2 * Copyright 2012-15 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
26 #include "dm_services.h"
28 #include "dce/dce_12_0_offset.h"
29 #include "dce/dce_12_0_sh_mask.h"
30 #include "soc15_hw_ip.h"
31 #include "vega10_ip_offset.h"
34 #include "dc_bios_types.h"
36 #include "include/grph_object_id.h"
37 #include "include/logger_interface.h"
38 #include "dce120_timing_generator.h"
40 #include "timing_generator.h"
42 #define CRTC_REG_UPDATE_N(reg_name, n, ...) \
43 generic_reg_update_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__)
45 #define CRTC_REG_SET_N(reg_name, n, ...) \
46 generic_reg_set_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__)
48 #define CRTC_REG_UPDATE(reg, field, val) \
49 CRTC_REG_UPDATE_N(reg, 1, FD(reg##__##field), val)
51 #define CRTC_REG_UPDATE_2(reg, field1, val1, field2, val2) \
52 CRTC_REG_UPDATE_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2)
54 #define CRTC_REG_UPDATE_3(reg, field1, val1, field2, val2, field3, val3) \
55 CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3)
57 #define CRTC_REG_UPDATE_4(reg, field1, val1, field2, val2, field3, val3, field4, val4) \
58 CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4)
60 #define CRTC_REG_UPDATE_5(reg, field1, val1, field2, val2, field3, val3, field4, val4, field5, val5) \
61 CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4, FD(reg##__##field5), val5)
63 #define CRTC_REG_SET(reg, field, val) \
64 CRTC_REG_SET_N(reg, 1, FD(reg##__##field), val)
66 #define CRTC_REG_SET_2(reg, field1, val1, field2, val2) \
67 CRTC_REG_SET_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2)
69 #define CRTC_REG_SET_3(reg, field1, val1, field2, val2, field3, val3) \
70 CRTC_REG_SET_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3)
73 *****************************************************************************
74 * Function: is_in_vertical_blank
77 * check the current status of CRTC to check if we are in Vertical Blank
81 * true if currently in blank region, false otherwise
83 *****************************************************************************
85 static bool dce120_timing_generator_is_in_vertical_blank(
86 struct timing_generator *tg)
89 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
90 uint32_t value = dm_read_reg_soc15(
95 field = get_reg_field_value(value, CRTC0_CRTC_STATUS, CRTC_V_BLANK);
100 /* determine if given timing can be supported by TG */
101 static bool dce120_timing_generator_validate_timing(
102 struct timing_generator *tg,
103 const struct dc_crtc_timing *timing,
104 enum signal_type signal)
106 uint32_t interlace_factor = timing->flags.INTERLACE ? 2 : 1;
108 (timing->v_total - timing->v_addressable -
109 timing->v_border_top - timing->v_border_bottom) *
111 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
113 if (!dce110_timing_generator_validate_timing(
120 if (v_blank < tg110->min_v_blank ||
121 timing->h_sync_width < tg110->min_h_sync_width ||
122 timing->v_sync_width < tg110->min_v_sync_width)
128 static bool dce120_tg_validate_timing(struct timing_generator *tg,
129 const struct dc_crtc_timing *timing)
131 return dce120_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
134 /******** HW programming ************/
135 /* Disable/Enable Timing Generator */
136 static bool dce120_timing_generator_enable_crtc(struct timing_generator *tg)
138 enum bp_result result;
139 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
141 /* Set MASTER_UPDATE_MODE to 0
142 * This is needed for DRR, and also suggested to be default value by Syed.*/
144 CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_MODE,
145 MASTER_UPDATE_MODE, 0);
147 CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_LOCK,
148 UNDERFLOW_UPDATE_LOCK, 0);
150 /* TODO API for AtomFirmware didn't change*/
151 result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
153 return result == BP_RESULT_OK;
156 static void dce120_timing_generator_set_early_control(
157 struct timing_generator *tg,
160 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
162 CRTC_REG_UPDATE(CRTC0_CRTC_CONTROL,
163 CRTC_HBLANK_EARLY_CONTROL, early_cntl);
166 /**************** TG current status ******************/
168 /* return the current frame counter. Used by Linux kernel DRM */
169 static uint32_t dce120_timing_generator_get_vblank_counter(
170 struct timing_generator *tg)
172 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
