2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
25 #include "transaction.h"
26 #include "print-tree.h"
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32 *root, struct btrfs_key *ins_key,
33 struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root, struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct btrfs_root *root,
39 struct extent_buffer *dst_buf,
40 struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 struct extent_buffer *eb);
46 struct btrfs_path *btrfs_alloc_path(void)
48 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
52 * set all locked nodes in the path to blocking locks. This should
53 * be done before scheduling
55 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
59 if (!p->nodes[i] || !p->locks[i])
61 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
62 if (p->locks[i] == BTRFS_READ_LOCK)
63 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
64 else if (p->locks[i] == BTRFS_WRITE_LOCK)
65 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
70 * reset all the locked nodes in the patch to spinning locks.
72 * held is used to keep lockdep happy, when lockdep is enabled
73 * we set held to a blocking lock before we go around and
74 * retake all the spinlocks in the path. You can safely use NULL
77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78 struct extent_buffer *held, int held_rw)
83 btrfs_set_lock_blocking_rw(held, held_rw);
84 if (held_rw == BTRFS_WRITE_LOCK)
85 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
86 else if (held_rw == BTRFS_READ_LOCK)
87 held_rw = BTRFS_READ_LOCK_BLOCKING;
89 btrfs_set_path_blocking(p);
91 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
92 if (p->nodes[i] && p->locks[i]) {
93 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
94 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
95 p->locks[i] = BTRFS_WRITE_LOCK;
96 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
97 p->locks[i] = BTRFS_READ_LOCK;
102 btrfs_clear_lock_blocking_rw(held, held_rw);
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path *p)
110 btrfs_release_path(p);
111 kmem_cache_free(btrfs_path_cachep, p);
115 * path release drops references on the extent buffers in the path
116 * and it drops any locks held by this path
118 * It is safe to call this on paths that no locks or extent buffers held.
120 noinline void btrfs_release_path(struct btrfs_path *p)
124 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
129 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
132 free_extent_buffer(p->nodes[i]);
138 * safely gets a reference on the root node of a tree. A lock
139 * is not taken, so a concurrent writer may put a different node
140 * at the root of the tree. See btrfs_lock_root_node for the
143 * The extent buffer returned by this has a reference taken, so
144 * it won't disappear. It may stop being the root of the tree
145 * at any time because there are no locks held.
147 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149 struct extent_buffer *eb;
153 eb = rcu_dereference(root->node);
156 * RCU really hurts here, we could free up the root node because
157 * it was COWed but we may not get the new root node yet so do
158 * the inc_not_zero dance and if it doesn't work then
159 * synchronize_rcu and try again.
161 if (atomic_inc_not_zero(&eb->refs)) {
171 /* loop around taking references on and locking the root node of the
172 * tree until you end up with a lock on the root. A locked buffer
173 * is returned, with a reference held.
175 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177 struct extent_buffer *eb;
180 eb = btrfs_root_node(root);
182 if (eb == root->node)
184 btrfs_tree_unlock(eb);
185 free_extent_buffer(eb);
190 /* loop around taking references on and locking the root node of the
191 * tree until you end up with a lock on the root. A locked buffer
192 * is returned, with a reference held.
194 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 struct extent_buffer *eb;
199 eb = btrfs_root_node(root);
200 btrfs_tree_read_lock(eb);
201 if (eb == root->node)
203 btrfs_tree_read_unlock(eb);
204 free_extent_buffer(eb);
209 /* cowonly root (everything not a reference counted cow subvolume), just get
210 * put onto a simple dirty list. transaction.c walks this to make sure they
211 * get properly updated on disk.
213 static void add_root_to_dirty_list(struct btrfs_root *root)
215 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
216 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
219 spin_lock(&root->fs_info->trans_lock);
220 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
221 /* Want the extent tree to be the last on the list */
222 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
223 list_move_tail(&root->dirty_list,
224 &root->fs_info->dirty_cowonly_roots);
226 list_move(&root->dirty_list,
227 &root->fs_info->dirty_cowonly_roots);
229 spin_unlock(&root->fs_info->trans_lock);
233 * used by snapshot creation to make a copy of a root for a tree with
234 * a given objectid. The buffer with the new root node is returned in
235 * cow_ret, and this func returns zero on success or a negative error code.
237 int btrfs_copy_root(struct btrfs_trans_handle *trans,
238 struct btrfs_root *root,
239 struct extent_buffer *buf,
240 struct extent_buffer **cow_ret, u64 new_root_objectid)
242 struct extent_buffer *cow;
245 struct btrfs_disk_key disk_key;
247 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
248 trans->transid != root->fs_info->running_transaction->transid);
249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250 trans->transid != root->last_trans);
252 level = btrfs_header_level(buf);
254 btrfs_item_key(buf, &disk_key, 0);
256 btrfs_node_key(buf, &disk_key, 0);
258 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
259 &disk_key, level, buf->start, 0);
263 copy_extent_buffer(cow, buf, 0, 0, cow->len);
264 btrfs_set_header_bytenr(cow, cow->start);
265 btrfs_set_header_generation(cow, trans->transid);
266 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
267 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
268 BTRFS_HEADER_FLAG_RELOC);
269 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
270 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
272 btrfs_set_header_owner(cow, new_root_objectid);
274 write_extent_buffer_fsid(cow, root->fs_info->fsid);
276 WARN_ON(btrfs_header_generation(buf) > trans->transid);
277 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278 ret = btrfs_inc_ref(trans, root, cow, 1);
280 ret = btrfs_inc_ref(trans, root, cow, 0);
285 btrfs_mark_buffer_dirty(cow);
294 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
295 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
297 MOD_LOG_ROOT_REPLACE,
300 struct tree_mod_move {
305 struct tree_mod_root {
310 struct tree_mod_elem {
316 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
319 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
322 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
323 struct btrfs_disk_key key;
326 /* this is used for op == MOD_LOG_MOVE_KEYS */
327 struct tree_mod_move move;
329 /* this is used for op == MOD_LOG_ROOT_REPLACE */
330 struct tree_mod_root old_root;
333 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
335 read_lock(&fs_info->tree_mod_log_lock);
338 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
340 read_unlock(&fs_info->tree_mod_log_lock);
343 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
345 write_lock(&fs_info->tree_mod_log_lock);
348 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
350 write_unlock(&fs_info->tree_mod_log_lock);
354 * Pull a new tree mod seq number for our operation.
356 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
358 return atomic64_inc_return(&fs_info->tree_mod_seq);
362 * This adds a new blocker to the tree mod log's blocker list if the @elem
363 * passed does not already have a sequence number set. So when a caller expects
364 * to record tree modifications, it should ensure to set elem->seq to zero
365 * before calling btrfs_get_tree_mod_seq.
366 * Returns a fresh, unused tree log modification sequence number, even if no new
369 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
370 struct seq_list *elem)
372 tree_mod_log_write_lock(fs_info);
373 spin_lock(&fs_info->tree_mod_seq_lock);
375 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
376 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
378 spin_unlock(&fs_info->tree_mod_seq_lock);
379 tree_mod_log_write_unlock(fs_info);
384 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
385 struct seq_list *elem)
387 struct rb_root *tm_root;
388 struct rb_node *node;
389 struct rb_node *next;
390 struct seq_list *cur_elem;
391 struct tree_mod_elem *tm;
392 u64 min_seq = (u64)-1;
393 u64 seq_putting = elem->seq;
398 spin_lock(&fs_info->tree_mod_seq_lock);
399 list_del(&elem->list);
402 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
403 if (cur_elem->seq < min_seq) {
404 if (seq_putting > cur_elem->seq) {
406 * blocker with lower sequence number exists, we
407 * cannot remove anything from the log
409 spin_unlock(&fs_info->tree_mod_seq_lock);
412 min_seq = cur_elem->seq;
415 spin_unlock(&fs_info->tree_mod_seq_lock);
418 * anything that's lower than the lowest existing (read: blocked)
419 * sequence number can be removed from the tree.
421 tree_mod_log_write_lock(fs_info);
422 tm_root = &fs_info->tree_mod_log;
423 for (node = rb_first(tm_root); node; node = next) {
424 next = rb_next(node);
425 tm = container_of(node, struct tree_mod_elem, node);
426 if (tm->seq > min_seq)
428 rb_erase(node, tm_root);
431 tree_mod_log_write_unlock(fs_info);
435 * key order of the log:
436 * node/leaf start address -> sequence
438 * The 'start address' is the logical address of the *new* root node
439 * for root replace operations, or the logical address of the affected
440 * block for all other operations.
442 * Note: must be called with write lock (tree_mod_log_write_lock).
445 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
447 struct rb_root *tm_root;
448 struct rb_node **new;
449 struct rb_node *parent = NULL;
450 struct tree_mod_elem *cur;
454 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
456 tm_root = &fs_info->tree_mod_log;
457 new = &tm_root->rb_node;
459 cur = container_of(*new, struct tree_mod_elem, node);
461 if (cur->logical < tm->logical)
462 new = &((*new)->rb_left);
463 else if (cur->logical > tm->logical)
464 new = &((*new)->rb_right);
465 else if (cur->seq < tm->seq)
466 new = &((*new)->rb_left);
467 else if (cur->seq > tm->seq)
468 new = &((*new)->rb_right);
473 rb_link_node(&tm->node, parent, new);
474 rb_insert_color(&tm->node, tm_root);
479 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
480 * returns zero with the tree_mod_log_lock acquired. The caller must hold
481 * this until all tree mod log insertions are recorded in the rb tree and then
482 * call tree_mod_log_write_unlock() to release.
484 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
485 struct extent_buffer *eb) {
487 if (list_empty(&(fs_info)->tree_mod_seq_list))
489 if (eb && btrfs_header_level(eb) == 0)
492 tree_mod_log_write_lock(fs_info);
493 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
494 tree_mod_log_write_unlock(fs_info);
501 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
502 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
503 struct extent_buffer *eb)
506 if (list_empty(&(fs_info)->tree_mod_seq_list))
508 if (eb && btrfs_header_level(eb) == 0)
514 static struct tree_mod_elem *
515 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
516 enum mod_log_op op, gfp_t flags)
518 struct tree_mod_elem *tm;
520 tm = kzalloc(sizeof(*tm), flags);
524 tm->logical = eb->start;
525 if (op != MOD_LOG_KEY_ADD) {
526 btrfs_node_key(eb, &tm->key, slot);
527 tm->blockptr = btrfs_node_blockptr(eb, slot);
531 tm->generation = btrfs_node_ptr_generation(eb, slot);
532 RB_CLEAR_NODE(&tm->node);
538 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
539 struct extent_buffer *eb, int slot,
540 enum mod_log_op op, gfp_t flags)
542 struct tree_mod_elem *tm;
545 if (!tree_mod_need_log(fs_info, eb))
548 tm = alloc_tree_mod_elem(eb, slot, op, flags);
552 if (tree_mod_dont_log(fs_info, eb)) {
557 ret = __tree_mod_log_insert(fs_info, tm);
558 tree_mod_log_write_unlock(fs_info);
566 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
567 struct extent_buffer *eb, int dst_slot, int src_slot,
568 int nr_items, gfp_t flags)
570 struct tree_mod_elem *tm = NULL;
571 struct tree_mod_elem **tm_list = NULL;
576 if (!tree_mod_need_log(fs_info, eb))
579 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
583 tm = kzalloc(sizeof(*tm), flags);
589 tm->logical = eb->start;
591 tm->move.dst_slot = dst_slot;
592 tm->move.nr_items = nr_items;
593 tm->op = MOD_LOG_MOVE_KEYS;
595 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
596 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
597 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
604 if (tree_mod_dont_log(fs_info, eb))
609 * When we override something during the move, we log these removals.
610 * This can only happen when we move towards the beginning of the
611 * buffer, i.e. dst_slot < src_slot.
613 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
614 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
619 ret = __tree_mod_log_insert(fs_info, tm);
622 tree_mod_log_write_unlock(fs_info);
627 for (i = 0; i < nr_items; i++) {
628 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
629 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
633 tree_mod_log_write_unlock(fs_info);
641 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
642 struct tree_mod_elem **tm_list,
648 for (i = nritems - 1; i >= 0; i--) {
649 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
651 for (j = nritems - 1; j > i; j--)
652 rb_erase(&tm_list[j]->node,
653 &fs_info->tree_mod_log);
662 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
663 struct extent_buffer *old_root,
664 struct extent_buffer *new_root, gfp_t flags,
667 struct tree_mod_elem *tm = NULL;
668 struct tree_mod_elem **tm_list = NULL;
673 if (!tree_mod_need_log(fs_info, NULL))
676 if (log_removal && btrfs_header_level(old_root) > 0) {
677 nritems = btrfs_header_nritems(old_root);
678 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
684 for (i = 0; i < nritems; i++) {
685 tm_list[i] = alloc_tree_mod_elem(old_root, i,
686 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
694 tm = kzalloc(sizeof(*tm), flags);
700 tm->logical = new_root->start;
701 tm->old_root.logical = old_root->start;
702 tm->old_root.level = btrfs_header_level(old_root);
703 tm->generation = btrfs_header_generation(old_root);
704 tm->op = MOD_LOG_ROOT_REPLACE;
706 if (tree_mod_dont_log(fs_info, NULL))
710 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
712 ret = __tree_mod_log_insert(fs_info, tm);
714 tree_mod_log_write_unlock(fs_info);
723 for (i = 0; i < nritems; i++)
732 static struct tree_mod_elem *
733 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736 struct rb_root *tm_root;
737 struct rb_node *node;
738 struct tree_mod_elem *cur = NULL;
739 struct tree_mod_elem *found = NULL;
741 tree_mod_log_read_lock(fs_info);
742 tm_root = &fs_info->tree_mod_log;
743 node = tm_root->rb_node;
745 cur = container_of(node, struct tree_mod_elem, node);
746 if (cur->logical < start) {
747 node = node->rb_left;
748 } else if (cur->logical > start) {
749 node = node->rb_right;
750 } else if (cur->seq < min_seq) {
751 node = node->rb_left;
752 } else if (!smallest) {
753 /* we want the node with the highest seq */
755 BUG_ON(found->seq > cur->seq);
757 node = node->rb_left;
758 } else if (cur->seq > min_seq) {
759 /* we want the node with the smallest seq */
761 BUG_ON(found->seq < cur->seq);
763 node = node->rb_right;
769 tree_mod_log_read_unlock(fs_info);
775 * this returns the element from the log with the smallest time sequence
776 * value that's in the log (the oldest log item). any element with a time
777 * sequence lower than min_seq will be ignored.
779 static struct tree_mod_elem *
780 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
783 return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 * this returns the element from the log with the largest time sequence
788 * value that's in the log (the most recent log item). any element with
789 * a time sequence lower than min_seq will be ignored.
791 static struct tree_mod_elem *
792 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
794 return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
799 struct extent_buffer *src, unsigned long dst_offset,
800 unsigned long src_offset, int nr_items)
803 struct tree_mod_elem **tm_list = NULL;
804 struct tree_mod_elem **tm_list_add, **tm_list_rem;
808 if (!tree_mod_need_log(fs_info, NULL))
811 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
814 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
819 tm_list_add = tm_list;
820 tm_list_rem = tm_list + nr_items;
821 for (i = 0; i < nr_items; i++) {
822 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
823 MOD_LOG_KEY_REMOVE, GFP_NOFS);
824 if (!tm_list_rem[i]) {
829 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
830 MOD_LOG_KEY_ADD, GFP_NOFS);
831 if (!tm_list_add[i]) {
837 if (tree_mod_dont_log(fs_info, NULL))
841 for (i = 0; i < nr_items; i++) {
842 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
845 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
850 tree_mod_log_write_unlock(fs_info);
856 for (i = 0; i < nr_items * 2; i++) {
857 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
858 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862 tree_mod_log_write_unlock(fs_info);
869 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
870 int dst_offset, int src_offset, int nr_items)
873 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
879 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
880 struct extent_buffer *eb, int slot, int atomic)
884 ret = tree_mod_log_insert_key(fs_info, eb, slot,
886 atomic ? GFP_ATOMIC : GFP_NOFS);
891 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
893 struct tree_mod_elem **tm_list = NULL;
898 if (btrfs_header_level(eb) == 0)
901 if (!tree_mod_need_log(fs_info, NULL))
904 nritems = btrfs_header_nritems(eb);
905 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909 for (i = 0; i < nritems; i++) {
910 tm_list[i] = alloc_tree_mod_elem(eb, i,
911 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
918 if (tree_mod_dont_log(fs_info, eb))
921 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
922 tree_mod_log_write_unlock(fs_info);
930 for (i = 0; i < nritems; i++)
938 tree_mod_log_set_root_pointer(struct btrfs_root *root,
939 struct extent_buffer *new_root_node,
943 ret = tree_mod_log_insert_root(root->fs_info, root->node,
944 new_root_node, GFP_NOFS, log_removal);
949 * check if the tree block can be shared by multiple trees
951 int btrfs_block_can_be_shared(struct btrfs_root *root,
952 struct extent_buffer *buf)
955 * Tree blocks not in reference counted trees and tree roots
956 * are never shared. If a block was allocated after the last
957 * snapshot and the block was not allocated by tree relocation,
958 * we know the block is not shared.
