1 // SPDX-License-Identifier: GPL-2.0+
3 * NILFS module and super block management.
5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
7 * Written by Ryusuke Konishi.
10 * linux/fs/ext2/super.c
12 * Copyright (C) 1992, 1993, 1994, 1995
14 * Laboratoire MASI - Institut Blaise Pascal
15 * Universite Pierre et Marie Curie (Paris VI)
19 * linux/fs/minix/inode.c
21 * Copyright (C) 1991, 1992 Linus Torvalds
23 * Big-endian to little-endian byte-swapping/bitmaps by
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/blkdev.h>
32 #include <linux/parser.h>
33 #include <linux/crc32.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
46 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
52 MODULE_AUTHOR("NTT Corp.");
53 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
55 MODULE_LICENSE("GPL");
57 static struct kmem_cache *nilfs_inode_cachep;
58 struct kmem_cache *nilfs_transaction_cachep;
59 struct kmem_cache *nilfs_segbuf_cachep;
60 struct kmem_cache *nilfs_btree_path_cache;
62 static int nilfs_setup_super(struct super_block *sb, int is_mount);
63 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
65 void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
73 level = printk_get_level(fmt);
74 vaf.fmt = printk_skip_level(fmt);
78 printk("%c%cNILFS (%s): %pV\n",
79 KERN_SOH_ASCII, level, sb->s_id, &vaf);
81 printk("%c%cNILFS: %pV\n",
82 KERN_SOH_ASCII, level, &vaf);
87 static void nilfs_set_error(struct super_block *sb)
89 struct the_nilfs *nilfs = sb->s_fs_info;
90 struct nilfs_super_block **sbp;
92 down_write(&nilfs->ns_sem);
93 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
94 nilfs->ns_mount_state |= NILFS_ERROR_FS;
95 sbp = nilfs_prepare_super(sb, 0);
97 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
99 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
100 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
103 up_write(&nilfs->ns_sem);
107 * __nilfs_error() - report failure condition on a filesystem
109 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
110 * reporting an error message. This function should be called when
111 * NILFS detects incoherences or defects of meta data on disk.
113 * This implements the body of nilfs_error() macro. Normally,
114 * nilfs_error() should be used. As for sustainable errors such as a
115 * single-shot I/O error, nilfs_err() should be used instead.
117 * Callers should not add a trailing newline since this will do it.
119 void __nilfs_error(struct super_block *sb, const char *function,
120 const char *fmt, ...)
122 struct the_nilfs *nilfs = sb->s_fs_info;
123 struct va_format vaf;
131 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
132 sb->s_id, function, &vaf);
136 if (!sb_rdonly(sb)) {
139 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
140 printk(KERN_CRIT "Remounting filesystem read-only\n");
141 sb->s_flags |= SB_RDONLY;
145 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
146 panic("NILFS (device %s): panic forced after error\n",
150 struct inode *nilfs_alloc_inode(struct super_block *sb)
152 struct nilfs_inode_info *ii;
154 ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
160 ii->i_assoc_inode = NULL;
161 ii->i_bmap = &ii->i_bmap_data;
162 return &ii->vfs_inode;
165 static void nilfs_free_inode(struct inode *inode)
167 if (nilfs_is_metadata_file_inode(inode))
168 nilfs_mdt_destroy(inode);
170 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
173 static int nilfs_sync_super(struct super_block *sb, int flag)
175 struct the_nilfs *nilfs = sb->s_fs_info;
179 set_buffer_dirty(nilfs->ns_sbh[0]);
180 if (nilfs_test_opt(nilfs, BARRIER)) {
181 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
182 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
184 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
188 nilfs_err(sb, "unable to write superblock: err=%d", err);
189 if (err == -EIO && nilfs->ns_sbh[1]) {
191 * sbp[0] points to newer log than sbp[1],
192 * so copy sbp[0] to sbp[1] to take over sbp[0].
194 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
196 nilfs_fall_back_super_block(nilfs);
200 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
202 nilfs->ns_sbwcount++;
205 * The latest segment becomes trailable from the position
206 * written in superblock.