173 uint32_t value = dm_read_reg_soc15(
175 mmCRTC0_CRTC_STATUS_FRAME_COUNT,
176 tg110->offsets.crtc);
177 uint32_t field = get_reg_field_value(
178 value, CRTC0_CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
183 /* Get current H and V position */
184 static void dce120_timing_generator_get_crtc_position(
185 struct timing_generator *tg,
186 struct crtc_position *position)
188 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
189 uint32_t value = dm_read_reg_soc15(
191 mmCRTC0_CRTC_STATUS_POSITION,
192 tg110->offsets.crtc);
194 position->horizontal_count = get_reg_field_value(value,
195 CRTC0_CRTC_STATUS_POSITION, CRTC_HORZ_COUNT);
197 position->vertical_count = get_reg_field_value(value,
198 CRTC0_CRTC_STATUS_POSITION, CRTC_VERT_COUNT);
200 value = dm_read_reg_soc15(
202 mmCRTC0_CRTC_NOM_VERT_POSITION,
203 tg110->offsets.crtc);
205 position->nominal_vcount = get_reg_field_value(value,
206 CRTC0_CRTC_NOM_VERT_POSITION, CRTC_VERT_COUNT_NOM);
209 /* wait until TG is in beginning of vertical blank region */
210 static void dce120_timing_generator_wait_for_vblank(struct timing_generator *tg)
212 /* We want to catch beginning of VBlank here, so if the first try are
213 * in VBlank, we might be very close to Active, in this case wait for
216 while (dce120_timing_generator_is_in_vertical_blank(tg)) {
217 if (!tg->funcs->is_counter_moving(tg)) {
218 /* error - no point to wait if counter is not moving */
223 while (!dce120_timing_generator_is_in_vertical_blank(tg)) {
224 if (!tg->funcs->is_counter_moving(tg)) {
225 /* error - no point to wait if counter is not moving */
231 /* wait until TG is in beginning of active region */
232 static void dce120_timing_generator_wait_for_vactive(struct timing_generator *tg)
234 while (dce120_timing_generator_is_in_vertical_blank(tg)) {
235 if (!tg->funcs->is_counter_moving(tg)) {
236 /* error - no point to wait if counter is not moving */
242 /*********** Timing Generator Synchronization routines ****/
244 /* Setups Global Swap Lock group, TimingServer or TimingClient*/
245 static void dce120_timing_generator_setup_global_swap_lock(
246 struct timing_generator *tg,
247 const struct dcp_gsl_params *gsl_params)
249 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
250 uint32_t value_crtc_vtotal =
251 dm_read_reg_soc15(tg->ctx,
252 mmCRTC0_CRTC_V_TOTAL,
253 tg110->offsets.crtc);
254 /* Checkpoint relative to end of frame */
255 uint32_t check_point =
256 get_reg_field_value(value_crtc_vtotal,
261 dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_GSL_WINDOW, tg110->offsets.crtc, 0);
263 CRTC_REG_UPDATE_N(DCP0_DCP_GSL_CONTROL, 6,
264 /* This pipe will belong to GSL Group zero. */
265 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 1,
266 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), gsl_params->gsl_master == tg->inst,
267 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY,
268 /* Keep signal low (pending high) during 6 lines.
269 * Also defines minimum interval before re-checking signal. */
270 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY,
271 /* DCP_GSL_PURPOSE_SURFACE_FLIP */
272 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0,
273 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 1);
276 CRTC0_CRTC_GSL_CONTROL,
277 CRTC_GSL_CHECK_LINE_NUM, check_point - FLIP_READY_BACK_LOOKUP,
278 CRTC_GSL_FORCE_DELAY, VFLIP_READY_DELAY);
281 /* Clear all the register writes done by setup_global_swap_lock */
282 static void dce120_timing_generator_tear_down_global_swap_lock(
283 struct timing_generator *tg)
285 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
287 /* Settig HW default values from reg specs */
288 CRTC_REG_SET_N(DCP0_DCP_GSL_CONTROL, 6,
289 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 0,
290 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), 0,
291 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY,
292 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY,
293 /* DCP_GSL_PURPOSE_SURFACE_FLIP */
294 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0,
295 FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 0);
297 CRTC_REG_SET_2(CRTC0_CRTC_GSL_CONTROL,
298 CRTC_GSL_CHECK_LINE_NUM, 0,
299 CRTC_GSL_FORCE_DELAY, 0x2); /*TODO Why this value here ?*/
302 /* Reset slave controllers on master VSync */
303 static void dce120_timing_generator_enable_reset_trigger(
304 struct timing_generator *tg,