960 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
961 buf != root->node && buf != root->commit_root &&
962 (btrfs_header_generation(buf) <=
963 btrfs_root_last_snapshot(&root->root_item) ||
964 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
966 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
967 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
968 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
974 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
975 struct btrfs_root *root,
976 struct extent_buffer *buf,
977 struct extent_buffer *cow,
987 * Backrefs update rules:
989 * Always use full backrefs for extent pointers in tree block
990 * allocated by tree relocation.
992 * If a shared tree block is no longer referenced by its owner
993 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
994 * use full backrefs for extent pointers in tree block.
996 * If a tree block is been relocating
997 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
998 * use full backrefs for extent pointers in tree block.
999 * The reason for this is some operations (such as drop tree)
1000 * are only allowed for blocks use full backrefs.
1003 if (btrfs_block_can_be_shared(root, buf)) {
1004 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1005 btrfs_header_level(buf), 1,
1011 btrfs_handle_fs_error(root->fs_info, ret, NULL);
1016 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1017 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1018 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1023 owner = btrfs_header_owner(buf);
1024 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1025 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1028 if ((owner == root->root_key.objectid ||
1029 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1030 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1031 ret = btrfs_inc_ref(trans, root, buf, 1);
1032 BUG_ON(ret); /* -ENOMEM */
1034 if (root->root_key.objectid ==
1035 BTRFS_TREE_RELOC_OBJECTID) {
1036 ret = btrfs_dec_ref(trans, root, buf, 0);
1037 BUG_ON(ret); /* -ENOMEM */
1038 ret = btrfs_inc_ref(trans, root, cow, 1);
1039 BUG_ON(ret); /* -ENOMEM */
1041 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1044 if (root->root_key.objectid ==
1045 BTRFS_TREE_RELOC_OBJECTID)
1046 ret = btrfs_inc_ref(trans, root, cow, 1);
1048 ret = btrfs_inc_ref(trans, root, cow, 0);
1049 BUG_ON(ret); /* -ENOMEM */
1051 if (new_flags != 0) {
1052 int level = btrfs_header_level(buf);
1054 ret = btrfs_set_disk_extent_flags(trans, root,
1057 new_flags, level, 0);
1062 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1063 if (root->root_key.objectid ==
1064 BTRFS_TREE_RELOC_OBJECTID)
1065 ret = btrfs_inc_ref(trans, root, cow, 1);
1067 ret = btrfs_inc_ref(trans, root, cow, 0);
1068 BUG_ON(ret); /* -ENOMEM */
1069 ret = btrfs_dec_ref(trans, root, buf, 1);
1070 BUG_ON(ret); /* -ENOMEM */
1072 clean_tree_block(trans, root->fs_info, buf);
1079 * does the dirty work in cow of a single block. The parent block (if
1080 * supplied) is updated to point to the new cow copy. The new buffer is marked
1081 * dirty and returned locked. If you modify the block it needs to be marked
1084 * search_start -- an allocation hint for the new block
1086 * empty_size -- a hint that you plan on doing more cow. This is the size in
1087 * bytes the allocator should try to find free next to the block it returns.
1088 * This is just a hint and may be ignored by the allocator.
1090 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1091 struct btrfs_root *root,
1092 struct extent_buffer *buf,
1093 struct extent_buffer *parent, int parent_slot,
1094 struct extent_buffer **cow_ret,
1095 u64 search_start, u64 empty_size)
1097 struct btrfs_disk_key disk_key;
1098 struct extent_buffer *cow;
1101 int unlock_orig = 0;
1102 u64 parent_start = 0;
1104 if (*cow_ret == buf)
1107 btrfs_assert_tree_locked(buf);
1109 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1110 trans->transid != root->fs_info->running_transaction->transid);
1111 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1112 trans->transid != root->last_trans);
1114 level = btrfs_header_level(buf);
1117 btrfs_item_key(buf, &disk_key, 0);
1119 btrfs_node_key(buf, &disk_key, 0);
1121 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1122 parent_start = parent->start;
1124 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1125 root->root_key.objectid, &disk_key, level,
1126 search_start, empty_size);
1128 return PTR_ERR(cow);
1130 /* cow is set to blocking by btrfs_init_new_buffer */
1132 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1133 btrfs_set_header_bytenr(cow, cow->start);
1134 btrfs_set_header_generation(cow, trans->transid);
1135 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1136 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1137 BTRFS_HEADER_FLAG_RELOC);
1138 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1139 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1141 btrfs_set_header_owner(cow, root->root_key.objectid);
1143 write_extent_buffer_fsid(cow, root->fs_info->fsid);
1145 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1147 btrfs_abort_transaction(trans, ret);
1151 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1152 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1154 btrfs_abort_transaction(trans, ret);
1159 if (buf == root->node) {
1160 WARN_ON(parent && parent != buf);
1161 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1162 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1163 parent_start = buf->start;
1165 extent_buffer_get(cow);
1166 tree_mod_log_set_root_pointer(root, cow, 1);
1167 rcu_assign_pointer(root->node, cow);
1169 btrfs_free_tree_block(trans, root, buf, parent_start,
1171 free_extent_buffer(buf);
1172 add_root_to_dirty_list(root);
1174 WARN_ON(trans->transid != btrfs_header_generation(parent));
1175 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1176 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1177 btrfs_set_node_blockptr(parent, parent_slot,
1179 btrfs_set_node_ptr_generation(parent, parent_slot,
1181 btrfs_mark_buffer_dirty(parent);
1183 ret = tree_mod_log_free_eb(root->fs_info, buf);
1185 btrfs_abort_transaction(trans, ret);
1189 btrfs_free_tree_block(trans, root, buf, parent_start,
1193 btrfs_tree_unlock(buf);
1194 free_extent_buffer_stale(buf);
1195 btrfs_mark_buffer_dirty(cow);
1201 * returns the logical address of the oldest predecessor of the given root.
1202 * entries older than time_seq are ignored.
1204 static struct tree_mod_elem *
1205 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1206 struct extent_buffer *eb_root, u64 time_seq)
1208 struct tree_mod_elem *tm;
1209 struct tree_mod_elem *found = NULL;
1210 u64 root_logical = eb_root->start;
1217 * the very last operation that's logged for a root is the
1218 * replacement operation (if it is replaced at all). this has
1219 * the logical address of the *new* root, making it the very
1220 * first operation that's logged for this root.
1223 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1228 * if there are no tree operation for the oldest root, we simply
1229 * return it. this should only happen if that (old) root is at
1236 * if there's an operation that's not a root replacement, we
1237 * found the oldest version of our root. normally, we'll find a
1238 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1240 if (tm->op != MOD_LOG_ROOT_REPLACE)
1244 root_logical = tm->old_root.logical;
1248 /* if there's no old root to return, return what we found instead */
1256 * tm is a pointer to the first operation to rewind within eb. then, all
1257 * previous operations will be rewound (until we reach something older than
1261 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1262 u64 time_seq, struct tree_mod_elem *first_tm)
1265 struct rb_node *next;
1266 struct tree_mod_elem *tm = first_tm;
1267 unsigned long o_dst;
1268 unsigned long o_src;
1269 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1271 n = btrfs_header_nritems(eb);
1272 tree_mod_log_read_lock(fs_info);
1273 while (tm && tm->seq >= time_seq) {
1275 * all the operations are recorded with the operator used for
1276 * the modification. as we're going backwards, we do the
1277 * opposite of each operation here.
1280 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1281 BUG_ON(tm->slot < n);
1283 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1284 case MOD_LOG_KEY_REMOVE:
1285 btrfs_set_node_key(eb, &tm->key, tm->slot);
1286 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1287 btrfs_set_node_ptr_generation(eb, tm->slot,
1291 case MOD_LOG_KEY_REPLACE:
1292 BUG_ON(tm->slot >= n);
1293 btrfs_set_node_key(eb, &tm->key, tm->slot);
1294 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1295 btrfs_set_node_ptr_generation(eb, tm->slot,
1298 case MOD_LOG_KEY_ADD:
1299 /* if a move operation is needed it's in the log */
1302 case MOD_LOG_MOVE_KEYS:
1303 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1304 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1305 memmove_extent_buffer(eb, o_dst, o_src,
1306 tm->move.nr_items * p_size);
1308 case MOD_LOG_ROOT_REPLACE:
1310 * this operation is special. for roots, this must be
1311 * handled explicitly before rewinding.
1312 * for non-roots, this operation may exist if the node
1313 * was a root: root A -> child B; then A gets empty and
1314 * B is promoted to the new root. in the mod log, we'll
1315 * have a root-replace operation for B, a tree block
1316 * that is no root. we simply ignore that operation.
1320 next = rb_next(&tm->node);
1323 tm = container_of(next, struct tree_mod_elem, node);
1324 if (tm->logical != first_tm->logical)
1327 tree_mod_log_read_unlock(fs_info);
1328 btrfs_set_header_nritems(eb, n);
1332 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1333 * is returned. If rewind operations happen, a fresh buffer is returned. The
1334 * returned buffer is always read-locked. If the returned buffer is not the
1335 * input buffer, the lock on the input buffer is released and the input buffer
1336 * is freed (its refcount is decremented).
1338 static struct extent_buffer *
1339 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1340 struct extent_buffer *eb, u64 time_seq)
1342 struct extent_buffer *eb_rewin;
1343 struct tree_mod_elem *tm;
1348 if (btrfs_header_level(eb) == 0)
1351 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1355 btrfs_set_path_blocking(path);
1356 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1358 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1359 BUG_ON(tm->slot != 0);
1360 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1363 btrfs_tree_read_unlock_blocking(eb);
1364 free_extent_buffer(eb);
1367 btrfs_set_header_bytenr(eb_rewin, eb->start);
1368 btrfs_set_header_backref_rev(eb_rewin,
1369 btrfs_header_backref_rev(eb));
1370 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1371 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1373 eb_rewin = btrfs_clone_extent_buffer(eb);
1375 btrfs_tree_read_unlock_blocking(eb);
1376 free_extent_buffer(eb);
1381 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1382 btrfs_tree_read_unlock_blocking(eb);
1383 free_extent_buffer(eb);
1385 extent_buffer_get(eb_rewin);
1386 btrfs_tree_read_lock(eb_rewin);
1387 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1388 WARN_ON(btrfs_header_nritems(eb_rewin) >
1389 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1395 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1396 * value. If there are no changes, the current root->root_node is returned. If
1397 * anything changed in between, there's a fresh buffer allocated on which the
1398 * rewind operations are done. In any case, the returned buffer is read locked.
1399 * Returns NULL on error (with no locks held).
1401 static inline struct extent_buffer *
1402 get_old_root(struct btrfs_root *root, u64 time_seq)
1404 struct tree_mod_elem *tm;
1405 struct extent_buffer *eb = NULL;
1406 struct extent_buffer *eb_root;
1407 struct extent_buffer *old;
1408 struct tree_mod_root *old_root = NULL;
1409 u64 old_generation = 0;
1412 eb_root = btrfs_read_lock_root_node(root);
1413 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1417 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1418 old_root = &tm->old_root;
1419 old_generation = tm->generation;
1420 logical = old_root->logical;
1422 logical = eb_root->start;
1425 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1426 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1427 btrfs_tree_read_unlock(eb_root);
1428 free_extent_buffer(eb_root);
1429 old = read_tree_block(root, logical, 0);
1430 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1432 free_extent_buffer(old);
1433 btrfs_warn(root->fs_info,
1434 "failed to read tree block %llu from get_old_root", logical);
1436 eb = btrfs_clone_extent_buffer(old);
1437 free_extent_buffer(old);
1439 } else if (old_root) {
1440 btrfs_tree_read_unlock(eb_root);
1441 free_extent_buffer(eb_root);
1442 eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1445 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1446 eb = btrfs_clone_extent_buffer(eb_root);
1447 btrfs_tree_read_unlock_blocking(eb_root);
1448 free_extent_buffer(eb_root);
1453 extent_buffer_get(eb);
1454 btrfs_tree_read_lock(eb);
1456 btrfs_set_header_bytenr(eb, eb->start);
1457 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1458 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1459 btrfs_set_header_level(eb, old_root->level);
1460 btrfs_set_header_generation(eb, old_generation);
1463 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1465 WARN_ON(btrfs_header_level(eb) != 0);
1466 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1471 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1473 struct tree_mod_elem *tm;
1475 struct extent_buffer *eb_root = btrfs_root_node(root);
1477 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1478 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1479 level = tm->old_root.level;
1481 level = btrfs_header_level(eb_root);
1483 free_extent_buffer(eb_root);
1488 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1489 struct btrfs_root *root,
1490 struct extent_buffer *buf)
1492 if (btrfs_is_testing(root->fs_info))
1495 /* ensure we can see the force_cow */
1499 * We do not need to cow a block if
1500 * 1) this block is not created or changed in this transaction;
1501 * 2) this block does not belong to TREE_RELOC tree;
1502 * 3) the root is not forced COW.
1504 * What is forced COW:
1505 * when we create snapshot during committing the transaction,
1506 * after we've finished coping src root, we must COW the shared
1507 * block to ensure the metadata consistency.
1509 if (btrfs_header_generation(buf) == trans->transid &&
1510 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1511 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1512 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1513 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1519 * cows a single block, see __btrfs_cow_block for the real work.
1520 * This version of it has extra checks so that a block isn't COWed more than
1521 * once per transaction, as long as it hasn't been written yet
1523 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1524 struct btrfs_root *root, struct extent_buffer *buf,
1525 struct extent_buffer *parent, int parent_slot,
1526 struct extent_buffer **cow_ret)
1531 if (trans->transaction != root->fs_info->running_transaction)
1532 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1534 root->fs_info->running_transaction->transid);
1536 if (trans->transid != root->fs_info->generation)
1537 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1538 trans->transid, root->fs_info->generation);
1540 if (!should_cow_block(trans, root, buf)) {
1541 trans->dirty = true;
1546 search_start = buf->start & ~((u64)SZ_1G - 1);
1549 btrfs_set_lock_blocking(parent);
1550 btrfs_set_lock_blocking(buf);
1552 ret = __btrfs_cow_block(trans, root, buf, parent,
1553 parent_slot, cow_ret, search_start, 0);
1555 trace_btrfs_cow_block(root, buf, *cow_ret);
1561 * helper function for defrag to decide if two blocks pointed to by a
1562 * node are actually close by
1564 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1566 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1568 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1574 * compare two keys in a memcmp fashion
1576 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1578 struct btrfs_key k1;
1580 btrfs_disk_key_to_cpu(&k1, disk);
1582 return btrfs_comp_cpu_keys(&k1, k2);
1586 * same as comp_keys only with two btrfs_key's
1588 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1590 if (k1->objectid > k2->objectid)
1592 if (k1->objectid < k2->objectid)
1594 if (k1->type > k2->type)
1596 if (k1->type < k2->type)
1598 if (k1->offset > k2->offset)
1600 if (k1->offset < k2->offset)
1606 * this is used by the defrag code to go through all the
1607 * leaves pointed to by a node and reallocate them so that
1608 * disk order is close to key order
1610 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1611 struct btrfs_root *root, struct extent_buffer *parent,
1612 int start_slot, u64 *last_ret,
1613 struct btrfs_key *progress)
1615 struct extent_buffer *cur;
1618 u64 search_start = *last_ret;
1628 int progress_passed = 0;
1629 struct btrfs_disk_key disk_key;
1631 parent_level = btrfs_header_level(parent);
1633 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1634 WARN_ON(trans->transid != root->fs_info->generation);
1636 parent_nritems = btrfs_header_nritems(parent);
1637 blocksize = root->nodesize;
1638 end_slot = parent_nritems - 1;
1640 if (parent_nritems <= 1)
1643 btrfs_set_lock_blocking(parent);
1645 for (i = start_slot; i <= end_slot; i++) {
1648 btrfs_node_key(parent, &disk_key, i);
1649 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1652 progress_passed = 1;
1653 blocknr = btrfs_node_blockptr(parent, i);
1654 gen = btrfs_node_ptr_generation(parent, i);
1655 if (last_block == 0)
1656 last_block = blocknr;
1659 other = btrfs_node_blockptr(parent, i - 1);
1660 close = close_blocks(blocknr, other, blocksize);
1662 if (!close && i < end_slot) {
1663 other = btrfs_node_blockptr(parent, i + 1);
1664 close = close_blocks(blocknr, other, blocksize);
1667 last_block = blocknr;
1671 cur = find_extent_buffer(root->fs_info, blocknr);
1673 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1676 if (!cur || !uptodate) {
1678 cur = read_tree_block(root, blocknr, gen);
1680 return PTR_ERR(cur);
1681 } else if (!extent_buffer_uptodate(cur)) {
1682 free_extent_buffer(cur);
1685 } else if (!uptodate) {
1686 err = btrfs_read_buffer(cur, gen);
1688 free_extent_buffer(cur);
1693 if (search_start == 0)
1694 search_start = last_block;
1696 btrfs_tree_lock(cur);
1697 btrfs_set_lock_blocking(cur);
1698 err = __btrfs_cow_block(trans, root, cur, parent, i,
1701 (end_slot - i) * blocksize));
1703 btrfs_tree_unlock(cur);
1704 free_extent_buffer(cur);
1707 search_start = cur->start;
1708 last_block = cur->start;
1709 *last_ret = search_start;
1710 btrfs_tree_unlock(cur);
1711 free_extent_buffer(cur);
1718 * search for key in the extent_buffer. The items start at offset p,
1719 * and they are item_size apart. There are 'max' items in p.