208 clear_nilfs_discontinued(nilfs);
210 /* update GC protection for recent segments */
211 if (nilfs->ns_sbh[1]) {
212 if (flag == NILFS_SB_COMMIT_ALL) {
213 set_buffer_dirty(nilfs->ns_sbh[1]);
214 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
217 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
218 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
219 sbp = nilfs->ns_sbp[1];
222 spin_lock(&nilfs->ns_last_segment_lock);
223 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
224 spin_unlock(&nilfs->ns_last_segment_lock);
230 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
231 struct the_nilfs *nilfs)
233 sector_t nfreeblocks;
235 /* nilfs->ns_sem must be locked by the caller. */
236 nilfs_count_free_blocks(nilfs, &nfreeblocks);
237 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
239 spin_lock(&nilfs->ns_last_segment_lock);
240 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
241 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
242 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
243 spin_unlock(&nilfs->ns_last_segment_lock);
246 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
249 struct the_nilfs *nilfs = sb->s_fs_info;
250 struct nilfs_super_block **sbp = nilfs->ns_sbp;
252 /* nilfs->ns_sem must be locked by the caller. */
253 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
255 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
256 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
258 nilfs_crit(sb, "superblock broke");
262 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
263 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
267 nilfs_swap_super_block(nilfs);
272 int nilfs_commit_super(struct super_block *sb, int flag)
274 struct the_nilfs *nilfs = sb->s_fs_info;
275 struct nilfs_super_block **sbp = nilfs->ns_sbp;
278 /* nilfs->ns_sem must be locked by the caller. */
279 t = ktime_get_real_seconds();
280 nilfs->ns_sbwtime = t;
281 sbp[0]->s_wtime = cpu_to_le64(t);
283 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
284 (unsigned char *)sbp[0],
286 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
287 sbp[1]->s_wtime = sbp[0]->s_wtime;
289 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
290 (unsigned char *)sbp[1],
293 clear_nilfs_sb_dirty(nilfs);
294 nilfs->ns_flushed_device = 1;
295 /* make sure store to ns_flushed_device cannot be reordered */
297 return nilfs_sync_super(sb, flag);
301 * nilfs_cleanup_super() - write filesystem state for cleanup
302 * @sb: super block instance to be unmounted or degraded to read-only
304 * This function restores state flags in the on-disk super block.
305 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
306 * filesystem was not clean previously.
308 int nilfs_cleanup_super(struct super_block *sb)
310 struct the_nilfs *nilfs = sb->s_fs_info;
311 struct nilfs_super_block **sbp;
312 int flag = NILFS_SB_COMMIT;
315 sbp = nilfs_prepare_super(sb, 0);
317 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
318 nilfs_set_log_cursor(sbp[0], nilfs);
319 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
321 * make the "clean" flag also to the opposite
322 * super block if both super blocks point to
323 * the same checkpoint.
325 sbp[1]->s_state = sbp[0]->s_state;
326 flag = NILFS_SB_COMMIT_ALL;
328 ret = nilfs_commit_super(sb, flag);
334 * nilfs_move_2nd_super - relocate secondary super block
335 * @sb: super block instance
336 * @sb2off: new offset of the secondary super block (in bytes)
338 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
340 struct the_nilfs *nilfs = sb->s_fs_info;
341 struct buffer_head *nsbh;
342 struct nilfs_super_block *nsbp;
343 sector_t blocknr, newblocknr;
344 unsigned long offset;
345 int sb2i; /* array index of the secondary superblock */
348 /* nilfs->ns_sem must be locked by the caller. */
349 if (nilfs->ns_sbh[1] &&
350 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
352 blocknr = nilfs->ns_sbh[1]->b_blocknr;
353 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
355 blocknr = nilfs->ns_sbh[0]->b_blocknr;
360 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
361 goto out; /* super block location is unchanged */
363 /* Get new super block buffer */
364 newblocknr = sb2off >> nilfs->ns_blocksize_bits;
365 offset = sb2off & (nilfs->ns_blocksize - 1);
366 nsbh = sb_getblk(sb, newblocknr);
369 "unable to move secondary superblock to block %llu",
370 (unsigned long long)newblocknr);
374 nsbp = (void *)nsbh->b_data + offset;
379 * The position of the second superblock only changes by 4KiB,
380 * which is larger than the maximum superblock data size
381 * (= 1KiB), so there is no need to use memmove() to allow
382 * overlap between source and destination.
