]> Git Repo - linux.git/blob - fs/btrfs/ctree.c
btrfs: use new helpers to set uuids in eb
[linux.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32                       *root, struct btrfs_key *ins_key,
33                       struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35                           struct btrfs_root *root, struct extent_buffer *dst,
36                           struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38                               struct btrfs_root *root,
39                               struct extent_buffer *dst_buf,
40                               struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42                     int level, int slot);
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44                                  struct extent_buffer *eb);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49 }
50
51 /*
52  * set all locked nodes in the path to blocking locks.  This should
53  * be done before scheduling
54  */
55 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
56 {
57         int i;
58         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
59                 if (!p->nodes[i] || !p->locks[i])
60                         continue;
61                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
62                 if (p->locks[i] == BTRFS_READ_LOCK)
63                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
64                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
65                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
66         }
67 }
68
69 /*
70  * reset all the locked nodes in the patch to spinning locks.
71  *
72  * held is used to keep lockdep happy, when lockdep is enabled
73  * we set held to a blocking lock before we go around and
74  * retake all the spinlocks in the path.  You can safely use NULL
75  * for held
76  */
77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78                                         struct extent_buffer *held, int held_rw)
79 {
80         int i;
81
82         if (held) {
83                 btrfs_set_lock_blocking_rw(held, held_rw);
84                 if (held_rw == BTRFS_WRITE_LOCK)
85                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
86                 else if (held_rw == BTRFS_READ_LOCK)
87                         held_rw = BTRFS_READ_LOCK_BLOCKING;
88         }
89         btrfs_set_path_blocking(p);
90
91         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
92                 if (p->nodes[i] && p->locks[i]) {
93                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
94                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
95                                 p->locks[i] = BTRFS_WRITE_LOCK;
96                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
97                                 p->locks[i] = BTRFS_READ_LOCK;
98                 }
99         }
100
101         if (held)
102                 btrfs_clear_lock_blocking_rw(held, held_rw);
103 }
104
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path *p)
107 {
108         if (!p)
109                 return;
110         btrfs_release_path(p);
111         kmem_cache_free(btrfs_path_cachep, p);
112 }
113
114 /*
115  * path release drops references on the extent buffers in the path
116  * and it drops any locks held by this path
117  *
118  * It is safe to call this on paths that no locks or extent buffers held.
119  */
120 noinline void btrfs_release_path(struct btrfs_path *p)
121 {
122         int i;
123
124         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
125                 p->slots[i] = 0;
126                 if (!p->nodes[i])
127                         continue;
128                 if (p->locks[i]) {
129                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
130                         p->locks[i] = 0;
131                 }
132                 free_extent_buffer(p->nodes[i]);
133                 p->nodes[i] = NULL;
134         }
135 }
136
137 /*
138  * safely gets a reference on the root node of a tree.  A lock
139  * is not taken, so a concurrent writer may put a different node
140  * at the root of the tree.  See btrfs_lock_root_node for the
141  * looping required.
142  *
143  * The extent buffer returned by this has a reference taken, so
144  * it won't disappear.  It may stop being the root of the tree
145  * at any time because there are no locks held.
146  */
147 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
148 {
149         struct extent_buffer *eb;
150
151         while (1) {
152                 rcu_read_lock();
153                 eb = rcu_dereference(root->node);
154
155                 /*
156                  * RCU really hurts here, we could free up the root node because
157                  * it was COWed but we may not get the new root node yet so do
158                  * the inc_not_zero dance and if it doesn't work then
159                  * synchronize_rcu and try again.
160                  */
161                 if (atomic_inc_not_zero(&eb->refs)) {
162                         rcu_read_unlock();
163                         break;
164                 }
165                 rcu_read_unlock();
166                 synchronize_rcu();
167         }
168         return eb;
169 }
170
171 /* loop around taking references on and locking the root node of the
172  * tree until you end up with a lock on the root.  A locked buffer
173  * is returned, with a reference held.
174  */
175 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
176 {
177         struct extent_buffer *eb;
178
179         while (1) {
180                 eb = btrfs_root_node(root);
181                 btrfs_tree_lock(eb);
182                 if (eb == root->node)
183                         break;
184                 btrfs_tree_unlock(eb);
185                 free_extent_buffer(eb);
186         }
187         return eb;
188 }
189
190 /* loop around taking references on and locking the root node of the
191  * tree until you end up with a lock on the root.  A locked buffer
192  * is returned, with a reference held.
193  */
194 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
195 {
196         struct extent_buffer *eb;
197
198         while (1) {
199                 eb = btrfs_root_node(root);
200                 btrfs_tree_read_lock(eb);
201                 if (eb == root->node)
202                         break;
203                 btrfs_tree_read_unlock(eb);
204                 free_extent_buffer(eb);
205         }
206         return eb;
207 }
208
209 /* cowonly root (everything not a reference counted cow subvolume), just get
210  * put onto a simple dirty list.  transaction.c walks this to make sure they
211  * get properly updated on disk.
212  */
213 static void add_root_to_dirty_list(struct btrfs_root *root)
214 {
215         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
216             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
217                 return;
218
219         spin_lock(&root->fs_info->trans_lock);
220         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
221                 /* Want the extent tree to be the last on the list */
222                 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
223                         list_move_tail(&root->dirty_list,
224                                        &root->fs_info->dirty_cowonly_roots);
225                 else
226                         list_move(&root->dirty_list,
227                                   &root->fs_info->dirty_cowonly_roots);
228         }
229         spin_unlock(&root->fs_info->trans_lock);
230 }
231
232 /*
233  * used by snapshot creation to make a copy of a root for a tree with
234  * a given objectid.  The buffer with the new root node is returned in
235  * cow_ret, and this func returns zero on success or a negative error code.
236  */
237 int btrfs_copy_root(struct btrfs_trans_handle *trans,
238                       struct btrfs_root *root,
239                       struct extent_buffer *buf,
240                       struct extent_buffer **cow_ret, u64 new_root_objectid)
241 {
242         struct extent_buffer *cow;
243         int ret = 0;
244         int level;
245         struct btrfs_disk_key disk_key;
246
247         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
248                 trans->transid != root->fs_info->running_transaction->transid);
249         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250                 trans->transid != root->last_trans);
251
252         level = btrfs_header_level(buf);
253         if (level == 0)
254                 btrfs_item_key(buf, &disk_key, 0);
255         else
256                 btrfs_node_key(buf, &disk_key, 0);
257
258         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
259                         &disk_key, level, buf->start, 0);
260         if (IS_ERR(cow))
261                 return PTR_ERR(cow);
262
263         copy_extent_buffer(cow, buf, 0, 0, cow->len);
264         btrfs_set_header_bytenr(cow, cow->start);
265         btrfs_set_header_generation(cow, trans->transid);
266         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
267         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
268                                      BTRFS_HEADER_FLAG_RELOC);
269         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
270                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
271         else
272                 btrfs_set_header_owner(cow, new_root_objectid);
273
274         write_extent_buffer_fsid(cow, root->fs_info->fsid);
275
276         WARN_ON(btrfs_header_generation(buf) > trans->transid);
277         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278                 ret = btrfs_inc_ref(trans, root, cow, 1);
279         else
280                 ret = btrfs_inc_ref(trans, root, cow, 0);
281
282         if (ret)
283                 return ret;
284
285         btrfs_mark_buffer_dirty(cow);
286         *cow_ret = cow;
287         return 0;
288 }
289
290 enum mod_log_op {
291         MOD_LOG_KEY_REPLACE,
292         MOD_LOG_KEY_ADD,
293         MOD_LOG_KEY_REMOVE,
294         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
295         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
296         MOD_LOG_MOVE_KEYS,
297         MOD_LOG_ROOT_REPLACE,
298 };
299
300 struct tree_mod_move {
301         int dst_slot;
302         int nr_items;
303 };
304
305 struct tree_mod_root {
306         u64 logical;
307         u8 level;
308 };
309
310 struct tree_mod_elem {
311         struct rb_node node;
312         u64 logical;
313         u64 seq;
314         enum mod_log_op op;
315
316         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
317         int slot;
318
319         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
320         u64 generation;
321
322         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
323         struct btrfs_disk_key key;
324         u64 blockptr;
325
326         /* this is used for op == MOD_LOG_MOVE_KEYS */
327         struct tree_mod_move move;
328
329         /* this is used for op == MOD_LOG_ROOT_REPLACE */
330         struct tree_mod_root old_root;
331 };
332
333 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
334 {
335         read_lock(&fs_info->tree_mod_log_lock);
336 }
337
338 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
339 {
340         read_unlock(&fs_info->tree_mod_log_lock);
341 }
342
343 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
344 {
345         write_lock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
349 {
350         write_unlock(&fs_info->tree_mod_log_lock);
351 }
352
353 /*
354  * Pull a new tree mod seq number for our operation.
355  */
356 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
357 {
358         return atomic64_inc_return(&fs_info->tree_mod_seq);
359 }
360
361 /*
362  * This adds a new blocker to the tree mod log's blocker list if the @elem
363  * passed does not already have a sequence number set. So when a caller expects
364  * to record tree modifications, it should ensure to set elem->seq to zero
365  * before calling btrfs_get_tree_mod_seq.
366  * Returns a fresh, unused tree log modification sequence number, even if no new
367  * blocker was added.
368  */
369 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
370                            struct seq_list *elem)
371 {
372         tree_mod_log_write_lock(fs_info);
373         spin_lock(&fs_info->tree_mod_seq_lock);
374         if (!elem->seq) {
375                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
376                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
377         }
378         spin_unlock(&fs_info->tree_mod_seq_lock);
379         tree_mod_log_write_unlock(fs_info);
380
381         return elem->seq;
382 }
383
384 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
385                             struct seq_list *elem)
386 {
387         struct rb_root *tm_root;
388         struct rb_node *node;
389         struct rb_node *next;
390         struct seq_list *cur_elem;
391         struct tree_mod_elem *tm;
392         u64 min_seq = (u64)-1;
393         u64 seq_putting = elem->seq;
394
395         if (!seq_putting)
396                 return;
397
398         spin_lock(&fs_info->tree_mod_seq_lock);
399         list_del(&elem->list);
400         elem->seq = 0;
401
402         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
403                 if (cur_elem->seq < min_seq) {
404                         if (seq_putting > cur_elem->seq) {
405                                 /*
406                                  * blocker with lower sequence number exists, we
407                                  * cannot remove anything from the log
408                                  */
409                                 spin_unlock(&fs_info->tree_mod_seq_lock);
410                                 return;
411                         }
412                         min_seq = cur_elem->seq;
413                 }
414         }
415         spin_unlock(&fs_info->tree_mod_seq_lock);
416
417         /*
418          * anything that's lower than the lowest existing (read: blocked)
419          * sequence number can be removed from the tree.
420          */
421         tree_mod_log_write_lock(fs_info);
422         tm_root = &fs_info->tree_mod_log;
423         for (node = rb_first(tm_root); node; node = next) {
424                 next = rb_next(node);
425                 tm = container_of(node, struct tree_mod_elem, node);
426                 if (tm->seq > min_seq)
427                         continue;
428                 rb_erase(node, tm_root);
429                 kfree(tm);
430         }
431         tree_mod_log_write_unlock(fs_info);
432 }
433
434 /*
435  * key order of the log:
436  *       node/leaf start address -> sequence
437  *
438  * The 'start address' is the logical address of the *new* root node
439  * for root replace operations, or the logical address of the affected
440  * block for all other operations.
441  *
442  * Note: must be called with write lock (tree_mod_log_write_lock).
443  */
444 static noinline int
445 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
446 {
447         struct rb_root *tm_root;
448         struct rb_node **new;
449         struct rb_node *parent = NULL;
450         struct tree_mod_elem *cur;
451
452         BUG_ON(!tm);
453
454         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
455
456         tm_root = &fs_info->tree_mod_log;
457         new = &tm_root->rb_node;
458         while (*new) {
459                 cur = container_of(*new, struct tree_mod_elem, node);
460                 parent = *new;
461                 if (cur->logical < tm->logical)
462                         new = &((*new)->rb_left);
463                 else if (cur->logical > tm->logical)
464                         new = &((*new)->rb_right);
465                 else if (cur->seq < tm->seq)
466                         new = &((*new)->rb_left);
467                 else if (cur->seq > tm->seq)
468                         new = &((*new)->rb_right);
469                 else
470                         return -EEXIST;
471         }
472
473         rb_link_node(&tm->node, parent, new);
474         rb_insert_color(&tm->node, tm_root);
475         return 0;
476 }
477
478 /*
479  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
480  * returns zero with the tree_mod_log_lock acquired. The caller must hold
481  * this until all tree mod log insertions are recorded in the rb tree and then
482  * call tree_mod_log_write_unlock() to release.
483  */
484 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
485                                     struct extent_buffer *eb) {
486         smp_mb();
487         if (list_empty(&(fs_info)->tree_mod_seq_list))
488                 return 1;
489         if (eb && btrfs_header_level(eb) == 0)
490                 return 1;
491
492         tree_mod_log_write_lock(fs_info);
493         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
494                 tree_mod_log_write_unlock(fs_info);
495                 return 1;
496         }
497
498         return 0;
499 }
500
501 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
502 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
503                                     struct extent_buffer *eb)
504 {
505         smp_mb();
506         if (list_empty(&(fs_info)->tree_mod_seq_list))
507                 return 0;
508         if (eb && btrfs_header_level(eb) == 0)
509                 return 0;
510
511         return 1;
512 }
513
514 static struct tree_mod_elem *
515 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
516                     enum mod_log_op op, gfp_t flags)
517 {
518         struct tree_mod_elem *tm;
519
520         tm = kzalloc(sizeof(*tm), flags);
521         if (!tm)
522                 return NULL;
523
524         tm->logical = eb->start;
525         if (op != MOD_LOG_KEY_ADD) {
526                 btrfs_node_key(eb, &tm->key, slot);
527                 tm->blockptr = btrfs_node_blockptr(eb, slot);
528         }
529         tm->op = op;
530         tm->slot = slot;
531         tm->generation = btrfs_node_ptr_generation(eb, slot);
532         RB_CLEAR_NODE(&tm->node);
533
534         return tm;
535 }
536
537 static noinline int
538 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
539                         struct extent_buffer *eb, int slot,
540                         enum mod_log_op op, gfp_t flags)
541 {
542         struct tree_mod_elem *tm;
543         int ret;
544
545         if (!tree_mod_need_log(fs_info, eb))
546                 return 0;
547
548         tm = alloc_tree_mod_elem(eb, slot, op, flags);
549         if (!tm)
550                 return -ENOMEM;
551
552         if (tree_mod_dont_log(fs_info, eb)) {
553                 kfree(tm);
554                 return 0;
555         }
556
557         ret = __tree_mod_log_insert(fs_info, tm);
558         tree_mod_log_write_unlock(fs_info);
559         if (ret)
560                 kfree(tm);
561
562         return ret;
563 }
564
565 static noinline int
566 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
567                          struct extent_buffer *eb, int dst_slot, int src_slot,
568                          int nr_items, gfp_t flags)
569 {
570         struct tree_mod_elem *tm = NULL;
571         struct tree_mod_elem **tm_list = NULL;
572         int ret = 0;
573         int i;
574         int locked = 0;
575
576         if (!tree_mod_need_log(fs_info, eb))
577                 return 0;
578
579         tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
580         if (!tm_list)
581                 return -ENOMEM;
582
583         tm = kzalloc(sizeof(*tm), flags);
584         if (!tm) {
585                 ret = -ENOMEM;
586                 goto free_tms;
587         }
588
589         tm->logical = eb->start;
590         tm->slot = src_slot;
591         tm->move.dst_slot = dst_slot;
592         tm->move.nr_items = nr_items;
593         tm->op = MOD_LOG_MOVE_KEYS;
594
595         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
596                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
597                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
598                 if (!tm_list[i]) {
599                         ret = -ENOMEM;
600                         goto free_tms;
601                 }
602         }
603
604         if (tree_mod_dont_log(fs_info, eb))
605                 goto free_tms;
606         locked = 1;
607
608         /*
609          * When we override something during the move, we log these removals.
610          * This can only happen when we move towards the beginning of the
611          * buffer, i.e. dst_slot < src_slot.
612          */
613         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
614                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
615                 if (ret)
616                         goto free_tms;
617         }
618
619         ret = __tree_mod_log_insert(fs_info, tm);
620         if (ret)
621                 goto free_tms;
622         tree_mod_log_write_unlock(fs_info);
623         kfree(tm_list);
624
625         return 0;
626 free_tms:
627         for (i = 0; i < nr_items; i++) {
628                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
629                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
630                 kfree(tm_list[i]);
631         }
632         if (locked)
633                 tree_mod_log_write_unlock(fs_info);
634         kfree(tm_list);
635         kfree(tm);
636
637         return ret;
638 }
639
640 static inline int
641 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
642                        struct tree_mod_elem **tm_list,
643                        int nritems)
644 {
645         int i, j;
646         int ret;
647
648         for (i = nritems - 1; i >= 0; i--) {
649                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
650                 if (ret) {
651                         for (j = nritems - 1; j > i; j--)
652                                 rb_erase(&tm_list[j]->node,
653                                          &fs_info->tree_mod_log);
654                         return ret;
655                 }
656         }
657
658         return 0;
659 }
660
661 static noinline int
662 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
663                          struct extent_buffer *old_root,
664                          struct extent_buffer *new_root, gfp_t flags,
665                          int log_removal)
666 {
667         struct tree_mod_elem *tm = NULL;
668         struct tree_mod_elem **tm_list = NULL;
669         int nritems = 0;
670         int ret = 0;
671         int i;
672
673         if (!tree_mod_need_log(fs_info, NULL))
674                 return 0;
675
676         if (log_removal && btrfs_header_level(old_root) > 0) {
677                 nritems = btrfs_header_nritems(old_root);
678                 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
679                                   flags);
680                 if (!tm_list) {
681                         ret = -ENOMEM;
682                         goto free_tms;
683                 }
684                 for (i = 0; i < nritems; i++) {
685                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
686                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
687                         if (!tm_list[i]) {
688                                 ret = -ENOMEM;
689                                 goto free_tms;
690                         }
691                 }
692         }
693
694         tm = kzalloc(sizeof(*tm), flags);
695         if (!tm) {
696                 ret = -ENOMEM;
697                 goto free_tms;
698         }
699
700         tm->logical = new_root->start;
701         tm->old_root.logical = old_root->start;
702         tm->old_root.level = btrfs_header_level(old_root);
703         tm->generation = btrfs_header_generation(old_root);
704         tm->op = MOD_LOG_ROOT_REPLACE;
705
706         if (tree_mod_dont_log(fs_info, NULL))
707                 goto free_tms;
708
709         if (tm_list)
710                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
711         if (!ret)
712                 ret = __tree_mod_log_insert(fs_info, tm);
713
714         tree_mod_log_write_unlock(fs_info);
715         if (ret)
716                 goto free_tms;
717         kfree(tm_list);
718
719         return ret;
720
721 free_tms:
722         if (tm_list) {
723                 for (i = 0; i < nritems; i++)
724                         kfree(tm_list[i]);
725                 kfree(tm_list);
726         }
727         kfree(tm);
728
729         return ret;
730 }
731
732 static struct tree_mod_elem *
733 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
734                       int smallest)
735 {
736         struct rb_root *tm_root;
737         struct rb_node *node;
738         struct tree_mod_elem *cur = NULL;
739         struct tree_mod_elem *found = NULL;
740
741         tree_mod_log_read_lock(fs_info);
742         tm_root = &fs_info->tree_mod_log;
743         node = tm_root->rb_node;
744         while (node) {
745                 cur = container_of(node, struct tree_mod_elem, node);
746                 if (cur->logical < start) {
747                         node = node->rb_left;
748                 } else if (cur->logical > start) {
749                         node = node->rb_right;
750                 } else if (cur->seq < min_seq) {
751                         node = node->rb_left;
752                 } else if (!smallest) {
753                         /* we want the node with the highest seq */
754                         if (found)
755                                 BUG_ON(found->seq > cur->seq);
756                         found = cur;
757                         node = node->rb_left;
758                 } else if (cur->seq > min_seq) {
759                         /* we want the node with the smallest seq */
760                         if (found)
761                                 BUG_ON(found->seq < cur->seq);
762                         found = cur;
763                         node = node->rb_right;
764                 } else {
765                         found = cur;
766                         break;
767                 }
768         }
769         tree_mod_log_read_unlock(fs_info);
770
771         return found;
772 }
773
774 /*
775  * this returns the element from the log with the smallest time sequence
776  * value that's in the log (the oldest log item). any element with a time
777  * sequence lower than min_seq will be ignored.
778  */
779 static struct tree_mod_elem *
780 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
781                            u64 min_seq)
782 {
783         return __tree_mod_log_search(fs_info, start, min_seq, 1);
784 }
785
786 /*
787  * this returns the element from the log with the largest time sequence
788  * value that's in the log (the most recent log item). any element with
789  * a time sequence lower than min_seq will be ignored.