1721 * the slot in the array is returned via slot, and it points to
1722 * the place where you would insert key if it is not found in
1725 * slot may point to max if the key is bigger than all of the keys
1727 static noinline int generic_bin_search(struct extent_buffer *eb,
1729 int item_size, struct btrfs_key *key,
1736 struct btrfs_disk_key *tmp = NULL;
1737 struct btrfs_disk_key unaligned;
1738 unsigned long offset;
1740 unsigned long map_start = 0;
1741 unsigned long map_len = 0;
1745 btrfs_err(eb->fs_info,
1746 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1747 __func__, low, high, eb->start,
1748 btrfs_header_owner(eb), btrfs_header_level(eb));
1752 while (low < high) {
1753 mid = (low + high) / 2;
1754 offset = p + mid * item_size;
1756 if (!kaddr || offset < map_start ||
1757 (offset + sizeof(struct btrfs_disk_key)) >
1758 map_start + map_len) {
1760 err = map_private_extent_buffer(eb, offset,
1761 sizeof(struct btrfs_disk_key),
1762 &kaddr, &map_start, &map_len);
1765 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1767 } else if (err == 1) {
1768 read_extent_buffer(eb, &unaligned,
1769 offset, sizeof(unaligned));
1776 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1779 ret = comp_keys(tmp, key);
1795 * simple bin_search frontend that does the right thing for
1798 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1799 int level, int *slot)
1802 return generic_bin_search(eb,
1803 offsetof(struct btrfs_leaf, items),
1804 sizeof(struct btrfs_item),
1805 key, btrfs_header_nritems(eb),
1808 return generic_bin_search(eb,
1809 offsetof(struct btrfs_node, ptrs),
1810 sizeof(struct btrfs_key_ptr),
1811 key, btrfs_header_nritems(eb),
1815 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1816 int level, int *slot)
1818 return bin_search(eb, key, level, slot);
1821 static void root_add_used(struct btrfs_root *root, u32 size)
1823 spin_lock(&root->accounting_lock);
1824 btrfs_set_root_used(&root->root_item,
1825 btrfs_root_used(&root->root_item) + size);
1826 spin_unlock(&root->accounting_lock);
1829 static void root_sub_used(struct btrfs_root *root, u32 size)
1831 spin_lock(&root->accounting_lock);
1832 btrfs_set_root_used(&root->root_item,
1833 btrfs_root_used(&root->root_item) - size);
1834 spin_unlock(&root->accounting_lock);
1837 /* given a node and slot number, this reads the blocks it points to. The
1838 * extent buffer is returned with a reference taken (but unlocked).
1840 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1841 struct extent_buffer *parent, int slot)
1843 int level = btrfs_header_level(parent);
1844 struct extent_buffer *eb;
1846 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1847 return ERR_PTR(-ENOENT);
1851 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1852 btrfs_node_ptr_generation(parent, slot));
1853 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1854 free_extent_buffer(eb);
1862 * node level balancing, used to make sure nodes are in proper order for
1863 * item deletion. We balance from the top down, so we have to make sure
1864 * that a deletion won't leave an node completely empty later on.
1866 static noinline int balance_level(struct btrfs_trans_handle *trans,
1867 struct btrfs_root *root,
1868 struct btrfs_path *path, int level)
1870 struct extent_buffer *right = NULL;
1871 struct extent_buffer *mid;
1872 struct extent_buffer *left = NULL;
1873 struct extent_buffer *parent = NULL;
1877 int orig_slot = path->slots[level];
1883 mid = path->nodes[level];
1885 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1886 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1887 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1889 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1891 if (level < BTRFS_MAX_LEVEL - 1) {
1892 parent = path->nodes[level + 1];
1893 pslot = path->slots[level + 1];
1897 * deal with the case where there is only one pointer in the root
1898 * by promoting the node below to a root
1901 struct extent_buffer *child;
1903 if (btrfs_header_nritems(mid) != 1)
1906 /* promote the child to a root */
1907 child = read_node_slot(root, mid, 0);
1908 if (IS_ERR(child)) {
1909 ret = PTR_ERR(child);
1910 btrfs_handle_fs_error(root->fs_info, ret, NULL);
1914 btrfs_tree_lock(child);
1915 btrfs_set_lock_blocking(child);
1916 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1918 btrfs_tree_unlock(child);
1919 free_extent_buffer(child);
1923 tree_mod_log_set_root_pointer(root, child, 1);
1924 rcu_assign_pointer(root->node, child);
1926 add_root_to_dirty_list(root);
1927 btrfs_tree_unlock(child);
1929 path->locks[level] = 0;
1930 path->nodes[level] = NULL;
1931 clean_tree_block(trans, root->fs_info, mid);
1932 btrfs_tree_unlock(mid);
1933 /* once for the path */
1934 free_extent_buffer(mid);
1936 root_sub_used(root, mid->len);
1937 btrfs_free_tree_block(trans, root, mid, 0, 1);
1938 /* once for the root ptr */
1939 free_extent_buffer_stale(mid);
1942 if (btrfs_header_nritems(mid) >
1943 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1946 left = read_node_slot(root, parent, pslot - 1);
1951 btrfs_tree_lock(left);
1952 btrfs_set_lock_blocking(left);
1953 wret = btrfs_cow_block(trans, root, left,
1954 parent, pslot - 1, &left);
1961 right = read_node_slot(root, parent, pslot + 1);
1966 btrfs_tree_lock(right);
1967 btrfs_set_lock_blocking(right);
1968 wret = btrfs_cow_block(trans, root, right,
1969 parent, pslot + 1, &right);
1976 /* first, try to make some room in the middle buffer */
1978 orig_slot += btrfs_header_nritems(left);
1979 wret = push_node_left(trans, root, left, mid, 1);
1985 * then try to empty the right most buffer into the middle
1988 wret = push_node_left(trans, root, mid, right, 1);
1989 if (wret < 0 && wret != -ENOSPC)
1991 if (btrfs_header_nritems(right) == 0) {
1992 clean_tree_block(trans, root->fs_info, right);
1993 btrfs_tree_unlock(right);
1994 del_ptr(root, path, level + 1, pslot + 1);
1995 root_sub_used(root, right->len);
1996 btrfs_free_tree_block(trans, root, right, 0, 1);
1997 free_extent_buffer_stale(right);
2000 struct btrfs_disk_key right_key;
2001 btrfs_node_key(right, &right_key, 0);
2002 tree_mod_log_set_node_key(root->fs_info, parent,
2004 btrfs_set_node_key(parent, &right_key, pslot + 1);
2005 btrfs_mark_buffer_dirty(parent);
2008 if (btrfs_header_nritems(mid) == 1) {
2010 * we're not allowed to leave a node with one item in the
2011 * tree during a delete. A deletion from lower in the tree
2012 * could try to delete the only pointer in this node.
2013 * So, pull some keys from the left.
2014 * There has to be a left pointer at this point because
2015 * otherwise we would have pulled some pointers from the
2020 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2023 wret = balance_node_right(trans, root, mid, left);
2029 wret = push_node_left(trans, root, left, mid, 1);
2035 if (btrfs_header_nritems(mid) == 0) {
2036 clean_tree_block(trans, root->fs_info, mid);
2037 btrfs_tree_unlock(mid);
2038 del_ptr(root, path, level + 1, pslot);
2039 root_sub_used(root, mid->len);
2040 btrfs_free_tree_block(trans, root, mid, 0, 1);
2041 free_extent_buffer_stale(mid);
2044 /* update the parent key to reflect our changes */
2045 struct btrfs_disk_key mid_key;
2046 btrfs_node_key(mid, &mid_key, 0);
2047 tree_mod_log_set_node_key(root->fs_info, parent,
2049 btrfs_set_node_key(parent, &mid_key, pslot);
2050 btrfs_mark_buffer_dirty(parent);
2053 /* update the path */
2055 if (btrfs_header_nritems(left) > orig_slot) {
2056 extent_buffer_get(left);
2057 /* left was locked after cow */
2058 path->nodes[level] = left;
2059 path->slots[level + 1] -= 1;
2060 path->slots[level] = orig_slot;
2062 btrfs_tree_unlock(mid);
2063 free_extent_buffer(mid);
2066 orig_slot -= btrfs_header_nritems(left);
2067 path->slots[level] = orig_slot;
2070 /* double check we haven't messed things up */
2072 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2076 btrfs_tree_unlock(right);
2077 free_extent_buffer(right);
2080 if (path->nodes[level] != left)
2081 btrfs_tree_unlock(left);
2082 free_extent_buffer(left);
2087 /* Node balancing for insertion. Here we only split or push nodes around
2088 * when they are completely full. This is also done top down, so we
2089 * have to be pessimistic.
2091 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2092 struct btrfs_root *root,
2093 struct btrfs_path *path, int level)
2095 struct extent_buffer *right = NULL;
2096 struct extent_buffer *mid;
2097 struct extent_buffer *left = NULL;
2098 struct extent_buffer *parent = NULL;
2102 int orig_slot = path->slots[level];
2107 mid = path->nodes[level];
2108 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2110 if (level < BTRFS_MAX_LEVEL - 1) {
2111 parent = path->nodes[level + 1];
2112 pslot = path->slots[level + 1];
2118 left = read_node_slot(root, parent, pslot - 1);
2122 /* first, try to make some room in the middle buffer */
2126 btrfs_tree_lock(left);
2127 btrfs_set_lock_blocking(left);
2129 left_nr = btrfs_header_nritems(left);
2130 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2133 ret = btrfs_cow_block(trans, root, left, parent,
2138 wret = push_node_left(trans, root,
2145 struct btrfs_disk_key disk_key;
2146 orig_slot += left_nr;
2147 btrfs_node_key(mid, &disk_key, 0);
2148 tree_mod_log_set_node_key(root->fs_info, parent,
2150 btrfs_set_node_key(parent, &disk_key, pslot);
2151 btrfs_mark_buffer_dirty(parent);
2152 if (btrfs_header_nritems(left) > orig_slot) {
2153 path->nodes[level] = left;
2154 path->slots[level + 1] -= 1;
2155 path->slots[level] = orig_slot;
2156 btrfs_tree_unlock(mid);
2157 free_extent_buffer(mid);
2160 btrfs_header_nritems(left);
2161 path->slots[level] = orig_slot;
2162 btrfs_tree_unlock(left);
2163 free_extent_buffer(left);
2167 btrfs_tree_unlock(left);
2168 free_extent_buffer(left);
2170 right = read_node_slot(root, parent, pslot + 1);
2175 * then try to empty the right most buffer into the middle
2180 btrfs_tree_lock(right);
2181 btrfs_set_lock_blocking(right);
2183 right_nr = btrfs_header_nritems(right);
2184 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2187 ret = btrfs_cow_block(trans, root, right,
2193 wret = balance_node_right(trans, root,
2200 struct btrfs_disk_key disk_key;
2202 btrfs_node_key(right, &disk_key, 0);
2203 tree_mod_log_set_node_key(root->fs_info, parent,
2205 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2206 btrfs_mark_buffer_dirty(parent);
2208 if (btrfs_header_nritems(mid) <= orig_slot) {
2209 path->nodes[level] = right;
2210 path->slots[level + 1] += 1;
2211 path->slots[level] = orig_slot -
2212 btrfs_header_nritems(mid);
2213 btrfs_tree_unlock(mid);
2214 free_extent_buffer(mid);
2216 btrfs_tree_unlock(right);
2217 free_extent_buffer(right);
2221 btrfs_tree_unlock(right);
2222 free_extent_buffer(right);
2228 * readahead one full node of leaves, finding things that are close
2229 * to the block in 'slot', and triggering ra on them.
2231 static void reada_for_search(struct btrfs_root *root,
2232 struct btrfs_path *path,
2233 int level, int slot, u64 objectid)
2235 struct extent_buffer *node;
2236 struct btrfs_disk_key disk_key;
2241 struct extent_buffer *eb;
2249 if (!path->nodes[level])
2252 node = path->nodes[level];
2254 search = btrfs_node_blockptr(node, slot);
2255 blocksize = root->nodesize;
2256 eb = find_extent_buffer(root->fs_info, search);
2258 free_extent_buffer(eb);
2264 nritems = btrfs_header_nritems(node);
2268 if (path->reada == READA_BACK) {
2272 } else if (path->reada == READA_FORWARD) {
2277 if (path->reada == READA_BACK && objectid) {
2278 btrfs_node_key(node, &disk_key, nr);
2279 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2282 search = btrfs_node_blockptr(node, nr);
2283 if ((search <= target && target - search <= 65536) ||
2284 (search > target && search - target <= 65536)) {
2285 readahead_tree_block(root, search);
2289 if ((nread > 65536 || nscan > 32))
2294 static noinline void reada_for_balance(struct btrfs_root *root,
2295 struct btrfs_path *path, int level)
2299 struct extent_buffer *parent;
2300 struct extent_buffer *eb;
2305 parent = path->nodes[level + 1];
2309 nritems = btrfs_header_nritems(parent);
2310 slot = path->slots[level + 1];
2313 block1 = btrfs_node_blockptr(parent, slot - 1);
2314 gen = btrfs_node_ptr_generation(parent, slot - 1);
2315 eb = find_extent_buffer(root->fs_info, block1);
2317 * if we get -eagain from btrfs_buffer_uptodate, we
2318 * don't want to return eagain here. That will loop
2321 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2323 free_extent_buffer(eb);
2325 if (slot + 1 < nritems) {
2326 block2 = btrfs_node_blockptr(parent, slot + 1);
2327 gen = btrfs_node_ptr_generation(parent, slot + 1);
2328 eb = find_extent_buffer(root->fs_info, block2);
2329 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2331 free_extent_buffer(eb);
2335 readahead_tree_block(root, block1);
2337 readahead_tree_block(root, block2);
2342 * when we walk down the tree, it is usually safe to unlock the higher layers
2343 * in the tree. The exceptions are when our path goes through slot 0, because
2344 * operations on the tree might require changing key pointers higher up in the
2347 * callers might also have set path->keep_locks, which tells this code to keep
2348 * the lock if the path points to the last slot in the block. This is part of
2349 * walking through the tree, and selecting the next slot in the higher block.
2351 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2352 * if lowest_unlock is 1, level 0 won't be unlocked
2354 static noinline void unlock_up(struct btrfs_path *path, int level,
2355 int lowest_unlock, int min_write_lock_level,
2356 int *write_lock_level)
2359 int skip_level = level;
2361 struct extent_buffer *t;
2363 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2364 if (!path->nodes[i])
2366 if (!path->locks[i])
2368 if (!no_skips && path->slots[i] == 0) {
2372 if (!no_skips && path->keep_locks) {
2375 nritems = btrfs_header_nritems(t);
2376 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2381 if (skip_level < i && i >= lowest_unlock)
2385 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2386 btrfs_tree_unlock_rw(t, path->locks[i]);
2388 if (write_lock_level &&
2389 i > min_write_lock_level &&
2390 i <= *write_lock_level) {
2391 *write_lock_level = i - 1;
2398 * This releases any locks held in the path starting at level and
2399 * going all the way up to the root.