384 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
387 * Zero fill after copy to avoid overwriting in case of move
388 * within the same block.
390 memset(nsbh->b_data, 0, offset);
391 memset((void *)nsbp + nilfs->ns_sbsize, 0,
392 nsbh->b_size - offset - nilfs->ns_sbsize);
394 memset(nsbh->b_data, 0, nsbh->b_size);
396 set_buffer_uptodate(nsbh);
400 brelse(nilfs->ns_sbh[sb2i]);
401 nilfs->ns_sbh[sb2i] = nsbh;
402 nilfs->ns_sbp[sb2i] = nsbp;
403 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
404 /* secondary super block will be restored to index 1 */
405 nilfs->ns_sbh[1] = nsbh;
406 nilfs->ns_sbp[1] = nsbp;
415 * nilfs_resize_fs - resize the filesystem
416 * @sb: super block instance
417 * @newsize: new size of the filesystem (in bytes)
419 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
421 struct the_nilfs *nilfs = sb->s_fs_info;
422 struct nilfs_super_block **sbp;
423 __u64 devsize, newnsegs;
428 devsize = bdev_nr_bytes(sb->s_bdev);
429 if (newsize > devsize)
433 * Prevent underflow in second superblock position calculation.
434 * The exact minimum size check is done in nilfs_sufile_resize().
436 if (newsize < 4096) {
442 * Write lock is required to protect some functions depending
443 * on the number of segments, the number of reserved segments,
446 down_write(&nilfs->ns_segctor_sem);
448 sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
449 newnsegs = sb2off >> nilfs->ns_blocksize_bits;
450 do_div(newnsegs, nilfs->ns_blocks_per_segment);
452 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
453 up_write(&nilfs->ns_segctor_sem);
457 ret = nilfs_construct_segment(sb);
461 down_write(&nilfs->ns_sem);
462 nilfs_move_2nd_super(sb, sb2off);
464 sbp = nilfs_prepare_super(sb, 0);
466 nilfs_set_log_cursor(sbp[0], nilfs);
468 * Drop NILFS_RESIZE_FS flag for compatibility with
469 * mount-time resize which may be implemented in a
472 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
474 sbp[0]->s_dev_size = cpu_to_le64(newsize);
475 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
477 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
478 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
480 up_write(&nilfs->ns_sem);
483 * Reset the range of allocatable segments last. This order
484 * is important in the case of expansion because the secondary
485 * superblock must be protected from log write until migration
489 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
494 static void nilfs_put_super(struct super_block *sb)
496 struct the_nilfs *nilfs = sb->s_fs_info;
498 nilfs_detach_log_writer(sb);
500 if (!sb_rdonly(sb)) {
501 down_write(&nilfs->ns_sem);
502 nilfs_cleanup_super(sb);
503 up_write(&nilfs->ns_sem);
506 nilfs_sysfs_delete_device_group(nilfs);
507 iput(nilfs->ns_sufile);
508 iput(nilfs->ns_cpfile);
511 destroy_nilfs(nilfs);
512 sb->s_fs_info = NULL;
515 static int nilfs_sync_fs(struct super_block *sb, int wait)
517 struct the_nilfs *nilfs = sb->s_fs_info;
518 struct nilfs_super_block **sbp;
521 /* This function is called when super block should be written back */
523 err = nilfs_construct_segment(sb);
525 down_write(&nilfs->ns_sem);
526 if (nilfs_sb_dirty(nilfs)) {
527 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
529 nilfs_set_log_cursor(sbp[0], nilfs);
530 nilfs_commit_super(sb, NILFS_SB_COMMIT);
533 up_write(&nilfs->ns_sem);
536 err = nilfs_flush_device(nilfs);
541 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
542 struct nilfs_root **rootp)
544 struct the_nilfs *nilfs = sb->s_fs_info;
545 struct nilfs_root *root;
546 struct nilfs_checkpoint *raw_cp;
547 struct buffer_head *bh_cp;