790  */
791 static struct tree_mod_elem *
792 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
793 {
794         return __tree_mod_log_search(fs_info, start, min_seq, 0);
795 }
796
797 static noinline int
798 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
799                      struct extent_buffer *src, unsigned long dst_offset,
800                      unsigned long src_offset, int nr_items)
801 {
802         int ret = 0;
803         struct tree_mod_elem **tm_list = NULL;
804         struct tree_mod_elem **tm_list_add, **tm_list_rem;
805         int i;
806         int locked = 0;
807
808         if (!tree_mod_need_log(fs_info, NULL))
809                 return 0;
810
811         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
812                 return 0;
813
814         tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
815                           GFP_NOFS);
816         if (!tm_list)
817                 return -ENOMEM;
818
819         tm_list_add = tm_list;
820         tm_list_rem = tm_list + nr_items;
821         for (i = 0; i < nr_items; i++) {
822                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
823                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
824                 if (!tm_list_rem[i]) {
825                         ret = -ENOMEM;
826                         goto free_tms;
827                 }
828
829                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
830                     MOD_LOG_KEY_ADD, GFP_NOFS);
831                 if (!tm_list_add[i]) {
832                         ret = -ENOMEM;
833                         goto free_tms;
834                 }
835         }
836
837         if (tree_mod_dont_log(fs_info, NULL))
838                 goto free_tms;
839         locked = 1;
840
841         for (i = 0; i < nr_items; i++) {
842                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
843                 if (ret)
844                         goto free_tms;
845                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
846                 if (ret)
847                         goto free_tms;
848         }
849
850         tree_mod_log_write_unlock(fs_info);
851         kfree(tm_list);
852
853         return 0;
854
855 free_tms:
856         for (i = 0; i < nr_items * 2; i++) {
857                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
858                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
859                 kfree(tm_list[i]);
860         }
861         if (locked)
862                 tree_mod_log_write_unlock(fs_info);
863         kfree(tm_list);
864
865         return ret;
866 }
867
868 static inline void
869 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
870                      int dst_offset, int src_offset, int nr_items)
871 {
872         int ret;
873         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
874                                        nr_items, GFP_NOFS);
875         BUG_ON(ret < 0);
876 }
877
878 static noinline void
879 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
880                           struct extent_buffer *eb, int slot, int atomic)
881 {
882         int ret;
883
884         ret = tree_mod_log_insert_key(fs_info, eb, slot,
885                                         MOD_LOG_KEY_REPLACE,
886                                         atomic ? GFP_ATOMIC : GFP_NOFS);
887         BUG_ON(ret < 0);
888 }
889
890 static noinline int
891 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
892 {
893         struct tree_mod_elem **tm_list = NULL;
894         int nritems = 0;
895         int i;
896         int ret = 0;
897
898         if (btrfs_header_level(eb) == 0)
899                 return 0;
900
901         if (!tree_mod_need_log(fs_info, NULL))
902                 return 0;
903
904         nritems = btrfs_header_nritems(eb);
905         tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
906         if (!tm_list)
907                 return -ENOMEM;
908
909         for (i = 0; i < nritems; i++) {
910                 tm_list[i] = alloc_tree_mod_elem(eb, i,
911                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
912                 if (!tm_list[i]) {
913                         ret = -ENOMEM;
914                         goto free_tms;
915                 }
916         }
917
918         if (tree_mod_dont_log(fs_info, eb))
919                 goto free_tms;
920
921         ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
922         tree_mod_log_write_unlock(fs_info);
923         if (ret)
924                 goto free_tms;
925         kfree(tm_list);
926
927         return 0;
928
929 free_tms:
930         for (i = 0; i < nritems; i++)
931                 kfree(tm_list[i]);
932         kfree(tm_list);
933
934         return ret;
935 }
936
937 static noinline void
938 tree_mod_log_set_root_pointer(struct btrfs_root *root,
939                               struct extent_buffer *new_root_node,
940                               int log_removal)
941 {
942         int ret;
943         ret = tree_mod_log_insert_root(root->fs_info, root->node,
944                                        new_root_node, GFP_NOFS, log_removal);
945         BUG_ON(ret < 0);
946 }
947
948 /*
949  * check if the tree block can be shared by multiple trees
950  */
951 int btrfs_block_can_be_shared(struct btrfs_root *root,
952                               struct extent_buffer *buf)
953 {
954         /*
955          * Tree blocks not in reference counted trees and tree roots
956          * are never shared. If a block was allocated after the last
957          * snapshot and the block was not allocated by tree relocation,
958          * we know the block is not shared.
959          */
960         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
961             buf != root->node && buf != root->commit_root &&
962             (btrfs_header_generation(buf) <=
963              btrfs_root_last_snapshot(&root->root_item) ||
964              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
965                 return 1;
966 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
967         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
968             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
969                 return 1;
970 #endif
971         return 0;
972 }
973
974 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
975                                        struct btrfs_root *root,
976                                        struct extent_buffer *buf,
977                                        struct extent_buffer *cow,
978                                        int *last_ref)
979 {
980         u64 refs;
981         u64 owner;
982         u64 flags;
983         u64 new_flags = 0;
984         int ret;
985
986         /*
987          * Backrefs update rules:
988          *
989          * Always use full backrefs for extent pointers in tree block
990          * allocated by tree relocation.
991          *
992          * If a shared tree block is no longer referenced by its owner
993          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
994          * use full backrefs for extent pointers in tree block.
995          *
996          * If a tree block is been relocating
997          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
998          * use full backrefs for extent pointers in tree block.
999          * The reason for this is some operations (such as drop tree)
1000          * are only allowed for blocks use full backrefs.
1001          */
1002
1003         if (btrfs_block_can_be_shared(root, buf)) {
1004                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1005                                                btrfs_header_level(buf), 1,
1006                                                &refs, &flags);
1007                 if (ret)
1008                         return ret;
1009                 if (refs == 0) {
1010                         ret = -EROFS;
1011                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
1012                         return ret;
1013                 }
1014         } else {
1015                 refs = 1;
1016                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1017                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1018                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1019                 else
1020                         flags = 0;
1021         }
1022
1023         owner = btrfs_header_owner(buf);
1024         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1025                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1026
1027         if (refs > 1) {
1028                 if ((owner == root->root_key.objectid ||
1029                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1030                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1031                         ret = btrfs_inc_ref(trans, root, buf, 1);
1032                         BUG_ON(ret); /* -ENOMEM */
1033
1034                         if (root->root_key.objectid ==
1035                             BTRFS_TREE_RELOC_OBJECTID) {
1036                                 ret = btrfs_dec_ref(trans, root, buf, 0);
1037                                 BUG_ON(ret); /* -ENOMEM */
1038                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1039                                 BUG_ON(ret); /* -ENOMEM */
1040                         }
1041                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1042                 } else {
1043
1044                         if (root->root_key.objectid ==
1045                             BTRFS_TREE_RELOC_OBJECTID)
1046                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1047                         else
1048                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1049                         BUG_ON(ret); /* -ENOMEM */
1050                 }
1051                 if (new_flags != 0) {
1052                         int level = btrfs_header_level(buf);
1053
1054                         ret = btrfs_set_disk_extent_flags(trans, root,
1055                                                           buf->start,
1056                                                           buf->len,
1057                                                           new_flags, level, 0);
1058                         if (ret)
1059                                 return ret;
1060                 }
1061         } else {
1062                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1063                         if (root->root_key.objectid ==
1064                             BTRFS_TREE_RELOC_OBJECTID)
1065                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1066                         else
1067                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1068                         BUG_ON(ret); /* -ENOMEM */
1069                         ret = btrfs_dec_ref(trans, root, buf, 1);
1070                         BUG_ON(ret); /* -ENOMEM */
1071                 }
1072                 clean_tree_block(trans, root->fs_info, buf);
1073                 *last_ref = 1;
1074         }
1075         return 0;
1076 }
1077
1078 /*
1079  * does the dirty work in cow of a single block.  The parent block (if
1080  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1081  * dirty and returned locked.  If you modify the block it needs to be marked
1082  * dirty again.
1083  *
1084  * search_start -- an allocation hint for the new block
1085  *
1086  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1087  * bytes the allocator should try to find free next to the block it returns.
1088  * This is just a hint and may be ignored by the allocator.
1089  */
1090 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1091                              struct btrfs_root *root,
1092                              struct extent_buffer *buf,
1093                              struct extent_buffer *parent, int parent_slot,
1094                              struct extent_buffer **cow_ret,
1095                              u64 search_start, u64 empty_size)
1096 {
1097         struct btrfs_disk_key disk_key;
1098         struct extent_buffer *cow;
1099         int level, ret;
1100         int last_ref = 0;
1101         int unlock_orig = 0;
1102         u64 parent_start = 0;
1103
1104         if (*cow_ret == buf)
1105                 unlock_orig = 1;
1106
1107         btrfs_assert_tree_locked(buf);
1108
1109         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1110                 trans->transid != root->fs_info->running_transaction->transid);
1111         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1112                 trans->transid != root->last_trans);
1113
1114         level = btrfs_header_level(buf);
1115
1116         if (level == 0)
1117                 btrfs_item_key(buf, &disk_key, 0);
1118         else
1119                 btrfs_node_key(buf, &disk_key, 0);
1120
1121         if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1122                 parent_start = parent->start;
1123
1124         cow = btrfs_alloc_tree_block(trans, root, parent_start,
1125                         root->root_key.objectid, &disk_key, level,
1126                         search_start, empty_size);
1127         if (IS_ERR(cow))
1128                 return PTR_ERR(cow);
1129
1130         /* cow is set to blocking by btrfs_init_new_buffer */
1131
1132         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1133         btrfs_set_header_bytenr(cow, cow->start);
1134         btrfs_set_header_generation(cow, trans->transid);
1135         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1136         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1137                                      BTRFS_HEADER_FLAG_RELOC);
1138         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1139                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1140         else
1141                 btrfs_set_header_owner(cow, root->root_key.objectid);
1142
1143         write_extent_buffer_fsid(cow, root->fs_info->fsid);
1144
1145         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1146         if (ret) {
1147                 btrfs_abort_transaction(trans, ret);
1148                 return ret;
1149         }
1150
1151         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1152                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1153                 if (ret) {
1154                         btrfs_abort_transaction(trans, ret);
1155                         return ret;
1156                 }
1157         }
1158
1159         if (buf == root->node) {
1160                 WARN_ON(parent && parent != buf);
1161                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1162                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1163                         parent_start = buf->start;
1164
1165                 extent_buffer_get(cow);
1166                 tree_mod_log_set_root_pointer(root, cow, 1);
1167                 rcu_assign_pointer(root->node, cow);
1168
1169                 btrfs_free_tree_block(trans, root, buf, parent_start,
1170                                       last_ref);
1171                 free_extent_buffer(buf);
1172                 add_root_to_dirty_list(root);
1173         } else {
1174                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1175                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1176                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1177                 btrfs_set_node_blockptr(parent, parent_slot,
1178                                         cow->start);
1179                 btrfs_set_node_ptr_generation(parent, parent_slot,
1180                                               trans->transid);
1181                 btrfs_mark_buffer_dirty(parent);
1182                 if (last_ref) {
1183                         ret = tree_mod_log_free_eb(root->fs_info, buf);
1184                         if (ret) {
1185                                 btrfs_abort_transaction(trans, ret);
1186                                 return ret;
1187                         }
1188                 }
1189                 btrfs_free_tree_block(trans, root, buf, parent_start,
1190                                       last_ref);
1191         }
1192         if (unlock_orig)
1193                 btrfs_tree_unlock(buf);
1194         free_extent_buffer_stale(buf);
1195         btrfs_mark_buffer_dirty(cow);
1196         *cow_ret = cow;
1197         return 0;
1198 }
1199
1200 /*
1201  * returns the logical address of the oldest predecessor of the given root.
1202  * entries older than time_seq are ignored.
1203  */
1204 static struct tree_mod_elem *
1205 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1206                            struct extent_buffer *eb_root, u64 time_seq)
1207 {
1208         struct tree_mod_elem *tm;
1209         struct tree_mod_elem *found = NULL;
1210         u64 root_logical = eb_root->start;
1211         int looped = 0;
1212
1213         if (!time_seq)
1214                 return NULL;
1215
1216         /*
1217          * the very last operation that's logged for a root is the
1218          * replacement operation (if it is replaced at all). this has
1219          * the logical address of the *new* root, making it the very
1220          * first operation that's logged for this root.
1221          */
1222         while (1) {
1223                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1224                                                 time_seq);
1225                 if (!looped && !tm)
1226                         return NULL;
1227                 /*
1228                  * if there are no tree operation for the oldest root, we simply
1229                  * return it. this should only happen if that (old) root is at
1230                  * level 0.
1231                  */
1232                 if (!tm)
1233                         break;
1234
1235                 /*
1236                  * if there's an operation that's not a root replacement, we
1237                  * found the oldest version of our root. normally, we'll find a
1238                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1239                  */
1240                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1241                         break;
1242
1243                 found = tm;
1244                 root_logical = tm->old_root.logical;
1245                 looped = 1;
1246         }
1247
1248         /* if there's no old root to return, return what we found instead */
1249         if (!found)
1250                 found = tm;
1251
1252         return found;
1253 }
1254
1255 /*
1256  * tm is a pointer to the first operation to rewind within eb. then, all
1257  * previous operations will be rewound (until we reach something older than
1258  * time_seq).
1259  */
1260 static void
1261 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1262                       u64 time_seq, struct tree_mod_elem *first_tm)
1263 {
1264         u32 n;
1265         struct rb_node *next;
1266         struct tree_mod_elem *tm = first_tm;
1267         unsigned long o_dst;
1268         unsigned long o_src;
1269         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1270
1271         n = btrfs_header_nritems(eb);
1272         tree_mod_log_read_lock(fs_info);
1273         while (tm && tm->seq >= time_seq) {
1274                 /*
1275                  * all the operations are recorded with the operator used for
1276                  * the modification. as we're going backwards, we do the
1277                  * opposite of each operation here.
1278                  */
1279                 switch (tm->op) {
1280                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1281                         BUG_ON(tm->slot < n);
1282                         /* Fallthrough */
1283                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1284                 case MOD_LOG_KEY_REMOVE:
1285                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1286                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1287                         btrfs_set_node_ptr_generation(eb, tm->slot,
1288                                                       tm->generation);
1289                         n++;
1290                         break;
1291                 case MOD_LOG_KEY_REPLACE:
1292                         BUG_ON(tm->slot >= n);
1293                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1294                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1295                         btrfs_set_node_ptr_generation(eb, tm->slot,
1296                                                       tm->generation);
1297                         break;
1298                 case MOD_LOG_KEY_ADD:
1299                         /* if a move operation is needed it's in the log */
1300                         n--;
1301                         break;
1302                 case MOD_LOG_MOVE_KEYS:
1303                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1304                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1305                         memmove_extent_buffer(eb, o_dst, o_src,
1306                                               tm->move.nr_items * p_size);
1307                         break;
1308                 case MOD_LOG_ROOT_REPLACE:
1309                         /*
1310                          * this operation is special. for roots, this must be
1311                          * handled explicitly before rewinding.
1312                          * for non-roots, this operation may exist if the node
1313                          * was a root: root A -> child B; then A gets empty and
1314                          * B is promoted to the new root. in the mod log, we'll
1315                          * have a root-replace operation for B, a tree block
1316                          * that is no root. we simply ignore that operation.
1317                          */
1318                         break;
1319                 }
1320                 next = rb_next(&tm->node);
1321                 if (!next)
1322                         break;
1323                 tm = container_of(next, struct tree_mod_elem, node);
1324                 if (tm->logical != first_tm->logical)
1325                         break;
1326         }
1327         tree_mod_log_read_unlock(fs_info);
1328         btrfs_set_header_nritems(eb, n);
1329 }
1330
1331 /*
1332  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1333  * is returned. If rewind operations happen, a fresh buffer is returned. The
1334  * returned buffer is always read-locked. If the returned buffer is not the
1335  * input buffer, the lock on the input buffer is released and the input buffer
1336  * is freed (its refcount is decremented).
1337  */
1338 static struct extent_buffer *
1339 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1340                     struct extent_buffer *eb, u64 time_seq)
1341 {
1342         struct extent_buffer *eb_rewin;
1343         struct tree_mod_elem *tm;
1344
1345         if (!time_seq)
1346                 return eb;
1347
1348         if (btrfs_header_level(eb) == 0)
1349                 return eb;
1350
1351         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1352         if (!tm)
1353                 return eb;
1354
1355         btrfs_set_path_blocking(path);
1356         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1357
1358         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1359                 BUG_ON(tm->slot != 0);
1360                 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1361                                                 eb->len);
1362                 if (!eb_rewin) {
1363                         btrfs_tree_read_unlock_blocking(eb);
1364                         free_extent_buffer(eb);
1365                         return NULL;
1366                 }
1367                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1368                 btrfs_set_header_backref_rev(eb_rewin,
1369                                              btrfs_header_backref_rev(eb));
1370                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1371                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1372         } else {
1373                 eb_rewin = btrfs_clone_extent_buffer(eb);
1374                 if (!eb_rewin) {
1375                         btrfs_tree_read_unlock_blocking(eb);
1376                         free_extent_buffer(eb);
1377                         return NULL;
1378                 }
1379         }
1380
1381         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1382         btrfs_tree_read_unlock_blocking(eb);
1383         free_extent_buffer(eb);
1384
1385         extent_buffer_get(eb_rewin);
1386         btrfs_tree_read_lock(eb_rewin);
1387         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1388         WARN_ON(btrfs_header_nritems(eb_rewin) >
1389                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1390
1391         return eb_rewin;
1392 }
1393
1394 /*
1395  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1396  * value. If there are no changes, the current root->root_node is returned. If
1397  * anything changed in between, there's a fresh buffer allocated on which the
1398  * rewind operations are done. In any case, the returned buffer is read locked.
1399  * Returns NULL on error (with no locks held).
1400  */
1401 static inline struct extent_buffer *
1402 get_old_root(struct btrfs_root *root, u64 time_seq)
1403 {
1404         struct tree_mod_elem *tm;
1405         struct extent_buffer *eb = NULL;
1406         struct extent_buffer *eb_root;
1407         struct extent_buffer *old;
1408         struct tree_mod_root *old_root = NULL;
1409         u64 old_generation = 0;
1410         u64 logical;
1411
1412         eb_root = btrfs_read_lock_root_node(root);
1413         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1414         if (!tm)
1415                 return eb_root;
1416
1417         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1418                 old_root = &tm->old_root;
1419                 old_generation = tm->generation;
1420                 logical = old_root->logical;
1421         } else {
1422                 logical = eb_root->start;
1423         }
1424
1425         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1426         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1427                 btrfs_tree_read_unlock(eb_root);
1428                 free_extent_buffer(eb_root);
1429                 old = read_tree_block(root, logical, 0);
1430                 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1431                         if (!IS_ERR(old))
1432                                 free_extent_buffer(old);
1433                         btrfs_warn(root->fs_info,
1434                                 "failed to read tree block %llu from get_old_root", logical);
1435                 } else {
1436                         eb = btrfs_clone_extent_buffer(old);
1437                         free_extent_buffer(old);
1438                 }
1439         } else if (old_root) {
1440                 btrfs_tree_read_unlock(eb_root);
1441                 free_extent_buffer(eb_root);
1442                 eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1443                                         root->nodesize);
1444         } else {
1445                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1446                 eb = btrfs_clone_extent_buffer(eb_root);
1447                 btrfs_tree_read_unlock_blocking(eb_root);
1448                 free_extent_buffer(eb_root);
1449         }
1450
1451         if (!eb)
1452                 return NULL;
1453         extent_buffer_get(eb);
1454         btrfs_tree_read_lock(eb);
1455         if (old_root) {
1456                 btrfs_set_header_bytenr(eb, eb->start);
1457                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1458                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1459                 btrfs_set_header_level(eb, old_root->level);
1460                 btrfs_set_header_generation(eb, old_generation);
1461         }
1462         if (tm)
1463                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1464         else
1465                 WARN_ON(btrfs_header_level(eb) != 0);
1466         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1467
1468         return eb;
1469 }
1470
1471 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1472 {
1473         struct tree_mod_elem *tm;
1474         int level;
1475         struct extent_buffer *eb_root = btrfs_root_node(root);
1476
1477         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1478         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1479                 level = tm->old_root.level;
1480         } else {
1481                 level = btrfs_header_level(eb_root);
1482         }
1483         free_extent_buffer(eb_root);
1484
1485         return level;
1486 }
1487
1488 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1489                                    struct btrfs_root *root,
1490                                    struct extent_buffer *buf)
1491 {
1492         if (btrfs_is_testing(root->fs_info))
1493                 return 0;
1494
1495         /* ensure we can see the force_cow */
1496         smp_rmb();
1497
1498         /*
1499          * We do not need to cow a block if
1500          * 1) this block is not created or changed in this transaction;
1501          * 2) this block does not belong to TREE_RELOC tree;
1502          * 3) the root is not forced COW.
1503          *
1504          * What is forced COW:
1505          *    when we create snapshot during committing the transaction,
1506          *    after we've finished coping src root, we must COW the shared
1507          *    block to ensure the metadata consistency.
1508          */
1509         if (btrfs_header_generation(buf) == trans->transid &&
1510             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1511             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1512               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1513             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1514                 return 0;
1515         return 1;
1516 }
1517
1518 /*
1519  * cows a single block, see __btrfs_cow_block for the real work.
1520  * This version of it has extra checks so that a block isn't COWed more than
1521  * once per transaction, as long as it hasn't been written yet
1522  */
1523 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1524                     struct btrfs_root *root, struct extent_buffer *buf,
1525                     struct extent_buffer *parent, int parent_slot,
1526                     struct extent_buffer **cow_ret)
1527 {
1528         u64 search_start;
1529         int ret;
1530
1531         if (trans->transaction != root->fs_info->running_transaction)
1532                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1533                        trans->transid,
1534                        root->fs_info->running_transaction->transid);
1535
1536         if (trans->transid != root->fs_info->generation)
1537                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1538                        trans->transid, root->fs_info->generation);
1539
1540         if (!should_cow_block(trans, root, buf)) {
1541                 trans->dirty = true;
1542                 *cow_ret = buf;
1543                 return 0;
1544         }
1545
1546         search_start = buf->start & ~((u64)SZ_1G - 1);
1547
1548         if (parent)
1549                 btrfs_set_lock_blocking(parent);
1550         btrfs_set_lock_blocking(buf);
1551
1552         ret = __btrfs_cow_block(trans, root, buf, parent,
1553                                  parent_slot, cow_ret, search_start, 0);
1554
1555         trace_btrfs_cow_block(root, buf, *cow_ret);
1556
1557         return ret;
1558 }
1559
1560 /*
1561  * helper function for defrag to decide if two blocks pointed to by a
1562  * node are actually close by
1563  */
1564 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1565 {
1566         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1567                 return 1;
1568         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1569                 return 1;
1570         return 0;
1571 }
1572
1573 /*
1574  * compare two keys in a memcmp fashion
1575  */
1576 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1577 {
1578         struct btrfs_key k1;
1579
1580         btrfs_disk_key_to_cpu(&k1, disk);
1581
1582         return btrfs_comp_cpu_keys(&k1, k2);
1583 }
1584
1585 /*
1586  * same as comp_keys only with two btrfs_key's
1587  */
1588 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1589 {
1590         if (k1->objectid > k2->objectid)
1591                 return 1;
1592         if (k1->objectid < k2->objectid)
1593                 return -1;
1594         if (k1->type > k2->type)
1595                 return 1;
1596         if (k1->type < k2->type)
1597                 return -1;
1598         if (k1->offset > k2->offset)
1599                 return 1;
1600         if (k1->offset < k2->offset)
1601                 return -1;
1602         return 0;
1603 }
1604
1605 /*
1606  * this is used by the defrag code to go through all the
1607  * leaves pointed to by a node and reallocate them so that
1608  * disk order is close to key order
1609  */
1610 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1611                        struct btrfs_root *root, struct extent_buffer *parent,
1612                        int start_slot, u64 *last_ret,
1613                        struct btrfs_key *progress)
1614 {
1615         struct extent_buffer *cur;
1616         u64 blocknr;
1617         u64 gen;
1618         u64 search_start = *last_ret;
1619         u64 last_block = 0;
1620         u64 other;
1621         u32 parent_nritems;
1622         int end_slot;
1623         int i;
1624         int err = 0;
1625         int parent_level;
1626         int uptodate;
1627         u32 blocksize;
1628         int progress_passed = 0;
1629         struct btrfs_disk_key disk_key;
1630
1631         parent_level = btrfs_header_level(parent);
1632
1633         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1634         WARN_ON(trans->transid != root->fs_info->generation);
1635
1636         parent_nritems = btrfs_header_nritems(parent);
1637         blocksize = root->nodesize;
1638         end_slot = parent_nritems - 1;
1639
1640         if (parent_nritems <= 1)
1641                 return 0;
1642
1643         btrfs_set_lock_blocking(parent);
1644
1645         for (i = start_slot; i <= end_slot; i++) {
1646                 int close = 1;
1647
1648                 btrfs_node_key(parent, &disk_key, i);
1649                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1650                         continue;
1651
1652                 progress_passed = 1;
1653                 blocknr = btrfs_node_blockptr(parent, i);
1654                 gen = btrfs_node_ptr_generation(parent, i);
1655                 if (last_block == 0)
1656                         last_block = blocknr;
1657
1658                 if (i > 0) {
1659                         other = btrfs_node_blockptr(parent, i - 1);
1660                         close = close_blocks(blocknr, other, blocksize);
1661                 }
1662                 if (!close && i < end_slot) {
1663                         other = btrfs_node_blockptr(parent, i + 1);
1664                         close = close_blocks(blocknr, other, blocksize);
1665                 }
1666                 if (close) {
1667                         last_block = blocknr;
1668                         continue;
1669                 }
1670
1671                 cur = find_extent_buffer(root->fs_info, blocknr);
1672                 if (cur)
1673                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1674                 else
1675                         uptodate = 0;
1676                 if (!cur || !uptodate) {
1677                         if (!cur) {
1678                                 cur = read_tree_block(root, blocknr, gen);
1679                                 if (IS_ERR(cur)) {
1680                                         return PTR_ERR(cur);
1681                                 } else if (!extent_buffer_uptodate(cur)) {
1682                                         free_extent_buffer(cur);
1683                                         return -EIO;
1684                                 }
1685                         } else if (!uptodate) {
1686                                 err = btrfs_read_buffer(cur, gen);
1687                                 if (err) {
1688                                         free_extent_buffer(cur);
1689                                         return err;
1690                                 }
1691                         }
1692                 }
1693                 if (search_start == 0)
1694                         search_start = last_block;
1695
1696                 btrfs_tree_lock(cur);
1697                 btrfs_set_lock_blocking(cur);
1698                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1699                                         &cur, search_start,
1700                                         min(16 * blocksize,
1701                                             (end_slot - i) * blocksize));
1702                 if (err) {
1703                         btrfs_tree_unlock(cur);
1704                         free_extent_buffer(cur);
1705                         break;
1706                 }
1707                 search_start = cur->start;
1708                 last_block = cur->start;
1709                 *last_ret = search_start;
1710                 btrfs_tree_unlock(cur);
1711                 free_extent_buffer(cur);
1712         }
1713         return err;
1714 }
1715
1716
1717 /*
1718  * search for key in the extent_buffer.  The items start at offset p,
1719  * and they are item_size apart.  There are 'max' items in p.