2401 * btrfs_search_slot will keep the lock held on higher nodes in a few
2402 * corner cases, such as COW of the block at slot zero in the node. This
2403 * ignores those rules, and it should only be called when there are no
2404 * more updates to be done higher up in the tree.
2406 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2410 if (path->keep_locks)
2413 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2414 if (!path->nodes[i])
2416 if (!path->locks[i])
2418 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2424 * helper function for btrfs_search_slot. The goal is to find a block
2425 * in cache without setting the path to blocking. If we find the block
2426 * we return zero and the path is unchanged.
2428 * If we can't find the block, we set the path blocking and do some
2429 * reada. -EAGAIN is returned and the search must be repeated.
2432 read_block_for_search(struct btrfs_trans_handle *trans,
2433 struct btrfs_root *root, struct btrfs_path *p,
2434 struct extent_buffer **eb_ret, int level, int slot,
2435 struct btrfs_key *key, u64 time_seq)
2439 struct extent_buffer *b = *eb_ret;
2440 struct extent_buffer *tmp;
2443 blocknr = btrfs_node_blockptr(b, slot);
2444 gen = btrfs_node_ptr_generation(b, slot);
2446 tmp = find_extent_buffer(root->fs_info, blocknr);
2448 /* first we do an atomic uptodate check */
2449 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2454 /* the pages were up to date, but we failed
2455 * the generation number check. Do a full
2456 * read for the generation number that is correct.
2457 * We must do this without dropping locks so
2458 * we can trust our generation number
2460 btrfs_set_path_blocking(p);
2462 /* now we're allowed to do a blocking uptodate check */
2463 ret = btrfs_read_buffer(tmp, gen);
2468 free_extent_buffer(tmp);
2469 btrfs_release_path(p);
2474 * reduce lock contention at high levels
2475 * of the btree by dropping locks before
2476 * we read. Don't release the lock on the current
2477 * level because we need to walk this node to figure
2478 * out which blocks to read.
2480 btrfs_unlock_up_safe(p, level + 1);
2481 btrfs_set_path_blocking(p);
2483 free_extent_buffer(tmp);
2484 if (p->reada != READA_NONE)
2485 reada_for_search(root, p, level, slot, key->objectid);
2487 btrfs_release_path(p);
2490 tmp = read_tree_block(root, blocknr, 0);
2493 * If the read above didn't mark this buffer up to date,
2494 * it will never end up being up to date. Set ret to EIO now
2495 * and give up so that our caller doesn't loop forever
2498 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2500 free_extent_buffer(tmp);
2508 * helper function for btrfs_search_slot. This does all of the checks
2509 * for node-level blocks and does any balancing required based on
2512 * If no extra work was required, zero is returned. If we had to
2513 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2517 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2518 struct btrfs_root *root, struct btrfs_path *p,
2519 struct extent_buffer *b, int level, int ins_len,
2520 int *write_lock_level)
2523 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2524 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2527 if (*write_lock_level < level + 1) {
2528 *write_lock_level = level + 1;
2529 btrfs_release_path(p);
2533 btrfs_set_path_blocking(p);
2534 reada_for_balance(root, p, level);
2535 sret = split_node(trans, root, p, level);
2536 btrfs_clear_path_blocking(p, NULL, 0);
2543 b = p->nodes[level];
2544 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2545 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2548 if (*write_lock_level < level + 1) {
2549 *write_lock_level = level + 1;
2550 btrfs_release_path(p);
2554 btrfs_set_path_blocking(p);
2555 reada_for_balance(root, p, level);
2556 sret = balance_level(trans, root, p, level);
2557 btrfs_clear_path_blocking(p, NULL, 0);
2563 b = p->nodes[level];
2565 btrfs_release_path(p);
2568 BUG_ON(btrfs_header_nritems(b) == 1);
2578 static void key_search_validate(struct extent_buffer *b,
2579 struct btrfs_key *key,
2582 #ifdef CONFIG_BTRFS_ASSERT
2583 struct btrfs_disk_key disk_key;
2585 btrfs_cpu_key_to_disk(&disk_key, key);
2588 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2589 offsetof(struct btrfs_leaf, items[0].key),
2592 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2593 offsetof(struct btrfs_node, ptrs[0].key),
2598 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2599 int level, int *prev_cmp, int *slot)
2601 if (*prev_cmp != 0) {
2602 *prev_cmp = bin_search(b, key, level, slot);
2606 key_search_validate(b, key, level);
2612 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2613 u64 iobjectid, u64 ioff, u8 key_type,
2614 struct btrfs_key *found_key)
2617 struct btrfs_key key;
2618 struct extent_buffer *eb;
2623 key.type = key_type;
2624 key.objectid = iobjectid;
2627 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2631 eb = path->nodes[0];
2632 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2633 ret = btrfs_next_leaf(fs_root, path);
2636 eb = path->nodes[0];
2639 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2640 if (found_key->type != key.type ||
2641 found_key->objectid != key.objectid)
2648 * look for key in the tree. path is filled in with nodes along the way
2649 * if key is found, we return zero and you can find the item in the leaf
2650 * level of the path (level 0)
2652 * If the key isn't found, the path points to the slot where it should
2653 * be inserted, and 1 is returned. If there are other errors during the
2654 * search a negative error number is returned.
2656 * if ins_len > 0, nodes and leaves will be split as we walk down the
2657 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2660 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2661 *root, struct btrfs_key *key, struct btrfs_path *p, int
2664 struct extent_buffer *b;
2669 int lowest_unlock = 1;
2671 /* everything at write_lock_level or lower must be write locked */
2672 int write_lock_level = 0;
2673 u8 lowest_level = 0;
2674 int min_write_lock_level;
2677 lowest_level = p->lowest_level;
2678 WARN_ON(lowest_level && ins_len > 0);
2679 WARN_ON(p->nodes[0] != NULL);
2680 BUG_ON(!cow && ins_len);
2685 /* when we are removing items, we might have to go up to level
2686 * two as we update tree pointers Make sure we keep write
2687 * for those levels as well
2689 write_lock_level = 2;
2690 } else if (ins_len > 0) {
2692 * for inserting items, make sure we have a write lock on
2693 * level 1 so we can update keys
2695 write_lock_level = 1;
2699 write_lock_level = -1;
2701 if (cow && (p->keep_locks || p->lowest_level))
2702 write_lock_level = BTRFS_MAX_LEVEL;
2704 min_write_lock_level = write_lock_level;
2709 * we try very hard to do read locks on the root
2711 root_lock = BTRFS_READ_LOCK;
2713 if (p->search_commit_root) {
2715 * the commit roots are read only
2716 * so we always do read locks
2718 if (p->need_commit_sem)
2719 down_read(&root->fs_info->commit_root_sem);
2720 b = root->commit_root;
2721 extent_buffer_get(b);
2722 level = btrfs_header_level(b);
2723 if (p->need_commit_sem)
2724 up_read(&root->fs_info->commit_root_sem);
2725 if (!p->skip_locking)
2726 btrfs_tree_read_lock(b);
2728 if (p->skip_locking) {
2729 b = btrfs_root_node(root);
2730 level = btrfs_header_level(b);
2732 /* we don't know the level of the root node
2733 * until we actually have it read locked
2735 b = btrfs_read_lock_root_node(root);
2736 level = btrfs_header_level(b);
2737 if (level <= write_lock_level) {
2738 /* whoops, must trade for write lock */
2739 btrfs_tree_read_unlock(b);
2740 free_extent_buffer(b);
2741 b = btrfs_lock_root_node(root);
2742 root_lock = BTRFS_WRITE_LOCK;
2744 /* the level might have changed, check again */
2745 level = btrfs_header_level(b);
2749 p->nodes[level] = b;
2750 if (!p->skip_locking)
2751 p->locks[level] = root_lock;
2754 level = btrfs_header_level(b);
2757 * setup the path here so we can release it under lock
2758 * contention with the cow code
2762 * if we don't really need to cow this block
2763 * then we don't want to set the path blocking,
2764 * so we test it here
2766 if (!should_cow_block(trans, root, b)) {
2767 trans->dirty = true;
2772 * must have write locks on this node and the
2775 if (level > write_lock_level ||
2776 (level + 1 > write_lock_level &&
2777 level + 1 < BTRFS_MAX_LEVEL &&
2778 p->nodes[level + 1])) {
2779 write_lock_level = level + 1;
2780 btrfs_release_path(p);
2784 btrfs_set_path_blocking(p);
2785 err = btrfs_cow_block(trans, root, b,
2786 p->nodes[level + 1],
2787 p->slots[level + 1], &b);
2794 p->nodes[level] = b;
2795 btrfs_clear_path_blocking(p, NULL, 0);
2798 * we have a lock on b and as long as we aren't changing
2799 * the tree, there is no way to for the items in b to change.
2800 * It is safe to drop the lock on our parent before we
2801 * go through the expensive btree search on b.
2803 * If we're inserting or deleting (ins_len != 0), then we might
2804 * be changing slot zero, which may require changing the parent.
2805 * So, we can't drop the lock until after we know which slot
2806 * we're operating on.
2808 if (!ins_len && !p->keep_locks) {
2811 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2812 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2817 ret = key_search(b, key, level, &prev_cmp, &slot);
2823 if (ret && slot > 0) {
2827 p->slots[level] = slot;
2828 err = setup_nodes_for_search(trans, root, p, b, level,
2829 ins_len, &write_lock_level);
2836 b = p->nodes[level];
2837 slot = p->slots[level];
2840 * slot 0 is special, if we change the key
2841 * we have to update the parent pointer
2842 * which means we must have a write lock
2845 if (slot == 0 && ins_len &&
2846 write_lock_level < level + 1) {
2847 write_lock_level = level + 1;
2848 btrfs_release_path(p);
2852 unlock_up(p, level, lowest_unlock,
2853 min_write_lock_level, &write_lock_level);
2855 if (level == lowest_level) {
2861 err = read_block_for_search(trans, root, p,
2862 &b, level, slot, key, 0);
2870 if (!p->skip_locking) {
2871 level = btrfs_header_level(b);
2872 if (level <= write_lock_level) {
2873 err = btrfs_try_tree_write_lock(b);
2875 btrfs_set_path_blocking(p);
2877 btrfs_clear_path_blocking(p, b,
2880 p->locks[level] = BTRFS_WRITE_LOCK;
2882 err = btrfs_tree_read_lock_atomic(b);
2884 btrfs_set_path_blocking(p);
2885 btrfs_tree_read_lock(b);
2886 btrfs_clear_path_blocking(p, b,
2889 p->locks[level] = BTRFS_READ_LOCK;
2891 p->nodes[level] = b;
2894 p->slots[level] = slot;
2896 btrfs_leaf_free_space(root, b) < ins_len) {
2897 if (write_lock_level < 1) {
2898 write_lock_level = 1;
2899 btrfs_release_path(p);
2903 btrfs_set_path_blocking(p);
2904 err = split_leaf(trans, root, key,
2905 p, ins_len, ret == 0);
2906 btrfs_clear_path_blocking(p, NULL, 0);
2914 if (!p->search_for_split)
2915 unlock_up(p, level, lowest_unlock,
2916 min_write_lock_level, &write_lock_level);
2923 * we don't really know what they plan on doing with the path
2924 * from here on, so for now just mark it as blocking
2926 if (!p->leave_spinning)
2927 btrfs_set_path_blocking(p);
2928 if (ret < 0 && !p->skip_release_on_error)
2929 btrfs_release_path(p);
2934 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2935 * current state of the tree together with the operations recorded in the tree
2936 * modification log to search for the key in a previous version of this tree, as
2937 * denoted by the time_seq parameter.
2939 * Naturally, there is no support for insert, delete or cow operations.
2941 * The resulting path and return value will be set up as if we called
2942 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2944 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2945 struct btrfs_path *p, u64 time_seq)
2947 struct extent_buffer *b;
2952 int lowest_unlock = 1;
2953 u8 lowest_level = 0;
2956 lowest_level = p->lowest_level;
2957 WARN_ON(p->nodes[0] != NULL);
2959 if (p->search_commit_root) {
2961 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2965 b = get_old_root(root, time_seq);
2966 level = btrfs_header_level(b);
2967 p->locks[level] = BTRFS_READ_LOCK;
2970 level = btrfs_header_level(b);
2971 p->nodes[level] = b;
2972 btrfs_clear_path_blocking(p, NULL, 0);
2975 * we have a lock on b and as long as we aren't changing
2976 * the tree, there is no way to for the items in b to change.
2977 * It is safe to drop the lock on our parent before we
2978 * go through the expensive btree search on b.
2980 btrfs_unlock_up_safe(p, level + 1);
2983 * Since we can unwind ebs we want to do a real search every
2987 ret = key_search(b, key, level, &prev_cmp, &slot);
2991 if (ret && slot > 0) {
2995 p->slots[level] = slot;
2996 unlock_up(p, level, lowest_unlock, 0, NULL);
2998 if (level == lowest_level) {
3004 err = read_block_for_search(NULL, root, p, &b, level,
3005 slot, key, time_seq);
3013 level = btrfs_header_level(b);
3014 err = btrfs_tree_read_lock_atomic(b);
3016 btrfs_set_path_blocking(p);
3017 btrfs_tree_read_lock(b);
3018 btrfs_clear_path_blocking(p, b,
3021 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3026 p->locks[level] = BTRFS_READ_LOCK;
3027 p->nodes[level] = b;
3029 p->slots[level] = slot;
3030 unlock_up(p, level, lowest_unlock, 0, NULL);
3036 if (!p->leave_spinning)
3037 btrfs_set_path_blocking(p);
3039 btrfs_release_path(p);
3045 * helper to use instead of search slot if no exact match is needed but
3046 * instead the next or previous item should be returned.
3047 * When find_higher is true, the next higher item is returned, the next lower
3049 * When return_any and find_higher are both true, and no higher item is found,
3050 * return the next lower instead.
3051 * When return_any is true and find_higher is false, and no lower item is found,
3052 * return the next higher instead.
3053 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3056 int btrfs_search_slot_for_read(struct btrfs_root *root,
3057 struct btrfs_key *key, struct btrfs_path *p,
3058 int find_higher, int return_any)
3061 struct extent_buffer *leaf;
3064 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3068 * a return value of 1 means the path is at the position where the
3069 * item should be inserted. Normally this is the next bigger item,
3070 * but in case the previous item is the last in a leaf, path points
3071 * to the first free slot in the previous leaf, i.e. at an invalid
3077 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3078 ret = btrfs_next_leaf(root, p);
3084 * no higher item found, return the next
3089 btrfs_release_path(p);
3093 if (p->slots[0] == 0) {
3094 ret = btrfs_prev_leaf(root, p);
3099 if (p->slots[0] == btrfs_header_nritems(leaf))
3106 * no lower item found, return the next
3111 btrfs_release_path(p);
3121 * adjust the pointers going up the tree, starting at level
3122 * making sure the right key of each node is points to 'key'.
3123 * This is used after shifting pointers to the left, so it stops
3124 * fixing up pointers when a given leaf/node is not in slot 0 of the
3128 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3129 struct btrfs_path *path,
3130 struct btrfs_disk_key *key, int level)
3133 struct extent_buffer *t;
3135 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3136 int tslot = path->slots[i];
3137 if (!path->nodes[i])
3140 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3141 btrfs_set_node_key(t, key, tslot);
3142 btrfs_mark_buffer_dirty(path->nodes[i]);
3151 * This function isn't completely safe. It's the caller's responsibility
3152 * that the new key won't break the order
3154 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3155 struct btrfs_path *path,
3156 struct btrfs_key *new_key)
3158 struct btrfs_disk_key disk_key;
3159 struct extent_buffer *eb;
3162 eb = path->nodes[0];
3163 slot = path->slots[0];
3165 btrfs_item_key(eb, &disk_key, slot - 1);
3166 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3168 if (slot < btrfs_header_nritems(eb) - 1) {
3169 btrfs_item_key(eb, &disk_key, slot + 1);
3170 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3173 btrfs_cpu_key_to_disk(&disk_key, new_key);
3174 btrfs_set_item_key(eb, &disk_key, slot);
3175 btrfs_mark_buffer_dirty(eb);
3177 fixup_low_keys(fs_info, path, &disk_key, 1);
3181 * try to push data from one node into the next node left in the
3184 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3185 * error, and > 0 if there was no room in the left hand block.