550 root = nilfs_find_or_create_root(
551 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
556 goto reuse; /* already attached checkpoint */
558 down_read(&nilfs->ns_segctor_sem);
559 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
561 up_read(&nilfs->ns_segctor_sem);
563 if (err == -ENOENT || err == -EINVAL) {
565 "Invalid checkpoint (checkpoint number=%llu)",
566 (unsigned long long)cno);
572 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
573 &raw_cp->cp_ifile_inode, &root->ifile);
577 atomic64_set(&root->inodes_count,
578 le64_to_cpu(raw_cp->cp_inodes_count));
579 atomic64_set(&root->blocks_count,
580 le64_to_cpu(raw_cp->cp_blocks_count));
582 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
589 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
591 nilfs_put_root(root);
596 static int nilfs_freeze(struct super_block *sb)
598 struct the_nilfs *nilfs = sb->s_fs_info;
604 /* Mark super block clean */
605 down_write(&nilfs->ns_sem);
606 err = nilfs_cleanup_super(sb);
607 up_write(&nilfs->ns_sem);
611 static int nilfs_unfreeze(struct super_block *sb)
613 struct the_nilfs *nilfs = sb->s_fs_info;
618 down_write(&nilfs->ns_sem);
619 nilfs_setup_super(sb, false);
620 up_write(&nilfs->ns_sem);
624 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
626 struct super_block *sb = dentry->d_sb;
627 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
628 struct the_nilfs *nilfs = root->nilfs;
629 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
630 unsigned long long blocks;
631 unsigned long overhead;
632 unsigned long nrsvblocks;
633 sector_t nfreeblocks;
634 u64 nmaxinodes, nfreeinodes;
638 * Compute all of the segment blocks
640 * The blocks before first segment and after last segment
643 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
644 - nilfs->ns_first_data_block;
645 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
648 * Compute the overhead
650 * When distributing meta data blocks outside segment structure,
651 * We must count them as the overhead.
655 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
659 err = nilfs_ifile_count_free_inodes(root->ifile,
660 &nmaxinodes, &nfreeinodes);
662 nilfs_warn(sb, "failed to count free inodes: err=%d", err);
663 if (err == -ERANGE) {
665 * If nilfs_palloc_count_max_entries() returns
666 * -ERANGE error code then we simply treat
667 * curent inodes count as maximum possible and
668 * zero as free inodes value.
670 nmaxinodes = atomic64_read(&root->inodes_count);
677 buf->f_type = NILFS_SUPER_MAGIC;
678 buf->f_bsize = sb->s_blocksize;
679 buf->f_blocks = blocks - overhead;
680 buf->f_bfree = nfreeblocks;
681 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
682 (buf->f_bfree - nrsvblocks) : 0;
683 buf->f_files = nmaxinodes;
684 buf->f_ffree = nfreeinodes;
685 buf->f_namelen = NILFS_NAME_LEN;
686 buf->f_fsid = u64_to_fsid(id);
691 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
693 struct super_block *sb = dentry->d_sb;
694 struct the_nilfs *nilfs = sb->s_fs_info;
695 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
697 if (!nilfs_test_opt(nilfs, BARRIER))
698 seq_puts(seq, ",nobarrier");
699 if (root->cno != NILFS_CPTREE_CURRENT_CNO)
700 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
701 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
702 seq_puts(seq, ",errors=panic");
703 if (nilfs_test_opt(nilfs, ERRORS_CONT))
704 seq_puts(seq, ",errors=continue");
705 if (nilfs_test_opt(nilfs, STRICT_ORDER))
706 seq_puts(seq, ",order=strict");
707 if (nilfs_test_opt(nilfs, NORECOVERY))
708 seq_puts(seq, ",norecovery");
