instances; i++) {
2200                         /* 1-not override: enable sdma mem light sleep */
2201                         def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2202                         data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2203                         if (def != data)
2204                                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2205                 }
2206         } else {
2207                 for (i = 0; i < adev->sdma.num_instances; i++) {
2208                 /* 0-override:disable sdma mem light sleep */
2209                         def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2210                         data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2211                         if (def != data)
2212                                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2213                 }
2214         }
2215 }
2216
2217 static int sdma_v4_0_set_clockgating_state(void *handle,
2218                                           enum amd_clockgating_state state)
2219 {
2220         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2221
2222         if (amdgpu_sriov_vf(adev))
2223                 return 0;
2224
2225         switch (adev->asic_type) {
2226         case CHIP_VEGA10:
2227         case CHIP_VEGA12:
2228         case CHIP_VEGA20:
2229         case CHIP_RAVEN:
2230         case CHIP_ARCTURUS:
2231         case CHIP_RENOIR:
2232                 sdma_v4_0_update_medium_grain_clock_gating(adev,
2233                                 state == AMD_CG_STATE_GATE);
2234                 sdma_v4_0_update_medium_grain_light_sleep(adev,
2235                                 state == AMD_CG_STATE_GATE);
2236                 break;
2237         default:
2238                 break;
2239         }
2240         return 0;
2241 }
2242
2243 static int sdma_v4_0_set_powergating_state(void *handle,
2244                                           enum amd_powergating_state state)
2245 {
2246         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2247
2248         switch (adev->asic_type) {
2249         case CHIP_RAVEN:
2250         case CHIP_RENOIR:
2251                 sdma_v4_1_update_power_gating(adev,
2252                                 state == AMD_PG_STATE_GATE ? true : false);
2253                 break;
2254         default:
2255                 break;
2256         }
2257
2258         return 0;
2259 }
2260
2261 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2262 {
2263         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2264         int data;
2265
2266         if (amdgpu_sriov_vf(adev))
2267                 *flags = 0;
2268
2269         /* AMD_CG_SUPPORT_SDMA_MGCG */
2270         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2271         if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2272                 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2273
2274         /* AMD_CG_SUPPORT_SDMA_LS */
2275         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2276         if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2277                 *flags |= AMD_CG_SUPPORT_SDMA_LS;
2278 }
2279
2280 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2281         .name = "sdma_v4_0",
2282         .early_init = sdma_v4_0_early_init,
2283         .late_init = sdma_v4_0_late_init,
2284         .sw_init = sdma_v4_0_sw_init,
2285         .sw_fini = sdma_v4_0_sw_fini,
2286         .hw_init = sdma_v4_0_hw_init,
2287         .hw_fini = sdma_v4_0_hw_fini,
2288         .suspend = sdma_v4_0_suspend,
2289         .resume = sdma_v4_0_resume,
2290         .is_idle = sdma_v4_0_is_idle,
2291         .wait_for_idle = sdma_v4_0_wait_for_idle,
2292         .soft_reset = sdma_v4_0_soft_reset,
2293         .set_clockgating_state = sdma_v4_0_set_clockgating_state,
2294         .set_powergating_state = sdma_v4_0_set_powergating_state,
2295         .get_clockgating_state = sdma_v4_0_get_clockgating_state,
2296 };
2297
2298 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2299         .type = AMDGPU_RING_TYPE_SDMA,
2300         .align_mask = 0xf,
2301         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2302         .support_64bit_ptrs = true,
2303         .vmhub = AMDGPU_MMHUB_0,
2304         .get_rptr = sdma_v4_0_ring_get_rptr,
2305         .get_wptr = sdma_v4_0_ring_get_wptr,
2306         .set_wptr = sdma_v4_0_ring_set_wptr,
2307         .emit_frame_size =
2308                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2309                 3 + /* hdp invalidate */
2310                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2311                 /* sdma_v4_0_ring_emit_vm_flush */
2312                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2313                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2314                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2315         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2316         .emit_ib = sdma_v4_0_ring_emit_ib,
2317         .emit_fence = sdma_v4_0_ring_emit_fence,
2318         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2319         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2320         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2321         .test_ring = sdma_v4_0_ring_test_ring,
2322         .test_ib = sdma_v4_0_ring_test_ib,
2323         .insert_nop = sdma_v4_0_ring_insert_nop,
2324         .pad_ib = sdma_v4_0_ring_pad_ib,
2325         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2326         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2327         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2328 };
2329
2330 /*
2331  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2332  * So create a individual constant ring_funcs for those instances.