1720  *
1721  * the slot in the array is returned via slot, and it points to
1722  * the place where you would insert key if it is not found in
1723  * the array.
1724  *
1725  * slot may point to max if the key is bigger than all of the keys
1726  */
1727 static noinline int generic_bin_search(struct extent_buffer *eb,
1728                                        unsigned long p,
1729                                        int item_size, struct btrfs_key *key,
1730                                        int max, int *slot)
1731 {
1732         int low = 0;
1733         int high = max;
1734         int mid;
1735         int ret;
1736         struct btrfs_disk_key *tmp = NULL;
1737         struct btrfs_disk_key unaligned;
1738         unsigned long offset;
1739         char *kaddr = NULL;
1740         unsigned long map_start = 0;
1741         unsigned long map_len = 0;
1742         int err;
1743
1744         if (low > high) {
1745                 btrfs_err(eb->fs_info,
1746                  "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1747                           __func__, low, high, eb->start,
1748                           btrfs_header_owner(eb), btrfs_header_level(eb));
1749                 return -EINVAL;
1750         }
1751
1752         while (low < high) {
1753                 mid = (low + high) / 2;
1754                 offset = p + mid * item_size;
1755
1756                 if (!kaddr || offset < map_start ||
1757                     (offset + sizeof(struct btrfs_disk_key)) >
1758                     map_start + map_len) {
1759
1760                         err = map_private_extent_buffer(eb, offset,
1761                                                 sizeof(struct btrfs_disk_key),
1762                                                 &kaddr, &map_start, &map_len);
1763
1764                         if (!err) {
1765                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1766                                                         map_start);
1767                         } else if (err == 1) {
1768                                 read_extent_buffer(eb, &unaligned,
1769                                                    offset, sizeof(unaligned));
1770                                 tmp = &unaligned;
1771                         } else {
1772                                 return err;
1773                         }
1774
1775                 } else {
1776                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1777                                                         map_start);
1778                 }
1779                 ret = comp_keys(tmp, key);
1780
1781                 if (ret < 0)
1782                         low = mid + 1;
1783                 else if (ret > 0)
1784                         high = mid;
1785                 else {
1786                         *slot = mid;
1787                         return 0;
1788                 }
1789         }
1790         *slot = low;
1791         return 1;
1792 }
1793
1794 /*
1795  * simple bin_search frontend that does the right thing for
1796  * leaves vs nodes
1797  */
1798 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1799                       int level, int *slot)
1800 {
1801         if (level == 0)
1802                 return generic_bin_search(eb,
1803                                           offsetof(struct btrfs_leaf, items),
1804                                           sizeof(struct btrfs_item),
1805                                           key, btrfs_header_nritems(eb),
1806                                           slot);
1807         else
1808                 return generic_bin_search(eb,
1809                                           offsetof(struct btrfs_node, ptrs),
1810                                           sizeof(struct btrfs_key_ptr),
1811                                           key, btrfs_header_nritems(eb),
1812                                           slot);
1813 }
1814
1815 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1816                      int level, int *slot)
1817 {
1818         return bin_search(eb, key, level, slot);
1819 }
1820
1821 static void root_add_used(struct btrfs_root *root, u32 size)
1822 {
1823         spin_lock(&root->accounting_lock);
1824         btrfs_set_root_used(&root->root_item,
1825                             btrfs_root_used(&root->root_item) + size);
1826         spin_unlock(&root->accounting_lock);
1827 }
1828
1829 static void root_sub_used(struct btrfs_root *root, u32 size)
1830 {
1831         spin_lock(&root->accounting_lock);
1832         btrfs_set_root_used(&root->root_item,
1833                             btrfs_root_used(&root->root_item) - size);
1834         spin_unlock(&root->accounting_lock);
1835 }
1836
1837 /* given a node and slot number, this reads the blocks it points to.  The
1838  * extent buffer is returned with a reference taken (but unlocked).
1839  */
1840 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1841                                    struct extent_buffer *parent, int slot)
1842 {
1843         int level = btrfs_header_level(parent);
1844         struct extent_buffer *eb;
1845
1846         if (slot < 0 || slot >= btrfs_header_nritems(parent))
1847                 return ERR_PTR(-ENOENT);
1848
1849         BUG_ON(level == 0);
1850
1851         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1852                              btrfs_node_ptr_generation(parent, slot));
1853         if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1854                 free_extent_buffer(eb);
1855                 eb = ERR_PTR(-EIO);
1856         }
1857
1858         return eb;
1859 }
1860
1861 /*
1862  * node level balancing, used to make sure nodes are in proper order for
1863  * item deletion.  We balance from the top down, so we have to make sure
1864  * that a deletion won't leave an node completely empty later on.
1865  */
1866 static noinline int balance_level(struct btrfs_trans_handle *trans,
1867                          struct btrfs_root *root,
1868                          struct btrfs_path *path, int level)
1869 {
1870         struct extent_buffer *right = NULL;
1871         struct extent_buffer *mid;
1872         struct extent_buffer *left = NULL;
1873         struct extent_buffer *parent = NULL;
1874         int ret = 0;
1875         int wret;
1876         int pslot;
1877         int orig_slot = path->slots[level];
1878         u64 orig_ptr;
1879
1880         if (level == 0)
1881                 return 0;
1882
1883         mid = path->nodes[level];
1884
1885         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1886                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1887         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1888
1889         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1890
1891         if (level < BTRFS_MAX_LEVEL - 1) {
1892                 parent = path->nodes[level + 1];
1893                 pslot = path->slots[level + 1];
1894         }
1895
1896         /*
1897          * deal with the case where there is only one pointer in the root
1898          * by promoting the node below to a root
1899          */
1900         if (!parent) {
1901                 struct extent_buffer *child;
1902
1903                 if (btrfs_header_nritems(mid) != 1)
1904                         return 0;
1905
1906                 /* promote the child to a root */
1907                 child = read_node_slot(root, mid, 0);
1908                 if (IS_ERR(child)) {
1909                         ret = PTR_ERR(child);
1910                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
1911                         goto enospc;
1912                 }
1913
1914                 btrfs_tree_lock(child);
1915                 btrfs_set_lock_blocking(child);
1916                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1917                 if (ret) {
1918                         btrfs_tree_unlock(child);
1919                         free_extent_buffer(child);
1920                         goto enospc;
1921                 }
1922
1923                 tree_mod_log_set_root_pointer(root, child, 1);
1924                 rcu_assign_pointer(root->node, child);
1925
1926                 add_root_to_dirty_list(root);
1927                 btrfs_tree_unlock(child);
1928
1929                 path->locks[level] = 0;
1930                 path->nodes[level] = NULL;
1931                 clean_tree_block(trans, root->fs_info, mid);
1932                 btrfs_tree_unlock(mid);
1933                 /* once for the path */
1934                 free_extent_buffer(mid);
1935
1936                 root_sub_used(root, mid->len);
1937                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1938                 /* once for the root ptr */
1939                 free_extent_buffer_stale(mid);
1940                 return 0;
1941         }
1942         if (btrfs_header_nritems(mid) >
1943             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1944                 return 0;
1945
1946         left = read_node_slot(root, parent, pslot - 1);
1947         if (IS_ERR(left))
1948                 left = NULL;
1949
1950         if (left) {
1951                 btrfs_tree_lock(left);
1952                 btrfs_set_lock_blocking(left);
1953                 wret = btrfs_cow_block(trans, root, left,
1954                                        parent, pslot - 1, &left);
1955                 if (wret) {
1956                         ret = wret;
1957                         goto enospc;
1958                 }
1959         }
1960
1961         right = read_node_slot(root, parent, pslot + 1);
1962         if (IS_ERR(right))
1963                 right = NULL;
1964
1965         if (right) {
1966                 btrfs_tree_lock(right);
1967                 btrfs_set_lock_blocking(right);
1968                 wret = btrfs_cow_block(trans, root, right,
1969                                        parent, pslot + 1, &right);
1970                 if (wret) {
1971                         ret = wret;
1972                         goto enospc;
1973                 }
1974         }
1975
1976         /* first, try to make some room in the middle buffer */
1977         if (left) {
1978                 orig_slot += btrfs_header_nritems(left);
1979                 wret = push_node_left(trans, root, left, mid, 1);
1980                 if (wret < 0)
1981                         ret = wret;
1982         }
1983
1984         /*
1985          * then try to empty the right most buffer into the middle
1986          */
1987         if (right) {
1988                 wret = push_node_left(trans, root, mid, right, 1);
1989                 if (wret < 0 && wret != -ENOSPC)
1990                         ret = wret;
1991                 if (btrfs_header_nritems(right) == 0) {
1992                         clean_tree_block(trans, root->fs_info, right);
1993                         btrfs_tree_unlock(right);
1994                         del_ptr(root, path, level + 1, pslot + 1);
1995                         root_sub_used(root, right->len);
1996                         btrfs_free_tree_block(trans, root, right, 0, 1);
1997                         free_extent_buffer_stale(right);
1998                         right = NULL;
1999                 } else {
2000                         struct btrfs_disk_key right_key;
2001                         btrfs_node_key(right, &right_key, 0);
2002                         tree_mod_log_set_node_key(root->fs_info, parent,
2003                                                   pslot + 1, 0);
2004                         btrfs_set_node_key(parent, &right_key, pslot + 1);
2005                         btrfs_mark_buffer_dirty(parent);
2006                 }
2007         }
2008         if (btrfs_header_nritems(mid) == 1) {
2009                 /*
2010                  * we're not allowed to leave a node with one item in the
2011                  * tree during a delete.  A deletion from lower in the tree
2012                  * could try to delete the only pointer in this node.
2013                  * So, pull some keys from the left.
2014                  * There has to be a left pointer at this point because
2015                  * otherwise we would have pulled some pointers from the
2016                  * right
2017                  */
2018                 if (!left) {
2019                         ret = -EROFS;
2020                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
2021                         goto enospc;
2022                 }
2023                 wret = balance_node_right(trans, root, mid, left);
2024                 if (wret < 0) {
2025                         ret = wret;
2026                         goto enospc;
2027                 }
2028                 if (wret == 1) {
2029                         wret = push_node_left(trans, root, left, mid, 1);
2030                         if (wret < 0)
2031                                 ret = wret;
2032                 }
2033                 BUG_ON(wret == 1);
2034         }
2035         if (btrfs_header_nritems(mid) == 0) {
2036                 clean_tree_block(trans, root->fs_info, mid);
2037                 btrfs_tree_unlock(mid);
2038                 del_ptr(root, path, level + 1, pslot);
2039                 root_sub_used(root, mid->len);
2040                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2041                 free_extent_buffer_stale(mid);
2042                 mid = NULL;
2043         } else {
2044                 /* update the parent key to reflect our changes */
2045                 struct btrfs_disk_key mid_key;
2046                 btrfs_node_key(mid, &mid_key, 0);
2047                 tree_mod_log_set_node_key(root->fs_info, parent,
2048                                           pslot, 0);
2049                 btrfs_set_node_key(parent, &mid_key, pslot);
2050                 btrfs_mark_buffer_dirty(parent);
2051         }
2052
2053         /* update the path */
2054         if (left) {
2055                 if (btrfs_header_nritems(left) > orig_slot) {
2056                         extent_buffer_get(left);
2057                         /* left was locked after cow */
2058                         path->nodes[level] = left;
2059                         path->slots[level + 1] -= 1;
2060                         path->slots[level] = orig_slot;
2061                         if (mid) {
2062                                 btrfs_tree_unlock(mid);
2063                                 free_extent_buffer(mid);
2064                         }
2065                 } else {
2066                         orig_slot -= btrfs_header_nritems(left);
2067                         path->slots[level] = orig_slot;
2068                 }
2069         }
2070         /* double check we haven't messed things up */
2071         if (orig_ptr !=
2072             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2073                 BUG();
2074 enospc:
2075         if (right) {
2076                 btrfs_tree_unlock(right);
2077                 free_extent_buffer(right);
2078         }
2079         if (left) {
2080                 if (path->nodes[level] != left)
2081                         btrfs_tree_unlock(left);
2082                 free_extent_buffer(left);
2083         }
2084         return ret;
2085 }
2086
2087 /* Node balancing for insertion.  Here we only split or push nodes around
2088  * when they are completely full.  This is also done top down, so we
2089  * have to be pessimistic.
2090  */
2091 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2092                                           struct btrfs_root *root,
2093                                           struct btrfs_path *path, int level)
2094 {
2095         struct extent_buffer *right = NULL;
2096         struct extent_buffer *mid;
2097         struct extent_buffer *left = NULL;
2098         struct extent_buffer *parent = NULL;
2099         int ret = 0;
2100         int wret;
2101         int pslot;
2102         int orig_slot = path->slots[level];
2103
2104         if (level == 0)
2105                 return 1;
2106
2107         mid = path->nodes[level];
2108         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2109
2110         if (level < BTRFS_MAX_LEVEL - 1) {
2111                 parent = path->nodes[level + 1];
2112                 pslot = path->slots[level + 1];
2113         }
2114
2115         if (!parent)
2116                 return 1;
2117
2118         left = read_node_slot(root, parent, pslot - 1);
2119         if (IS_ERR(left))
2120                 left = NULL;
2121
2122         /* first, try to make some room in the middle buffer */
2123         if (left) {
2124                 u32 left_nr;
2125
2126                 btrfs_tree_lock(left);
2127                 btrfs_set_lock_blocking(left);
2128
2129                 left_nr = btrfs_header_nritems(left);
2130                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2131                         wret = 1;
2132                 } else {
2133                         ret = btrfs_cow_block(trans, root, left, parent,
2134                                               pslot - 1, &left);
2135                         if (ret)
2136                                 wret = 1;
2137                         else {
2138                                 wret = push_node_left(trans, root,
2139                                                       left, mid, 0);
2140                         }
2141                 }
2142                 if (wret < 0)
2143                         ret = wret;
2144                 if (wret == 0) {
2145                         struct btrfs_disk_key disk_key;
2146                         orig_slot += left_nr;
2147                         btrfs_node_key(mid, &disk_key, 0);
2148                         tree_mod_log_set_node_key(root->fs_info, parent,
2149                                                   pslot, 0);
2150                         btrfs_set_node_key(parent, &disk_key, pslot);
2151                         btrfs_mark_buffer_dirty(parent);
2152                         if (btrfs_header_nritems(left) > orig_slot) {
2153                                 path->nodes[level] = left;
2154                                 path->slots[level + 1] -= 1;
2155                                 path->slots[level] = orig_slot;
2156                                 btrfs_tree_unlock(mid);
2157                                 free_extent_buffer(mid);
2158                         } else {
2159                                 orig_slot -=
2160                                         btrfs_header_nritems(left);
2161                                 path->slots[level] = orig_slot;
2162                                 btrfs_tree_unlock(left);
2163                                 free_extent_buffer(left);
2164                         }
2165                         return 0;
2166                 }
2167                 btrfs_tree_unlock(left);
2168                 free_extent_buffer(left);
2169         }
2170         right = read_node_slot(root, parent, pslot + 1);
2171         if (IS_ERR(right))
2172                 right = NULL;
2173
2174         /*
2175          * then try to empty the right most buffer into the middle
2176          */
2177         if (right) {
2178                 u32 right_nr;
2179
2180                 btrfs_tree_lock(right);
2181                 btrfs_set_lock_blocking(right);
2182
2183                 right_nr = btrfs_header_nritems(right);
2184                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2185                         wret = 1;
2186                 } else {
2187                         ret = btrfs_cow_block(trans, root, right,
2188                                               parent, pslot + 1,
2189                                               &right);
2190                         if (ret)
2191                                 wret = 1;
2192                         else {
2193                                 wret = balance_node_right(trans, root,
2194                                                           right, mid);
2195                         }
2196                 }
2197                 if (wret < 0)
2198                         ret = wret;
2199                 if (wret == 0) {
2200                         struct btrfs_disk_key disk_key;
2201
2202                         btrfs_node_key(right, &disk_key, 0);
2203                         tree_mod_log_set_node_key(root->fs_info, parent,
2204                                                   pslot + 1, 0);
2205                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2206                         btrfs_mark_buffer_dirty(parent);
2207
2208                         if (btrfs_header_nritems(mid) <= orig_slot) {
2209                                 path->nodes[level] = right;
2210                                 path->slots[level + 1] += 1;
2211                                 path->slots[level] = orig_slot -
2212                                         btrfs_header_nritems(mid);
2213                                 btrfs_tree_unlock(mid);
2214                                 free_extent_buffer(mid);
2215                         } else {
2216                                 btrfs_tree_unlock(right);
2217                                 free_extent_buffer(right);
2218                         }
2219                         return 0;
2220                 }
2221                 btrfs_tree_unlock(right);
2222                 free_extent_buffer(right);
2223         }
2224         return 1;
2225 }
2226
2227 /*
2228  * readahead one full node of leaves, finding things that are close
2229  * to the block in 'slot', and triggering ra on them.
2230  */
2231 static void reada_for_search(struct btrfs_root *root,
2232                              struct btrfs_path *path,
2233                              int level, int slot, u64 objectid)
2234 {
2235         struct extent_buffer *node;
2236         struct btrfs_disk_key disk_key;
2237         u32 nritems;
2238         u64 search;
2239         u64 target;
2240         u64 nread = 0;
2241         struct extent_buffer *eb;
2242         u32 nr;
2243         u32 blocksize;
2244         u32 nscan = 0;
2245
2246         if (level != 1)
2247                 return;
2248
2249         if (!path->nodes[level])
2250                 return;
2251
2252         node = path->nodes[level];
2253
2254         search = btrfs_node_blockptr(node, slot);
2255         blocksize = root->nodesize;
2256         eb = find_extent_buffer(root->fs_info, search);
2257         if (eb) {
2258                 free_extent_buffer(eb);
2259                 return;
2260         }
2261
2262         target = search;
2263
2264         nritems = btrfs_header_nritems(node);
2265         nr = slot;
2266
2267         while (1) {
2268                 if (path->reada == READA_BACK) {
2269                         if (nr == 0)
2270                                 break;
2271                         nr--;
2272                 } else if (path->reada == READA_FORWARD) {
2273                         nr++;
2274                         if (nr >= nritems)
2275                                 break;
2276                 }
2277                 if (path->reada == READA_BACK && objectid) {
2278                         btrfs_node_key(node, &disk_key, nr);
2279                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2280                                 break;
2281                 }
2282                 search = btrfs_node_blockptr(node, nr);
2283                 if ((search <= target && target - search <= 65536) ||
2284                     (search > target && search - target <= 65536)) {
2285                         readahead_tree_block(root, search);
2286                         nread += blocksize;
2287                 }
2288                 nscan++;
2289                 if ((nread > 65536 || nscan > 32))
2290                         break;
2291         }
2292 }
2293
2294 static noinline void reada_for_balance(struct btrfs_root *root,
2295                                        struct btrfs_path *path, int level)
2296 {
2297         int slot;
2298         int nritems;
2299         struct extent_buffer *parent;
2300         struct extent_buffer *eb;
2301         u64 gen;
2302         u64 block1 = 0;
2303         u64 block2 = 0;
2304
2305         parent = path->nodes[level + 1];
2306         if (!parent)
2307                 return;
2308
2309         nritems = btrfs_header_nritems(parent);
2310         slot = path->slots[level + 1];
2311
2312         if (slot > 0) {
2313                 block1 = btrfs_node_blockptr(parent, slot - 1);
2314                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2315                 eb = find_extent_buffer(root->fs_info, block1);
2316                 /*
2317                  * if we get -eagain from btrfs_buffer_uptodate, we
2318                  * don't want to return eagain here.  That will loop
2319                  * forever
2320                  */
2321                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2322                         block1 = 0;
2323                 free_extent_buffer(eb);
2324         }
2325         if (slot + 1 < nritems) {
2326                 block2 = btrfs_node_blockptr(parent, slot + 1);
2327                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2328                 eb = find_extent_buffer(root->fs_info, block2);
2329                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2330                         block2 = 0;
2331                 free_extent_buffer(eb);
2332         }
2333
2334         if (block1)
2335                 readahead_tree_block(root, block1);
2336         if (block2)
2337                 readahead_tree_block(root, block2);
2338 }
2339
2340
2341 /*
2342  * when we walk down the tree, it is usually safe to unlock the higher layers
2343  * in the tree.  The exceptions are when our path goes through slot 0, because
2344  * operations on the tree might require changing key pointers higher up in the
2345  * tree.