307 enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
308 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
309 uint32_t rising_edge = 0;
310 uint32_t falling_edge = 0;
311 /* Setup trigger edge */
312 uint32_t pol_value = dm_read_reg_soc15(
314 mmCRTC0_CRTC_V_SYNC_A_CNTL,
315 tg110->offsets.crtc);
317 /* Register spec has reversed definition:
318 * 0 for positive, 1 for negative */
319 if (get_reg_field_value(pol_value,
320 CRTC0_CRTC_V_SYNC_A_CNTL,
321 CRTC_V_SYNC_A_POL) == 0) {
327 /* TODO What about other sources ?*/
328 trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
330 CRTC_REG_UPDATE_N(CRTC0_CRTC_TRIGB_CNTL, 7,
331 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_SOURCE_SELECT), trig_src_select,
332 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_POLARITY_SELECT), TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
333 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_RISING_EDGE_DETECT_CNTL), rising_edge,
334 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL), falling_edge,
335 /* send every signal */
336 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FREQUENCY_SELECT), 0,
338 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_DELAY), 0,
339 /* clear trigger status */
340 FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_CLEAR), 1);
343 CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
344 CRTC_FORCE_COUNT_NOW_MODE, 2,
345 CRTC_FORCE_COUNT_NOW_TRIG_SEL, 1,
346 CRTC_FORCE_COUNT_NOW_CLEAR, 1);
349 /* disabling trigger-reset */
350 static void dce120_timing_generator_disable_reset_trigger(
351 struct timing_generator *tg)
353 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
356 CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
357 CRTC_FORCE_COUNT_NOW_MODE, 0,
358 CRTC_FORCE_COUNT_NOW_CLEAR, 1);
361 CRTC0_CRTC_TRIGB_CNTL,
362 CRTC_TRIGB_SOURCE_SELECT, TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
363 CRTC_TRIGB_POLARITY_SELECT, TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
364 /* clear trigger status */
365 CRTC_TRIGB_CLEAR, 1);
369 /* Checks whether CRTC triggered reset occurred */
370 static bool dce120_timing_generator_did_triggered_reset_occur(
371 struct timing_generator *tg)
373 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
374 uint32_t value = dm_read_reg_soc15(
376 mmCRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
377 tg110->offsets.crtc);
379 return get_reg_field_value(value,
380 CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
381 CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
385 /******** Stuff to move to other virtual HW objects *****************/
386 /* Move to enable accelerated mode */
387 static void dce120_timing_generator_disable_vga(struct timing_generator *tg)
391 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
393 switch (tg110->controller_id) {
394 case CONTROLLER_ID_D0:
397 case CONTROLLER_ID_D1:
398 offset = mmD2VGA_CONTROL - mmD1VGA_CONTROL;
400 case CONTROLLER_ID_D2:
401 offset = mmD3VGA_CONTROL - mmD1VGA_CONTROL;
403 case CONTROLLER_ID_D3:
404 offset = mmD4VGA_CONTROL - mmD1VGA_CONTROL;
406 case CONTROLLER_ID_D4:
407 offset = mmD5VGA_CONTROL - mmD1VGA_CONTROL;
409 case CONTROLLER_ID_D5:
410 offset = mmD6VGA_CONTROL - mmD1VGA_CONTROL;
416 value = dm_read_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset);
418 set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
419 set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
421 value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
422 set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
424 dm_write_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset, value);
426 /* TODO: Should we move it to transform */
427 /* Fully program CRTC timing in timing generator */
428 static void dce120_timing_generator_program_blanking(
429 struct timing_generator *tg,
430 const struct dc_crtc_timing *timing)
434 uint32_t vsync_offset = timing->v_border_bottom +
435 timing->v_front_porch;
436 uint32_t v_sync_start = timing->v_addressable + vsync_offset;
438 uint32_t hsync_offset = timing->h_border_right +
439 timing->h_front_porch;
440 uint32_t h_sync_start = timing->h_addressable + hsync_offset;
441 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
446 timing->h_total - 1);
451 timing->v_total - 1);
453 /* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
454 * V_TOTAL_MIN are equal to V_TOTAL.