2333  */
2334 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2335         .type = AMDGPU_RING_TYPE_SDMA,
2336         .align_mask = 0xf,
2337         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2338         .support_64bit_ptrs = true,
2339         .vmhub = AMDGPU_MMHUB_1,
2340         .get_rptr = sdma_v4_0_ring_get_rptr,
2341         .get_wptr = sdma_v4_0_ring_get_wptr,
2342         .set_wptr = sdma_v4_0_ring_set_wptr,
2343         .emit_frame_size =
2344                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2345                 3 + /* hdp invalidate */
2346                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2347                 /* sdma_v4_0_ring_emit_vm_flush */
2348                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2349                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2350                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2351         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2352         .emit_ib = sdma_v4_0_ring_emit_ib,
2353         .emit_fence = sdma_v4_0_ring_emit_fence,
2354         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2355         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2356         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2357         .test_ring = sdma_v4_0_ring_test_ring,
2358         .test_ib = sdma_v4_0_ring_test_ib,
2359         .insert_nop = sdma_v4_0_ring_insert_nop,
2360         .pad_ib = sdma_v4_0_ring_pad_ib,
2361         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2362         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2363         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2364 };
2365
2366 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2367         .type = AMDGPU_RING_TYPE_SDMA,
2368         .align_mask = 0xf,
2369         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2370         .support_64bit_ptrs = true,
2371         .vmhub = AMDGPU_MMHUB_0,
2372         .get_rptr = sdma_v4_0_ring_get_rptr,
2373         .get_wptr = sdma_v4_0_page_ring_get_wptr,
2374         .set_wptr = sdma_v4_0_page_ring_set_wptr,
2375         .emit_frame_size =
2376                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2377                 3 + /* hdp invalidate */
2378                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2379                 /* sdma_v4_0_ring_emit_vm_flush */
2380                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2381                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2382                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2383         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2384         .emit_ib = sdma_v4_0_ring_emit_ib,
2385         .emit_fence = sdma_v4_0_ring_emit_fence,
2386         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2387         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2388         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2389         .test_ring = sdma_v4_0_ring_test_ring,
2390         .test_ib = sdma_v4_0_ring_test_ib,
2391         .insert_nop = sdma_v4_0_ring_insert_nop,
2392         .pad_ib = sdma_v4_0_ring_pad_ib,
2393         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2394         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2395         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2396 };
2397
2398 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2399         .type = AMDGPU_RING_TYPE_SDMA,
2400         .align_mask = 0xf,
2401         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2402         .support_64bit_ptrs = true,
2403         .vmhub = AMDGPU_MMHUB_1,
2404         .get_rptr = sdma_v4_0_ring_get_rptr,
2405         .get_wptr = sdma_v4_0_page_ring_get_wptr,
2406         .set_wptr = sdma_v4_0_page_ring_set_wptr,
2407         .emit_frame_size =
2408                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2409                 3 + /* hdp invalidate */
2410                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2411                 /* sdma_v4_0_ring_emit_vm_flush */
2412                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2413                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2414                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2415         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2416         .emit_ib = sdma_v4_0_ring_emit_ib,
2417         .emit_fence = sdma_v4_0_ring_emit_fence,
2418         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2419         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2420         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2421         .test_ring = sdma_v4_0_ring_test_ring,
2422         .test_ib = sdma_v4_0_ring_test_ib,
2423         .insert_nop = sdma_v4_0_ring_insert_nop,
2424         .pad_ib = sdma_v4_0_ring_pad_ib,
2425         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2426         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2427         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2428 };
2429
2430 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2431 {
2432         int i;
2433
2434         for (i = 0; i < adev->sdma.num_instances; i++) {
2435                 if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2436                         adev->sdma.instance[i].ring.funcs =
2437                                         &sdma_v4_0_ring_funcs_2nd_mmhub;
2438                 else
2439                         adev->sdma.instance[i].ring.funcs =
2440                                         &sdma_v4_0_ring_funcs;
2441                 adev->sdma.instance[i].ring.me = i;
2442                 if (adev->sdma.has_page_queue) {
2443                         if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2444                                 adev->sdma.instance[i].page.funcs =
2445                                         &sdma_v4_0_page_ring_funcs_2nd_mmhub;
2446                         else
2447                                 adev->sdma.instance[i].page.funcs =
2448                                         &sdma_v4_0_page_ring_funcs;
2449                         adev->sdma.instance[i].page.me = i;
2450                 }
2451         }
2452 }
2453
2454 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2455         .set = sdma_v4_0_set_trap_irq_state,
2456         .process = sdma_v4_0_process_trap_irq,
2457 };
2458
2459 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2460         .process = sdma_v4_0_process_illegal_inst_irq,
2461 };
2462
2463 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2464         .set = sdma_v4_0_set_ecc_irq_state,
2465         .process = amdgpu_sdma_process_ecc_irq,
2466 };
2467
2468
2469
2470 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2471 {
2472         switch (adev->sdma.num_instances) {
2473         case 1:
2474                 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2475                 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2476                 break;
2477         case 8:
2478                 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2479                 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2480                 break;
2481         case 2:
2482         default:
2483                 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2484                 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2485                 break;
2486         }
2487         adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2488         adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2489         adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2490 }
2491
2492 /**
2493  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2494  *
2495  * @ib: indirect buffer to copy to
2496  * @src_offset: src GPU address
2497  * @dst_offset: dst GPU address
2498  * @byte_count: number of bytes to xfer
2499  * @tmz: if a secure copy should be used
2500  *
2501  * Copy GPU buffers using the DMA engine (VEGA10/12).