2346  *
2347  * callers might also have set path->keep_locks, which tells this code to keep
2348  * the lock if the path points to the last slot in the block.  This is part of
2349  * walking through the tree, and selecting the next slot in the higher block.
2350  *
2351  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2352  * if lowest_unlock is 1, level 0 won't be unlocked
2353  */
2354 static noinline void unlock_up(struct btrfs_path *path, int level,
2355                                int lowest_unlock, int min_write_lock_level,
2356                                int *write_lock_level)
2357 {
2358         int i;
2359         int skip_level = level;
2360         int no_skips = 0;
2361         struct extent_buffer *t;
2362
2363         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2364                 if (!path->nodes[i])
2365                         break;
2366                 if (!path->locks[i])
2367                         break;
2368                 if (!no_skips && path->slots[i] == 0) {
2369                         skip_level = i + 1;
2370                         continue;
2371                 }
2372                 if (!no_skips && path->keep_locks) {
2373                         u32 nritems;
2374                         t = path->nodes[i];
2375                         nritems = btrfs_header_nritems(t);
2376                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2377                                 skip_level = i + 1;
2378                                 continue;
2379                         }
2380                 }
2381                 if (skip_level < i && i >= lowest_unlock)
2382                         no_skips = 1;
2383
2384                 t = path->nodes[i];
2385                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2386                         btrfs_tree_unlock_rw(t, path->locks[i]);
2387                         path->locks[i] = 0;
2388                         if (write_lock_level &&
2389                             i > min_write_lock_level &&
2390                             i <= *write_lock_level) {
2391                                 *write_lock_level = i - 1;
2392                         }
2393                 }
2394         }
2395 }
2396
2397 /*
2398  * This releases any locks held in the path starting at level and
2399  * going all the way up to the root.
2400  *
2401  * btrfs_search_slot will keep the lock held on higher nodes in a few
2402  * corner cases, such as COW of the block at slot zero in the node.  This
2403  * ignores those rules, and it should only be called when there are no
2404  * more updates to be done higher up in the tree.
2405  */
2406 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2407 {
2408         int i;
2409
2410         if (path->keep_locks)
2411                 return;
2412
2413         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2414                 if (!path->nodes[i])
2415                         continue;
2416                 if (!path->locks[i])
2417                         continue;
2418                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2419                 path->locks[i] = 0;
2420         }
2421 }
2422
2423 /*
2424  * helper function for btrfs_search_slot.  The goal is to find a block
2425  * in cache without setting the path to blocking.  If we find the block
2426  * we return zero and the path is unchanged.
2427  *
2428  * If we can't find the block, we set the path blocking and do some
2429  * reada.  -EAGAIN is returned and the search must be repeated.
2430  */
2431 static int
2432 read_block_for_search(struct btrfs_trans_handle *trans,
2433                        struct btrfs_root *root, struct btrfs_path *p,
2434                        struct extent_buffer **eb_ret, int level, int slot,
2435                        struct btrfs_key *key, u64 time_seq)
2436 {
2437         u64 blocknr;
2438         u64 gen;
2439         struct extent_buffer *b = *eb_ret;
2440         struct extent_buffer *tmp;
2441         int ret;
2442
2443         blocknr = btrfs_node_blockptr(b, slot);
2444         gen = btrfs_node_ptr_generation(b, slot);
2445
2446         tmp = find_extent_buffer(root->fs_info, blocknr);
2447         if (tmp) {
2448                 /* first we do an atomic uptodate check */
2449                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2450                         *eb_ret = tmp;
2451                         return 0;
2452                 }
2453
2454                 /* the pages were up to date, but we failed
2455                  * the generation number check.  Do a full
2456                  * read for the generation number that is correct.
2457                  * We must do this without dropping locks so
2458                  * we can trust our generation number
2459                  */
2460                 btrfs_set_path_blocking(p);
2461
2462                 /* now we're allowed to do a blocking uptodate check */
2463                 ret = btrfs_read_buffer(tmp, gen);
2464                 if (!ret) {
2465                         *eb_ret = tmp;
2466                         return 0;
2467                 }
2468                 free_extent_buffer(tmp);
2469                 btrfs_release_path(p);
2470                 return -EIO;
2471         }
2472
2473         /*
2474          * reduce lock contention at high levels
2475          * of the btree by dropping locks before
2476          * we read.  Don't release the lock on the current
2477          * level because we need to walk this node to figure
2478          * out which blocks to read.
2479          */
2480         btrfs_unlock_up_safe(p, level + 1);
2481         btrfs_set_path_blocking(p);
2482
2483         free_extent_buffer(tmp);
2484         if (p->reada != READA_NONE)
2485                 reada_for_search(root, p, level, slot, key->objectid);
2486
2487         btrfs_release_path(p);
2488
2489         ret = -EAGAIN;
2490         tmp = read_tree_block(root, blocknr, 0);
2491         if (!IS_ERR(tmp)) {
2492                 /*
2493                  * If the read above didn't mark this buffer up to date,
2494                  * it will never end up being up to date.  Set ret to EIO now
2495                  * and give up so that our caller doesn't loop forever
2496                  * on our EAGAINs.
2497                  */
2498                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2499                         ret = -EIO;
2500                 free_extent_buffer(tmp);
2501         } else {
2502                 ret = PTR_ERR(tmp);
2503         }
2504         return ret;
2505 }
2506
2507 /*
2508  * helper function for btrfs_search_slot.  This does all of the checks
2509  * for node-level blocks and does any balancing required based on
2510  * the ins_len.
2511  *
2512  * If no extra work was required, zero is returned.  If we had to
2513  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2514  * start over
2515  */
2516 static int
2517 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2518                        struct btrfs_root *root, struct btrfs_path *p,
2519                        struct extent_buffer *b, int level, int ins_len,
2520                        int *write_lock_level)
2521 {
2522         int ret;
2523         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2524             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2525                 int sret;
2526
2527                 if (*write_lock_level < level + 1) {
2528                         *write_lock_level = level + 1;
2529                         btrfs_release_path(p);
2530                         goto again;
2531                 }
2532
2533                 btrfs_set_path_blocking(p);
2534                 reada_for_balance(root, p, level);
2535                 sret = split_node(trans, root, p, level);
2536                 btrfs_clear_path_blocking(p, NULL, 0);
2537
2538                 BUG_ON(sret > 0);
2539                 if (sret) {
2540                         ret = sret;
2541                         goto done;
2542                 }
2543                 b = p->nodes[level];
2544         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2545                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2546                 int sret;
2547
2548                 if (*write_lock_level < level + 1) {
2549                         *write_lock_level = level + 1;
2550                         btrfs_release_path(p);
2551                         goto again;
2552                 }
2553
2554                 btrfs_set_path_blocking(p);
2555                 reada_for_balance(root, p, level);
2556                 sret = balance_level(trans, root, p, level);
2557                 btrfs_clear_path_blocking(p, NULL, 0);
2558
2559                 if (sret) {
2560                         ret = sret;
2561                         goto done;
2562                 }
2563                 b = p->nodes[level];
2564                 if (!b) {
2565                         btrfs_release_path(p);
2566                         goto again;
2567                 }
2568                 BUG_ON(btrfs_header_nritems(b) == 1);
2569         }
2570         return 0;
2571
2572 again:
2573         ret = -EAGAIN;
2574 done:
2575         return ret;
2576 }
2577
2578 static void key_search_validate(struct extent_buffer *b,
2579                                 struct btrfs_key *key,
2580                                 int level)
2581 {
2582 #ifdef CONFIG_BTRFS_ASSERT
2583         struct btrfs_disk_key disk_key;
2584
2585         btrfs_cpu_key_to_disk(&disk_key, key);
2586
2587         if (level == 0)
2588                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2589                     offsetof(struct btrfs_leaf, items[0].key),
2590                     sizeof(disk_key)));
2591         else
2592                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2593                     offsetof(struct btrfs_node, ptrs[0].key),
2594                     sizeof(disk_key)));
2595 #endif
2596 }
2597
2598 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2599                       int level, int *prev_cmp, int *slot)
2600 {
2601         if (*prev_cmp != 0) {
2602                 *prev_cmp = bin_search(b, key, level, slot);
2603                 return *prev_cmp;
2604         }
2605
2606         key_search_validate(b, key, level);
2607         *slot = 0;
2608
2609         return 0;
2610 }
2611
2612 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2613                 u64 iobjectid, u64 ioff, u8 key_type,
2614                 struct btrfs_key *found_key)
2615 {
2616         int ret;
2617         struct btrfs_key key;
2618         struct extent_buffer *eb;
2619
2620         ASSERT(path);
2621         ASSERT(found_key);
2622
2623         key.type = key_type;
2624         key.objectid = iobjectid;
2625         key.offset = ioff;
2626
2627         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2628         if (ret < 0)
2629                 return ret;
2630
2631         eb = path->nodes[0];
2632         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2633                 ret = btrfs_next_leaf(fs_root, path);
2634                 if (ret)
2635                         return ret;
2636                 eb = path->nodes[0];
2637         }
2638
2639         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2640         if (found_key->type != key.type ||
2641                         found_key->objectid != key.objectid)
2642                 return 1;
2643
2644         return 0;
2645 }
2646
2647 /*
2648  * look for key in the tree.  path is filled in with nodes along the way
2649  * if key is found, we return zero and you can find the item in the leaf
2650  * level of the path (level 0)
2651  *
2652  * If the key isn't found, the path points to the slot where it should
2653  * be inserted, and 1 is returned.  If there are other errors during the
2654  * search a negative error number is returned.
2655  *
2656  * if ins_len > 0, nodes and leaves will be split as we walk down the
2657  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2658  * possible)
2659  */
2660 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2661                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2662                       ins_len, int cow)
2663 {
2664         struct extent_buffer *b;
2665         int slot;
2666         int ret;
2667         int err;
2668         int level;
2669         int lowest_unlock = 1;
2670         int root_lock;
2671         /* everything at write_lock_level or lower must be write locked */
2672         int write_lock_level = 0;
2673         u8 lowest_level = 0;
2674         int min_write_lock_level;
2675         int prev_cmp;
2676
2677         lowest_level = p->lowest_level;
2678         WARN_ON(lowest_level && ins_len > 0);
2679         WARN_ON(p->nodes[0] != NULL);
2680         BUG_ON(!cow && ins_len);
2681
2682         if (ins_len < 0) {
2683                 lowest_unlock = 2;
2684
2685                 /* when we are removing items, we might have to go up to level
2686                  * two as we update tree pointers  Make sure we keep write
2687                  * for those levels as well
2688                  */
2689                 write_lock_level = 2;
2690         } else if (ins_len > 0) {
2691                 /*
2692                  * for inserting items, make sure we have a write lock on
2693                  * level 1 so we can update keys
2694                  */
2695                 write_lock_level = 1;
2696         }
2697
2698         if (!cow)
2699                 write_lock_level = -1;
2700
2701         if (cow && (p->keep_locks || p->lowest_level))
2702                 write_lock_level = BTRFS_MAX_LEVEL;
2703
2704         min_write_lock_level = write_lock_level;
2705
2706 again:
2707         prev_cmp = -1;
2708         /*
2709          * we try very hard to do read locks on the root
2710          */
2711         root_lock = BTRFS_READ_LOCK;
2712         level = 0;
2713         if (p->search_commit_root) {
2714                 /*
2715                  * the commit roots are read only
2716                  * so we always do read locks
2717                  */
2718                 if (p->need_commit_sem)
2719                         down_read(&root->fs_info->commit_root_sem);
2720                 b = root->commit_root;
2721                 extent_buffer_get(b);
2722                 level = btrfs_header_level(b);
2723                 if (p->need_commit_sem)
2724                         up_read(&root->fs_info->commit_root_sem);
2725                 if (!p->skip_locking)
2726                         btrfs_tree_read_lock(b);
2727         } else {
2728                 if (p->skip_locking) {
2729                         b = btrfs_root_node(root);
2730                         level = btrfs_header_level(b);
2731                 } else {
2732                         /* we don't know the level of the root node
2733                          * until we actually have it read locked
2734                          */
2735                         b = btrfs_read_lock_root_node(root);
2736                         level = btrfs_header_level(b);
2737                         if (level <= write_lock_level) {
2738                                 /* whoops, must trade for write lock */
2739                                 btrfs_tree_read_unlock(b);
2740                                 free_extent_buffer(b);
2741                                 b = btrfs_lock_root_node(root);
2742                                 root_lock = BTRFS_WRITE_LOCK;
2743
2744                                 /* the level might have changed, check again */
2745                                 level = btrfs_header_level(b);
2746                         }
2747                 }
2748         }
2749         p->nodes[level] = b;
2750         if (!p->skip_locking)
2751                 p->locks[level] = root_lock;
2752
2753         while (b) {
2754                 level = btrfs_header_level(b);
2755
2756                 /*
2757                  * setup the path here so we can release it under lock
2758                  * contention with the cow code
2759                  */
2760                 if (cow) {
2761                         /*
2762                          * if we don't really need to cow this block
2763                          * then we don't want to set the path blocking,
2764                          * so we test it here
2765                          */
2766                         if (!should_cow_block(trans, root, b)) {
2767                                 trans->dirty = true;
2768                                 goto cow_done;
2769                         }
2770
2771                         /*
2772                          * must have write locks on this node and the
2773                          * parent
2774                          */
2775                         if (level > write_lock_level ||
2776                             (level + 1 > write_lock_level &&
2777                             level + 1 < BTRFS_MAX_LEVEL &&
2778                             p->nodes[level + 1])) {
2779                                 write_lock_level = level + 1;
2780                                 btrfs_release_path(p);
2781                                 goto again;
2782                         }
2783
2784                         btrfs_set_path_blocking(p);
2785                         err = btrfs_cow_block(trans, root, b,
2786                                               p->nodes[level + 1],
2787                                               p->slots[level + 1], &b);
2788                         if (err) {
2789                                 ret = err;
2790                                 goto done;
2791                         }
2792                 }
2793 cow_done:
2794                 p->nodes[level] = b;
2795                 btrfs_clear_path_blocking(p, NULL, 0);
2796
2797                 /*
2798                  * we have a lock on b and as long as we aren't changing
2799                  * the tree, there is no way to for the items in b to change.
2800                  * It is safe to drop the lock on our parent before we
2801                  * go through the expensive btree search on b.
2802                  *
2803                  * If we're inserting or deleting (ins_len != 0), then we might
2804                  * be changing slot zero, which may require changing the parent.
2805                  * So, we can't drop the lock until after we know which slot
2806                  * we're operating on.
2807                  */
2808                 if (!ins_len && !p->keep_locks) {
2809                         int u = level + 1;
2810
2811                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2812                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2813                                 p->locks[u] = 0;
2814                         }
2815                 }
2816
2817                 ret = key_search(b, key, level, &prev_cmp, &slot);
2818                 if (ret < 0)
2819                         goto done;
2820
2821                 if (level != 0) {
2822                         int dec = 0;
2823                         if (ret && slot > 0) {
2824                                 dec = 1;
2825                                 slot -= 1;
2826                         }
2827                         p->slots[level] = slot;
2828                         err = setup_nodes_for_search(trans, root, p, b, level,
2829                                              ins_len, &write_lock_level);
2830                         if (err == -EAGAIN)
2831                                 goto again;
2832                         if (err) {
2833                                 ret = err;
2834                                 goto done;
2835                         }
2836                         b = p->nodes[level];
2837                         slot = p->slots[level];
2838
2839                         /*
2840                          * slot 0 is special, if we change the key
2841                          * we have to update the parent pointer
2842                          * which means we must have a write lock
2843                          * on the parent
2844                          */
2845                         if (slot == 0 && ins_len &&
2846                             write_lock_level < level + 1) {
2847                                 write_lock_level = level + 1;
2848                                 btrfs_release_path(p);
2849                                 goto again;
2850                         }
2851
2852                         unlock_up(p, level, lowest_unlock,
2853                                   min_write_lock_level, &write_lock_level);
2854
2855                         if (level == lowest_level) {
2856                                 if (dec)
2857                                         p->slots[level]++;
2858                                 goto done;
2859                         }
2860
2861                         err = read_block_for_search(trans, root, p,
2862                                                     &b, level, slot, key, 0);
2863                         if (err == -EAGAIN)
2864                                 goto again;
2865                         if (err) {
2866                                 ret = err;
2867                                 goto done;
2868                         }
2869
2870                         if (!p->skip_locking) {
2871                                 level = btrfs_header_level(b);
2872                                 if (level <= write_lock_level) {
2873                                         err = btrfs_try_tree_write_lock(b);
2874                                         if (!err) {
2875                                                 btrfs_set_path_blocking(p);
2876                                                 btrfs_tree_lock(b);
2877                                                 btrfs_clear_path_blocking(p, b,
2878                                                                   BTRFS_WRITE_LOCK);
2879                                         }
2880                                         p->locks[level] = BTRFS_WRITE_LOCK;
2881                                 } else {
2882                                         err = btrfs_tree_read_lock_atomic(b);
2883                                         if (!err) {
2884                                                 btrfs_set_path_blocking(p);
2885                                                 btrfs_tree_read_lock(b);
2886                                                 btrfs_clear_path_blocking(p, b,
2887                                                                   BTRFS_READ_LOCK);
2888                                         }
2889                                         p->locks[level] = BTRFS_READ_LOCK;
2890                                 }
2891                                 p->nodes[level] = b;
2892                         }
2893                 } else {
2894                         p->slots[level] = slot;
2895                         if (ins_len > 0 &&
2896                             btrfs_leaf_free_space(root, b) < ins_len) {
2897                                 if (write_lock_level < 1) {
2898                                         write_lock_level = 1;
2899                                         btrfs_release_path(p);
2900                                         goto again;
2901                                 }
2902
2903                                 btrfs_set_path_blocking(p);
2904                                 err = split_leaf(trans, root, key,
2905                                                  p, ins_len, ret == 0);
2906                                 btrfs_clear_path_blocking(p, NULL, 0);
2907
2908                                 BUG_ON(err > 0);
2909                                 if (err) {
2910                                         ret = err;
2911                                         goto done;
2912                                 }
2913                         }
2914                         if (!p->search_for_split)
2915                                 unlock_up(p, level, lowest_unlock,
2916                                           min_write_lock_level, &write_lock_level);
2917                         goto done;
2918                 }
2919         }
2920         ret = 1;
2921 done:
2922         /*
2923          * we don't really know what they plan on doing with the path
2924          * from here on, so for now just mark it as blocking
2925          */
2926         if (!p->leave_spinning)
2927                 btrfs_set_path_blocking(p);
2928         if (ret < 0 && !p->skip_release_on_error)
2929                 btrfs_release_path(p);
2930         return ret;
2931 }
2932
2933 /*
2934  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2935  * current state of the tree together with the operations recorded in the tree
2936  * modification log to search for the key in a previous version of this tree, as
2937  * denoted by the time_seq parameter.
2938  *
2939  * Naturally, there is no support for insert, delete or cow operations.
2940  *
2941  * The resulting path and return value will be set up as if we called
2942  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2943  */
2944 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2945                           struct btrfs_path *p, u64 time_seq)
2946 {
2947         struct extent_buffer *b;
2948         int slot;
2949         int ret;
2950         int err;
2951         int level;
2952         int lowest_unlock = 1;
2953         u8 lowest_level = 0;
2954         int prev_cmp = -1;
2955
2956         lowest_level = p->lowest_level;
2957         WARN_ON(p->nodes[0] != NULL);
2958
2959         if (p->search_commit_root) {
2960                 BUG_ON(time_seq);
2961                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2962         }
2963
2964 again:
2965         b = get_old_root(root, time_seq);
2966         level = btrfs_header_level(b);
2967         p->locks[level] = BTRFS_READ_LOCK;
2968
2969         while (b) {
2970                 level = btrfs_header_level(b);
2971                 p->nodes[level] = b;
2972                 btrfs_clear_path_blocking(p, NULL, 0);
2973
2974                 /*
2975                  * we have a lock on b and as long as we aren't changing
2976                  * the tree, there is no way to for the items in b to change.
2977                  * It is safe to drop the lock on our parent before we
2978                  * go through the expensive btree search on b.
2979                  */
2980                 btrfs_unlock_up_safe(p, level + 1);
2981
2982                 /*
2983                  * Since we can unwind ebs we want to do a real search every
2984                  * time.
2985                  */
2986                 prev_cmp = -1;
2987                 ret = key_search(b, key, level, &prev_cmp, &slot);
2988
2989                 if (level != 0) {
2990                         int dec = 0;
2991                         if (ret && slot > 0) {
2992                                 dec = 1;
2993                                 slot -= 1;
2994                         }
2995                         p->slots[level] = slot;
2996                         unlock_up(p, level, lowest_unlock, 0, NULL);
2997
2998                         if (level == lowest_level) {
2999                                 if (dec)
3000                                         p->slots[level]++;
3001                                 goto done;
3002                         }
3003
3004                         err = read_block_for_search(NULL, root, p, &b, level,
3005                                                     slot, key, time_seq);
3006                         if (err == -EAGAIN)
3007                                 goto again;
3008                         if (err) {
3009                                 ret = err;
3010                                 goto done;
3011                         }
3012
3013                         level = btrfs_header_level(b);
3014                         err = btrfs_tree_read_lock_atomic(b);
3015                         if (!err) {
3016                                 btrfs_set_path_blocking(p);
3017                                 btrfs_tree_read_lock(b);
3018                                 btrfs_clear_path_blocking(p, b,
3019                                                           BTRFS_READ_LOCK);
3020                         }
3021                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3022                         if (!b) {
3023                                 ret = -ENOMEM;
3024                                 goto done;
3025                         }
3026                         p->locks[level] = BTRFS_READ_LOCK;
3027                         p->nodes[level] = b;
3028                 } else {
3029                         p->slots[level] = slot;
3030                         unlock_up(p, level, lowest_unlock, 0, NULL);
3031                         goto done;
3032                 }
3033         }
3034         ret = 1;
3035 done:
3036         if (!p->leave_spinning)
3037                 btrfs_set_path_blocking(p);
3038         if (ret < 0)
3039                 btrfs_release_path(p);
3040
3041         return ret;
3042 }
3043
3044 /*
3045  * helper to use instead of search slot if no exact match is needed but
3046  * instead the next or previous item should be returned.
3047  * When find_higher is true, the next higher item is returned, the next lower
3048  * otherwise.
3049  * When return_any and find_higher are both true, and no higher item is found,
3050  * return the next lower instead.
3051  * When return_any is true and find_higher is false, and no lower item is found,
3052  * return the next higher instead.
3053  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3054  * < 0 on error
3055  */
3056 int btrfs_search_slot_for_read(struct btrfs_root *root,
3057                                struct btrfs_key *key, struct btrfs_path *p,
3058                                int find_higher, int return_any)
3059 {
3060         int ret;
3061         struct extent_buffer *leaf;
3062
3063 again:
3064         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3065         if (ret <= 0)
3066                 return ret;
3067         /*
3068          * a return value of 1 means the path is at the position where the
3069          * item should be inserted. Normally this is the next bigger item,
3070          * but in case the previous item is the last in a leaf, path points
3071          * to the first free slot in the previous leaf, i.e. at an invalid
3072          * item.