3187 static int push_node_left(struct btrfs_trans_handle *trans,
3188 struct btrfs_root *root, struct extent_buffer *dst,
3189 struct extent_buffer *src, int empty)
3196 src_nritems = btrfs_header_nritems(src);
3197 dst_nritems = btrfs_header_nritems(dst);
3198 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3199 WARN_ON(btrfs_header_generation(src) != trans->transid);
3200 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3202 if (!empty && src_nritems <= 8)
3205 if (push_items <= 0)
3209 push_items = min(src_nritems, push_items);
3210 if (push_items < src_nritems) {
3211 /* leave at least 8 pointers in the node if
3212 * we aren't going to empty it
3214 if (src_nritems - push_items < 8) {
3215 if (push_items <= 8)
3221 push_items = min(src_nritems - 8, push_items);
3223 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3226 btrfs_abort_transaction(trans, ret);
3229 copy_extent_buffer(dst, src,
3230 btrfs_node_key_ptr_offset(dst_nritems),
3231 btrfs_node_key_ptr_offset(0),
3232 push_items * sizeof(struct btrfs_key_ptr));
3234 if (push_items < src_nritems) {
3236 * don't call tree_mod_log_eb_move here, key removal was already
3237 * fully logged by tree_mod_log_eb_copy above.
3239 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3240 btrfs_node_key_ptr_offset(push_items),
3241 (src_nritems - push_items) *
3242 sizeof(struct btrfs_key_ptr));
3244 btrfs_set_header_nritems(src, src_nritems - push_items);
3245 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3246 btrfs_mark_buffer_dirty(src);
3247 btrfs_mark_buffer_dirty(dst);
3253 * try to push data from one node into the next node right in the
3256 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3257 * error, and > 0 if there was no room in the right hand block.
3259 * this will only push up to 1/2 the contents of the left node over
3261 static int balance_node_right(struct btrfs_trans_handle *trans,
3262 struct btrfs_root *root,
3263 struct extent_buffer *dst,
3264 struct extent_buffer *src)
3272 WARN_ON(btrfs_header_generation(src) != trans->transid);
3273 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3275 src_nritems = btrfs_header_nritems(src);
3276 dst_nritems = btrfs_header_nritems(dst);
3277 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3278 if (push_items <= 0)
3281 if (src_nritems < 4)
3284 max_push = src_nritems / 2 + 1;
3285 /* don't try to empty the node */
3286 if (max_push >= src_nritems)
3289 if (max_push < push_items)
3290 push_items = max_push;
3292 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3293 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3294 btrfs_node_key_ptr_offset(0),
3296 sizeof(struct btrfs_key_ptr));
3298 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3299 src_nritems - push_items, push_items);
3301 btrfs_abort_transaction(trans, ret);
3304 copy_extent_buffer(dst, src,
3305 btrfs_node_key_ptr_offset(0),
3306 btrfs_node_key_ptr_offset(src_nritems - push_items),
3307 push_items * sizeof(struct btrfs_key_ptr));
3309 btrfs_set_header_nritems(src, src_nritems - push_items);
3310 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3312 btrfs_mark_buffer_dirty(src);
3313 btrfs_mark_buffer_dirty(dst);
3319 * helper function to insert a new root level in the tree.
3320 * A new node is allocated, and a single item is inserted to
3321 * point to the existing root
3323 * returns zero on success or < 0 on failure.
3325 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3326 struct btrfs_root *root,
3327 struct btrfs_path *path, int level)
3330 struct extent_buffer *lower;
3331 struct extent_buffer *c;
3332 struct extent_buffer *old;
3333 struct btrfs_disk_key lower_key;
3335 BUG_ON(path->nodes[level]);
3336 BUG_ON(path->nodes[level-1] != root->node);
3338 lower = path->nodes[level-1];
3340 btrfs_item_key(lower, &lower_key, 0);
3342 btrfs_node_key(lower, &lower_key, 0);
3344 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3345 &lower_key, level, root->node->start, 0);
3349 root_add_used(root, root->nodesize);
3351 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3352 btrfs_set_header_nritems(c, 1);
3353 btrfs_set_header_level(c, level);
3354 btrfs_set_header_bytenr(c, c->start);
3355 btrfs_set_header_generation(c, trans->transid);
3356 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3357 btrfs_set_header_owner(c, root->root_key.objectid);
3359 write_extent_buffer_fsid(c, root->fs_info->fsid);
3360 write_extent_buffer_chunk_tree_uuid(c, root->fs_info->chunk_tree_uuid);
3362 btrfs_set_node_key(c, &lower_key, 0);
3363 btrfs_set_node_blockptr(c, 0, lower->start);
3364 lower_gen = btrfs_header_generation(lower);
3365 WARN_ON(lower_gen != trans->transid);
3367 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3369 btrfs_mark_buffer_dirty(c);
3372 tree_mod_log_set_root_pointer(root, c, 0);
3373 rcu_assign_pointer(root->node, c);
3375 /* the super has an extra ref to root->node */
3376 free_extent_buffer(old);
3378 add_root_to_dirty_list(root);
3379 extent_buffer_get(c);
3380 path->nodes[level] = c;
3381 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3382 path->slots[level] = 0;
3387 * worker function to insert a single pointer in a node.
3388 * the node should have enough room for the pointer already
3390 * slot and level indicate where you want the key to go, and
3391 * blocknr is the block the key points to.
3393 static void insert_ptr(struct btrfs_trans_handle *trans,
3394 struct btrfs_root *root, struct btrfs_path *path,
3395 struct btrfs_disk_key *key, u64 bytenr,
3396 int slot, int level)
3398 struct extent_buffer *lower;
3402 BUG_ON(!path->nodes[level]);
3403 btrfs_assert_tree_locked(path->nodes[level]);
3404 lower = path->nodes[level];
3405 nritems = btrfs_header_nritems(lower);
3406 BUG_ON(slot > nritems);
3407 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3408 if (slot != nritems) {
3410 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3411 slot, nritems - slot);
3412 memmove_extent_buffer(lower,
3413 btrfs_node_key_ptr_offset(slot + 1),
3414 btrfs_node_key_ptr_offset(slot),
3415 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3418 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3419 MOD_LOG_KEY_ADD, GFP_NOFS);
3422 btrfs_set_node_key(lower, key, slot);
3423 btrfs_set_node_blockptr(lower, slot, bytenr);
3424 WARN_ON(trans->transid == 0);
3425 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3426 btrfs_set_header_nritems(lower, nritems + 1);
3427 btrfs_mark_buffer_dirty(lower);
3431 * split the node at the specified level in path in two.
3432 * The path is corrected to point to the appropriate node after the split
3434 * Before splitting this tries to make some room in the node by pushing
3435 * left and right, if either one works, it returns right away.
3437 * returns 0 on success and < 0 on failure
3439 static noinline int split_node(struct btrfs_trans_handle *trans,
3440 struct btrfs_root *root,
3441 struct btrfs_path *path, int level)
3443 struct extent_buffer *c;
3444 struct extent_buffer *split;
3445 struct btrfs_disk_key disk_key;
3450 c = path->nodes[level];
3451 WARN_ON(btrfs_header_generation(c) != trans->transid);
3452 if (c == root->node) {
3454 * trying to split the root, lets make a new one
3456 * tree mod log: We don't log_removal old root in
3457 * insert_new_root, because that root buffer will be kept as a
3458 * normal node. We are going to log removal of half of the
3459 * elements below with tree_mod_log_eb_copy. We're holding a
3460 * tree lock on the buffer, which is why we cannot race with
3461 * other tree_mod_log users.
3463 ret = insert_new_root(trans, root, path, level + 1);
3467 ret = push_nodes_for_insert(trans, root, path, level);
3468 c = path->nodes[level];
3469 if (!ret && btrfs_header_nritems(c) <
3470 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3476 c_nritems = btrfs_header_nritems(c);
3477 mid = (c_nritems + 1) / 2;
3478 btrfs_node_key(c, &disk_key, mid);
3480 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3481 &disk_key, level, c->start, 0);
3483 return PTR_ERR(split);
3485 root_add_used(root, root->nodesize);
3487 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3488 btrfs_set_header_level(split, btrfs_header_level(c));
3489 btrfs_set_header_bytenr(split, split->start);
3490 btrfs_set_header_generation(split, trans->transid);
3491 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3492 btrfs_set_header_owner(split, root->root_key.objectid);
3493 write_extent_buffer_fsid(split, root->fs_info->fsid);
3494 write_extent_buffer_chunk_tree_uuid(split,
3495 root->fs_info->chunk_tree_uuid);
3497 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3498 mid, c_nritems - mid);
3500 btrfs_abort_transaction(trans, ret);
3503 copy_extent_buffer(split, c,
3504 btrfs_node_key_ptr_offset(0),
3505 btrfs_node_key_ptr_offset(mid),
3506 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3507 btrfs_set_header_nritems(split, c_nritems - mid);
3508 btrfs_set_header_nritems(c, mid);
3511 btrfs_mark_buffer_dirty(c);
3512 btrfs_mark_buffer_dirty(split);
3514 insert_ptr(trans, root, path, &disk_key, split->start,
3515 path->slots[level + 1] + 1, level + 1);
3517 if (path->slots[level] >= mid) {
3518 path->slots[level] -= mid;
3519 btrfs_tree_unlock(c);
3520 free_extent_buffer(c);
3521 path->nodes[level] = split;
3522 path->slots[level + 1] += 1;
3524 btrfs_tree_unlock(split);
3525 free_extent_buffer(split);
3531 * how many bytes are required to store the items in a leaf. start
3532 * and nr indicate which items in the leaf to check. This totals up the
3533 * space used both by the item structs and the item data
3535 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3537 struct btrfs_item *start_item;
3538 struct btrfs_item *end_item;
3539 struct btrfs_map_token token;
3541 int nritems = btrfs_header_nritems(l);
3542 int end = min(nritems, start + nr) - 1;
3546 btrfs_init_map_token(&token);
3547 start_item = btrfs_item_nr(start);
3548 end_item = btrfs_item_nr(end);
3549 data_len = btrfs_token_item_offset(l, start_item, &token) +
3550 btrfs_token_item_size(l, start_item, &token);
3551 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3552 data_len += sizeof(struct btrfs_item) * nr;
3553 WARN_ON(data_len < 0);
3558 * The space between the end of the leaf items and
3559 * the start of the leaf data. IOW, how much room
3560 * the leaf has left for both items and data
3562 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3563 struct extent_buffer *leaf)
3565 int nritems = btrfs_header_nritems(leaf);
3567 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3569 btrfs_crit(root->fs_info,
3570 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3571 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3572 leaf_space_used(leaf, 0, nritems), nritems);
3578 * min slot controls the lowest index we're willing to push to the
3579 * right. We'll push up to and including min_slot, but no lower
3581 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3582 struct btrfs_root *root,
3583 struct btrfs_path *path,
3584 int data_size, int empty,
3585 struct extent_buffer *right,
3586 int free_space, u32 left_nritems,
3589 struct extent_buffer *left = path->nodes[0];
3590 struct extent_buffer *upper = path->nodes[1];
3591 struct btrfs_map_token token;
3592 struct btrfs_disk_key disk_key;
3597 struct btrfs_item *item;
3603 btrfs_init_map_token(&token);
3608 nr = max_t(u32, 1, min_slot);
3610 if (path->slots[0] >= left_nritems)
3611 push_space += data_size;
3613 slot = path->slots[1];
3614 i = left_nritems - 1;
3616 item = btrfs_item_nr(i);
3618 if (!empty && push_items > 0) {
3619 if (path->slots[0] > i)
3621 if (path->slots[0] == i) {
3622 int space = btrfs_leaf_free_space(root, left);
3623 if (space + push_space * 2 > free_space)
3628 if (path->slots[0] == i)
3629 push_space += data_size;
3631 this_item_size = btrfs_item_size(left, item);
3632 if (this_item_size + sizeof(*item) + push_space > free_space)
3636 push_space += this_item_size + sizeof(*item);
3642 if (push_items == 0)
3645 WARN_ON(!empty && push_items == left_nritems);
3647 /* push left to right */
3648 right_nritems = btrfs_header_nritems(right);
3650 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3651 push_space -= leaf_data_end(root, left);
3653 /* make room in the right data area */
3654 data_end = leaf_data_end(root, right);
3655 memmove_extent_buffer(right,
3656 btrfs_leaf_data(right) + data_end - push_space,
3657 btrfs_leaf_data(right) + data_end,
3658 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3660 /* copy from the left data area */
3661 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3662 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3663 btrfs_leaf_data(left) + leaf_data_end(root, left),
3666 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3667 btrfs_item_nr_offset(0),
3668 right_nritems * sizeof(struct btrfs_item));
3670 /* copy the items from left to right */
3671 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3672 btrfs_item_nr_offset(left_nritems - push_items),
3673 push_items * sizeof(struct btrfs_item));
3675 /* update the item pointers */
3676 right_nritems += push_items;
3677 btrfs_set_header_nritems(right, right_nritems);
3678 push_space = BTRFS_LEAF_DATA_SIZE(root);
3679 for (i = 0; i < right_nritems; i++) {
3680 item = btrfs_item_nr(i);
3681 push_space -= btrfs_token_item_size(right, item, &token);
3682 btrfs_set_token_item_offset(right, item, push_space, &token);
3685 left_nritems -= push_items;
3686 btrfs_set_header_nritems(left, left_nritems);
3689 btrfs_mark_buffer_dirty(left);
3691 clean_tree_block(trans, root->fs_info, left);
3693 btrfs_mark_buffer_dirty(right);
3695 btrfs_item_key(right, &disk_key, 0);
3696 btrfs_set_node_key(upper, &disk_key, slot + 1);
3697 btrfs_mark_buffer_dirty(upper);
3699 /* then fixup the leaf pointer in the path */
3700 if (path->slots[0] >= left_nritems) {
3701 path->slots[0] -= left_nritems;
3702 if (btrfs_header_nritems(path->nodes[0]) == 0)
3703 clean_tree_block(trans, root->fs_info, path->nodes[0]);
3704 btrfs_tree_unlock(path->nodes[0]);
3705 free_extent_buffer(path->nodes[0]);
3706 path->nodes[0] = right;
3707 path->slots[1] += 1;
3709 btrfs_tree_unlock(right);
3710 free_extent_buffer(right);
3715 btrfs_tree_unlock(right);
3716 free_extent_buffer(right);
3721 * push some data in the path leaf to the right, trying to free up at
3722 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3724 * returns 1 if the push failed because the other node didn't have enough
3725 * room, 0 if everything worked out and < 0 if there were major errors.
3727 * this will push starting from min_slot to the end of the leaf. It won't
3728 * push any slot lower than min_slot
3730 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3731 *root, struct btrfs_path *path,
3732 int min_data_size, int data_size,
3733 int empty, u32 min_slot)
3735 struct extent_buffer *left = path->nodes[0];
3736 struct extent_buffer *right;
3737 struct extent_buffer *upper;
3743 if (!path->nodes[1])
3746 slot = path->slots[1];
3747 upper = path->nodes[1];
3748 if (slot >= btrfs_header_nritems(upper) - 1)
3751 btrfs_assert_tree_locked(path->nodes[1]);
3753 right = read_node_slot(root, upper, slot + 1);
3755 * slot + 1 is not valid or we fail to read the right node,
3756 * no big deal, just return.