709 if (nilfs_test_opt(nilfs, DISCARD))
710 seq_puts(seq, ",discard");
715 static const struct super_operations nilfs_sops = {
716 .alloc_inode = nilfs_alloc_inode,
717 .free_inode = nilfs_free_inode,
718 .dirty_inode = nilfs_dirty_inode,
719 .evict_inode = nilfs_evict_inode,
720 .put_super = nilfs_put_super,
721 .sync_fs = nilfs_sync_fs,
722 .freeze_fs = nilfs_freeze,
723 .unfreeze_fs = nilfs_unfreeze,
724 .statfs = nilfs_statfs,
725 .remount_fs = nilfs_remount,
726 .show_options = nilfs_show_options
730 Opt_err_cont, Opt_err_panic, Opt_err_ro,
731 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
732 Opt_discard, Opt_nodiscard, Opt_err,
735 static match_table_t tokens = {
736 {Opt_err_cont, "errors=continue"},
737 {Opt_err_panic, "errors=panic"},
738 {Opt_err_ro, "errors=remount-ro"},
739 {Opt_barrier, "barrier"},
740 {Opt_nobarrier, "nobarrier"},
741 {Opt_snapshot, "cp=%u"},
742 {Opt_order, "order=%s"},
743 {Opt_norecovery, "norecovery"},
744 {Opt_discard, "discard"},
745 {Opt_nodiscard, "nodiscard"},
749 static int parse_options(char *options, struct super_block *sb, int is_remount)
751 struct the_nilfs *nilfs = sb->s_fs_info;
753 substring_t args[MAX_OPT_ARGS];
758 while ((p = strsep(&options, ",")) != NULL) {
764 token = match_token(p, tokens, args);
767 nilfs_set_opt(nilfs, BARRIER);
770 nilfs_clear_opt(nilfs, BARRIER);
773 if (strcmp(args[0].from, "relaxed") == 0)
774 /* Ordered data semantics */
775 nilfs_clear_opt(nilfs, STRICT_ORDER);
776 else if (strcmp(args[0].from, "strict") == 0)
777 /* Strict in-order semantics */
778 nilfs_set_opt(nilfs, STRICT_ORDER);
783 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
786 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
789 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
794 "\"%s\" option is invalid for remount",
800 nilfs_set_opt(nilfs, NORECOVERY);
803 nilfs_set_opt(nilfs, DISCARD);
806 nilfs_clear_opt(nilfs, DISCARD);
809 nilfs_err(sb, "unrecognized mount option \"%s\"", p);
817 nilfs_set_default_options(struct super_block *sb,
818 struct nilfs_super_block *sbp)
820 struct the_nilfs *nilfs = sb->s_fs_info;
822 nilfs->ns_mount_opt =
823 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
826 static int nilfs_setup_super(struct super_block *sb, int is_mount)
828 struct the_nilfs *nilfs = sb->s_fs_info;
829 struct nilfs_super_block **sbp;
833 /* nilfs->ns_sem must be locked by the caller. */
834 sbp = nilfs_prepare_super(sb, 0);
839 goto skip_mount_setup;
841 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
842 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
844 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
845 nilfs_warn(sb, "mounting fs with errors");
847 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
848 nilfs_warn(sb, "maximal mount count reached");
852 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
854 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
855 sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
859 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
860 /* synchronize sbp[1] with sbp[0] */
862 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
863 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
866 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
867 u64 pos, int blocksize,
868 struct buffer_head **pbh)
870 unsigned long long sb_index = pos;
871 unsigned long offset;
873 offset = do_div(sb_index, blocksize);
874 *pbh = sb_bread(sb, sb_index);
877 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
880 int nilfs_store_magic_and_option(struct super_block *sb,
881 struct nilfs_super_block *sbp,