457 CRTC0_CRTC_V_TOTAL_MAX,
459 timing->v_total - 1);
462 CRTC0_CRTC_V_TOTAL_MIN,
464 timing->v_total - 1);
466 tmp1 = timing->h_total -
467 (h_sync_start + timing->h_border_left);
468 tmp2 = tmp1 + timing->h_addressable +
469 timing->h_border_left + timing->h_border_right;
472 CRTC0_CRTC_H_BLANK_START_END,
473 CRTC_H_BLANK_END, tmp1,
474 CRTC_H_BLANK_START, tmp2);
476 tmp1 = timing->v_total - (v_sync_start + timing->v_border_top);
477 tmp2 = tmp1 + timing->v_addressable + timing->v_border_top +
478 timing->v_border_bottom;
481 CRTC0_CRTC_V_BLANK_START_END,
482 CRTC_V_BLANK_END, tmp1,
483 CRTC_V_BLANK_START, tmp2);
486 /* TODO: Should we move it to opp? */
487 /* Combine with below and move YUV/RGB color conversion to SW layer */
488 static void dce120_timing_generator_program_blank_color(
489 struct timing_generator *tg,
490 const struct tg_color *black_color)
492 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
495 CRTC0_CRTC_BLACK_COLOR,
496 CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb,
497 CRTC_BLACK_COLOR_G_Y, black_color->color_g_y,
498 CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr);
500 /* Combine with above and move YUV/RGB color conversion to SW layer */
501 static void dce120_timing_generator_set_overscan_color_black(
502 struct timing_generator *tg,
503 const struct tg_color *color)
505 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
508 CRTC0_CRTC_OVERSCAN_COLOR,
509 CRTC_OVERSCAN_COLOR_BLUE, color->color_b_cb,
510 CRTC_OVERSCAN_COLOR_GREEN, color->color_g_y,
511 CRTC_OVERSCAN_COLOR_RED, color->color_r_cr);
513 value = dm_read_reg_soc15(
515 mmCRTC0_CRTC_OVERSCAN_COLOR,
516 tg110->offsets.crtc);
520 mmCRTC0_CRTC_BLACK_COLOR,
524 /* This is desirable to have a constant DAC output voltage during the
525 * blank time that is higher than the 0 volt reference level that the
526 * DAC outputs when the NBLANK signal
527 * is asserted low, such as for output to an analog TV. */
530 mmCRTC0_CRTC_BLANK_DATA_COLOR,
534 /* TO DO we have to program EXT registers and we need to know LB DATA
535 * format because it is used when more 10 , i.e. 12 bits per color
537 * m_mmDxCRTC_OVERSCAN_COLOR_EXT
538 * m_mmDxCRTC_BLACK_COLOR_EXT
539 * m_mmDxCRTC_BLANK_DATA_COLOR_EXT
543 static void dce120_timing_generator_set_drr(
544 struct timing_generator *tg,
545 const struct drr_params *params)
548 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
550 if (params != NULL &&
551 params->vertical_total_max > 0 &&
552 params->vertical_total_min > 0) {
555 CRTC0_CRTC_V_TOTAL_MIN,
556 CRTC_V_TOTAL_MIN, params->vertical_total_min - 1);
558 CRTC0_CRTC_V_TOTAL_MAX,
559 CRTC_V_TOTAL_MAX, params->vertical_total_max - 1);
560 CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 6,
561 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 1,
562 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 1,
563 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0,
564 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0,
565 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK_EN), 0,
566 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0);
568 CRTC0_CRTC_STATIC_SCREEN_CONTROL,
569 CRTC_STATIC_SCREEN_EVENT_MASK,
573 CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 5,
574 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 0,
575 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 0,
576 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0,
577 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0,
578 FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0);
580 CRTC0_CRTC_V_TOTAL_MIN,
581 CRTC_V_TOTAL_MIN, 0);
583 CRTC0_CRTC_V_TOTAL_MAX,
584 CRTC_V_TOTAL_MAX, 0);
586 CRTC0_CRTC_STATIC_SCREEN_CONTROL,
587 CRTC_STATIC_SCREEN_EVENT_MASK,
592 static void dce120_timing_generator_get_crtc_scanoutpos(
593 struct timing_generator *tg,
594 uint32_t *v_blank_start,
595 uint32_t *v_blank_end,
596 uint32_t *h_position,
597 uint32_t *v_position)
599 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
600 struct crtc_position position;
602 uint32_t v_blank_start_end = dm_read_reg_soc15(
604 mmCRTC0_CRTC_V_BLANK_START_END,
605 tg110->offsets.crtc);
607 *v_blank_start = get_reg_field_value(v_blank_start_end,
608 CRTC0_CRTC_V_BLANK_START_END,
610 *v_blank_end = get_reg_field_value(v_blank_start_end,
611 CRTC0_CRTC_V_BLANK_START_END,
614 dce120_timing_generator_get_crtc_position(
617 *h_position = position.horizontal_count;
618 *v_position = position.vertical_count;
621 static void dce120_timing_generator_enable_advanced_request(