3761 btrfs_tree_lock(right);
3762 btrfs_set_lock_blocking(right);
3764 free_space = btrfs_leaf_free_space(root, right);
3765 if (free_space < data_size)
3768 /* cow and double check */
3769 ret = btrfs_cow_block(trans, root, right, upper,
3774 free_space = btrfs_leaf_free_space(root, right);
3775 if (free_space < data_size)
3778 left_nritems = btrfs_header_nritems(left);
3779 if (left_nritems == 0)
3782 if (path->slots[0] == left_nritems && !empty) {
3783 /* Key greater than all keys in the leaf, right neighbor has
3784 * enough room for it and we're not emptying our leaf to delete
3785 * it, therefore use right neighbor to insert the new item and
3786 * no need to touch/dirty our left leaft. */
3787 btrfs_tree_unlock(left);
3788 free_extent_buffer(left);
3789 path->nodes[0] = right;
3795 return __push_leaf_right(trans, root, path, min_data_size, empty,
3796 right, free_space, left_nritems, min_slot);
3798 btrfs_tree_unlock(right);
3799 free_extent_buffer(right);
3804 * push some data in the path leaf to the left, trying to free up at
3805 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3807 * max_slot can put a limit on how far into the leaf we'll push items. The
3808 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3811 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3812 struct btrfs_root *root,
3813 struct btrfs_path *path, int data_size,
3814 int empty, struct extent_buffer *left,
3815 int free_space, u32 right_nritems,
3818 struct btrfs_disk_key disk_key;
3819 struct extent_buffer *right = path->nodes[0];
3823 struct btrfs_item *item;
3824 u32 old_left_nritems;
3828 u32 old_left_item_size;
3829 struct btrfs_map_token token;
3831 btrfs_init_map_token(&token);
3834 nr = min(right_nritems, max_slot);
3836 nr = min(right_nritems - 1, max_slot);
3838 for (i = 0; i < nr; i++) {
3839 item = btrfs_item_nr(i);
3841 if (!empty && push_items > 0) {
3842 if (path->slots[0] < i)
3844 if (path->slots[0] == i) {
3845 int space = btrfs_leaf_free_space(root, right);
3846 if (space + push_space * 2 > free_space)
3851 if (path->slots[0] == i)
3852 push_space += data_size;
3854 this_item_size = btrfs_item_size(right, item);
3855 if (this_item_size + sizeof(*item) + push_space > free_space)
3859 push_space += this_item_size + sizeof(*item);
3862 if (push_items == 0) {
3866 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3868 /* push data from right to left */
3869 copy_extent_buffer(left, right,
3870 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3871 btrfs_item_nr_offset(0),
3872 push_items * sizeof(struct btrfs_item));
3874 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3875 btrfs_item_offset_nr(right, push_items - 1);
3877 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3878 leaf_data_end(root, left) - push_space,
3879 btrfs_leaf_data(right) +
3880 btrfs_item_offset_nr(right, push_items - 1),
3882 old_left_nritems = btrfs_header_nritems(left);
3883 BUG_ON(old_left_nritems <= 0);
3885 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3886 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3889 item = btrfs_item_nr(i);
3891 ioff = btrfs_token_item_offset(left, item, &token);
3892 btrfs_set_token_item_offset(left, item,
3893 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3896 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3898 /* fixup right node */
3899 if (push_items > right_nritems)
3900 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3903 if (push_items < right_nritems) {
3904 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3905 leaf_data_end(root, right);
3906 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3907 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3908 btrfs_leaf_data(right) +
3909 leaf_data_end(root, right), push_space);
3911 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3912 btrfs_item_nr_offset(push_items),
3913 (btrfs_header_nritems(right) - push_items) *
3914 sizeof(struct btrfs_item));
3916 right_nritems -= push_items;
3917 btrfs_set_header_nritems(right, right_nritems);
3918 push_space = BTRFS_LEAF_DATA_SIZE(root);
3919 for (i = 0; i < right_nritems; i++) {
3920 item = btrfs_item_nr(i);
3922 push_space = push_space - btrfs_token_item_size(right,
3924 btrfs_set_token_item_offset(right, item, push_space, &token);
3927 btrfs_mark_buffer_dirty(left);
3929 btrfs_mark_buffer_dirty(right);
3931 clean_tree_block(trans, root->fs_info, right);
3933 btrfs_item_key(right, &disk_key, 0);
3934 fixup_low_keys(root->fs_info, path, &disk_key, 1);
3936 /* then fixup the leaf pointer in the path */
3937 if (path->slots[0] < push_items) {
3938 path->slots[0] += old_left_nritems;
3939 btrfs_tree_unlock(path->nodes[0]);
3940 free_extent_buffer(path->nodes[0]);
3941 path->nodes[0] = left;
3942 path->slots[1] -= 1;
3944 btrfs_tree_unlock(left);
3945 free_extent_buffer(left);
3946 path->slots[0] -= push_items;
3948 BUG_ON(path->slots[0] < 0);
3951 btrfs_tree_unlock(left);
3952 free_extent_buffer(left);
3957 * push some data in the path leaf to the left, trying to free up at
3958 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3960 * max_slot can put a limit on how far into the leaf we'll push items. The
3961 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3964 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3965 *root, struct btrfs_path *path, int min_data_size,
3966 int data_size, int empty, u32 max_slot)
3968 struct extent_buffer *right = path->nodes[0];
3969 struct extent_buffer *left;
3975 slot = path->slots[1];
3978 if (!path->nodes[1])
3981 right_nritems = btrfs_header_nritems(right);
3982 if (right_nritems == 0)
3985 btrfs_assert_tree_locked(path->nodes[1]);
3987 left = read_node_slot(root, path->nodes[1], slot - 1);
3989 * slot - 1 is not valid or we fail to read the left node,
3990 * no big deal, just return.
3995 btrfs_tree_lock(left);
3996 btrfs_set_lock_blocking(left);
3998 free_space = btrfs_leaf_free_space(root, left);
3999 if (free_space < data_size) {
4004 /* cow and double check */
4005 ret = btrfs_cow_block(trans, root, left,
4006 path->nodes[1], slot - 1, &left);
4008 /* we hit -ENOSPC, but it isn't fatal here */
4014 free_space = btrfs_leaf_free_space(root, left);
4015 if (free_space < data_size) {
4020 return __push_leaf_left(trans, root, path, min_data_size,
4021 empty, left, free_space, right_nritems,
4024 btrfs_tree_unlock(left);
4025 free_extent_buffer(left);
4030 * split the path's leaf in two, making sure there is at least data_size
4031 * available for the resulting leaf level of the path.
4033 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4034 struct btrfs_root *root,
4035 struct btrfs_path *path,
4036 struct extent_buffer *l,
4037 struct extent_buffer *right,
4038 int slot, int mid, int nritems)
4043 struct btrfs_disk_key disk_key;
4044 struct btrfs_map_token token;
4046 btrfs_init_map_token(&token);
4048 nritems = nritems - mid;
4049 btrfs_set_header_nritems(right, nritems);
4050 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4052 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4053 btrfs_item_nr_offset(mid),
4054 nritems * sizeof(struct btrfs_item));
4056 copy_extent_buffer(right, l,
4057 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4058 data_copy_size, btrfs_leaf_data(l) +
4059 leaf_data_end(root, l), data_copy_size);
4061 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4062 btrfs_item_end_nr(l, mid);
4064 for (i = 0; i < nritems; i++) {
4065 struct btrfs_item *item = btrfs_item_nr(i);
4068 ioff = btrfs_token_item_offset(right, item, &token);
4069 btrfs_set_token_item_offset(right, item,
4070 ioff + rt_data_off, &token);
4073 btrfs_set_header_nritems(l, mid);
4074 btrfs_item_key(right, &disk_key, 0);
4075 insert_ptr(trans, root, path, &disk_key, right->start,
4076 path->slots[1] + 1, 1);
4078 btrfs_mark_buffer_dirty(right);
4079 btrfs_mark_buffer_dirty(l);
4080 BUG_ON(path->slots[0] != slot);
4083 btrfs_tree_unlock(path->nodes[0]);
4084 free_extent_buffer(path->nodes[0]);
4085 path->nodes[0] = right;
4086 path->slots[0] -= mid;
4087 path->slots[1] += 1;
4089 btrfs_tree_unlock(right);
4090 free_extent_buffer(right);
4093 BUG_ON(path->slots[0] < 0);
4097 * double splits happen when we need to insert a big item in the middle
4098 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4099 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4102 * We avoid this by trying to push the items on either side of our target
4103 * into the adjacent leaves. If all goes well we can avoid the double split
4106 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4107 struct btrfs_root *root,
4108 struct btrfs_path *path,
4115 int space_needed = data_size;
4117 slot = path->slots[0];
4118 if (slot < btrfs_header_nritems(path->nodes[0]))
4119 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4122 * try to push all the items after our slot into the
4125 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4132 nritems = btrfs_header_nritems(path->nodes[0]);
4134 * our goal is to get our slot at the start or end of a leaf. If
4135 * we've done so we're done
4137 if (path->slots[0] == 0 || path->slots[0] == nritems)
4140 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4143 /* try to push all the items before our slot into the next leaf */
4144 slot = path->slots[0];
4145 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4158 * split the path's leaf in two, making sure there is at least data_size
4159 * available for the resulting leaf level of the path.
4161 * returns 0 if all went well and < 0 on failure.
4163 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4164 struct btrfs_root *root,
4165 struct btrfs_key *ins_key,
4166 struct btrfs_path *path, int data_size,
4169 struct btrfs_disk_key disk_key;
4170 struct extent_buffer *l;
4174 struct extent_buffer *right;
4175 struct btrfs_fs_info *fs_info = root->fs_info;
4179 int num_doubles = 0;
4180 int tried_avoid_double = 0;
4183 slot = path->slots[0];
4184 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4185 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4188 /* first try to make some room by pushing left and right */
4189 if (data_size && path->nodes[1]) {
4190 int space_needed = data_size;
4192 if (slot < btrfs_header_nritems(l))
4193 space_needed -= btrfs_leaf_free_space(root, l);
4195 wret = push_leaf_right(trans, root, path, space_needed,
4196 space_needed, 0, 0);
4200 wret = push_leaf_left(trans, root, path, space_needed,
4201 space_needed, 0, (u32)-1);
4207 /* did the pushes work? */
4208 if (btrfs_leaf_free_space(root, l) >= data_size)
4212 if (!path->nodes[1]) {
4213 ret = insert_new_root(trans, root, path, 1);
4220 slot = path->slots[0];
4221 nritems = btrfs_header_nritems(l);
4222 mid = (nritems + 1) / 2;
4226 leaf_space_used(l, mid, nritems - mid) + data_size >
4227 BTRFS_LEAF_DATA_SIZE(root)) {
4228 if (slot >= nritems) {
4232 if (mid != nritems &&
4233 leaf_space_used(l, mid, nritems - mid) +
4234 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4235 if (data_size && !tried_avoid_double)
4236 goto push_for_double;
4242 if (leaf_space_used(l, 0, mid) + data_size >
4243 BTRFS_LEAF_DATA_SIZE(root)) {
4244 if (!extend && data_size && slot == 0) {
4246 } else if ((extend || !data_size) && slot == 0) {
4250 if (mid != nritems &&
4251 leaf_space_used(l, mid, nritems - mid) +
4252 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4253 if (data_size && !tried_avoid_double)
4254 goto push_for_double;
4262 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4264 btrfs_item_key(l, &disk_key, mid);
4266 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4267 &disk_key, 0, l->start, 0);
4269 return PTR_ERR(right);
4271 root_add_used(root, root->nodesize);
4273 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4274 btrfs_set_header_bytenr(right, right->start);
4275 btrfs_set_header_generation(right, trans->transid);
4276 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4277 btrfs_set_header_owner(right, root->root_key.objectid);
4278 btrfs_set_header_level(right, 0);
4279 write_extent_buffer_fsid(right, fs_info->fsid);
4280 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4284 btrfs_set_header_nritems(right, 0);
4285 insert_ptr(trans, root, path, &disk_key, right->start,
4286 path->slots[1] + 1, 1);
4287 btrfs_tree_unlock(path->nodes[0]);
4288 free_extent_buffer(path->nodes[0]);
4289 path->nodes[0] = right;
4291 path->slots[1] += 1;
4293 btrfs_set_header_nritems(right, 0);
4294 insert_ptr(trans, root, path, &disk_key, right->start,
4296 btrfs_tree_unlock(path->nodes[0]);
4297 free_extent_buffer(path->nodes[0]);
4298 path->nodes[0] = right;
4300 if (path->slots[1] == 0)
4301 fixup_low_keys(fs_info, path, &disk_key, 1);
4304 * We create a new leaf 'right' for the required ins_len and
4305 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4306 * the content of ins_len to 'right'.
4311 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4314 BUG_ON(num_doubles != 0);
4322 push_for_double_split(trans, root, path, data_size);
4323 tried_avoid_double = 1;
4324 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4329 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4330 struct btrfs_root *root,
4331 struct btrfs_path *path, int ins_len)
4333 struct btrfs_key key;
4334 struct extent_buffer *leaf;
4335 struct btrfs_file_extent_item *fi;
4340 leaf = path->nodes[0];
4341 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4343 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4344 key.type != BTRFS_EXTENT_CSUM_KEY);
4346 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4349 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4350 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4351 fi = btrfs_item_ptr(leaf, path->slots[0],
4352 struct btrfs_file_extent_item);
4353 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4355 btrfs_release_path(path);
4357 path->keep_locks = 1;
4358 path->search_for_split = 1;
4359 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4360 path->search_for_split = 0;
4367 leaf = path->nodes[0];
4368 /* if our item isn't there, return now */
4369 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4372 /* the leaf has changed, it now has room. return now */
4373 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4376 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4377 fi = btrfs_item_ptr(leaf, path->slots[0],
4378 struct btrfs_file_extent_item);
4379 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4383 btrfs_set_path_blocking(path);
4384 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4388 path->keep_locks = 0;
4389 btrfs_unlock_up_safe(path, 1);
4392 path->keep_locks = 0;
4396 static noinline int split_item(struct btrfs_trans_handle *trans,
4397 struct btrfs_root *root,
4398 struct btrfs_path *path,
4399 struct btrfs_key *new_key,
4400 unsigned long split_offset)
4402 struct extent_buffer *leaf;
4403 struct btrfs_item *item;
4404 struct btrfs_item *new_item;
4410 struct btrfs_disk_key disk_key;
4412 leaf = path->nodes[0];
4413 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4415 btrfs_set_path_blocking(path);
4417 item = btrfs_item_nr(path->slots[0]);
4418 orig_offset = btrfs_item_offset(leaf, item);
4419 item_size = btrfs_item_size(leaf, item);
4421 buf = kmalloc(item_size, GFP_NOFS);
4425 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4426 path->slots[0]), item_size);
4428 slot = path->slots[0] + 1;
4429 nritems = btrfs_header_nritems(leaf);
4430 if (slot != nritems) {
4431 /* shift the items */
4432 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4433 btrfs_item_nr_offset(slot),
4434 (nritems - slot) * sizeof(struct btrfs_item));
4437 btrfs_cpu_key_to_disk(&disk_key, new_key);
4438 btrfs_set_item_key(leaf, &disk_key, slot);
4440 new_item = btrfs_item_nr(slot);
4442 btrfs_set_item_offset(leaf, new_item, orig_offset);
4443 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4445 btrfs_set_item_offset(leaf, item,
4446 orig_offset + item_size - split_offset);
4447 btrfs_set_item_size(leaf, item, split_offset);
4449 btrfs_set_header_nritems(leaf, nritems + 1);
4451 /* write the data for the start of the original item */
4452 write_extent_buffer(leaf, buf,
4453 btrfs_item_ptr_offset(leaf, path->slots[0]),
4456 /* write the data for the new item */
4457 write_extent_buffer(leaf, buf + split_offset,
4458 btrfs_item_ptr_offset(leaf, slot),
4459 item_size - split_offset);
4460 btrfs_mark_buffer_dirty(leaf);
4462 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4468 * This function splits a single item into two items,
4469 * giving 'new_key' to the new item and splitting the
4470 * old one at split_offset (from the start of the item).
4472 * The path may be released by this operation. After
4473 * the split, the path is pointing to the old item. The
4474 * new item is going to be in the same node as the old one.
4476 * Note, the item being split must be smaller enough to live alone on
4477 * a tree block with room for one extra struct btrfs_item
4479 * This allows us to split the item in place, keeping a lock on the
4480 * leaf the entire time.
4482 int btrfs_split_item(struct btrfs_trans_handle *trans,
4483 struct btrfs_root *root,
4484 struct btrfs_path *path,
4485 struct btrfs_key *new_key,
4486 unsigned long split_offset)
4489 ret = setup_leaf_for_split(trans, root, path,
4490 sizeof(struct btrfs_item));
4494 ret = split_item(trans, root, path, new_key, split_offset);
4499 * This function duplicate a item, giving 'new_key' to the new item.
4500 * It guarantees both items live in the same tree leaf and the new item
4501 * is contiguous with the original item.
4503 * This allows us to split file extent in place, keeping a lock on the
4504 * leaf the entire time.