884 struct the_nilfs *nilfs = sb->s_fs_info;
886 sb->s_magic = le16_to_cpu(sbp->s_magic);
888 /* FS independent flags */
889 #ifdef NILFS_ATIME_DISABLE
890 sb->s_flags |= SB_NOATIME;
893 nilfs_set_default_options(sb, sbp);
895 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
896 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
897 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
898 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
900 return !parse_options(data, sb, 0) ? -EINVAL : 0;
903 int nilfs_check_feature_compatibility(struct super_block *sb,
904 struct nilfs_super_block *sbp)
908 features = le64_to_cpu(sbp->s_feature_incompat) &
909 ~NILFS_FEATURE_INCOMPAT_SUPP;
912 "couldn't mount because of unsupported optional features (%llx)",
913 (unsigned long long)features);
916 features = le64_to_cpu(sbp->s_feature_compat_ro) &
917 ~NILFS_FEATURE_COMPAT_RO_SUPP;
918 if (!sb_rdonly(sb) && features) {
920 "couldn't mount RDWR because of unsupported optional features (%llx)",
921 (unsigned long long)features);
927 static int nilfs_get_root_dentry(struct super_block *sb,
928 struct nilfs_root *root,
929 struct dentry **root_dentry)
932 struct dentry *dentry;
935 inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
937 ret = PTR_ERR(inode);
938 nilfs_err(sb, "error %d getting root inode", ret);
941 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
943 nilfs_err(sb, "corrupt root inode");
948 if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
949 dentry = d_find_alias(inode);
951 dentry = d_make_root(inode);
960 dentry = d_obtain_root(inode);
961 if (IS_ERR(dentry)) {
962 ret = PTR_ERR(dentry);
966 *root_dentry = dentry;
971 nilfs_err(sb, "error %d getting root dentry", ret);
975 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
976 struct dentry **root_dentry)
978 struct the_nilfs *nilfs = s->s_fs_info;
979 struct nilfs_root *root;
982 mutex_lock(&nilfs->ns_snapshot_mount_mutex);
984 down_read(&nilfs->ns_segctor_sem);
985 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
986 up_read(&nilfs->ns_segctor_sem);
988 ret = (ret == -ENOENT) ? -EINVAL : ret;
992 "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
993 (unsigned long long)cno);
998 ret = nilfs_attach_checkpoint(s, cno, false, &root);
1001 "error %d while loading snapshot (checkpoint number=%llu)",
1002 ret, (unsigned long long)cno);
1005 ret = nilfs_get_root_dentry(s, root, root_dentry);
1006 nilfs_put_root(root);
1008 mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1013 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1014 * @root_dentry: root dentry of the tree to be shrunk
1016 * This function returns true if the tree was in-use.
1018 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1020 shrink_dcache_parent(root_dentry);
1021 return d_count(root_dentry) > 1;
1024 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1026 struct the_nilfs *nilfs = sb->s_fs_info;
1027 struct nilfs_root *root;
1028 struct inode *inode;
1029 struct dentry *dentry;
1032 if (cno > nilfs->ns_cno)
1035 if (cno >= nilfs_last_cno(nilfs))
1036 return true; /* protect recent checkpoints */
1039 root = nilfs_lookup_root(nilfs, cno);
1041 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1043 dentry = d_find_alias(inode);
1045 ret = nilfs_tree_is_busy(dentry);
1050 nilfs_put_root(root);
1056 * nilfs_fill_super() - initialize a super block instance
1058 * @data: mount options
1059 * @silent: silent mode flag
1061 * This function is called exclusively by nilfs->ns_mount_mutex.
1062 * So, the recovery process is protected from other simultaneous mounts.