622 struct timing_generator *tg,
624 const struct dc_crtc_timing *timing)
626 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
627 uint32_t v_sync_width_and_b_porch =
628 timing->v_total - timing->v_addressable -
629 timing->v_border_bottom - timing->v_front_porch;
630 uint32_t value = dm_read_reg_soc15(
632 mmCRTC0_CRTC_START_LINE_CONTROL,
633 tg110->offsets.crtc);
638 CRTC0_CRTC_START_LINE_CONTROL,
639 CRTC_LEGACY_REQUESTOR_EN);
641 /* Program advanced line position acc.to the best case from fetching data perspective to hide MC latency
642 * and prefilling Line Buffer in V Blank (to 10 lines as LB can store max 10 lines)
644 if (v_sync_width_and_b_porch > 10)
645 v_sync_width_and_b_porch = 10;
649 v_sync_width_and_b_porch,
650 CRTC0_CRTC_START_LINE_CONTROL,
651 CRTC_ADVANCED_START_LINE_POSITION);
653 dm_write_reg_soc15(tg->ctx,
654 mmCRTC0_CRTC_START_LINE_CONTROL,
659 static void dce120_tg_program_blank_color(struct timing_generator *tg,
660 const struct tg_color *black_color)
662 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
666 CRTC0_CRTC_BLACK_COLOR,
667 CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb,
668 CRTC_BLACK_COLOR_G_Y, black_color->color_g_y,
669 CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr);
671 value = dm_read_reg_soc15(
673 mmCRTC0_CRTC_BLACK_COLOR,
674 tg110->offsets.crtc);
677 mmCRTC0_CRTC_BLANK_DATA_COLOR,
682 static void dce120_tg_set_overscan_color(struct timing_generator *tg,
683 const struct tg_color *overscan_color)
685 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
688 CRTC0_CRTC_OVERSCAN_COLOR,
689 CRTC_OVERSCAN_COLOR_BLUE, overscan_color->color_b_cb,
690 CRTC_OVERSCAN_COLOR_GREEN, overscan_color->color_g_y,
691 CRTC_OVERSCAN_COLOR_RED, overscan_color->color_r_cr);
694 static void dce120_tg_program_timing(struct timing_generator *tg,
695 const struct dc_crtc_timing *timing,
700 const enum signal_type signal,
704 dce110_timing_generator_program_timing_generator(tg, timing);
706 dce120_timing_generator_program_blanking(tg, timing);
709 static bool dce120_tg_is_blanked(struct timing_generator *tg)
711 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
712 uint32_t value = dm_read_reg_soc15(
714 mmCRTC0_CRTC_BLANK_CONTROL,
715 tg110->offsets.crtc);
717 if (get_reg_field_value(
719 CRTC0_CRTC_BLANK_CONTROL,
720 CRTC_BLANK_DATA_EN) == 1 &&
723 CRTC0_CRTC_BLANK_CONTROL,
724 CRTC_CURRENT_BLANK_STATE) == 1)
730 static void dce120_tg_set_blank(struct timing_generator *tg,
731 bool enable_blanking)
733 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
736 CRTC0_CRTC_DOUBLE_BUFFER_CONTROL,
737 CRTC_BLANK_DATA_DOUBLE_BUFFER_EN, 1);
740 CRTC_REG_SET(CRTC0_CRTC_BLANK_CONTROL, CRTC_BLANK_DATA_EN, 1);
742 dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_BLANK_CONTROL,
743 tg110->offsets.crtc, 0);
746 bool dce120_tg_validate_timing(struct timing_generator *tg,
747 const struct dc_crtc_timing *timing);
749 static void dce120_tg_wait_for_state(struct timing_generator *tg,
750 enum crtc_state state)
753 case CRTC_STATE_VBLANK:
754 dce120_timing_generator_wait_for_vblank(tg);
757 case CRTC_STATE_VACTIVE:
758 dce120_timing_generator_wait_for_vactive(tg);
766 static void dce120_tg_set_colors(struct timing_generator *tg,
767 const struct tg_color *blank_color,
768 const struct tg_color *overscan_color)
770 if (blank_color != NULL)
771 dce120_tg_program_blank_color(tg, blank_color);
773 if (overscan_color != NULL)
774 dce120_tg_set_overscan_color(tg, overscan_color);
777 static void dce120_timing_generator_set_static_screen_control(
778 struct timing_generator *tg,
779 uint32_t event_triggers,
782 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
784 // By register spec, it only takes 8 bit value
785 if (num_frames > 0xFF)
788 CRTC_REG_UPDATE_2(CRTC0_CRTC_STATIC_SCREEN_CONTROL,
789 CRTC_STATIC_SCREEN_EVENT_MASK, event_triggers,
790 CRTC_STATIC_SCREEN_FRAME_COUNT, num_frames);
793 static void dce120_timing_generator_set_test_pattern(
794 struct timing_generator *tg,
795 /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
796 * because this is not DP-specific (which is probably somewhere in DP
798 enum controller_dp_test_pattern test_pattern,
799 enum dc_color_depth color_depth)
801 struct dc_context *ctx = tg->ctx;
803 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
804 enum test_pattern_color_format bit_depth;
805 enum test_pattern_dyn_range dyn_range;
806 enum test_pattern_mode mode;
807 /* color ramp generator mixes 16-bits color */
808 uint32_t src_bpc = 16;
812 /* RGB values of the color bars.