4506 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4507 struct btrfs_root *root,
4508 struct btrfs_path *path,
4509 struct btrfs_key *new_key)
4511 struct extent_buffer *leaf;
4515 leaf = path->nodes[0];
4516 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4517 ret = setup_leaf_for_split(trans, root, path,
4518 item_size + sizeof(struct btrfs_item));
4523 setup_items_for_insert(root, path, new_key, &item_size,
4524 item_size, item_size +
4525 sizeof(struct btrfs_item), 1);
4526 leaf = path->nodes[0];
4527 memcpy_extent_buffer(leaf,
4528 btrfs_item_ptr_offset(leaf, path->slots[0]),
4529 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4535 * make the item pointed to by the path smaller. new_size indicates
4536 * how small to make it, and from_end tells us if we just chop bytes
4537 * off the end of the item or if we shift the item to chop bytes off
4540 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4541 u32 new_size, int from_end)
4544 struct extent_buffer *leaf;
4545 struct btrfs_item *item;
4547 unsigned int data_end;
4548 unsigned int old_data_start;
4549 unsigned int old_size;
4550 unsigned int size_diff;
4552 struct btrfs_map_token token;
4554 btrfs_init_map_token(&token);
4556 leaf = path->nodes[0];
4557 slot = path->slots[0];
4559 old_size = btrfs_item_size_nr(leaf, slot);
4560 if (old_size == new_size)
4563 nritems = btrfs_header_nritems(leaf);
4564 data_end = leaf_data_end(root, leaf);
4566 old_data_start = btrfs_item_offset_nr(leaf, slot);
4568 size_diff = old_size - new_size;
4571 BUG_ON(slot >= nritems);
4574 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4576 /* first correct the data pointers */
4577 for (i = slot; i < nritems; i++) {
4579 item = btrfs_item_nr(i);
4581 ioff = btrfs_token_item_offset(leaf, item, &token);
4582 btrfs_set_token_item_offset(leaf, item,
4583 ioff + size_diff, &token);
4586 /* shift the data */
4588 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4589 data_end + size_diff, btrfs_leaf_data(leaf) +
4590 data_end, old_data_start + new_size - data_end);
4592 struct btrfs_disk_key disk_key;
4595 btrfs_item_key(leaf, &disk_key, slot);
4597 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4599 struct btrfs_file_extent_item *fi;
4601 fi = btrfs_item_ptr(leaf, slot,
4602 struct btrfs_file_extent_item);
4603 fi = (struct btrfs_file_extent_item *)(
4604 (unsigned long)fi - size_diff);
4606 if (btrfs_file_extent_type(leaf, fi) ==
4607 BTRFS_FILE_EXTENT_INLINE) {
4608 ptr = btrfs_item_ptr_offset(leaf, slot);
4609 memmove_extent_buffer(leaf, ptr,
4611 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4615 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4616 data_end + size_diff, btrfs_leaf_data(leaf) +
4617 data_end, old_data_start - data_end);
4619 offset = btrfs_disk_key_offset(&disk_key);
4620 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4621 btrfs_set_item_key(leaf, &disk_key, slot);
4623 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4626 item = btrfs_item_nr(slot);
4627 btrfs_set_item_size(leaf, item, new_size);
4628 btrfs_mark_buffer_dirty(leaf);
4630 if (btrfs_leaf_free_space(root, leaf) < 0) {
4631 btrfs_print_leaf(root, leaf);
4637 * make the item pointed to by the path bigger, data_size is the added size.
4639 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4643 struct extent_buffer *leaf;
4644 struct btrfs_item *item;
4646 unsigned int data_end;
4647 unsigned int old_data;
4648 unsigned int old_size;
4650 struct btrfs_map_token token;
4652 btrfs_init_map_token(&token);
4654 leaf = path->nodes[0];
4656 nritems = btrfs_header_nritems(leaf);
4657 data_end = leaf_data_end(root, leaf);
4659 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4660 btrfs_print_leaf(root, leaf);
4663 slot = path->slots[0];
4664 old_data = btrfs_item_end_nr(leaf, slot);
4667 if (slot >= nritems) {
4668 btrfs_print_leaf(root, leaf);
4669 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4675 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4677 /* first correct the data pointers */
4678 for (i = slot; i < nritems; i++) {
4680 item = btrfs_item_nr(i);
4682 ioff = btrfs_token_item_offset(leaf, item, &token);
4683 btrfs_set_token_item_offset(leaf, item,
4684 ioff - data_size, &token);
4687 /* shift the data */
4688 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4689 data_end - data_size, btrfs_leaf_data(leaf) +
4690 data_end, old_data - data_end);
4692 data_end = old_data;
4693 old_size = btrfs_item_size_nr(leaf, slot);
4694 item = btrfs_item_nr(slot);
4695 btrfs_set_item_size(leaf, item, old_size + data_size);
4696 btrfs_mark_buffer_dirty(leaf);
4698 if (btrfs_leaf_free_space(root, leaf) < 0) {
4699 btrfs_print_leaf(root, leaf);
4705 * this is a helper for btrfs_insert_empty_items, the main goal here is
4706 * to save stack depth by doing the bulk of the work in a function
4707 * that doesn't call btrfs_search_slot
4709 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4710 struct btrfs_key *cpu_key, u32 *data_size,
4711 u32 total_data, u32 total_size, int nr)
4713 struct btrfs_item *item;
4716 unsigned int data_end;
4717 struct btrfs_disk_key disk_key;
4718 struct extent_buffer *leaf;
4720 struct btrfs_map_token token;
4722 if (path->slots[0] == 0) {
4723 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4724 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4726 btrfs_unlock_up_safe(path, 1);
4728 btrfs_init_map_token(&token);
4730 leaf = path->nodes[0];
4731 slot = path->slots[0];
4733 nritems = btrfs_header_nritems(leaf);
4734 data_end = leaf_data_end(root, leaf);
4736 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4737 btrfs_print_leaf(root, leaf);
4738 btrfs_crit(root->fs_info,
4739 "not enough freespace need %u have %d",
4740 total_size, btrfs_leaf_free_space(root, leaf));
4744 if (slot != nritems) {
4745 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4747 if (old_data < data_end) {
4748 btrfs_print_leaf(root, leaf);
4749 btrfs_crit(root->fs_info,
4750 "slot %d old_data %d data_end %d",
4751 slot, old_data, data_end);
4755 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4757 /* first correct the data pointers */
4758 for (i = slot; i < nritems; i++) {
4761 item = btrfs_item_nr(i);
4762 ioff = btrfs_token_item_offset(leaf, item, &token);
4763 btrfs_set_token_item_offset(leaf, item,
4764 ioff - total_data, &token);
4766 /* shift the items */
4767 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4768 btrfs_item_nr_offset(slot),
4769 (nritems - slot) * sizeof(struct btrfs_item));
4771 /* shift the data */
4772 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4773 data_end - total_data, btrfs_leaf_data(leaf) +
4774 data_end, old_data - data_end);
4775 data_end = old_data;
4778 /* setup the item for the new data */
4779 for (i = 0; i < nr; i++) {
4780 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4781 btrfs_set_item_key(leaf, &disk_key, slot + i);
4782 item = btrfs_item_nr(slot + i);
4783 btrfs_set_token_item_offset(leaf, item,
4784 data_end - data_size[i], &token);
4785 data_end -= data_size[i];
4786 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4789 btrfs_set_header_nritems(leaf, nritems + nr);
4790 btrfs_mark_buffer_dirty(leaf);
4792 if (btrfs_leaf_free_space(root, leaf) < 0) {
4793 btrfs_print_leaf(root, leaf);
4799 * Given a key and some data, insert items into the tree.
4800 * This does all the path init required, making room in the tree if needed.
4802 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4803 struct btrfs_root *root,
4804 struct btrfs_path *path,
4805 struct btrfs_key *cpu_key, u32 *data_size,
4814 for (i = 0; i < nr; i++)
4815 total_data += data_size[i];
4817 total_size = total_data + (nr * sizeof(struct btrfs_item));
4818 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4824 slot = path->slots[0];
4827 setup_items_for_insert(root, path, cpu_key, data_size,
4828 total_data, total_size, nr);
4833 * Given a key and some data, insert an item into the tree.
4834 * This does all the path init required, making room in the tree if needed.
4836 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4837 *root, struct btrfs_key *cpu_key, void *data, u32
4841 struct btrfs_path *path;
4842 struct extent_buffer *leaf;
4845 path = btrfs_alloc_path();
4848 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4850 leaf = path->nodes[0];
4851 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4852 write_extent_buffer(leaf, data, ptr, data_size);
4853 btrfs_mark_buffer_dirty(leaf);
4855 btrfs_free_path(path);
4860 * delete the pointer from a given node.
4862 * the tree should have been previously balanced so the deletion does not
4865 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4866 int level, int slot)
4868 struct extent_buffer *parent = path->nodes[level];
4872 nritems = btrfs_header_nritems(parent);
4873 if (slot != nritems - 1) {
4875 tree_mod_log_eb_move(root->fs_info, parent, slot,
4876 slot + 1, nritems - slot - 1);
4877 memmove_extent_buffer(parent,
4878 btrfs_node_key_ptr_offset(slot),
4879 btrfs_node_key_ptr_offset(slot + 1),
4880 sizeof(struct btrfs_key_ptr) *
4881 (nritems - slot - 1));
4883 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4884 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4889 btrfs_set_header_nritems(parent, nritems);
4890 if (nritems == 0 && parent == root->node) {
4891 BUG_ON(btrfs_header_level(root->node) != 1);
4892 /* just turn the root into a leaf and break */
4893 btrfs_set_header_level(root->node, 0);
4894 } else if (slot == 0) {
4895 struct btrfs_disk_key disk_key;
4897 btrfs_node_key(parent, &disk_key, 0);
4898 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4900 btrfs_mark_buffer_dirty(parent);
4904 * a helper function to delete the leaf pointed to by path->slots[1] and
4907 * This deletes the pointer in path->nodes[1] and frees the leaf
4908 * block extent. zero is returned if it all worked out, < 0 otherwise.
4910 * The path must have already been setup for deleting the leaf, including
4911 * all the proper balancing. path->nodes[1] must be locked.
4913 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4914 struct btrfs_root *root,
4915 struct btrfs_path *path,
4916 struct extent_buffer *leaf)
4918 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4919 del_ptr(root, path, 1, path->slots[1]);
4922 * btrfs_free_extent is expensive, we want to make sure we
4923 * aren't holding any locks when we call it
4925 btrfs_unlock_up_safe(path, 0);
4927 root_sub_used(root, leaf->len);
4929 extent_buffer_get(leaf);
4930 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4931 free_extent_buffer_stale(leaf);
4934 * delete the item at the leaf level in path. If that empties
4935 * the leaf, remove it from the tree
4937 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4938 struct btrfs_path *path, int slot, int nr)
4940 struct extent_buffer *leaf;
4941 struct btrfs_item *item;
4948 struct btrfs_map_token token;
4950 btrfs_init_map_token(&token);
4952 leaf = path->nodes[0];
4953 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4955 for (i = 0; i < nr; i++)
4956 dsize += btrfs_item_size_nr(leaf, slot + i);
4958 nritems = btrfs_header_nritems(leaf);
4960 if (slot + nr != nritems) {
4961 int data_end = leaf_data_end(root, leaf);
4963 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4965 btrfs_leaf_data(leaf) + data_end,
4966 last_off - data_end);
4968 for (i = slot + nr; i < nritems; i++) {
4971 item = btrfs_item_nr(i);
4972 ioff = btrfs_token_item_offset(leaf, item, &token);
4973 btrfs_set_token_item_offset(leaf, item,
4974 ioff + dsize, &token);
4977 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4978 btrfs_item_nr_offset(slot + nr),
4979 sizeof(struct btrfs_item) *
4980 (nritems - slot - nr));
4982 btrfs_set_header_nritems(leaf, nritems - nr);
4985 /* delete the leaf if we've emptied it */
4987 if (leaf == root->node) {
4988 btrfs_set_header_level(leaf, 0);
4990 btrfs_set_path_blocking(path);
4991 clean_tree_block(trans, root->fs_info, leaf);
4992 btrfs_del_leaf(trans, root, path, leaf);
4995 int used = leaf_space_used(leaf, 0, nritems);
4997 struct btrfs_disk_key disk_key;
4999 btrfs_item_key(leaf, &disk_key, 0);
5000 fixup_low_keys(root->fs_info, path, &disk_key, 1);
5003 /* delete the leaf if it is mostly empty */
5004 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5005 /* push_leaf_left fixes the path.
5006 * make sure the path still points to our leaf
5007 * for possible call to del_ptr below
5009 slot = path->slots[1];
5010 extent_buffer_get(leaf);
5012 btrfs_set_path_blocking(path);
5013 wret = push_leaf_left(trans, root, path, 1, 1,
5015 if (wret < 0 && wret != -ENOSPC)
5018 if (path->nodes[0] == leaf &&
5019 btrfs_header_nritems(leaf)) {
5020 wret = push_leaf_right(trans, root, path, 1,
5022 if (wret < 0 && wret != -ENOSPC)
5026 if (btrfs_header_nritems(leaf) == 0) {
5027 path->slots[1] = slot;
5028 btrfs_del_leaf(trans, root, path, leaf);
5029 free_extent_buffer(leaf);
5032 /* if we're still in the path, make sure
5033 * we're dirty. Otherwise, one of the
5034 * push_leaf functions must have already
5035 * dirtied this buffer
5037 if (path->nodes[0] == leaf)
5038 btrfs_mark_buffer_dirty(leaf);
5039 free_extent_buffer(leaf);
5042 btrfs_mark_buffer_dirty(leaf);
5049 * search the tree again to find a leaf with lesser keys
5050 * returns 0 if it found something or 1 if there are no lesser leaves.
5051 * returns < 0 on io errors.
5053 * This may release the path, and so you may lose any locks held at the
5056 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5058 struct btrfs_key key;
5059 struct btrfs_disk_key found_key;
5062 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5064 if (key.offset > 0) {
5066 } else if (key.type > 0) {
5068 key.offset = (u64)-1;
5069 } else if (key.objectid > 0) {
5072 key.offset = (u64)-1;
5077 btrfs_release_path(path);
5078 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5081 btrfs_item_key(path->nodes[0], &found_key, 0);
5082 ret = comp_keys(&found_key, &key);
5084 * We might have had an item with the previous key in the tree right
5085 * before we released our path. And after we released our path, that
5086 * item might have been pushed to the first slot (0) of the leaf we
5087 * were holding due to a tree balance. Alternatively, an item with the
5088 * previous key can exist as the only element of a leaf (big fat item).
5089 * Therefore account for these 2 cases, so that our callers (like
5090 * btrfs_previous_item) don't miss an existing item with a key matching
5091 * the previous key we computed above.
5099 * A helper function to walk down the tree starting at min_key, and looking
5100 * for nodes or leaves that are have a minimum transaction id.
5101 * This is used by the btree defrag code, and tree logging
5103 * This does not cow, but it does stuff the starting key it finds back
5104 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5105 * key and get a writable path.
5107 * This does lock as it descends, and path->keep_locks should be set
5108 * to 1 by the caller.
5110 * This honors path->lowest_level to prevent descent past a given level
5113 * min_trans indicates the oldest transaction that you are interested
5114 * in walking through. Any nodes or leaves older than min_trans are
5115 * skipped over (without reading them).
5117 * returns zero if something useful was found, < 0 on error and 1 if there
5118 * was nothing in the tree that matched the search criteria.
5120 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5121 struct btrfs_path *path,
5124 struct extent_buffer *cur;
5125 struct btrfs_key found_key;
5131 int keep_locks = path->keep_locks;
5133 path->keep_locks = 1;
5135 cur = btrfs_read_lock_root_node(root);
5136 level = btrfs_header_level(cur);
5137 WARN_ON(path->nodes[level]);
5138 path->nodes[level] = cur;
5139 path->locks[level] = BTRFS_READ_LOCK;
5141 if (btrfs_header_generation(cur) < min_trans) {
5146 nritems = btrfs_header_nritems(cur);
5147 level = btrfs_header_level(cur);
5148 sret = bin_search(cur, min_key, level, &slot);
5150 /* at the lowest level, we're done, setup the path and exit */
5151 if (level == path->lowest_level) {
5152 if (slot >= nritems)
5155 path->slots[level] = slot;
5156 btrfs_item_key_to_cpu(cur, &found_key, slot);
5159 if (sret && slot > 0)
5162 * check this node pointer against the min_trans parameters.
5163 * If it is too old, old, skip to the next one.