3073          */
3074         leaf = p->nodes[0];
3075
3076         if (find_higher) {
3077                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3078                         ret = btrfs_next_leaf(root, p);
3079                         if (ret <= 0)
3080                                 return ret;
3081                         if (!return_any)
3082                                 return 1;
3083                         /*
3084                          * no higher item found, return the next
3085                          * lower instead
3086                          */
3087                         return_any = 0;
3088                         find_higher = 0;
3089                         btrfs_release_path(p);
3090                         goto again;
3091                 }
3092         } else {
3093                 if (p->slots[0] == 0) {
3094                         ret = btrfs_prev_leaf(root, p);
3095                         if (ret < 0)
3096                                 return ret;
3097                         if (!ret) {
3098                                 leaf = p->nodes[0];
3099                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3100                                         p->slots[0]--;
3101                                 return 0;
3102                         }
3103                         if (!return_any)
3104                                 return 1;
3105                         /*
3106                          * no lower item found, return the next
3107                          * higher instead
3108                          */
3109                         return_any = 0;
3110                         find_higher = 1;
3111                         btrfs_release_path(p);
3112                         goto again;
3113                 } else {
3114                         --p->slots[0];
3115                 }
3116         }
3117         return 0;
3118 }
3119
3120 /*
3121  * adjust the pointers going up the tree, starting at level
3122  * making sure the right key of each node is points to 'key'.
3123  * This is used after shifting pointers to the left, so it stops
3124  * fixing up pointers when a given leaf/node is not in slot 0 of the
3125  * higher levels
3126  *
3127  */
3128 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3129                            struct btrfs_path *path,
3130                            struct btrfs_disk_key *key, int level)
3131 {
3132         int i;
3133         struct extent_buffer *t;
3134
3135         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3136                 int tslot = path->slots[i];
3137                 if (!path->nodes[i])
3138                         break;
3139                 t = path->nodes[i];
3140                 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3141                 btrfs_set_node_key(t, key, tslot);
3142                 btrfs_mark_buffer_dirty(path->nodes[i]);
3143                 if (tslot != 0)
3144                         break;
3145         }
3146 }
3147
3148 /*
3149  * update item key.
3150  *
3151  * This function isn't completely safe. It's the caller's responsibility
3152  * that the new key won't break the order
3153  */
3154 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3155                              struct btrfs_path *path,
3156                              struct btrfs_key *new_key)
3157 {
3158         struct btrfs_disk_key disk_key;
3159         struct extent_buffer *eb;
3160         int slot;
3161
3162         eb = path->nodes[0];
3163         slot = path->slots[0];
3164         if (slot > 0) {
3165                 btrfs_item_key(eb, &disk_key, slot - 1);
3166                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3167         }
3168         if (slot < btrfs_header_nritems(eb) - 1) {
3169                 btrfs_item_key(eb, &disk_key, slot + 1);
3170                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3171         }
3172
3173         btrfs_cpu_key_to_disk(&disk_key, new_key);
3174         btrfs_set_item_key(eb, &disk_key, slot);
3175         btrfs_mark_buffer_dirty(eb);
3176         if (slot == 0)
3177                 fixup_low_keys(fs_info, path, &disk_key, 1);
3178 }
3179
3180 /*
3181  * try to push data from one node into the next node left in the
3182  * tree.
3183  *
3184  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3185  * error, and > 0 if there was no room in the left hand block.
3186  */
3187 static int push_node_left(struct btrfs_trans_handle *trans,
3188                           struct btrfs_root *root, struct extent_buffer *dst,
3189                           struct extent_buffer *src, int empty)
3190 {
3191         int push_items = 0;
3192         int src_nritems;
3193         int dst_nritems;
3194         int ret = 0;
3195
3196         src_nritems = btrfs_header_nritems(src);
3197         dst_nritems = btrfs_header_nritems(dst);
3198         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3199         WARN_ON(btrfs_header_generation(src) != trans->transid);
3200         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3201
3202         if (!empty && src_nritems <= 8)
3203                 return 1;
3204
3205         if (push_items <= 0)
3206                 return 1;
3207
3208         if (empty) {
3209                 push_items = min(src_nritems, push_items);
3210                 if (push_items < src_nritems) {
3211                         /* leave at least 8 pointers in the node if
3212                          * we aren't going to empty it
3213                          */
3214                         if (src_nritems - push_items < 8) {
3215                                 if (push_items <= 8)
3216                                         return 1;
3217                                 push_items -= 8;
3218                         }
3219                 }
3220         } else
3221                 push_items = min(src_nritems - 8, push_items);
3222
3223         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3224                                    push_items);
3225         if (ret) {
3226                 btrfs_abort_transaction(trans, ret);
3227                 return ret;
3228         }
3229         copy_extent_buffer(dst, src,
3230                            btrfs_node_key_ptr_offset(dst_nritems),
3231                            btrfs_node_key_ptr_offset(0),
3232                            push_items * sizeof(struct btrfs_key_ptr));
3233
3234         if (push_items < src_nritems) {
3235                 /*
3236                  * don't call tree_mod_log_eb_move here, key removal was already
3237                  * fully logged by tree_mod_log_eb_copy above.
3238                  */
3239                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3240                                       btrfs_node_key_ptr_offset(push_items),
3241                                       (src_nritems - push_items) *
3242                                       sizeof(struct btrfs_key_ptr));
3243         }
3244         btrfs_set_header_nritems(src, src_nritems - push_items);
3245         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3246         btrfs_mark_buffer_dirty(src);
3247         btrfs_mark_buffer_dirty(dst);
3248
3249         return ret;
3250 }
3251
3252 /*
3253  * try to push data from one node into the next node right in the
3254  * tree.
3255  *
3256  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3257  * error, and > 0 if there was no room in the right hand block.
3258  *
3259  * this will  only push up to 1/2 the contents of the left node over
3260  */
3261 static int balance_node_right(struct btrfs_trans_handle *trans,
3262                               struct btrfs_root *root,
3263                               struct extent_buffer *dst,
3264                               struct extent_buffer *src)
3265 {
3266         int push_items = 0;
3267         int max_push;
3268         int src_nritems;
3269         int dst_nritems;
3270         int ret = 0;
3271
3272         WARN_ON(btrfs_header_generation(src) != trans->transid);
3273         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3274
3275         src_nritems = btrfs_header_nritems(src);
3276         dst_nritems = btrfs_header_nritems(dst);
3277         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3278         if (push_items <= 0)
3279                 return 1;
3280
3281         if (src_nritems < 4)
3282                 return 1;
3283
3284         max_push = src_nritems / 2 + 1;
3285         /* don't try to empty the node */
3286         if (max_push >= src_nritems)
3287                 return 1;
3288
3289         if (max_push < push_items)
3290                 push_items = max_push;
3291
3292         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3293         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3294                                       btrfs_node_key_ptr_offset(0),
3295                                       (dst_nritems) *
3296                                       sizeof(struct btrfs_key_ptr));
3297
3298         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3299                                    src_nritems - push_items, push_items);
3300         if (ret) {
3301                 btrfs_abort_transaction(trans, ret);
3302                 return ret;
3303         }
3304         copy_extent_buffer(dst, src,
3305                            btrfs_node_key_ptr_offset(0),
3306                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3307                            push_items * sizeof(struct btrfs_key_ptr));
3308
3309         btrfs_set_header_nritems(src, src_nritems - push_items);
3310         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3311
3312         btrfs_mark_buffer_dirty(src);
3313         btrfs_mark_buffer_dirty(dst);
3314
3315         return ret;
3316 }
3317
3318 /*
3319  * helper function to insert a new root level in the tree.
3320  * A new node is allocated, and a single item is inserted to
3321  * point to the existing root
3322  *
3323  * returns zero on success or < 0 on failure.
3324  */
3325 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3326                            struct btrfs_root *root,
3327                            struct btrfs_path *path, int level)
3328 {
3329         u64 lower_gen;
3330         struct extent_buffer *lower;
3331         struct extent_buffer *c;
3332         struct extent_buffer *old;
3333         struct btrfs_disk_key lower_key;
3334
3335         BUG_ON(path->nodes[level]);
3336         BUG_ON(path->nodes[level-1] != root->node);
3337
3338         lower = path->nodes[level-1];
3339         if (level == 1)
3340                 btrfs_item_key(lower, &lower_key, 0);
3341         else
3342                 btrfs_node_key(lower, &lower_key, 0);
3343
3344         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3345                                    &lower_key, level, root->node->start, 0);
3346         if (IS_ERR(c))
3347                 return PTR_ERR(c);
3348
3349         root_add_used(root, root->nodesize);
3350
3351         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3352         btrfs_set_header_nritems(c, 1);
3353         btrfs_set_header_level(c, level);
3354         btrfs_set_header_bytenr(c, c->start);
3355         btrfs_set_header_generation(c, trans->transid);
3356         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3357         btrfs_set_header_owner(c, root->root_key.objectid);
3358
3359         write_extent_buffer_fsid(c, root->fs_info->fsid);
3360         write_extent_buffer_chunk_tree_uuid(c, root->fs_info->chunk_tree_uuid);
3361
3362         btrfs_set_node_key(c, &lower_key, 0);
3363         btrfs_set_node_blockptr(c, 0, lower->start);
3364         lower_gen = btrfs_header_generation(lower);
3365         WARN_ON(lower_gen != trans->transid);
3366
3367         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3368
3369         btrfs_mark_buffer_dirty(c);
3370
3371         old = root->node;
3372         tree_mod_log_set_root_pointer(root, c, 0);
3373         rcu_assign_pointer(root->node, c);
3374
3375         /* the super has an extra ref to root->node */
3376         free_extent_buffer(old);
3377
3378         add_root_to_dirty_list(root);
3379         extent_buffer_get(c);
3380         path->nodes[level] = c;
3381         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3382         path->slots[level] = 0;
3383         return 0;
3384 }
3385
3386 /*
3387  * worker function to insert a single pointer in a node.
3388  * the node should have enough room for the pointer already
3389  *
3390  * slot and level indicate where you want the key to go, and
3391  * blocknr is the block the key points to.
3392  */
3393 static void insert_ptr(struct btrfs_trans_handle *trans,
3394                        struct btrfs_root *root, struct btrfs_path *path,
3395                        struct btrfs_disk_key *key, u64 bytenr,
3396                        int slot, int level)
3397 {
3398         struct extent_buffer *lower;
3399         int nritems;
3400         int ret;
3401
3402         BUG_ON(!path->nodes[level]);
3403         btrfs_assert_tree_locked(path->nodes[level]);
3404         lower = path->nodes[level];
3405         nritems = btrfs_header_nritems(lower);
3406         BUG_ON(slot > nritems);
3407         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3408         if (slot != nritems) {
3409                 if (level)
3410                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3411                                              slot, nritems - slot);
3412                 memmove_extent_buffer(lower,
3413                               btrfs_node_key_ptr_offset(slot + 1),
3414                               btrfs_node_key_ptr_offset(slot),
3415                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3416         }
3417         if (level) {
3418                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3419                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3420                 BUG_ON(ret < 0);
3421         }
3422         btrfs_set_node_key(lower, key, slot);
3423         btrfs_set_node_blockptr(lower, slot, bytenr);
3424         WARN_ON(trans->transid == 0);
3425         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3426         btrfs_set_header_nritems(lower, nritems + 1);
3427         btrfs_mark_buffer_dirty(lower);
3428 }
3429
3430 /*
3431  * split the node at the specified level in path in two.
3432  * The path is corrected to point to the appropriate node after the split
3433  *
3434  * Before splitting this tries to make some room in the node by pushing
3435  * left and right, if either one works, it returns right away.
3436  *
3437  * returns 0 on success and < 0 on failure
3438  */
3439 static noinline int split_node(struct btrfs_trans_handle *trans,
3440                                struct btrfs_root *root,
3441                                struct btrfs_path *path, int level)
3442 {
3443         struct extent_buffer *c;
3444         struct extent_buffer *split;
3445         struct btrfs_disk_key disk_key;
3446         int mid;
3447         int ret;
3448         u32 c_nritems;
3449
3450         c = path->nodes[level];
3451         WARN_ON(btrfs_header_generation(c) != trans->transid);
3452         if (c == root->node) {
3453                 /*
3454                  * trying to split the root, lets make a new one
3455                  *
3456                  * tree mod log: We don't log_removal old root in
3457                  * insert_new_root, because that root buffer will be kept as a
3458                  * normal node. We are going to log removal of half of the
3459                  * elements below with tree_mod_log_eb_copy. We're holding a
3460                  * tree lock on the buffer, which is why we cannot race with
3461                  * other tree_mod_log users.
3462                  */
3463                 ret = insert_new_root(trans, root, path, level + 1);
3464                 if (ret)
3465                         return ret;
3466         } else {
3467                 ret = push_nodes_for_insert(trans, root, path, level);
3468                 c = path->nodes[level];
3469                 if (!ret && btrfs_header_nritems(c) <
3470                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3471                         return 0;
3472                 if (ret < 0)
3473                         return ret;
3474         }
3475
3476         c_nritems = btrfs_header_nritems(c);
3477         mid = (c_nritems + 1) / 2;
3478         btrfs_node_key(c, &disk_key, mid);
3479
3480         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3481                         &disk_key, level, c->start, 0);
3482         if (IS_ERR(split))
3483                 return PTR_ERR(split);
3484
3485         root_add_used(root, root->nodesize);
3486
3487         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3488         btrfs_set_header_level(split, btrfs_header_level(c));
3489         btrfs_set_header_bytenr(split, split->start);
3490         btrfs_set_header_generation(split, trans->transid);
3491         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3492         btrfs_set_header_owner(split, root->root_key.objectid);
3493         write_extent_buffer_fsid(split, root->fs_info->fsid);
3494         write_extent_buffer_chunk_tree_uuid(split,
3495                         root->fs_info->chunk_tree_uuid);
3496
3497         ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3498                                    mid, c_nritems - mid);
3499         if (ret) {
3500                 btrfs_abort_transaction(trans, ret);
3501                 return ret;
3502         }
3503         copy_extent_buffer(split, c,
3504                            btrfs_node_key_ptr_offset(0),
3505                            btrfs_node_key_ptr_offset(mid),
3506                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3507         btrfs_set_header_nritems(split, c_nritems - mid);
3508         btrfs_set_header_nritems(c, mid);
3509         ret = 0;
3510
3511         btrfs_mark_buffer_dirty(c);
3512         btrfs_mark_buffer_dirty(split);
3513
3514         insert_ptr(trans, root, path, &disk_key, split->start,
3515                    path->slots[level + 1] + 1, level + 1);
3516
3517         if (path->slots[level] >= mid) {
3518                 path->slots[level] -= mid;
3519                 btrfs_tree_unlock(c);
3520                 free_extent_buffer(c);
3521                 path->nodes[level] = split;
3522                 path->slots[level + 1] += 1;
3523         } else {
3524                 btrfs_tree_unlock(split);
3525                 free_extent_buffer(split);
3526         }
3527         return ret;
3528 }
3529
3530 /*
3531  * how many bytes are required to store the items in a leaf.  start
3532  * and nr indicate which items in the leaf to check.  This totals up the
3533  * space used both by the item structs and the item data
3534  */
3535 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3536 {
3537         struct btrfs_item *start_item;
3538         struct btrfs_item *end_item;
3539         struct btrfs_map_token token;
3540         int data_len;
3541         int nritems = btrfs_header_nritems(l);
3542         int end = min(nritems, start + nr) - 1;
3543
3544         if (!nr)
3545                 return 0;
3546         btrfs_init_map_token(&token);
3547         start_item = btrfs_item_nr(start);
3548         end_item = btrfs_item_nr(end);
3549         data_len = btrfs_token_item_offset(l, start_item, &token) +
3550                 btrfs_token_item_size(l, start_item, &token);
3551         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3552         data_len += sizeof(struct btrfs_item) * nr;
3553         WARN_ON(data_len < 0);
3554         return data_len;
3555 }
3556
3557 /*
3558  * The space between the end of the leaf items and
3559  * the start of the leaf data.  IOW, how much room
3560  * the leaf has left for both items and data
3561  */
3562 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3563                                    struct extent_buffer *leaf)
3564 {
3565         int nritems = btrfs_header_nritems(leaf);
3566         int ret;
3567         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3568         if (ret < 0) {
3569                 btrfs_crit(root->fs_info,
3570                         "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3571                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3572                        leaf_space_used(leaf, 0, nritems), nritems);
3573         }
3574         return ret;
3575 }
3576
3577 /*
3578  * min slot controls the lowest index we're willing to push to the
3579  * right.  We'll push up to and including min_slot, but no lower
3580  */
3581 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3582                                       struct btrfs_root *root,
3583                                       struct btrfs_path *path,
3584                                       int data_size, int empty,
3585                                       struct extent_buffer *right,
3586                                       int free_space, u32 left_nritems,
3587                                       u32 min_slot)
3588 {
3589         struct extent_buffer *left = path->nodes[0];
3590         struct extent_buffer *upper = path->nodes[1];
3591         struct btrfs_map_token token;
3592         struct btrfs_disk_key disk_key;
3593         int slot;
3594         u32 i;
3595         int push_space = 0;
3596         int push_items = 0;
3597         struct btrfs_item *item;
3598         u32 nr;
3599         u32 right_nritems;
3600         u32 data_end;
3601         u32 this_item_size;
3602
3603         btrfs_init_map_token(&token);
3604
3605         if (empty)
3606                 nr = 0;
3607         else
3608                 nr = max_t(u32, 1, min_slot);
3609
3610         if (path->slots[0] >= left_nritems)
3611                 push_space += data_size;
3612
3613         slot = path->slots[1];
3614         i = left_nritems - 1;
3615         while (i >= nr) {
3616                 item = btrfs_item_nr(i);
3617
3618                 if (!empty && push_items > 0) {
3619                         if (path->slots[0] > i)
3620                                 break;
3621                         if (path->slots[0] == i) {
3622                                 int space = btrfs_leaf_free_space(root, left);
3623                                 if (space + push_space * 2 > free_space)
3624                                         break;
3625                         }
3626                 }
3627
3628                 if (path->slots[0] == i)
3629                         push_space += data_size;
3630
3631                 this_item_size = btrfs_item_size(left, item);
3632                 if (this_item_size + sizeof(*item) + push_space > free_space)
3633                         break;
3634
3635                 push_items++;
3636                 push_space += this_item_size + sizeof(*item);
3637                 if (i == 0)
3638                         break;
3639                 i--;
3640         }
3641
3642         if (push_items == 0)
3643                 goto out_unlock;
3644
3645         WARN_ON(!empty && push_items == left_nritems);
3646
3647         /* push left to right */
3648         right_nritems = btrfs_header_nritems(right);
3649
3650         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3651         push_space -= leaf_data_end(root, left);
3652
3653         /* make room in the right data area */
3654         data_end = leaf_data_end(root, right);
3655         memmove_extent_buffer(right,
3656                               btrfs_leaf_data(right) + data_end - push_space,
3657                               btrfs_leaf_data(right) + data_end,
3658                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3659
3660         /* copy from the left data area */
3661         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3662                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3663                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3664                      push_space);
3665
3666         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3667                               btrfs_item_nr_offset(0),
3668                               right_nritems * sizeof(struct btrfs_item));
3669
3670         /* copy the items from left to right */
3671         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3672                    btrfs_item_nr_offset(left_nritems - push_items),
3673                    push_items * sizeof(struct btrfs_item));
3674
3675         /* update the item pointers */
3676         right_nritems += push_items;
3677         btrfs_set_header_nritems(right, right_nritems);
3678         push_space = BTRFS_LEAF_DATA_SIZE(root);
3679         for (i = 0; i < right_nritems; i++) {
3680                 item = btrfs_item_nr(i);
3681                 push_space -= btrfs_token_item_size(right, item, &token);
3682                 btrfs_set_token_item_offset(right, item, push_space, &token);
3683         }
3684
3685         left_nritems -= push_items;
3686         btrfs_set_header_nritems(left, left_nritems);
3687
3688         if (left_nritems)
3689                 btrfs_mark_buffer_dirty(left);
3690         else
3691                 clean_tree_block(trans, root->fs_info, left);
3692
3693         btrfs_mark_buffer_dirty(right);
3694
3695         btrfs_item_key(right, &disk_key, 0);
3696         btrfs_set_node_key(upper, &disk_key, slot + 1);
3697         btrfs_mark_buffer_dirty(upper);
3698
3699         /* then fixup the leaf pointer in the path */
3700         if (path->slots[0] >= left_nritems) {
3701                 path->slots[0] -= left_nritems;
3702                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3703                         clean_tree_block(trans, root->fs_info, path->nodes[0]);
3704                 btrfs_tree_unlock(path->nodes[0]);
3705                 free_extent_buffer(path->nodes[0]);
3706                 path->nodes[0] = right;
3707                 path->slots[1] += 1;
3708         } else {
3709                 btrfs_tree_unlock(right);
3710                 free_extent_buffer(right);
3711         }
3712         return 0;
3713
3714 out_unlock:
3715         btrfs_tree_unlock(right);
3716         free_extent_buffer(right);
3717         return 1;
3718 }
3719
3720 /*
3721  * push some data in the path leaf to the right, trying to free up at
3722  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3723  *
3724  * returns 1 if the push failed because the other node didn't have enough
3725  * room, 0 if everything worked out and < 0 if there were major errors.
3726  *
3727  * this will push starting from min_slot to the end of the leaf.  It won't
3728  * push any slot lower than min_slot
3729  */
3730 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3731                            *root, struct btrfs_path *path,
3732                            int min_data_size, int data_size,
3733                            int empty, u32 min_slot)
3734 {
3735         struct extent_buffer *left = path->nodes[0];
3736         struct extent_buffer *right;
3737         struct extent_buffer *upper;
3738         int slot;
3739         int free_space;
3740         u32 left_nritems;
3741         int ret;
3742
3743         if (!path->nodes[1])
3744                 return 1;
3745
3746         slot = path->slots[1];
3747         upper = path->nodes[1];
3748         if (slot >= btrfs_header_nritems(upper) - 1)
3749                 return 1;
3750
3751         btrfs_assert_tree_locked(path->nodes[1]);
3752
3753         right = read_node_slot(root, upper, slot + 1);
3754         /*
3755          * slot + 1 is not valid or we fail to read the right node,
3756          * no big deal, just return.