813 * Produce two RGB colors: RGB0 - white (all Fs)
814 * and RGB1 - black (all 0s)
815 * (three RGB components for two colors)
817 uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
819 /* dest color (converted to the specified color format) */
820 uint16_t dst_color[6];
823 /* translate to bit depth */
824 switch (color_depth) {
825 case COLOR_DEPTH_666:
826 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
828 case COLOR_DEPTH_888:
829 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
831 case COLOR_DEPTH_101010:
832 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
834 case COLOR_DEPTH_121212:
835 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
838 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
842 switch (test_pattern) {
843 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
844 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
846 dyn_range = (test_pattern ==
847 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
848 TEST_PATTERN_DYN_RANGE_CEA :
849 TEST_PATTERN_DYN_RANGE_VESA);
850 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
852 CRTC_REG_UPDATE_2(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
853 CRTC_TEST_PATTERN_VRES, 6,
854 CRTC_TEST_PATTERN_HRES, 6);
856 CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
857 CRTC_TEST_PATTERN_EN, 1,
858 CRTC_TEST_PATTERN_MODE, mode,
859 CRTC_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
860 CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
864 case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
865 case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
867 mode = (test_pattern ==
868 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
869 TEST_PATTERN_MODE_VERTICALBARS :
870 TEST_PATTERN_MODE_HORIZONTALBARS);
873 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
876 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
879 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
887 /* adjust color to the required colorFormat */
888 for (index = 0; index < 6; index++) {
889 /* dst = 2^dstBpc * src / 2^srcBpc = src >>
893 src_color[index] >> (src_bpc - dst_bpc);
894 /* CRTC_TEST_PATTERN_DATA has 16 bits,
895 * lowest 6 are hardwired to ZERO
896 * color bits should be left aligned aligned to MSB
897 * XXXXXXXXXX000000 for 10 bit,
898 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
900 dst_color[index] <<= (16 - dst_bpc);
903 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, 0);
905 /* We have to write the mask before data, similar to pipeline.
906 * For example, for 8 bpc, if we want RGB0 to be magenta,
907 * and RGB1 to be cyan,
908 * we need to make 7 writes:
910 * 000001 00000000 00000000 set mask to R0
911 * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0
912 * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0
913 * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1
914 * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1
915 * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1
916 * 100000 11111111 00000000 B1 255, 0xFF00
918 * we will make a loop of 6 in which we prepare the mask,
919 * then write, then prepare the color for next write.