1065 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1067 struct the_nilfs *nilfs;
1068 struct nilfs_root *fsroot;
1072 nilfs = alloc_nilfs(sb);
1076 sb->s_fs_info = nilfs;
1078 err = init_nilfs(nilfs, sb, (char *)data);
1082 sb->s_op = &nilfs_sops;
1083 sb->s_export_op = &nilfs_export_ops;
1085 sb->s_time_gran = 1;
1086 sb->s_max_links = NILFS_LINK_MAX;
1088 sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1090 err = load_nilfs(nilfs, sb);
1094 cno = nilfs_last_cno(nilfs);
1095 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1098 "error %d while loading last checkpoint (checkpoint number=%llu)",
1099 err, (unsigned long long)cno);
1103 if (!sb_rdonly(sb)) {
1104 err = nilfs_attach_log_writer(sb, fsroot);
1106 goto failed_checkpoint;
1109 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1111 goto failed_segctor;
1113 nilfs_put_root(fsroot);
1115 if (!sb_rdonly(sb)) {
1116 down_write(&nilfs->ns_sem);
1117 nilfs_setup_super(sb, true);
1118 up_write(&nilfs->ns_sem);
1124 nilfs_detach_log_writer(sb);
1127 nilfs_put_root(fsroot);
1130 nilfs_sysfs_delete_device_group(nilfs);
1131 iput(nilfs->ns_sufile);
1132 iput(nilfs->ns_cpfile);
1133 iput(nilfs->ns_dat);
1136 destroy_nilfs(nilfs);
1140 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1142 struct the_nilfs *nilfs = sb->s_fs_info;
1143 unsigned long old_sb_flags;
1144 unsigned long old_mount_opt;
1147 sync_filesystem(sb);
1148 old_sb_flags = sb->s_flags;
1149 old_mount_opt = nilfs->ns_mount_opt;
1151 if (!parse_options(data, sb, 1)) {
1155 sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1159 if (!nilfs_valid_fs(nilfs)) {
1161 "couldn't remount because the filesystem is in an incomplete recovery state");
1165 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1167 if (*flags & SB_RDONLY) {
1168 sb->s_flags |= SB_RDONLY;
1171 * Remounting a valid RW partition RDONLY, so set
1172 * the RDONLY flag and then mark the partition as valid again.
1174 down_write(&nilfs->ns_sem);
1175 nilfs_cleanup_super(sb);
1176 up_write(&nilfs->ns_sem);
1179 struct nilfs_root *root;
1182 * Mounting a RDONLY partition read-write, so reread and
1183 * store the current valid flag. (It may have been changed
1184 * by fsck since we originally mounted the partition.)
1186 down_read(&nilfs->ns_sem);
1187 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1188 ~NILFS_FEATURE_COMPAT_RO_SUPP;
1189 up_read(&nilfs->ns_sem);
1192 "couldn't remount RDWR because of unsupported optional features (%llx)",
1193 (unsigned long long)features);
1198 sb->s_flags &= ~SB_RDONLY;
1200 root = NILFS_I(d_inode(sb->s_root))->i_root;
1201 err = nilfs_attach_log_writer(sb, root);
1205 down_write(&nilfs->ns_sem);
1206 nilfs_setup_super(sb, true);
1207 up_write(&nilfs->ns_sem);
1213 sb->s_flags = old_sb_flags;
1214 nilfs->ns_mount_opt = old_mount_opt;
1218 struct nilfs_super_data {
1219 struct block_device *bdev;
1224 static int nilfs_parse_snapshot_option(const char *option,
1225 const substring_t *arg,
1226 struct nilfs_super_data *sd)
1228 unsigned long long val;
1229 const char *msg = NULL;
1232 if (!(sd->flags & SB_RDONLY)) {
1233 msg = "read-only option is not specified";
1237 err = kstrtoull(arg->from, 0, &val);
1240 msg = "too large checkpoint number";
1242 msg = "malformed argument";
1244 } else if (val == 0) {
1245 msg = "invalid checkpoint number 0";
1252 nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1257 * nilfs_identify - pre-read mount options needed to identify mount instance
1258 * @data: mount options
1259 * @sd: nilfs_super_data
1261 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1263 char *p, *options = data;
1264 substring_t args[MAX_OPT_ARGS];
1269 p = strsep(&options, ",");
1270 if (p != NULL && *p) {
1271 token = match_token(p, tokens, args);
1272 if (token == Opt_snapshot)
1273 ret = nilfs_parse_snapshot_option(p, &args[0],
1278 BUG_ON(options == data);
1279 *(options - 1) = ',';