3757          */
3758         if (IS_ERR(right))
3759                 return 1;
3760
3761         btrfs_tree_lock(right);
3762         btrfs_set_lock_blocking(right);
3763
3764         free_space = btrfs_leaf_free_space(root, right);
3765         if (free_space < data_size)
3766                 goto out_unlock;
3767
3768         /* cow and double check */
3769         ret = btrfs_cow_block(trans, root, right, upper,
3770                               slot + 1, &right);
3771         if (ret)
3772                 goto out_unlock;
3773
3774         free_space = btrfs_leaf_free_space(root, right);
3775         if (free_space < data_size)
3776                 goto out_unlock;
3777
3778         left_nritems = btrfs_header_nritems(left);
3779         if (left_nritems == 0)
3780                 goto out_unlock;
3781
3782         if (path->slots[0] == left_nritems && !empty) {
3783                 /* Key greater than all keys in the leaf, right neighbor has
3784                  * enough room for it and we're not emptying our leaf to delete
3785                  * it, therefore use right neighbor to insert the new item and
3786                  * no need to touch/dirty our left leaft. */
3787                 btrfs_tree_unlock(left);
3788                 free_extent_buffer(left);
3789                 path->nodes[0] = right;
3790                 path->slots[0] = 0;
3791                 path->slots[1]++;
3792                 return 0;
3793         }
3794
3795         return __push_leaf_right(trans, root, path, min_data_size, empty,
3796                                 right, free_space, left_nritems, min_slot);
3797 out_unlock:
3798         btrfs_tree_unlock(right);
3799         free_extent_buffer(right);
3800         return 1;
3801 }
3802
3803 /*
3804  * push some data in the path leaf to the left, trying to free up at
3805  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3806  *
3807  * max_slot can put a limit on how far into the leaf we'll push items.  The
3808  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3809  * items
3810  */
3811 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3812                                      struct btrfs_root *root,
3813                                      struct btrfs_path *path, int data_size,
3814                                      int empty, struct extent_buffer *left,
3815                                      int free_space, u32 right_nritems,
3816                                      u32 max_slot)
3817 {
3818         struct btrfs_disk_key disk_key;
3819         struct extent_buffer *right = path->nodes[0];
3820         int i;
3821         int push_space = 0;
3822         int push_items = 0;
3823         struct btrfs_item *item;
3824         u32 old_left_nritems;
3825         u32 nr;
3826         int ret = 0;
3827         u32 this_item_size;
3828         u32 old_left_item_size;
3829         struct btrfs_map_token token;
3830
3831         btrfs_init_map_token(&token);
3832
3833         if (empty)
3834                 nr = min(right_nritems, max_slot);
3835         else
3836                 nr = min(right_nritems - 1, max_slot);
3837
3838         for (i = 0; i < nr; i++) {
3839                 item = btrfs_item_nr(i);
3840
3841                 if (!empty && push_items > 0) {
3842                         if (path->slots[0] < i)
3843                                 break;
3844                         if (path->slots[0] == i) {
3845                                 int space = btrfs_leaf_free_space(root, right);
3846                                 if (space + push_space * 2 > free_space)
3847                                         break;
3848                         }
3849                 }
3850
3851                 if (path->slots[0] == i)
3852                         push_space += data_size;
3853
3854                 this_item_size = btrfs_item_size(right, item);
3855                 if (this_item_size + sizeof(*item) + push_space > free_space)
3856                         break;
3857
3858                 push_items++;
3859                 push_space += this_item_size + sizeof(*item);
3860         }
3861
3862         if (push_items == 0) {
3863                 ret = 1;
3864                 goto out;
3865         }
3866         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3867
3868         /* push data from right to left */
3869         copy_extent_buffer(left, right,
3870                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3871                            btrfs_item_nr_offset(0),
3872                            push_items * sizeof(struct btrfs_item));
3873
3874         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3875                      btrfs_item_offset_nr(right, push_items - 1);
3876
3877         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3878                      leaf_data_end(root, left) - push_space,
3879                      btrfs_leaf_data(right) +
3880                      btrfs_item_offset_nr(right, push_items - 1),
3881                      push_space);
3882         old_left_nritems = btrfs_header_nritems(left);
3883         BUG_ON(old_left_nritems <= 0);
3884
3885         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3886         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3887                 u32 ioff;
3888
3889                 item = btrfs_item_nr(i);
3890
3891                 ioff = btrfs_token_item_offset(left, item, &token);
3892                 btrfs_set_token_item_offset(left, item,
3893                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3894                       &token);
3895         }
3896         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3897
3898         /* fixup right node */
3899         if (push_items > right_nritems)
3900                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3901                        right_nritems);
3902
3903         if (push_items < right_nritems) {
3904                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3905                                                   leaf_data_end(root, right);
3906                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3907                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3908                                       btrfs_leaf_data(right) +
3909                                       leaf_data_end(root, right), push_space);
3910
3911                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3912                               btrfs_item_nr_offset(push_items),
3913                              (btrfs_header_nritems(right) - push_items) *
3914                              sizeof(struct btrfs_item));
3915         }
3916         right_nritems -= push_items;
3917         btrfs_set_header_nritems(right, right_nritems);
3918         push_space = BTRFS_LEAF_DATA_SIZE(root);
3919         for (i = 0; i < right_nritems; i++) {
3920                 item = btrfs_item_nr(i);
3921
3922                 push_space = push_space - btrfs_token_item_size(right,
3923                                                                 item, &token);
3924                 btrfs_set_token_item_offset(right, item, push_space, &token);
3925         }
3926
3927         btrfs_mark_buffer_dirty(left);
3928         if (right_nritems)
3929                 btrfs_mark_buffer_dirty(right);
3930         else
3931                 clean_tree_block(trans, root->fs_info, right);
3932
3933         btrfs_item_key(right, &disk_key, 0);
3934         fixup_low_keys(root->fs_info, path, &disk_key, 1);
3935
3936         /* then fixup the leaf pointer in the path */
3937         if (path->slots[0] < push_items) {
3938                 path->slots[0] += old_left_nritems;
3939                 btrfs_tree_unlock(path->nodes[0]);
3940                 free_extent_buffer(path->nodes[0]);
3941                 path->nodes[0] = left;
3942                 path->slots[1] -= 1;
3943         } else {
3944                 btrfs_tree_unlock(left);
3945                 free_extent_buffer(left);
3946                 path->slots[0] -= push_items;
3947         }
3948         BUG_ON(path->slots[0] < 0);
3949         return ret;
3950 out:
3951         btrfs_tree_unlock(left);
3952         free_extent_buffer(left);
3953         return ret;
3954 }
3955
3956 /*
3957  * push some data in the path leaf to the left, trying to free up at
3958  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3959  *
3960  * max_slot can put a limit on how far into the leaf we'll push items.  The
3961  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3962  * items
3963  */
3964 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3965                           *root, struct btrfs_path *path, int min_data_size,
3966                           int data_size, int empty, u32 max_slot)
3967 {
3968         struct extent_buffer *right = path->nodes[0];
3969         struct extent_buffer *left;
3970         int slot;
3971         int free_space;
3972         u32 right_nritems;
3973         int ret = 0;
3974
3975         slot = path->slots[1];
3976         if (slot == 0)
3977                 return 1;
3978         if (!path->nodes[1])
3979                 return 1;
3980
3981         right_nritems = btrfs_header_nritems(right);
3982         if (right_nritems == 0)
3983                 return 1;
3984
3985         btrfs_assert_tree_locked(path->nodes[1]);
3986
3987         left = read_node_slot(root, path->nodes[1], slot - 1);
3988         /*
3989          * slot - 1 is not valid or we fail to read the left node,
3990          * no big deal, just return.
3991          */
3992         if (IS_ERR(left))
3993                 return 1;
3994
3995         btrfs_tree_lock(left);
3996         btrfs_set_lock_blocking(left);
3997
3998         free_space = btrfs_leaf_free_space(root, left);
3999         if (free_space < data_size) {
4000                 ret = 1;
4001                 goto out;
4002         }
4003
4004         /* cow and double check */
4005         ret = btrfs_cow_block(trans, root, left,
4006                               path->nodes[1], slot - 1, &left);
4007         if (ret) {
4008                 /* we hit -ENOSPC, but it isn't fatal here */
4009                 if (ret == -ENOSPC)
4010                         ret = 1;
4011                 goto out;
4012         }
4013
4014         free_space = btrfs_leaf_free_space(root, left);
4015         if (free_space < data_size) {
4016                 ret = 1;
4017                 goto out;
4018         }
4019
4020         return __push_leaf_left(trans, root, path, min_data_size,
4021                                empty, left, free_space, right_nritems,
4022                                max_slot);
4023 out:
4024         btrfs_tree_unlock(left);
4025         free_extent_buffer(left);
4026         return ret;
4027 }
4028
4029 /*
4030  * split the path's leaf in two, making sure there is at least data_size
4031  * available for the resulting leaf level of the path.
4032  */
4033 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4034                                     struct btrfs_root *root,
4035                                     struct btrfs_path *path,
4036                                     struct extent_buffer *l,
4037                                     struct extent_buffer *right,
4038                                     int slot, int mid, int nritems)
4039 {
4040         int data_copy_size;
4041         int rt_data_off;
4042         int i;
4043         struct btrfs_disk_key disk_key;
4044         struct btrfs_map_token token;
4045
4046         btrfs_init_map_token(&token);
4047
4048         nritems = nritems - mid;
4049         btrfs_set_header_nritems(right, nritems);
4050         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4051
4052         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4053                            btrfs_item_nr_offset(mid),
4054                            nritems * sizeof(struct btrfs_item));
4055
4056         copy_extent_buffer(right, l,
4057                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4058                      data_copy_size, btrfs_leaf_data(l) +
4059                      leaf_data_end(root, l), data_copy_size);
4060
4061         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4062                       btrfs_item_end_nr(l, mid);
4063
4064         for (i = 0; i < nritems; i++) {
4065                 struct btrfs_item *item = btrfs_item_nr(i);
4066                 u32 ioff;
4067
4068                 ioff = btrfs_token_item_offset(right, item, &token);
4069                 btrfs_set_token_item_offset(right, item,
4070                                             ioff + rt_data_off, &token);
4071         }
4072
4073         btrfs_set_header_nritems(l, mid);
4074         btrfs_item_key(right, &disk_key, 0);
4075         insert_ptr(trans, root, path, &disk_key, right->start,
4076                    path->slots[1] + 1, 1);
4077
4078         btrfs_mark_buffer_dirty(right);
4079         btrfs_mark_buffer_dirty(l);
4080         BUG_ON(path->slots[0] != slot);
4081
4082         if (mid <= slot) {
4083                 btrfs_tree_unlock(path->nodes[0]);
4084                 free_extent_buffer(path->nodes[0]);
4085                 path->nodes[0] = right;
4086                 path->slots[0] -= mid;
4087                 path->slots[1] += 1;
4088         } else {
4089                 btrfs_tree_unlock(right);
4090                 free_extent_buffer(right);
4091         }
4092
4093         BUG_ON(path->slots[0] < 0);
4094 }
4095
4096 /*
4097  * double splits happen when we need to insert a big item in the middle
4098  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4099  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4100  *          A                 B                 C
4101  *
4102  * We avoid this by trying to push the items on either side of our target
4103  * into the adjacent leaves.  If all goes well we can avoid the double split
4104  * completely.
4105  */
4106 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4107                                           struct btrfs_root *root,
4108                                           struct btrfs_path *path,
4109                                           int data_size)
4110 {
4111         int ret;
4112         int progress = 0;
4113         int slot;
4114         u32 nritems;
4115         int space_needed = data_size;
4116
4117         slot = path->slots[0];
4118         if (slot < btrfs_header_nritems(path->nodes[0]))
4119                 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4120
4121         /*
4122          * try to push all the items after our slot into the
4123          * right leaf
4124          */
4125         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4126         if (ret < 0)
4127                 return ret;
4128
4129         if (ret == 0)
4130                 progress++;
4131
4132         nritems = btrfs_header_nritems(path->nodes[0]);
4133         /*
4134          * our goal is to get our slot at the start or end of a leaf.  If
4135          * we've done so we're done
4136          */
4137         if (path->slots[0] == 0 || path->slots[0] == nritems)
4138                 return 0;
4139
4140         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4141                 return 0;
4142
4143         /* try to push all the items before our slot into the next leaf */
4144         slot = path->slots[0];
4145         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4146         if (ret < 0)
4147                 return ret;
4148
4149         if (ret == 0)
4150                 progress++;
4151
4152         if (progress)
4153                 return 0;
4154         return 1;
4155 }
4156
4157 /*
4158  * split the path's leaf in two, making sure there is at least data_size
4159  * available for the resulting leaf level of the path.
4160  *
4161  * returns 0 if all went well and < 0 on failure.
4162  */
4163 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4164                                struct btrfs_root *root,
4165                                struct btrfs_key *ins_key,
4166                                struct btrfs_path *path, int data_size,
4167                                int extend)
4168 {
4169         struct btrfs_disk_key disk_key;
4170         struct extent_buffer *l;
4171         u32 nritems;
4172         int mid;
4173         int slot;
4174         struct extent_buffer *right;
4175         struct btrfs_fs_info *fs_info = root->fs_info;
4176         int ret = 0;
4177         int wret;
4178         int split;
4179         int num_doubles = 0;
4180         int tried_avoid_double = 0;
4181
4182         l = path->nodes[0];
4183         slot = path->slots[0];
4184         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4185             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4186                 return -EOVERFLOW;
4187
4188         /* first try to make some room by pushing left and right */
4189         if (data_size && path->nodes[1]) {
4190                 int space_needed = data_size;
4191
4192                 if (slot < btrfs_header_nritems(l))
4193                         space_needed -= btrfs_leaf_free_space(root, l);
4194
4195                 wret = push_leaf_right(trans, root, path, space_needed,
4196                                        space_needed, 0, 0);
4197                 if (wret < 0)
4198                         return wret;
4199                 if (wret) {
4200                         wret = push_leaf_left(trans, root, path, space_needed,
4201                                               space_needed, 0, (u32)-1);
4202                         if (wret < 0)
4203                                 return wret;
4204                 }
4205                 l = path->nodes[0];
4206
4207                 /* did the pushes work? */
4208                 if (btrfs_leaf_free_space(root, l) >= data_size)
4209                         return 0;
4210         }
4211
4212         if (!path->nodes[1]) {
4213                 ret = insert_new_root(trans, root, path, 1);
4214                 if (ret)
4215                         return ret;
4216         }
4217 again:
4218         split = 1;
4219         l = path->nodes[0];
4220         slot = path->slots[0];
4221         nritems = btrfs_header_nritems(l);
4222         mid = (nritems + 1) / 2;
4223
4224         if (mid <= slot) {
4225                 if (nritems == 1 ||
4226                     leaf_space_used(l, mid, nritems - mid) + data_size >
4227                         BTRFS_LEAF_DATA_SIZE(root)) {
4228                         if (slot >= nritems) {
4229                                 split = 0;
4230                         } else {
4231                                 mid = slot;
4232                                 if (mid != nritems &&
4233                                     leaf_space_used(l, mid, nritems - mid) +
4234                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4235                                         if (data_size && !tried_avoid_double)
4236                                                 goto push_for_double;
4237                                         split = 2;
4238                                 }
4239                         }
4240                 }
4241         } else {
4242                 if (leaf_space_used(l, 0, mid) + data_size >
4243                         BTRFS_LEAF_DATA_SIZE(root)) {
4244                         if (!extend && data_size && slot == 0) {
4245                                 split = 0;
4246                         } else if ((extend || !data_size) && slot == 0) {
4247                                 mid = 1;
4248                         } else {
4249                                 mid = slot;
4250                                 if (mid != nritems &&
4251                                     leaf_space_used(l, mid, nritems - mid) +
4252                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4253                                         if (data_size && !tried_avoid_double)
4254                                                 goto push_for_double;
4255                                         split = 2;
4256                                 }
4257                         }
4258                 }
4259         }
4260
4261         if (split == 0)
4262                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4263         else
4264                 btrfs_item_key(l, &disk_key, mid);
4265
4266         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4267                         &disk_key, 0, l->start, 0);
4268         if (IS_ERR(right))
4269                 return PTR_ERR(right);
4270
4271         root_add_used(root, root->nodesize);
4272
4273         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4274         btrfs_set_header_bytenr(right, right->start);
4275         btrfs_set_header_generation(right, trans->transid);
4276         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4277         btrfs_set_header_owner(right, root->root_key.objectid);
4278         btrfs_set_header_level(right, 0);
4279         write_extent_buffer_fsid(right, fs_info->fsid);
4280         write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4281
4282         if (split == 0) {
4283                 if (mid <= slot) {
4284                         btrfs_set_header_nritems(right, 0);
4285                         insert_ptr(trans, root, path, &disk_key, right->start,
4286                                    path->slots[1] + 1, 1);
4287                         btrfs_tree_unlock(path->nodes[0]);
4288                         free_extent_buffer(path->nodes[0]);
4289                         path->nodes[0] = right;
4290                         path->slots[0] = 0;
4291                         path->slots[1] += 1;
4292                 } else {
4293                         btrfs_set_header_nritems(right, 0);
4294                         insert_ptr(trans, root, path, &disk_key, right->start,
4295                                           path->slots[1], 1);
4296                         btrfs_tree_unlock(path->nodes[0]);
4297                         free_extent_buffer(path->nodes[0]);
4298                         path->nodes[0] = right;
4299                         path->slots[0] = 0;
4300                         if (path->slots[1] == 0)
4301                                 fixup_low_keys(fs_info, path, &disk_key, 1);
4302                 }
4303                 /*
4304                  * We create a new leaf 'right' for the required ins_len and
4305                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4306                  * the content of ins_len to 'right'.
4307                  */
4308                 return ret;
4309         }
4310
4311         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4312
4313         if (split == 2) {
4314                 BUG_ON(num_doubles != 0);
4315                 num_doubles++;
4316                 goto again;
4317         }
4318
4319         return 0;
4320
4321 push_for_double:
4322         push_for_double_split(trans, root, path, data_size);
4323         tried_avoid_double = 1;
4324         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4325                 return 0;
4326         goto again;
4327 }
4328
4329 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4330                                          struct btrfs_root *root,
4331                                          struct btrfs_path *path, int ins_len)
4332 {
4333         struct btrfs_key key;
4334         struct extent_buffer *leaf;
4335         struct btrfs_file_extent_item *fi;
4336         u64 extent_len = 0;
4337         u32 item_size;
4338         int ret;
4339
4340         leaf = path->nodes[0];
4341         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4342
4343         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4344                key.type != BTRFS_EXTENT_CSUM_KEY);
4345
4346         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4347                 return 0;
4348
4349         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4350         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4351                 fi = btrfs_item_ptr(leaf, path->slots[0],
4352                                     struct btrfs_file_extent_item);
4353                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4354         }
4355         btrfs_release_path(path);
4356
4357         path->keep_locks = 1;
4358         path->search_for_split = 1;
4359         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4360         path->search_for_split = 0;
4361         if (ret > 0)
4362                 ret = -EAGAIN;
4363         if (ret < 0)
4364                 goto err;
4365
4366         ret = -EAGAIN;
4367         leaf = path->nodes[0];
4368         /* if our item isn't there, return now */
4369         if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4370                 goto err;
4371
4372         /* the leaf has  changed, it now has room.  return now */
4373         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4374                 goto err;
4375
4376         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4377                 fi = btrfs_item_ptr(leaf, path->slots[0],
4378                                     struct btrfs_file_extent_item);
4379                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4380                         goto err;
4381         }
4382
4383         btrfs_set_path_blocking(path);
4384         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4385         if (ret)
4386                 goto err;
4387
4388         path->keep_locks = 0;
4389         btrfs_unlock_up_safe(path, 1);
4390         return 0;
4391 err:
4392         path->keep_locks = 0;
4393         return ret;
4394 }
4395
4396 static noinline int split_item(struct btrfs_trans_handle *trans,
4397                                struct btrfs_root *root,
4398                                struct btrfs_path *path,
4399                                struct btrfs_key *new_key,
4400                                unsigned long split_offset)
4401 {
4402         struct extent_buffer *leaf;
4403         struct btrfs_item *item;
4404         struct btrfs_item *new_item;
4405         int slot;
4406         char *buf;
4407         u32 nritems;
4408         u32 item_size;
4409         u32 orig_offset;
4410         struct btrfs_disk_key disk_key;
4411
4412         leaf = path->nodes[0];
4413         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4414
4415         btrfs_set_path_blocking(path);
4416
4417         item = btrfs_item_nr(path->slots[0]);
4418         orig_offset = btrfs_item_offset(leaf, item);
4419         item_size = btrfs_item_size(leaf, item);
4420
4421         buf = kmalloc(item_size, GFP_NOFS);
4422         if (!buf)
4423                 return -ENOMEM;
4424
4425         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4426                             path->slots[0]), item_size);
4427
4428         slot = path->slots[0] + 1;
4429         nritems = btrfs_header_nritems(leaf);
4430         if (slot != nritems) {
4431                 /* shift the items */
4432                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4433                                 btrfs_item_nr_offset(slot),
4434                                 (nritems - slot) * sizeof(struct btrfs_item));
4435         }
4436
4437         btrfs_cpu_key_to_disk(&disk_key, new_key);
4438         btrfs_set_item_key(leaf, &disk_key, slot);
4439
4440         new_item = btrfs_item_nr(slot);
4441
4442         btrfs_set_item_offset(leaf, new_item, orig_offset);
4443         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4444
4445         btrfs_set_item_offset(leaf, item,
4446                               orig_offset + item_size - split_offset);
4447         btrfs_set_item_size(leaf, item, split_offset);
4448
4449         btrfs_set_header_nritems(leaf, nritems + 1);
4450
4451         /* write the data for the start of the original item */
4452         write_extent_buffer(leaf, buf,
4453                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4454                             split_offset);
4455
4456         /* write the data for the new item */
4457         write_extent_buffer(leaf, buf + split_offset,
4458                             btrfs_item_ptr_offset(leaf, slot),
4459                             item_size - split_offset);
4460         btrfs_mark_buffer_dirty(leaf);
4461
4462         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4463         kfree(buf);
4464         return 0;
4465 }
4466
4467 /*
4468  * This function splits a single item into two items,
4469  * giving 'new_key' to the new item and splitting the
4470  * old one at split_offset (from the start of the item).
4471  *
4472  * The path may be released by this operation.  After
4473  * the split, the path is pointing to the old item.  The
4474  * new item is going to be in the same node as the old one.
4475  *
4476  * Note, the item being split must be smaller enough to live alone on
4477  * a tree block with room for one extra struct btrfs_item
4478  *
4479  * This allows us to split the item in place, keeping a lock on the
4480  * leaf the entire time.
4481  */
4482 int btrfs_split_item(struct btrfs_trans_handle *trans,
4483                      struct btrfs_root *root,
4484                      struct btrfs_path *path,
4485                      struct btrfs_key *new_key,
4486                      unsigned long split_offset)
4487 {
4488         int ret;
4489         ret = setup_leaf_for_split(trans, root, path,
4490                                    sizeof(struct btrfs_item));
4491         if (ret)
4492                 return ret;
4493
4494         ret = split_item(trans, root, path, new_key, split_offset);
4495         return ret;
4496 }
4497
4498 /*
4499  * This function duplicate a item, giving 'new_key' to the new item.
4500  * It guarantees both items live in the same tree leaf and the new item
4501  * is contiguous with the original item.
4502  *
4503  * This allows us to split file extent in place, keeping a lock on the
4504  * leaf the entire time.