2502  * Used by the amdgpu ttm implementation to move pages if
2503  * registered as the asic copy callback.
2504  */
2505 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2506                                        uint64_t src_offset,
2507                                        uint64_t dst_offset,
2508                                        uint32_t byte_count,
2509                                        bool tmz)
2510 {
2511         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2512                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2513                 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2514         ib->ptr[ib->length_dw++] = byte_count - 1;
2515         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2516         ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2517         ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2518         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2519         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2520 }
2521
2522 /**
2523  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2524  *
2525  * @ib: indirect buffer to copy to
2526  * @src_data: value to write to buffer
2527  * @dst_offset: dst GPU address
2528  * @byte_count: number of bytes to xfer
2529  *
2530  * Fill GPU buffers using the DMA engine (VEGA10/12).
2531  */
2532 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2533                                        uint32_t src_data,
2534                                        uint64_t dst_offset,
2535                                        uint32_t byte_count)
2536 {
2537         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2538         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2539         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2540         ib->ptr[ib->length_dw++] = src_data;
2541         ib->ptr[ib->length_dw++] = byte_count - 1;
2542 }
2543
2544 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2545         .copy_max_bytes = 0x400000,
2546         .copy_num_dw = 7,
2547         .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2548
2549         .fill_max_bytes = 0x400000,
2550         .fill_num_dw = 5,
2551         .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2552 };
2553
2554 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2555 {
2556         adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2557         if (adev->sdma.has_page_queue)
2558                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2559         else
2560                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2561 }
2562
2563 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2564         .copy_pte_num_dw = 7,
2565         .copy_pte = sdma_v4_0_vm_copy_pte,
2566
2567         .write_pte = sdma_v4_0_vm_write_pte,
2568         .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2569 };
2570
2571 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2572 {
2573         struct drm_gpu_scheduler *sched;
2574         unsigned i;
2575
2576         adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2577         for (i = 0; i < adev->sdma.num_instances; i++) {
2578                 if (adev->sdma.has_page_queue)
2579                         sched = &adev->sdma.instance[i].page.sched;
2580                 else
2581                         sched = &adev->sdma.instance[i].ring.sched;
2582                 adev->vm_manager.vm_pte_scheds[i] = sched;
2583         }
2584         adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2585 }
2586
2587 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2588                                         uint32_t instance,
2589                                         uint32_t *sec_count)
2590 {
2591         uint32_t i;
2592         uint32_t sec_cnt;
2593
2594         /* double bits error (multiple bits) error detection is not supported */
2595         for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2596                 /* the SDMA_EDC_COUNTER register in each sdma instance
2597                  * shares the same sed shift_mask
2598                  * */
2599                 sec_cnt = (value &
2600                         sdma_v4_0_ras_fields[i].sec_count_mask) >>
2601                         sdma_v4_0_ras_fields[i].sec_count_shift;
2602                 if (sec_cnt) {
2603                         DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2604                                 sdma_v4_0_ras_fields[i].name,
2605                                 instance, sec_cnt);
2606                         *sec_count += sec_cnt;
2607                 }
2608         }
2609 }
2610
2611 static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,
2612                         uint32_t instance, void *ras_error_status)
2613 {
2614         struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2615         uint32_t sec_count = 0;
2616         uint32_t reg_value = 0;
2617
2618         reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2619         /* double bit error is not supported */
2620         if (reg_value)
2621                 sdma_v4_0_get_ras_error_count(reg_value,
2622                                 instance, &sec_count);
2623         /* err_data->ce_count should be initialized to 0
2624          * before calling into this function */
2625         err_data->ce_count += sec_count;
2626         /* double bit error is not supported
2627          * set ue count to 0 */
2628         err_data->ue_count = 0;
2629
2630         return 0;
2631 };
2632
2633 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2634 {
2635         int i;
2636
2637         /* read back edc counter registers to clear the counters */
2638         if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2639                 for (i = 0; i < adev->sdma.num_instances; i++)
2640                         RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2641         }
2642 }
2643
2644 static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = {
2645         .ras_late_init = amdgpu_sdma_ras_late_init,
2646         .ras_fini = amdgpu_sdma_ras_fini,
2647         .query_ras_error_count = sdma_v4_0_query_ras_error_count,
2648         .reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2649 };
2650
2651 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2652 {
2653         switch (adev->asic_type) {
2654         case CHIP_VEGA20:
2655         case CHIP_ARCTURUS:
2656                 adev->sdma.funcs = &sdma_v4_0_ras_funcs;
2657                 break;
2658         default:
2659                 break;
2660         }
2661 }
2662
2663 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2664         .type = AMD_IP_BLOCK_TYPE_SDMA,
2665         .major = 4,
2666         .minor = 0,
2667         .rev = 0,
2668         .funcs = &sdma_v4_0_ip_funcs,
2669 };
This page took 0.188106 seconds and 4 git commands to generate.