920 * first iteration will write mask only,
921 * but each next iteration color prepared in
922 * previous iteration will be written within new mask,
923 * the last component will written separately,
924 * mask is not changing between 6th and 7th write
925 * and color will be prepared by last iteration
928 /* write color, color values mask in CRTC_TEST_PATTERN_MASK
929 * is B1, G1, R1, B0, G0, R0
932 for (index = 0; index < 6; index++) {
933 /* prepare color mask, first write PATTERN_DATA
934 * will have all zeros
939 CRTC0_CRTC_TEST_PATTERN_COLOR,
940 CRTC_TEST_PATTERN_MASK);
941 /* write color component */
942 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
943 /* prepare next color component,
944 * will be written in the next iteration
949 CRTC0_CRTC_TEST_PATTERN_COLOR,
950 CRTC_TEST_PATTERN_DATA);
952 /* write last color component,
953 * it's been already prepared in the loop
955 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
957 /* enable test pattern */
958 CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
959 CRTC_TEST_PATTERN_EN, 1,
960 CRTC_TEST_PATTERN_MODE, mode,
961 CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0,
962 CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
966 case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
969 TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
970 TEST_PATTERN_MODE_DUALRAMP_RGB :
971 TEST_PATTERN_MODE_SINGLERAMP_RGB);
974 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
977 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
980 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
988 /* increment for the first ramp for one color gradation
989 * 1 gradation for 6-bit color is 2^10
990 * gradations in 16-bit color
992 inc_base = (src_bpc - dst_bpc);
995 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
997 CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
998 CRTC_TEST_PATTERN_INC0, inc_base,
999 CRTC_TEST_PATTERN_INC1, 0,
1000 CRTC_TEST_PATTERN_HRES, 6,
1001 CRTC_TEST_PATTERN_VRES, 6,
1002 CRTC_TEST_PATTERN_RAMP0_OFFSET, 0);
1005 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1007 CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
1008 CRTC_TEST_PATTERN_INC0, inc_base,
1009 CRTC_TEST_PATTERN_INC1, 0,
1010 CRTC_TEST_PATTERN_HRES, 8,
1011 CRTC_TEST_PATTERN_VRES, 6,
1012 CRTC_TEST_PATTERN_RAMP0_OFFSET, 0);
1015 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1017 CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
1018 CRTC_TEST_PATTERN_INC0, inc_base,
1019 CRTC_TEST_PATTERN_INC1, inc_base + 2,
1020 CRTC_TEST_PATTERN_HRES, 8,
1021 CRTC_TEST_PATTERN_VRES, 5,
1022 CRTC_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1029 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, 0);
1031 /* enable test pattern */
1032 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc, 0);
1034 CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
1035 CRTC_TEST_PATTERN_EN, 1,
1036 CRTC_TEST_PATTERN_MODE, mode,
1037 CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0,
1038 CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1041 case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1044 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc, value);
1045 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
1046 dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, value);
1054 static bool dce120_arm_vert_intr(
1055 struct timing_generator *tg,
1058 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1059 uint32_t v_blank_start, v_blank_end, h_position, v_position;
1061 tg->funcs->get_scanoutpos(
1068 if (v_blank_start == 0 || v_blank_end == 0)
1072 CRTC0_CRTC_VERTICAL_INTERRUPT0_POSITION,
1073 CRTC_VERTICAL_INTERRUPT0_LINE_START, v_blank_start,
1074 CRTC_VERTICAL_INTERRUPT0_LINE_END, v_blank_start + width);
1080 static bool dce120_is_tg_enabled(struct timing_generator *tg)
1082 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1083 uint32_t value, field;
1085 value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CONTROL,
1086 tg110->offsets.crtc);
1087 field = get_reg_field_value(value, CRTC0_CRTC_CONTROL,
1088 CRTC_CURRENT_MASTER_EN_STATE);
1093 static bool dce120_configure_crc(struct timing_generator *tg,
1094 const struct crc_params *params)
1096 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1098 /* Cannot configure crc on a CRTC that is disabled */
1099 if (!dce120_is_tg_enabled(tg))
1102 /* First, disable CRC before we configure it. */
1103 dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC_CNTL,
1104 tg110->offsets.crtc, 0);
1106 if (!params->enable)
1109 /* Program frame boundaries */
1110 /* Window A x axis start and end. */
1111 CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWA_X_CONTROL,
1112 CRTC_CRC0_WINDOWA_X_START, params->windowa_x_start,