4505  */
4506 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4507                          struct btrfs_root *root,
4508                          struct btrfs_path *path,
4509                          struct btrfs_key *new_key)
4510 {
4511         struct extent_buffer *leaf;
4512         int ret;
4513         u32 item_size;
4514
4515         leaf = path->nodes[0];
4516         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4517         ret = setup_leaf_for_split(trans, root, path,
4518                                    item_size + sizeof(struct btrfs_item));
4519         if (ret)
4520                 return ret;
4521
4522         path->slots[0]++;
4523         setup_items_for_insert(root, path, new_key, &item_size,
4524                                item_size, item_size +
4525                                sizeof(struct btrfs_item), 1);
4526         leaf = path->nodes[0];
4527         memcpy_extent_buffer(leaf,
4528                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4529                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4530                              item_size);
4531         return 0;
4532 }
4533
4534 /*
4535  * make the item pointed to by the path smaller.  new_size indicates
4536  * how small to make it, and from_end tells us if we just chop bytes
4537  * off the end of the item or if we shift the item to chop bytes off
4538  * the front.
4539  */
4540 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4541                          u32 new_size, int from_end)
4542 {
4543         int slot;
4544         struct extent_buffer *leaf;
4545         struct btrfs_item *item;
4546         u32 nritems;
4547         unsigned int data_end;
4548         unsigned int old_data_start;
4549         unsigned int old_size;
4550         unsigned int size_diff;
4551         int i;
4552         struct btrfs_map_token token;
4553
4554         btrfs_init_map_token(&token);
4555
4556         leaf = path->nodes[0];
4557         slot = path->slots[0];
4558
4559         old_size = btrfs_item_size_nr(leaf, slot);
4560         if (old_size == new_size)
4561                 return;
4562
4563         nritems = btrfs_header_nritems(leaf);
4564         data_end = leaf_data_end(root, leaf);
4565
4566         old_data_start = btrfs_item_offset_nr(leaf, slot);
4567
4568         size_diff = old_size - new_size;
4569
4570         BUG_ON(slot < 0);
4571         BUG_ON(slot >= nritems);
4572
4573         /*
4574          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4575          */
4576         /* first correct the data pointers */
4577         for (i = slot; i < nritems; i++) {
4578                 u32 ioff;
4579                 item = btrfs_item_nr(i);
4580
4581                 ioff = btrfs_token_item_offset(leaf, item, &token);
4582                 btrfs_set_token_item_offset(leaf, item,
4583                                             ioff + size_diff, &token);
4584         }
4585
4586         /* shift the data */
4587         if (from_end) {
4588                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4589                               data_end + size_diff, btrfs_leaf_data(leaf) +
4590                               data_end, old_data_start + new_size - data_end);
4591         } else {
4592                 struct btrfs_disk_key disk_key;
4593                 u64 offset;
4594
4595                 btrfs_item_key(leaf, &disk_key, slot);
4596
4597                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4598                         unsigned long ptr;
4599                         struct btrfs_file_extent_item *fi;
4600
4601                         fi = btrfs_item_ptr(leaf, slot,
4602                                             struct btrfs_file_extent_item);
4603                         fi = (struct btrfs_file_extent_item *)(
4604                              (unsigned long)fi - size_diff);
4605
4606                         if (btrfs_file_extent_type(leaf, fi) ==
4607                             BTRFS_FILE_EXTENT_INLINE) {
4608                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4609                                 memmove_extent_buffer(leaf, ptr,
4610                                       (unsigned long)fi,
4611                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4612                         }
4613                 }
4614
4615                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4616                               data_end + size_diff, btrfs_leaf_data(leaf) +
4617                               data_end, old_data_start - data_end);
4618
4619                 offset = btrfs_disk_key_offset(&disk_key);
4620                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4621                 btrfs_set_item_key(leaf, &disk_key, slot);
4622                 if (slot == 0)
4623                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
4624         }
4625
4626         item = btrfs_item_nr(slot);
4627         btrfs_set_item_size(leaf, item, new_size);
4628         btrfs_mark_buffer_dirty(leaf);
4629
4630         if (btrfs_leaf_free_space(root, leaf) < 0) {
4631                 btrfs_print_leaf(root, leaf);
4632                 BUG();
4633         }
4634 }
4635
4636 /*
4637  * make the item pointed to by the path bigger, data_size is the added size.
4638  */
4639 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4640                        u32 data_size)
4641 {
4642         int slot;
4643         struct extent_buffer *leaf;
4644         struct btrfs_item *item;
4645         u32 nritems;
4646         unsigned int data_end;
4647         unsigned int old_data;
4648         unsigned int old_size;
4649         int i;
4650         struct btrfs_map_token token;
4651
4652         btrfs_init_map_token(&token);
4653
4654         leaf = path->nodes[0];
4655
4656         nritems = btrfs_header_nritems(leaf);
4657         data_end = leaf_data_end(root, leaf);
4658
4659         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4660                 btrfs_print_leaf(root, leaf);
4661                 BUG();
4662         }
4663         slot = path->slots[0];
4664         old_data = btrfs_item_end_nr(leaf, slot);
4665
4666         BUG_ON(slot < 0);
4667         if (slot >= nritems) {
4668                 btrfs_print_leaf(root, leaf);
4669                 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4670                        slot, nritems);
4671                 BUG_ON(1);
4672         }
4673
4674         /*
4675          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4676          */
4677         /* first correct the data pointers */
4678         for (i = slot; i < nritems; i++) {
4679                 u32 ioff;
4680                 item = btrfs_item_nr(i);
4681
4682                 ioff = btrfs_token_item_offset(leaf, item, &token);
4683                 btrfs_set_token_item_offset(leaf, item,
4684                                             ioff - data_size, &token);
4685         }
4686
4687         /* shift the data */
4688         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4689                       data_end - data_size, btrfs_leaf_data(leaf) +
4690                       data_end, old_data - data_end);
4691
4692         data_end = old_data;
4693         old_size = btrfs_item_size_nr(leaf, slot);
4694         item = btrfs_item_nr(slot);
4695         btrfs_set_item_size(leaf, item, old_size + data_size);
4696         btrfs_mark_buffer_dirty(leaf);
4697
4698         if (btrfs_leaf_free_space(root, leaf) < 0) {
4699                 btrfs_print_leaf(root, leaf);
4700                 BUG();
4701         }
4702 }
4703
4704 /*
4705  * this is a helper for btrfs_insert_empty_items, the main goal here is
4706  * to save stack depth by doing the bulk of the work in a function
4707  * that doesn't call btrfs_search_slot
4708  */
4709 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4710                             struct btrfs_key *cpu_key, u32 *data_size,
4711                             u32 total_data, u32 total_size, int nr)
4712 {
4713         struct btrfs_item *item;
4714         int i;
4715         u32 nritems;
4716         unsigned int data_end;
4717         struct btrfs_disk_key disk_key;
4718         struct extent_buffer *leaf;
4719         int slot;
4720         struct btrfs_map_token token;
4721
4722         if (path->slots[0] == 0) {
4723                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4724                 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4725         }
4726         btrfs_unlock_up_safe(path, 1);
4727
4728         btrfs_init_map_token(&token);
4729
4730         leaf = path->nodes[0];
4731         slot = path->slots[0];
4732
4733         nritems = btrfs_header_nritems(leaf);
4734         data_end = leaf_data_end(root, leaf);
4735
4736         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4737                 btrfs_print_leaf(root, leaf);
4738                 btrfs_crit(root->fs_info,
4739                            "not enough freespace need %u have %d",
4740                            total_size, btrfs_leaf_free_space(root, leaf));
4741                 BUG();
4742         }
4743
4744         if (slot != nritems) {
4745                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4746
4747                 if (old_data < data_end) {
4748                         btrfs_print_leaf(root, leaf);
4749                         btrfs_crit(root->fs_info,
4750                                    "slot %d old_data %d data_end %d",
4751                                    slot, old_data, data_end);
4752                         BUG_ON(1);
4753                 }
4754                 /*
4755                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4756                  */
4757                 /* first correct the data pointers */
4758                 for (i = slot; i < nritems; i++) {
4759                         u32 ioff;
4760
4761                         item = btrfs_item_nr(i);
4762                         ioff = btrfs_token_item_offset(leaf, item, &token);
4763                         btrfs_set_token_item_offset(leaf, item,
4764                                                     ioff - total_data, &token);
4765                 }
4766                 /* shift the items */
4767                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4768                               btrfs_item_nr_offset(slot),
4769                               (nritems - slot) * sizeof(struct btrfs_item));
4770
4771                 /* shift the data */
4772                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4773                               data_end - total_data, btrfs_leaf_data(leaf) +
4774                               data_end, old_data - data_end);
4775                 data_end = old_data;
4776         }
4777
4778         /* setup the item for the new data */
4779         for (i = 0; i < nr; i++) {
4780                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4781                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4782                 item = btrfs_item_nr(slot + i);
4783                 btrfs_set_token_item_offset(leaf, item,
4784                                             data_end - data_size[i], &token);
4785                 data_end -= data_size[i];
4786                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4787         }
4788
4789         btrfs_set_header_nritems(leaf, nritems + nr);
4790         btrfs_mark_buffer_dirty(leaf);
4791
4792         if (btrfs_leaf_free_space(root, leaf) < 0) {
4793                 btrfs_print_leaf(root, leaf);
4794                 BUG();
4795         }
4796 }
4797
4798 /*
4799  * Given a key and some data, insert items into the tree.
4800  * This does all the path init required, making room in the tree if needed.
4801  */
4802 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4803                             struct btrfs_root *root,
4804                             struct btrfs_path *path,
4805                             struct btrfs_key *cpu_key, u32 *data_size,
4806                             int nr)
4807 {
4808         int ret = 0;
4809         int slot;
4810         int i;
4811         u32 total_size = 0;
4812         u32 total_data = 0;
4813
4814         for (i = 0; i < nr; i++)
4815                 total_data += data_size[i];
4816
4817         total_size = total_data + (nr * sizeof(struct btrfs_item));
4818         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4819         if (ret == 0)
4820                 return -EEXIST;
4821         if (ret < 0)
4822                 return ret;
4823
4824         slot = path->slots[0];
4825         BUG_ON(slot < 0);
4826
4827         setup_items_for_insert(root, path, cpu_key, data_size,
4828                                total_data, total_size, nr);
4829         return 0;
4830 }
4831
4832 /*
4833  * Given a key and some data, insert an item into the tree.
4834  * This does all the path init required, making room in the tree if needed.
4835  */
4836 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4837                       *root, struct btrfs_key *cpu_key, void *data, u32
4838                       data_size)
4839 {
4840         int ret = 0;
4841         struct btrfs_path *path;
4842         struct extent_buffer *leaf;
4843         unsigned long ptr;
4844
4845         path = btrfs_alloc_path();
4846         if (!path)
4847                 return -ENOMEM;
4848         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4849         if (!ret) {
4850                 leaf = path->nodes[0];
4851                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4852                 write_extent_buffer(leaf, data, ptr, data_size);
4853                 btrfs_mark_buffer_dirty(leaf);
4854         }
4855         btrfs_free_path(path);
4856         return ret;
4857 }
4858
4859 /*
4860  * delete the pointer from a given node.
4861  *
4862  * the tree should have been previously balanced so the deletion does not
4863  * empty a node.
4864  */
4865 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4866                     int level, int slot)
4867 {
4868         struct extent_buffer *parent = path->nodes[level];
4869         u32 nritems;
4870         int ret;
4871
4872         nritems = btrfs_header_nritems(parent);
4873         if (slot != nritems - 1) {
4874                 if (level)
4875                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4876                                              slot + 1, nritems - slot - 1);
4877                 memmove_extent_buffer(parent,
4878                               btrfs_node_key_ptr_offset(slot),
4879                               btrfs_node_key_ptr_offset(slot + 1),
4880                               sizeof(struct btrfs_key_ptr) *
4881                               (nritems - slot - 1));
4882         } else if (level) {
4883                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4884                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4885                 BUG_ON(ret < 0);
4886         }
4887
4888         nritems--;
4889         btrfs_set_header_nritems(parent, nritems);
4890         if (nritems == 0 && parent == root->node) {
4891                 BUG_ON(btrfs_header_level(root->node) != 1);
4892                 /* just turn the root into a leaf and break */
4893                 btrfs_set_header_level(root->node, 0);
4894         } else if (slot == 0) {
4895                 struct btrfs_disk_key disk_key;
4896
4897                 btrfs_node_key(parent, &disk_key, 0);
4898                 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4899         }
4900         btrfs_mark_buffer_dirty(parent);
4901 }
4902
4903 /*
4904  * a helper function to delete the leaf pointed to by path->slots[1] and
4905  * path->nodes[1].
4906  *
4907  * This deletes the pointer in path->nodes[1] and frees the leaf
4908  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4909  *
4910  * The path must have already been setup for deleting the leaf, including
4911  * all the proper balancing.  path->nodes[1] must be locked.
4912  */
4913 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4914                                     struct btrfs_root *root,
4915                                     struct btrfs_path *path,
4916                                     struct extent_buffer *leaf)
4917 {
4918         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4919         del_ptr(root, path, 1, path->slots[1]);
4920
4921         /*
4922          * btrfs_free_extent is expensive, we want to make sure we
4923          * aren't holding any locks when we call it
4924          */
4925         btrfs_unlock_up_safe(path, 0);
4926
4927         root_sub_used(root, leaf->len);
4928
4929         extent_buffer_get(leaf);
4930         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4931         free_extent_buffer_stale(leaf);
4932 }
4933 /*
4934  * delete the item at the leaf level in path.  If that empties
4935  * the leaf, remove it from the tree
4936  */
4937 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4938                     struct btrfs_path *path, int slot, int nr)
4939 {
4940         struct extent_buffer *leaf;
4941         struct btrfs_item *item;
4942         u32 last_off;
4943         u32 dsize = 0;
4944         int ret = 0;
4945         int wret;
4946         int i;
4947         u32 nritems;
4948         struct btrfs_map_token token;
4949
4950         btrfs_init_map_token(&token);
4951
4952         leaf = path->nodes[0];
4953         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4954
4955         for (i = 0; i < nr; i++)
4956                 dsize += btrfs_item_size_nr(leaf, slot + i);
4957
4958         nritems = btrfs_header_nritems(leaf);
4959
4960         if (slot + nr != nritems) {
4961                 int data_end = leaf_data_end(root, leaf);
4962
4963                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4964                               data_end + dsize,
4965                               btrfs_leaf_data(leaf) + data_end,
4966                               last_off - data_end);
4967
4968                 for (i = slot + nr; i < nritems; i++) {
4969                         u32 ioff;
4970
4971                         item = btrfs_item_nr(i);
4972                         ioff = btrfs_token_item_offset(leaf, item, &token);
4973                         btrfs_set_token_item_offset(leaf, item,
4974                                                     ioff + dsize, &token);
4975                 }
4976
4977                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4978                               btrfs_item_nr_offset(slot + nr),
4979                               sizeof(struct btrfs_item) *
4980                               (nritems - slot - nr));
4981         }
4982         btrfs_set_header_nritems(leaf, nritems - nr);
4983         nritems -= nr;
4984
4985         /* delete the leaf if we've emptied it */
4986         if (nritems == 0) {
4987                 if (leaf == root->node) {
4988                         btrfs_set_header_level(leaf, 0);
4989                 } else {
4990                         btrfs_set_path_blocking(path);
4991                         clean_tree_block(trans, root->fs_info, leaf);
4992                         btrfs_del_leaf(trans, root, path, leaf);
4993                 }
4994         } else {
4995                 int used = leaf_space_used(leaf, 0, nritems);
4996                 if (slot == 0) {
4997                         struct btrfs_disk_key disk_key;
4998
4999                         btrfs_item_key(leaf, &disk_key, 0);
5000                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
5001                 }
5002
5003                 /* delete the leaf if it is mostly empty */
5004                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5005                         /* push_leaf_left fixes the path.
5006                          * make sure the path still points to our leaf
5007                          * for possible call to del_ptr below
5008                          */
5009                         slot = path->slots[1];
5010                         extent_buffer_get(leaf);
5011
5012                         btrfs_set_path_blocking(path);
5013                         wret = push_leaf_left(trans, root, path, 1, 1,
5014                                               1, (u32)-1);
5015                         if (wret < 0 && wret != -ENOSPC)
5016                                 ret = wret;
5017
5018                         if (path->nodes[0] == leaf &&
5019                             btrfs_header_nritems(leaf)) {
5020                                 wret = push_leaf_right(trans, root, path, 1,
5021                                                        1, 1, 0);
5022                                 if (wret < 0 && wret != -ENOSPC)
5023                                         ret = wret;
5024                         }
5025
5026                         if (btrfs_header_nritems(leaf) == 0) {
5027                                 path->slots[1] = slot;
5028                                 btrfs_del_leaf(trans, root, path, leaf);
5029                                 free_extent_buffer(leaf);
5030                                 ret = 0;
5031                         } else {
5032                                 /* if we're still in the path, make sure
5033                                  * we're dirty.  Otherwise, one of the
5034                                  * push_leaf functions must have already
5035                                  * dirtied this buffer
5036                                  */
5037                                 if (path->nodes[0] == leaf)
5038                                         btrfs_mark_buffer_dirty(leaf);
5039                                 free_extent_buffer(leaf);
5040                         }
5041                 } else {
5042                         btrfs_mark_buffer_dirty(leaf);
5043                 }
5044         }
5045         return ret;
5046 }
5047
5048 /*
5049  * search the tree again to find a leaf with lesser keys
5050  * returns 0 if it found something or 1 if there are no lesser leaves.
5051  * returns < 0 on io errors.
5052  *
5053  * This may release the path, and so you may lose any locks held at the
5054  * time you call it.
5055  */
5056 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5057 {
5058         struct btrfs_key key;
5059         struct btrfs_disk_key found_key;
5060         int ret;
5061
5062         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5063
5064         if (key.offset > 0) {
5065                 key.offset--;
5066         } else if (key.type > 0) {
5067                 key.type--;
5068                 key.offset = (u64)-1;
5069         } else if (key.objectid > 0) {
5070                 key.objectid--;
5071                 key.type = (u8)-1;
5072                 key.offset = (u64)-1;
5073         } else {
5074                 return 1;
5075         }
5076
5077         btrfs_release_path(path);
5078         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5079         if (ret < 0)
5080                 return ret;
5081         btrfs_item_key(path->nodes[0], &found_key, 0);
5082         ret = comp_keys(&found_key, &key);
5083         /*
5084          * We might have had an item with the previous key in the tree right
5085          * before we released our path. And after we released our path, that
5086          * item might have been pushed to the first slot (0) of the leaf we
5087          * were holding due to a tree balance. Alternatively, an item with the
5088          * previous key can exist as the only element of a leaf (big fat item).
5089          * Therefore account for these 2 cases, so that our callers (like
5090          * btrfs_previous_item) don't miss an existing item with a key matching
5091          * the previous key we computed above.
5092          */
5093         if (ret <= 0)
5094                 return 0;
5095         return 1;
5096 }
5097
5098 /*
5099  * A helper function to walk down the tree starting at min_key, and looking
5100  * for nodes or leaves that are have a minimum transaction id.
5101  * This is used by the btree defrag code, and tree logging
5102  *
5103  * This does not cow, but it does stuff the starting key it finds back
5104  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5105  * key and get a writable path.
5106  *
5107  * This does lock as it descends, and path->keep_locks should be set
5108  * to 1 by the caller.
5109  *
5110  * This honors path->lowest_level to prevent descent past a given level
5111  * of the tree.
5112  *
5113  * min_trans indicates the oldest transaction that you are interested
5114  * in walking through.  Any nodes or leaves older than min_trans are
5115  * skipped over (without reading them).
5116  *
5117  * returns zero if something useful was found, < 0 on error and 1 if there
5118  * was nothing in the tree that matched the search criteria.
5119  */
5120 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5121                          struct btrfs_path *path,
5122                          u64 min_trans)
5123 {
5124         struct extent_buffer *cur;
5125         struct btrfs_key found_key;
5126         int slot;
5127         int sret;
5128         u32 nritems;
5129         int level;
5130         int ret = 1;
5131         int keep_locks = path->keep_locks;
5132
5133         path->keep_locks = 1;
5134 again:
5135         cur = btrfs_read_lock_root_node(root);
5136         level = btrfs_header_level(cur);
5137         WARN_ON(path->nodes[level]);
5138         path->nodes[level] = cur;
5139         path->locks[level] = BTRFS_READ_LOCK;
5140
5141         if (btrfs_header_generation(cur) < min_trans) {
5142                 ret = 1;
5143                 goto out;
5144         }
5145         while (1) {
5146                 nritems = btrfs_header_nritems(cur);
5147                 level = btrfs_header_level(cur);
5148                 sret = bin_search(cur, min_key, level, &slot);
5149
5150                 /* at the lowest level, we're done, setup the path and exit */
5151                 if (level == path->lowest_level) {
5152                         if (slot >= nritems)
5153                                 goto find_next_key;
5154                         ret = 0;
5155                         path->slots[level] = slot;
5156                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5157                         goto out;
5158                 }
5159                 if (sret && slot > 0)
5160                         slot--;
5161                 /*
5162                  * check this node pointer against the min_trans parameters.
5163                  * If it is too old, old, skip to the next one.
5164                  */
5165                 while (slot < nritems) {
5166                         u64 gen;
5167
5168                         gen = btrfs_node_ptr_generation(cur, slot);
5169                         if (gen < min_trans) {
5170                                 slot++;
5171                                 continue;
5172                         }
5173                         break;
5174                 }
5175 find_next_key:
5176                 /*
5177                  * we didn't find a candidate key in this node, walk forward
5178                  * and find another one
5179                  */
5180                 if (slot >= nritems) {
5181                         path->slots[level] = slot;
5182                         btrfs_set_path_blocking(path);
5183                         sret = btrfs_find_next_key(root, path, min_key, level,
5184                                                   min_trans);
5185                         if (sret == 0) {
5186                                 btrfs_release_path(path);
5187                                 goto again;
5188                         } else {
5189                                 goto out;
5190                         }
5191                 }
5192                 /* save our key for returning back */
5193                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5194                 path->slots[level] = slot;
5195                 if (level == path->lowest_level) {
5196                         ret = 0;
5197                         goto out;
5198                 }
5199                 btrfs_set_path_blocking(path);
5200                 cur = read_node_slot(root, cur, slot);
5201                 if (IS_ERR(cur)) {
5202                         ret = PTR_ERR(cur);
5203                         goto out;
5204                 }
5205
5206                 btrfs_tree_read_lock(cur);
5207
5208                 path->locks[level - 1] = BTRFS_READ_LOCK;
5209                 path->nodes[level - 1] = cur;
5210                 unlock_up(path, level, 1, 0, NULL);
5211                 btrfs_clear_path_blocking(path, NULL, 0);
5212         }
5213 out:
5214         path->keep_locks = keep_locks;
5215         if (ret == 0) {
5216                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5217                 btrfs_set_path_blocking(path);
5218                 memcpy(min_key, &found_key, sizeof(found_key));
5219         }
5220         return ret;
5221 }
5222
5223 static int tree_move_down(struct btrfs_root *root,
5224                            struct btrfs_path *path,
5225                            int *level, int root_level)
5226 {
5227         struct extent_buffer *eb;
5228
5229         BUG_ON(*level == 0);
5230         eb = read_node_slot(root, path->nodes[*level], path->slots[*level]);
5231         if (IS_ERR(eb))
5232                 return PTR_ERR(eb);
5233
5234         path->nodes[*level - 1] = eb;
5235         path->slots[*level - 1] = 0;
5236         (*level)--;
5237         return 0;
5238 }
5239
5240 static int tree_move_next_or_upnext(struct btrfs_root *root,
5241                                     struct btrfs_path *path,
5242                                     int *level, int root_level)
5243 {
5244         int ret = 0;
5245         int nritems;
5246         nritems = btrfs_header_nritems(path->nodes[*level]);
5247
5248         path->slots[*level]++;
5249
5250         while (path->slots[*level] >= nritems) {
5251                 if (*level == root_level)
5252                         return -1;
5253
5254                 /* move upnext */
5255                 path->slots[*level] = 0;
5256                 free_extent_buffer(path->nodes[*level]);
5257                 path->nodes[*level] = NULL;
5258                 (*level)++;
5259                 path->slots[*level]++;
5260
5261                 nritems = btrfs_header_nritems(path->nodes[*level]);
5262                 ret = 1;
5263         }
5264         return ret;
5265 }
5266
5267 /*
5268  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5269  * or down.