1284 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1287 s->s_dev = s->s_bdev->bd_dev;
1291 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1293 return (void *)s->s_bdev == data;
1296 static struct dentry *
1297 nilfs_mount(struct file_system_type *fs_type, int flags,
1298 const char *dev_name, void *data)
1300 struct nilfs_super_data sd;
1301 struct super_block *s;
1302 struct dentry *root_dentry;
1303 int err, s_new = false;
1305 sd.bdev = blkdev_get_by_path(dev_name, sb_open_mode(flags), fs_type,
1307 if (IS_ERR(sd.bdev))
1308 return ERR_CAST(sd.bdev);
1312 if (nilfs_identify((char *)data, &sd)) {
1318 * once the super is inserted into the list by sget, s_umount
1319 * will protect the lockfs code from trying to start a snapshot
1320 * while we are mounting
1322 mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1323 if (sd.bdev->bd_fsfreeze_count > 0) {
1324 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1328 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1330 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1339 /* New superblock instance created */
1340 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1341 sb_set_blocksize(s, block_size(sd.bdev));
1343 err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1347 s->s_flags |= SB_ACTIVE;
1348 } else if (!sd.cno) {
1349 if (nilfs_tree_is_busy(s->s_root)) {
1350 if ((flags ^ s->s_flags) & SB_RDONLY) {
1352 "the device already has a %s mount.",
1353 sb_rdonly(s) ? "read-only" : "read/write");
1359 * Try remount to setup mount states if the current
1360 * tree is not mounted and only snapshots use this sb.
1362 err = nilfs_remount(s, &flags, data);
1369 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1373 root_dentry = dget(s->s_root);
1377 blkdev_put(sd.bdev, fs_type);
1382 deactivate_locked_super(s);
1386 blkdev_put(sd.bdev, fs_type);
1387 return ERR_PTR(err);
1390 struct file_system_type nilfs_fs_type = {
1391 .owner = THIS_MODULE,
1393 .mount = nilfs_mount,
1394 .kill_sb = kill_block_super,
1395 .fs_flags = FS_REQUIRES_DEV,
1397 MODULE_ALIAS_FS("nilfs2");
1399 static void nilfs_inode_init_once(void *obj)
1401 struct nilfs_inode_info *ii = obj;
1403 INIT_LIST_HEAD(&ii->i_dirty);
1404 #ifdef CONFIG_NILFS_XATTR
1405 init_rwsem(&ii->xattr_sem);
1407 inode_init_once(&ii->vfs_inode);
1410 static void nilfs_segbuf_init_once(void *obj)
1412 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1415 static void nilfs_destroy_cachep(void)
1418 * Make sure all delayed rcu free inodes are flushed before we
1423 kmem_cache_destroy(nilfs_inode_cachep);
1424 kmem_cache_destroy(nilfs_transaction_cachep);
1425 kmem_cache_destroy(nilfs_segbuf_cachep);
1426 kmem_cache_destroy(nilfs_btree_path_cache);
1429 static int __init nilfs_init_cachep(void)
1431 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1432 sizeof(struct nilfs_inode_info), 0,
1433 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1434 nilfs_inode_init_once);
1435 if (!nilfs_inode_cachep)
1438 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1439 sizeof(struct nilfs_transaction_info), 0,
1440 SLAB_RECLAIM_ACCOUNT, NULL);
1441 if (!nilfs_transaction_cachep)
1444 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1445 sizeof(struct nilfs_segment_buffer), 0,
1446 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1447 if (!nilfs_segbuf_cachep)
1450 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1451 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1453 if (!nilfs_btree_path_cache)
1459 nilfs_destroy_cachep();
1463 static int __init init_nilfs_fs(void)
1467 err = nilfs_init_cachep();
1471 err = nilfs_sysfs_init();
1475 err = register_filesystem(&nilfs_fs_type);
1477 goto deinit_sysfs_entry;
1479 printk(KERN_INFO "NILFS version 2 loaded\n");
1485 nilfs_destroy_cachep();
1490 static void __exit exit_nilfs_fs(void)
1492 nilfs_destroy_cachep();
1494 unregister_filesystem(&nilfs_fs_type);
1497 module_init(init_nilfs_fs)
1498 module_exit(exit_nilfs_fs)