1113 CRTC_CRC0_WINDOWA_X_END, params->windowa_x_end);
1115 /* Window A y axis start and end. */
1116 CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWA_Y_CONTROL,
1117 CRTC_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1118 CRTC_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1120 /* Window B x axis start and end. */
1121 CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWB_X_CONTROL,
1122 CRTC_CRC0_WINDOWB_X_START, params->windowb_x_start,
1123 CRTC_CRC0_WINDOWB_X_END, params->windowb_x_end);
1125 /* Window B y axis start and end. */
1126 CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWB_Y_CONTROL,
1127 CRTC_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1128 CRTC_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1130 /* Set crc mode and selection, and enable. Only using CRC0*/
1131 CRTC_REG_UPDATE_3(CRTC0_CRTC_CRC_CNTL,
1132 CRTC_CRC_EN, params->continuous_mode ? 1 : 0,
1133 CRTC_CRC0_SELECT, params->selection,
1139 static bool dce120_get_crc(struct timing_generator *tg, uint32_t *r_cr,
1140 uint32_t *g_y, uint32_t *b_cb)
1142 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1143 uint32_t value, field;
1145 value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC_CNTL,
1146 tg110->offsets.crtc);
1147 field = get_reg_field_value(value, CRTC0_CRTC_CRC_CNTL, CRTC_CRC_EN);
1149 /* Early return if CRC is not enabled for this CRTC */
1153 value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC0_DATA_RG,
1154 tg110->offsets.crtc);
1155 *r_cr = get_reg_field_value(value, CRTC0_CRTC_CRC0_DATA_RG, CRC0_R_CR);
1156 *g_y = get_reg_field_value(value, CRTC0_CRTC_CRC0_DATA_RG, CRC0_G_Y);
1158 value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC0_DATA_B,
1159 tg110->offsets.crtc);
1160 *b_cb = get_reg_field_value(value, CRTC0_CRTC_CRC0_DATA_B, CRC0_B_CB);
1165 static const struct timing_generator_funcs dce120_tg_funcs = {
1166 .validate_timing = dce120_tg_validate_timing,
1167 .program_timing = dce120_tg_program_timing,
1168 .enable_crtc = dce120_timing_generator_enable_crtc,
1169 .disable_crtc = dce110_timing_generator_disable_crtc,
1170 /* used by enable_timing_synchronization. Not need for FPGA */
1171 .is_counter_moving = dce110_timing_generator_is_counter_moving,
1172 /* never be called */
1173 .get_position = dce120_timing_generator_get_crtc_position,
1174 .get_frame_count = dce120_timing_generator_get_vblank_counter,
1175 .get_scanoutpos = dce120_timing_generator_get_crtc_scanoutpos,
1176 .set_early_control = dce120_timing_generator_set_early_control,
1177 /* used by enable_timing_synchronization. Not need for FPGA */
1178 .wait_for_state = dce120_tg_wait_for_state,
1179 .set_blank = dce120_tg_set_blank,
1180 .is_blanked = dce120_tg_is_blanked,
1181 /* never be called */
1182 .set_colors = dce120_tg_set_colors,
1183 .set_overscan_blank_color = dce120_timing_generator_set_overscan_color_black,
1184 .set_blank_color = dce120_timing_generator_program_blank_color,
1185 .disable_vga = dce120_timing_generator_disable_vga,
1186 .did_triggered_reset_occur = dce120_timing_generator_did_triggered_reset_occur,
1187 .setup_global_swap_lock = dce120_timing_generator_setup_global_swap_lock,
1188 .enable_reset_trigger = dce120_timing_generator_enable_reset_trigger,
1189 .disable_reset_trigger = dce120_timing_generator_disable_reset_trigger,
1190 .tear_down_global_swap_lock = dce120_timing_generator_tear_down_global_swap_lock,
1191 .enable_advanced_request = dce120_timing_generator_enable_advanced_request,
1192 .set_drr = dce120_timing_generator_set_drr,
1193 .get_last_used_drr_vtotal = NULL,
1194 .set_static_screen_control = dce120_timing_generator_set_static_screen_control,
1195 .set_test_pattern = dce120_timing_generator_set_test_pattern,
1196 .arm_vert_intr = dce120_arm_vert_intr,
1197 .is_tg_enabled = dce120_is_tg_enabled,
1198 .configure_crc = dce120_configure_crc,
1199 .get_crc = dce120_get_crc,
1203 void dce120_timing_generator_construct(
1204 struct dce110_timing_generator *tg110,
1205 struct dc_context *ctx,
1207 const struct dce110_timing_generator_offsets *offsets)
1209 tg110->controller_id = CONTROLLER_ID_D0 + instance;
1210 tg110->base.inst = instance;
1212 tg110->offsets = *offsets;
1214 tg110->base.funcs = &dce120_tg_funcs;
1216 tg110->base.ctx = ctx;
1217 tg110->base.bp = ctx->dc_bios;
1219 tg110->max_h_total = CRTC0_CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
1220 tg110->max_v_total = CRTC0_CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
1222 /*//CRTC requires a minimum HBLANK = 32 pixels and o
1223 * Minimum HSYNC = 8 pixels*/
1224 tg110->min_h_blank = 32;
1225 /*DCE12_CRTC_Block_ARch.doc*/
1226 tg110->min_h_front_porch = 0;
1227 tg110->min_h_back_porch = 0;
1229 tg110->min_h_sync_width = 4;
1230 tg110->min_v_sync_width = 1;
1231 tg110->min_v_blank = 3;