5270  */
5271 static int tree_advance(struct btrfs_root *root,
5272                         struct btrfs_path *path,
5273                         int *level, int root_level,
5274                         int allow_down,
5275                         struct btrfs_key *key)
5276 {
5277         int ret;
5278
5279         if (*level == 0 || !allow_down) {
5280                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5281         } else {
5282                 ret = tree_move_down(root, path, level, root_level);
5283         }
5284         if (ret >= 0) {
5285                 if (*level == 0)
5286                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5287                                         path->slots[*level]);
5288                 else
5289                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5290                                         path->slots[*level]);
5291         }
5292         return ret;
5293 }
5294
5295 static int tree_compare_item(struct btrfs_root *left_root,
5296                              struct btrfs_path *left_path,
5297                              struct btrfs_path *right_path,
5298                              char *tmp_buf)
5299 {
5300         int cmp;
5301         int len1, len2;
5302         unsigned long off1, off2;
5303
5304         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5305         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5306         if (len1 != len2)
5307                 return 1;
5308
5309         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5310         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5311                                 right_path->slots[0]);
5312
5313         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5314
5315         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5316         if (cmp)
5317                 return 1;
5318         return 0;
5319 }
5320
5321 #define ADVANCE 1
5322 #define ADVANCE_ONLY_NEXT -1
5323
5324 /*
5325  * This function compares two trees and calls the provided callback for
5326  * every changed/new/deleted item it finds.
5327  * If shared tree blocks are encountered, whole subtrees are skipped, making
5328  * the compare pretty fast on snapshotted subvolumes.
5329  *
5330  * This currently works on commit roots only. As commit roots are read only,
5331  * we don't do any locking. The commit roots are protected with transactions.
5332  * Transactions are ended and rejoined when a commit is tried in between.
5333  *
5334  * This function checks for modifications done to the trees while comparing.
5335  * If it detects a change, it aborts immediately.
5336  */
5337 int btrfs_compare_trees(struct btrfs_root *left_root,
5338                         struct btrfs_root *right_root,
5339                         btrfs_changed_cb_t changed_cb, void *ctx)
5340 {
5341         int ret;
5342         int cmp;
5343         struct btrfs_path *left_path = NULL;
5344         struct btrfs_path *right_path = NULL;
5345         struct btrfs_key left_key;
5346         struct btrfs_key right_key;
5347         char *tmp_buf = NULL;
5348         int left_root_level;
5349         int right_root_level;
5350         int left_level;
5351         int right_level;
5352         int left_end_reached;
5353         int right_end_reached;
5354         int advance_left;
5355         int advance_right;
5356         u64 left_blockptr;
5357         u64 right_blockptr;
5358         u64 left_gen;
5359         u64 right_gen;
5360
5361         left_path = btrfs_alloc_path();
5362         if (!left_path) {
5363                 ret = -ENOMEM;
5364                 goto out;
5365         }
5366         right_path = btrfs_alloc_path();
5367         if (!right_path) {
5368                 ret = -ENOMEM;
5369                 goto out;
5370         }
5371
5372         tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5373         if (!tmp_buf) {
5374                 tmp_buf = vmalloc(left_root->nodesize);
5375                 if (!tmp_buf) {
5376                         ret = -ENOMEM;
5377                         goto out;
5378                 }
5379         }
5380
5381         left_path->search_commit_root = 1;
5382         left_path->skip_locking = 1;
5383         right_path->search_commit_root = 1;
5384         right_path->skip_locking = 1;
5385
5386         /*
5387          * Strategy: Go to the first items of both trees. Then do
5388          *
5389          * If both trees are at level 0
5390          *   Compare keys of current items
5391          *     If left < right treat left item as new, advance left tree
5392          *       and repeat
5393          *     If left > right treat right item as deleted, advance right tree
5394          *       and repeat
5395          *     If left == right do deep compare of items, treat as changed if
5396          *       needed, advance both trees and repeat
5397          * If both trees are at the same level but not at level 0
5398          *   Compare keys of current nodes/leafs
5399          *     If left < right advance left tree and repeat
5400          *     If left > right advance right tree and repeat
5401          *     If left == right compare blockptrs of the next nodes/leafs
5402          *       If they match advance both trees but stay at the same level
5403          *         and repeat
5404          *       If they don't match advance both trees while allowing to go
5405          *         deeper and repeat
5406          * If tree levels are different
5407          *   Advance the tree that needs it and repeat
5408          *
5409          * Advancing a tree means:
5410          *   If we are at level 0, try to go to the next slot. If that's not
5411          *   possible, go one level up and repeat. Stop when we found a level
5412          *   where we could go to the next slot. We may at this point be on a
5413          *   node or a leaf.
5414          *
5415          *   If we are not at level 0 and not on shared tree blocks, go one
5416          *   level deeper.
5417          *
5418          *   If we are not at level 0 and on shared tree blocks, go one slot to
5419          *   the right if possible or go up and right.
5420          */
5421
5422         down_read(&left_root->fs_info->commit_root_sem);
5423         left_level = btrfs_header_level(left_root->commit_root);
5424         left_root_level = left_level;
5425         left_path->nodes[left_level] = left_root->commit_root;
5426         extent_buffer_get(left_path->nodes[left_level]);
5427
5428         right_level = btrfs_header_level(right_root->commit_root);
5429         right_root_level = right_level;
5430         right_path->nodes[right_level] = right_root->commit_root;
5431         extent_buffer_get(right_path->nodes[right_level]);
5432         up_read(&left_root->fs_info->commit_root_sem);
5433
5434         if (left_level == 0)
5435                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5436                                 &left_key, left_path->slots[left_level]);
5437         else
5438                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5439                                 &left_key, left_path->slots[left_level]);
5440         if (right_level == 0)
5441                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5442                                 &right_key, right_path->slots[right_level]);
5443         else
5444                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5445                                 &right_key, right_path->slots[right_level]);
5446
5447         left_end_reached = right_end_reached = 0;
5448         advance_left = advance_right = 0;
5449
5450         while (1) {
5451                 if (advance_left && !left_end_reached) {
5452                         ret = tree_advance(left_root, left_path, &left_level,
5453                                         left_root_level,
5454                                         advance_left != ADVANCE_ONLY_NEXT,
5455                                         &left_key);
5456                         if (ret == -1)
5457                                 left_end_reached = ADVANCE;
5458                         else if (ret < 0)
5459                                 goto out;
5460                         advance_left = 0;
5461                 }
5462                 if (advance_right && !right_end_reached) {
5463                         ret = tree_advance(right_root, right_path, &right_level,
5464                                         right_root_level,
5465                                         advance_right != ADVANCE_ONLY_NEXT,
5466                                         &right_key);
5467                         if (ret == -1)
5468                                 right_end_reached = ADVANCE;
5469                         else if (ret < 0)
5470                                 goto out;
5471                         advance_right = 0;
5472                 }
5473
5474                 if (left_end_reached && right_end_reached) {
5475                         ret = 0;
5476                         goto out;
5477                 } else if (left_end_reached) {
5478                         if (right_level == 0) {
5479                                 ret = changed_cb(left_root, right_root,
5480                                                 left_path, right_path,
5481                                                 &right_key,
5482                                                 BTRFS_COMPARE_TREE_DELETED,
5483                                                 ctx);
5484                                 if (ret < 0)
5485                                         goto out;
5486                         }
5487                         advance_right = ADVANCE;
5488                         continue;
5489                 } else if (right_end_reached) {
5490                         if (left_level == 0) {
5491                                 ret = changed_cb(left_root, right_root,
5492                                                 left_path, right_path,
5493                                                 &left_key,
5494                                                 BTRFS_COMPARE_TREE_NEW,
5495                                                 ctx);
5496                                 if (ret < 0)
5497                                         goto out;
5498                         }
5499                         advance_left = ADVANCE;
5500                         continue;
5501                 }
5502
5503                 if (left_level == 0 && right_level == 0) {
5504                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5505                         if (cmp < 0) {
5506                                 ret = changed_cb(left_root, right_root,
5507                                                 left_path, right_path,
5508                                                 &left_key,
5509                                                 BTRFS_COMPARE_TREE_NEW,
5510                                                 ctx);
5511                                 if (ret < 0)
5512                                         goto out;
5513                                 advance_left = ADVANCE;
5514                         } else if (cmp > 0) {
5515                                 ret = changed_cb(left_root, right_root,
5516                                                 left_path, right_path,
5517                                                 &right_key,
5518                                                 BTRFS_COMPARE_TREE_DELETED,
5519                                                 ctx);
5520                                 if (ret < 0)
5521                                         goto out;
5522                                 advance_right = ADVANCE;
5523                         } else {
5524                                 enum btrfs_compare_tree_result result;
5525
5526                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5527                                 ret = tree_compare_item(left_root, left_path,
5528                                                 right_path, tmp_buf);
5529                                 if (ret)
5530                                         result = BTRFS_COMPARE_TREE_CHANGED;
5531                                 else
5532                                         result = BTRFS_COMPARE_TREE_SAME;
5533                                 ret = changed_cb(left_root, right_root,
5534                                                  left_path, right_path,
5535                                                  &left_key, result, ctx);
5536                                 if (ret < 0)
5537                                         goto out;
5538                                 advance_left = ADVANCE;
5539                                 advance_right = ADVANCE;
5540                         }
5541                 } else if (left_level == right_level) {
5542                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5543                         if (cmp < 0) {
5544                                 advance_left = ADVANCE;
5545                         } else if (cmp > 0) {
5546                                 advance_right = ADVANCE;
5547                         } else {
5548                                 left_blockptr = btrfs_node_blockptr(
5549                                                 left_path->nodes[left_level],
5550                                                 left_path->slots[left_level]);
5551                                 right_blockptr = btrfs_node_blockptr(
5552                                                 right_path->nodes[right_level],
5553                                                 right_path->slots[right_level]);
5554                                 left_gen = btrfs_node_ptr_generation(
5555                                                 left_path->nodes[left_level],
5556                                                 left_path->slots[left_level]);
5557                                 right_gen = btrfs_node_ptr_generation(
5558                                                 right_path->nodes[right_level],
5559                                                 right_path->slots[right_level]);
5560                                 if (left_blockptr == right_blockptr &&
5561                                     left_gen == right_gen) {
5562                                         /*
5563                                          * As we're on a shared block, don't
5564                                          * allow to go deeper.
5565                                          */
5566                                         advance_left = ADVANCE_ONLY_NEXT;
5567                                         advance_right = ADVANCE_ONLY_NEXT;
5568                                 } else {
5569                                         advance_left = ADVANCE;
5570                                         advance_right = ADVANCE;
5571                                 }
5572                         }
5573                 } else if (left_level < right_level) {
5574                         advance_right = ADVANCE;
5575                 } else {
5576                         advance_left = ADVANCE;
5577                 }
5578         }
5579
5580 out:
5581         btrfs_free_path(left_path);
5582         btrfs_free_path(right_path);
5583         kvfree(tmp_buf);
5584         return ret;
5585 }
5586
5587 /*
5588  * this is similar to btrfs_next_leaf, but does not try to preserve
5589  * and fixup the path.  It looks for and returns the next key in the
5590  * tree based on the current path and the min_trans parameters.
5591  *
5592  * 0 is returned if another key is found, < 0 if there are any errors
5593  * and 1 is returned if there are no higher keys in the tree
5594  *
5595  * path->keep_locks should be set to 1 on the search made before
5596  * calling this function.
5597  */
5598 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5599                         struct btrfs_key *key, int level, u64 min_trans)
5600 {
5601         int slot;
5602         struct extent_buffer *c;
5603
5604         WARN_ON(!path->keep_locks);
5605         while (level < BTRFS_MAX_LEVEL) {
5606                 if (!path->nodes[level])
5607                         return 1;
5608
5609                 slot = path->slots[level] + 1;
5610                 c = path->nodes[level];
5611 next:
5612                 if (slot >= btrfs_header_nritems(c)) {
5613                         int ret;
5614                         int orig_lowest;
5615                         struct btrfs_key cur_key;
5616                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5617                             !path->nodes[level + 1])
5618                                 return 1;
5619
5620                         if (path->locks[level + 1]) {
5621                                 level++;
5622                                 continue;
5623                         }
5624
5625                         slot = btrfs_header_nritems(c) - 1;
5626                         if (level == 0)
5627                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5628                         else
5629                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5630
5631                         orig_lowest = path->lowest_level;
5632                         btrfs_release_path(path);
5633                         path->lowest_level = level;
5634                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5635                                                 0, 0);
5636                         path->lowest_level = orig_lowest;
5637                         if (ret < 0)
5638                                 return ret;
5639
5640                         c = path->nodes[level];
5641                         slot = path->slots[level];
5642                         if (ret == 0)
5643                                 slot++;
5644                         goto next;
5645                 }
5646
5647                 if (level == 0)
5648                         btrfs_item_key_to_cpu(c, key, slot);
5649                 else {
5650                         u64 gen = btrfs_node_ptr_generation(c, slot);
5651
5652                         if (gen < min_trans) {
5653                                 slot++;
5654                                 goto next;
5655                         }
5656                         btrfs_node_key_to_cpu(c, key, slot);
5657                 }
5658                 return 0;
5659         }
5660         return 1;
5661 }
5662
5663 /*
5664  * search the tree again to find a leaf with greater keys
5665  * returns 0 if it found something or 1 if there are no greater leaves.
5666  * returns < 0 on io errors.
5667  */
5668 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5669 {
5670         return btrfs_next_old_leaf(root, path, 0);
5671 }
5672
5673 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5674                         u64 time_seq)
5675 {
5676         int slot;
5677         int level;
5678         struct extent_buffer *c;
5679         struct extent_buffer *next;
5680         struct btrfs_key key;
5681         u32 nritems;
5682         int ret;
5683         int old_spinning = path->leave_spinning;
5684         int next_rw_lock = 0;
5685
5686         nritems = btrfs_header_nritems(path->nodes[0]);
5687         if (nritems == 0)
5688                 return 1;
5689
5690         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5691 again:
5692         level = 1;
5693         next = NULL;
5694         next_rw_lock = 0;
5695         btrfs_release_path(path);
5696
5697         path->keep_locks = 1;
5698         path->leave_spinning = 1;
5699
5700         if (time_seq)
5701                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5702         else
5703                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5704         path->keep_locks = 0;
5705
5706         if (ret < 0)
5707                 return ret;
5708
5709         nritems = btrfs_header_nritems(path->nodes[0]);
5710         /*
5711          * by releasing the path above we dropped all our locks.  A balance
5712          * could have added more items next to the key that used to be
5713          * at the very end of the block.  So, check again here and
5714          * advance the path if there are now more items available.
5715          */
5716         if (nritems > 0 && path->slots[0] < nritems - 1) {
5717                 if (ret == 0)
5718                         path->slots[0]++;
5719                 ret = 0;
5720                 goto done;
5721         }
5722         /*
5723          * So the above check misses one case:
5724          * - after releasing the path above, someone has removed the item that
5725          *   used to be at the very end of the block, and balance between leafs
5726          *   gets another one with bigger key.offset to replace it.
5727          *
5728          * This one should be returned as well, or we can get leaf corruption
5729          * later(esp. in __btrfs_drop_extents()).
5730          *
5731          * And a bit more explanation about this check,
5732          * with ret > 0, the key isn't found, the path points to the slot
5733          * where it should be inserted, so the path->slots[0] item must be the
5734          * bigger one.
5735          */
5736         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5737                 ret = 0;
5738                 goto done;
5739         }
5740
5741         while (level < BTRFS_MAX_LEVEL) {
5742                 if (!path->nodes[level]) {
5743                         ret = 1;
5744                         goto done;
5745                 }
5746
5747                 slot = path->slots[level] + 1;
5748                 c = path->nodes[level];
5749                 if (slot >= btrfs_header_nritems(c)) {
5750                         level++;
5751                         if (level == BTRFS_MAX_LEVEL) {
5752                                 ret = 1;
5753                                 goto done;
5754                         }
5755                         continue;
5756                 }
5757
5758                 if (next) {
5759                         btrfs_tree_unlock_rw(next, next_rw_lock);
5760                         free_extent_buffer(next);
5761                 }
5762
5763                 next = c;
5764                 next_rw_lock = path->locks[level];
5765                 ret = read_block_for_search(NULL, root, path, &next, level,
5766                                             slot, &key, 0);
5767                 if (ret == -EAGAIN)
5768                         goto again;
5769
5770                 if (ret < 0) {
5771                         btrfs_release_path(path);
5772                         goto done;
5773                 }
5774
5775                 if (!path->skip_locking) {
5776                         ret = btrfs_try_tree_read_lock(next);
5777                         if (!ret && time_seq) {
5778                                 /*
5779                                  * If we don't get the lock, we may be racing
5780                                  * with push_leaf_left, holding that lock while
5781                                  * itself waiting for the leaf we've currently
5782                                  * locked. To solve this situation, we give up
5783                                  * on our lock and cycle.
5784                                  */
5785                                 free_extent_buffer(next);
5786                                 btrfs_release_path(path);
5787                                 cond_resched();
5788                                 goto again;
5789                         }
5790                         if (!ret) {
5791                                 btrfs_set_path_blocking(path);
5792                                 btrfs_tree_read_lock(next);
5793                                 btrfs_clear_path_blocking(path, next,
5794                                                           BTRFS_READ_LOCK);
5795                         }
5796                         next_rw_lock = BTRFS_READ_LOCK;
5797                 }
5798                 break;
5799         }
5800         path->slots[level] = slot;
5801         while (1) {
5802                 level--;
5803                 c = path->nodes[level];
5804                 if (path->locks[level])
5805                         btrfs_tree_unlock_rw(c, path->locks[level]);
5806
5807                 free_extent_buffer(c);
5808                 path->nodes[level] = next;
5809                 path->slots[level] = 0;
5810                 if (!path->skip_locking)
5811                         path->locks[level] = next_rw_lock;
5812                 if (!level)
5813                         break;
5814
5815                 ret = read_block_for_search(NULL, root, path, &next, level,
5816                                             0, &key, 0);
5817                 if (ret == -EAGAIN)
5818                         goto again;
5819
5820                 if (ret < 0) {
5821                         btrfs_release_path(path);
5822                         goto done;
5823                 }
5824
5825                 if (!path->skip_locking) {
5826                         ret = btrfs_try_tree_read_lock(next);
5827                         if (!ret) {
5828                                 btrfs_set_path_blocking(path);
5829                                 btrfs_tree_read_lock(next);
5830                                 btrfs_clear_path_blocking(path, next,
5831                                                           BTRFS_READ_LOCK);
5832                         }
5833                         next_rw_lock = BTRFS_READ_LOCK;
5834                 }
5835         }
5836         ret = 0;
5837 done:
5838         unlock_up(path, 0, 1, 0, NULL);
5839         path->leave_spinning = old_spinning;
5840         if (!old_spinning)
5841                 btrfs_set_path_blocking(path);
5842
5843         return ret;
5844 }
5845
5846 /*
5847  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5848  * searching until it gets past min_objectid or finds an item of 'type'
5849  *
5850  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5851  */
5852 int btrfs_previous_item(struct btrfs_root *root,
5853                         struct btrfs_path *path, u64 min_objectid,
5854                         int type)
5855 {
5856         struct btrfs_key found_key;
5857         struct extent_buffer *leaf;
5858         u32 nritems;
5859         int ret;
5860
5861         while (1) {
5862                 if (path->slots[0] == 0) {
5863                         btrfs_set_path_blocking(path);
5864                         ret = btrfs_prev_leaf(root, path);
5865                         if (ret != 0)
5866                                 return ret;
5867                 } else {
5868                         path->slots[0]--;
5869                 }
5870                 leaf = path->nodes[0];
5871                 nritems = btrfs_header_nritems(leaf);
5872                 if (nritems == 0)
5873                         return 1;
5874                 if (path->slots[0] == nritems)
5875                         path->slots[0]--;
5876
5877                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5878                 if (found_key.objectid < min_objectid)
5879                         break;
5880                 if (found_key.type == type)
5881                         return 0;
5882                 if (found_key.objectid == min_objectid &&
5883                     found_key.type < type)
5884                         break;
5885         }
5886         return 1;
5887 }
5888
5889 /*
5890  * search in extent tree to find a previous Metadata/Data extent item with
5891  * min objecitd.
5892  *
5893  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5894  */
5895 int btrfs_previous_extent_item(struct btrfs_root *root,
5896                         struct btrfs_path *path, u64 min_objectid)
5897 {
5898         struct btrfs_key found_key;
5899         struct extent_buffer *leaf;
5900         u32 nritems;
5901         int ret;
5902
5903         while (1) {
5904                 if (path->slots[0] == 0) {
5905                         btrfs_set_path_blocking(path);
5906                         ret = btrfs_prev_leaf(root, path);
5907                         if (ret != 0)
5908                                 return ret;
5909                 } else {
5910                         path->slots[0]--;
5911                 }
5912                 leaf = path->nodes[0];
5913                 nritems = btrfs_header_nritems(leaf);
5914                 if (nritems == 0)
5915                         return 1;
5916                 if (path->slots[0] == nritems)
5917                         path->slots[0]--;
5918
5919                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5920                 if (found_key.objectid < min_objectid)
5921                         break;
5922                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5923                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5924                         return 0;
5925                 if (found_key.objectid == min_objectid &&
5926                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5927                         break;
5928         }
5929         return 1;
5930 }
This page took 0.377047 seconds and 4 git commands to generate.