5165 while (slot < nritems) {
5168 gen = btrfs_node_ptr_generation(cur, slot);
5169 if (gen < min_trans) {
5177 * we didn't find a candidate key in this node, walk forward
5178 * and find another one
5180 if (slot >= nritems) {
5181 path->slots[level] = slot;
5182 btrfs_set_path_blocking(path);
5183 sret = btrfs_find_next_key(root, path, min_key, level,
5186 btrfs_release_path(path);
5192 /* save our key for returning back */
5193 btrfs_node_key_to_cpu(cur, &found_key, slot);
5194 path->slots[level] = slot;
5195 if (level == path->lowest_level) {
5199 btrfs_set_path_blocking(path);
5200 cur = read_node_slot(root, cur, slot);
5206 btrfs_tree_read_lock(cur);
5208 path->locks[level - 1] = BTRFS_READ_LOCK;
5209 path->nodes[level - 1] = cur;
5210 unlock_up(path, level, 1, 0, NULL);
5211 btrfs_clear_path_blocking(path, NULL, 0);
5214 path->keep_locks = keep_locks;
5216 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5217 btrfs_set_path_blocking(path);
5218 memcpy(min_key, &found_key, sizeof(found_key));
5223 static int tree_move_down(struct btrfs_root *root,
5224 struct btrfs_path *path,
5225 int *level, int root_level)
5227 struct extent_buffer *eb;
5229 BUG_ON(*level == 0);
5230 eb = read_node_slot(root, path->nodes[*level], path->slots[*level]);
5234 path->nodes[*level - 1] = eb;
5235 path->slots[*level - 1] = 0;
5240 static int tree_move_next_or_upnext(struct btrfs_root *root,
5241 struct btrfs_path *path,
5242 int *level, int root_level)
5246 nritems = btrfs_header_nritems(path->nodes[*level]);
5248 path->slots[*level]++;
5250 while (path->slots[*level] >= nritems) {
5251 if (*level == root_level)
5255 path->slots[*level] = 0;
5256 free_extent_buffer(path->nodes[*level]);
5257 path->nodes[*level] = NULL;
5259 path->slots[*level]++;
5261 nritems = btrfs_header_nritems(path->nodes[*level]);
5268 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5271 static int tree_advance(struct btrfs_root *root,
5272 struct btrfs_path *path,
5273 int *level, int root_level,
5275 struct btrfs_key *key)
5279 if (*level == 0 || !allow_down) {
5280 ret = tree_move_next_or_upnext(root, path, level, root_level);
5282 ret = tree_move_down(root, path, level, root_level);
5286 btrfs_item_key_to_cpu(path->nodes[*level], key,
5287 path->slots[*level]);
5289 btrfs_node_key_to_cpu(path->nodes[*level], key,
5290 path->slots[*level]);
5295 static int tree_compare_item(struct btrfs_root *left_root,
5296 struct btrfs_path *left_path,
5297 struct btrfs_path *right_path,
5302 unsigned long off1, off2;
5304 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5305 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5309 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5310 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5311 right_path->slots[0]);
5313 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5315 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5322 #define ADVANCE_ONLY_NEXT -1
5325 * This function compares two trees and calls the provided callback for
5326 * every changed/new/deleted item it finds.
5327 * If shared tree blocks are encountered, whole subtrees are skipped, making
5328 * the compare pretty fast on snapshotted subvolumes.
5330 * This currently works on commit roots only. As commit roots are read only,
5331 * we don't do any locking. The commit roots are protected with transactions.
5332 * Transactions are ended and rejoined when a commit is tried in between.
5334 * This function checks for modifications done to the trees while comparing.
5335 * If it detects a change, it aborts immediately.
5337 int btrfs_compare_trees(struct btrfs_root *left_root,
5338 struct btrfs_root *right_root,
5339 btrfs_changed_cb_t changed_cb, void *ctx)
5343 struct btrfs_path *left_path = NULL;
5344 struct btrfs_path *right_path = NULL;
5345 struct btrfs_key left_key;
5346 struct btrfs_key right_key;
5347 char *tmp_buf = NULL;
5348 int left_root_level;
5349 int right_root_level;
5352 int left_end_reached;
5353 int right_end_reached;
5361 left_path = btrfs_alloc_path();
5366 right_path = btrfs_alloc_path();
5372 tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5374 tmp_buf = vmalloc(left_root->nodesize);
5381 left_path->search_commit_root = 1;
5382 left_path->skip_locking = 1;
5383 right_path->search_commit_root = 1;
5384 right_path->skip_locking = 1;
5387 * Strategy: Go to the first items of both trees. Then do
5389 * If both trees are at level 0
5390 * Compare keys of current items
5391 * If left < right treat left item as new, advance left tree
5393 * If left > right treat right item as deleted, advance right tree
5395 * If left == right do deep compare of items, treat as changed if
5396 * needed, advance both trees and repeat
5397 * If both trees are at the same level but not at level 0
5398 * Compare keys of current nodes/leafs
5399 * If left < right advance left tree and repeat
5400 * If left > right advance right tree and repeat
5401 * If left == right compare blockptrs of the next nodes/leafs
5402 * If they match advance both trees but stay at the same level
5404 * If they don't match advance both trees while allowing to go
5406 * If tree levels are different
5407 * Advance the tree that needs it and repeat
5409 * Advancing a tree means:
5410 * If we are at level 0, try to go to the next slot. If that's not
5411 * possible, go one level up and repeat. Stop when we found a level
5412 * where we could go to the next slot. We may at this point be on a
5415 * If we are not at level 0 and not on shared tree blocks, go one
5418 * If we are not at level 0 and on shared tree blocks, go one slot to
5419 * the right if possible or go up and right.
5422 down_read(&left_root->fs_info->commit_root_sem);
5423 left_level = btrfs_header_level(left_root->commit_root);
5424 left_root_level = left_level;
5425 left_path->nodes[left_level] = left_root->commit_root;
5426 extent_buffer_get(left_path->nodes[left_level]);
5428 right_level = btrfs_header_level(right_root->commit_root);
5429 right_root_level = right_level;
5430 right_path->nodes[right_level] = right_root->commit_root;
5431 extent_buffer_get(right_path->nodes[right_level]);
5432 up_read(&left_root->fs_info->commit_root_sem);
5434 if (left_level == 0)
5435 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5436 &left_key, left_path->slots[left_level]);
5438 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5439 &left_key, left_path->slots[left_level]);
5440 if (right_level == 0)
5441 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5442 &right_key, right_path->slots[right_level]);
5444 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5445 &right_key, right_path->slots[right_level]);
5447 left_end_reached = right_end_reached = 0;
5448 advance_left = advance_right = 0;
5451 if (advance_left && !left_end_reached) {
5452 ret = tree_advance(left_root, left_path, &left_level,
5454 advance_left != ADVANCE_ONLY_NEXT,
5457 left_end_reached = ADVANCE;
5462 if (advance_right && !right_end_reached) {
5463 ret = tree_advance(right_root, right_path, &right_level,
5465 advance_right != ADVANCE_ONLY_NEXT,
5468 right_end_reached = ADVANCE;
5474 if (left_end_reached && right_end_reached) {
5477 } else if (left_end_reached) {
5478 if (right_level == 0) {
5479 ret = changed_cb(left_root, right_root,
5480 left_path, right_path,
5482 BTRFS_COMPARE_TREE_DELETED,
5487 advance_right = ADVANCE;
5489 } else if (right_end_reached) {
5490 if (left_level == 0) {
5491 ret = changed_cb(left_root, right_root,
5492 left_path, right_path,
5494 BTRFS_COMPARE_TREE_NEW,
5499 advance_left = ADVANCE;
5503 if (left_level == 0 && right_level == 0) {
5504 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5506 ret = changed_cb(left_root, right_root,
5507 left_path, right_path,
5509 BTRFS_COMPARE_TREE_NEW,
5513 advance_left = ADVANCE;
5514 } else if (cmp > 0) {
5515 ret = changed_cb(left_root, right_root,
5516 left_path, right_path,
5518 BTRFS_COMPARE_TREE_DELETED,
5522 advance_right = ADVANCE;
5524 enum btrfs_compare_tree_result result;
5526 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5527 ret = tree_compare_item(left_root, left_path,
5528 right_path, tmp_buf);
5530 result = BTRFS_COMPARE_TREE_CHANGED;
5532 result = BTRFS_COMPARE_TREE_SAME;
5533 ret = changed_cb(left_root, right_root,
5534 left_path, right_path,
5535 &left_key, result, ctx);
5538 advance_left = ADVANCE;
5539 advance_right = ADVANCE;
5541 } else if (left_level == right_level) {
5542 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5544 advance_left = ADVANCE;
5545 } else if (cmp > 0) {
5546 advance_right = ADVANCE;
5548 left_blockptr = btrfs_node_blockptr(
5549 left_path->nodes[left_level],
5550 left_path->slots[left_level]);
5551 right_blockptr = btrfs_node_blockptr(
5552 right_path->nodes[right_level],
5553 right_path->slots[right_level]);
5554 left_gen = btrfs_node_ptr_generation(
5555 left_path->nodes[left_level],
5556 left_path->slots[left_level]);
5557 right_gen = btrfs_node_ptr_generation(
5558 right_path->nodes[right_level],
5559 right_path->slots[right_level]);
5560 if (left_blockptr == right_blockptr &&
5561 left_gen == right_gen) {
5563 * As we're on a shared block, don't
5564 * allow to go deeper.
5566 advance_left = ADVANCE_ONLY_NEXT;
5567 advance_right = ADVANCE_ONLY_NEXT;
5569 advance_left = ADVANCE;
5570 advance_right = ADVANCE;
5573 } else if (left_level < right_level) {
5574 advance_right = ADVANCE;
5576 advance_left = ADVANCE;
5581 btrfs_free_path(left_path);
5582 btrfs_free_path(right_path);
5588 * this is similar to btrfs_next_leaf, but does not try to preserve
5589 * and fixup the path. It looks for and returns the next key in the
5590 * tree based on the current path and the min_trans parameters.
5592 * 0 is returned if another key is found, < 0 if there are any errors
5593 * and 1 is returned if there are no higher keys in the tree
5595 * path->keep_locks should be set to 1 on the search made before
5596 * calling this function.
5598 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5599 struct btrfs_key *key, int level, u64 min_trans)
5602 struct extent_buffer *c;
5604 WARN_ON(!path->keep_locks);
5605 while (level < BTRFS_MAX_LEVEL) {
5606 if (!path->nodes[level])
5609 slot = path->slots[level] + 1;
5610 c = path->nodes[level];
5612 if (slot >= btrfs_header_nritems(c)) {
5615 struct btrfs_key cur_key;
5616 if (level + 1 >= BTRFS_MAX_LEVEL ||
5617 !path->nodes[level + 1])
5620 if (path->locks[level + 1]) {
5625 slot = btrfs_header_nritems(c) - 1;
5627 btrfs_item_key_to_cpu(c, &cur_key, slot);
5629 btrfs_node_key_to_cpu(c, &cur_key, slot);
5631 orig_lowest = path->lowest_level;
5632 btrfs_release_path(path);
5633 path->lowest_level = level;
5634 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5636 path->lowest_level = orig_lowest;
5640 c = path->nodes[level];
5641 slot = path->slots[level];
5648 btrfs_item_key_to_cpu(c, key, slot);
5650 u64 gen = btrfs_node_ptr_generation(c, slot);
5652 if (gen < min_trans) {
5656 btrfs_node_key_to_cpu(c, key, slot);
5664 * search the tree again to find a leaf with greater keys
5665 * returns 0 if it found something or 1 if there are no greater leaves.
5666 * returns < 0 on io errors.
5668 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5670 return btrfs_next_old_leaf(root, path, 0);
5673 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5678 struct extent_buffer *c;
5679 struct extent_buffer *next;
5680 struct btrfs_key key;
5683 int old_spinning = path->leave_spinning;
5684 int next_rw_lock = 0;
5686 nritems = btrfs_header_nritems(path->nodes[0]);
5690 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5695 btrfs_release_path(path);
5697 path->keep_locks = 1;
5698 path->leave_spinning = 1;
5701 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5703 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5704 path->keep_locks = 0;
5709 nritems = btrfs_header_nritems(path->nodes[0]);
5711 * by releasing the path above we dropped all our locks. A balance
5712 * could have added more items next to the key that used to be
5713 * at the very end of the block. So, check again here and
5714 * advance the path if there are now more items available.
5716 if (nritems > 0 && path->slots[0] < nritems - 1) {
5723 * So the above check misses one case:
5724 * - after releasing the path above, someone has removed the item that
5725 * used to be at the very end of the block, and balance between leafs
5726 * gets another one with bigger key.offset to replace it.
5728 * This one should be returned as well, or we can get leaf corruption
5729 * later(esp. in __btrfs_drop_extents()).
5731 * And a bit more explanation about this check,
5732 * with ret > 0, the key isn't found, the path points to the slot
5733 * where it should be inserted, so the path->slots[0] item must be the
5736 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5741 while (level < BTRFS_MAX_LEVEL) {
5742 if (!path->nodes[level]) {
5747 slot = path->slots[level] + 1;
5748 c = path->nodes[level];
5749 if (slot >= btrfs_header_nritems(c)) {
5751 if (level == BTRFS_MAX_LEVEL) {
5759 btrfs_tree_unlock_rw(next, next_rw_lock);
5760 free_extent_buffer(next);
5764 next_rw_lock = path->locks[level];
5765 ret = read_block_for_search(NULL, root, path, &next, level,
5771 btrfs_release_path(path);
5775 if (!path->skip_locking) {
5776 ret = btrfs_try_tree_read_lock(next);
5777 if (!ret && time_seq) {
5779 * If we don't get the lock, we may be racing
5780 * with push_leaf_left, holding that lock while
5781 * itself waiting for the leaf we've currently
5782 * locked. To solve this situation, we give up
5783 * on our lock and cycle.
5785 free_extent_buffer(next);
5786 btrfs_release_path(path);
5791 btrfs_set_path_blocking(path);
5792 btrfs_tree_read_lock(next);
5793 btrfs_clear_path_blocking(path, next,
5796 next_rw_lock = BTRFS_READ_LOCK;
5800 path->slots[level] = slot;
5803 c = path->nodes[level];
5804 if (path->locks[level])
5805 btrfs_tree_unlock_rw(c, path->locks[level]);
5807 free_extent_buffer(c);
5808 path->nodes[level] = next;
5809 path->slots[level] = 0;
5810 if (!path->skip_locking)
5811 path->locks[level] = next_rw_lock;
5815 ret = read_block_for_search(NULL, root, path, &next, level,
5821 btrfs_release_path(path);
5825 if (!path->skip_locking) {
5826 ret = btrfs_try_tree_read_lock(next);
5828 btrfs_set_path_blocking(path);
5829 btrfs_tree_read_lock(next);
5830 btrfs_clear_path_blocking(path, next,
5833 next_rw_lock = BTRFS_READ_LOCK;
5838 unlock_up(path, 0, 1, 0, NULL);
5839 path->leave_spinning = old_spinning;
5841 btrfs_set_path_blocking(path);
5847 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5848 * searching until it gets past min_objectid or finds an item of 'type'
5850 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5852 int btrfs_previous_item(struct btrfs_root *root,
5853 struct btrfs_path *path, u64 min_objectid,
5856 struct btrfs_key found_key;
5857 struct extent_buffer *leaf;
5862 if (path->slots[0] == 0) {
5863 btrfs_set_path_blocking(path);
5864 ret = btrfs_prev_leaf(root, path);
5870 leaf = path->nodes[0];
5871 nritems = btrfs_header_nritems(leaf);
5874 if (path->slots[0] == nritems)
5877 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5878 if (found_key.objectid < min_objectid)
5880 if (found_key.type == type)
5882 if (found_key.objectid == min_objectid &&
5883 found_key.type < type)
5890 * search in extent tree to find a previous Metadata/Data extent item with
5893 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5895 int btrfs_previous_extent_item(struct btrfs_root *root,
5896 struct btrfs_path *path, u64 min_objectid)
5898 struct btrfs_key found_key;
5899 struct extent_buffer *leaf;
5904 if (path->slots[0] == 0) {
5905 btrfs_set_path_blocking(path);
5906 ret = btrfs_prev_leaf(root, path);
5912 leaf = path->nodes[0];
5913 nritems = btrfs_header_nritems(leaf);
5916 if (path->slots[0] == nritems)
5919 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5920 if (found_key.objectid < min_objectid)
5922 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5923 found_key.type == BTRFS_METADATA_ITEM_KEY)
5925 if (found_key.objectid == min_objectid &&
5926 found_key.type < BTRFS_EXTENT_ITEM_KEY)