3 * Copyright 2017 Free Electrons
7 * Derived from the atmel_nand.c driver which contained the following
10 * Copyright 2003 Rick Bronson
12 * Derived from drivers/mtd/nand/autcpu12.c
15 * Derived from drivers/mtd/spia.c
19 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
22 * Derived from Das U-Boot source code
23 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
24 * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26 * Add Programmable Multibit ECC support for various AT91 SoC
27 * Copyright 2012 ATMEL, Hong Xu
29 * Add Nand Flash Controller support for SAMA5 SoC
32 * This program is free software; you can redistribute it and/or modify
33 * it under the terms of the GNU General Public License version 2 as
34 * published by the Free Software Foundation.
36 * A few words about the naming convention in this file. This convention
37 * applies to structure and function names.
41 * - atmel_nand_: all generic structures/functions
42 * - atmel_smc_nand_: all structures/functions specific to the SMC interface
43 * (at91sam9 and avr32 SoCs)
44 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
45 * (sama5 SoCs and later)
46 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
47 * that is available in the HSMC block
48 * - <soc>_nand_: all SoC specific structures/functions
51 #include <linux/clk.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/dmaengine.h>
54 #include <linux/genalloc.h>
55 #include <linux/gpio.h>
56 #include <linux/gpio/consumer.h>
57 #include <linux/interrupt.h>
58 #include <linux/mfd/syscon.h>
59 #include <linux/mfd/syscon/atmel-matrix.h>
60 #include <linux/mfd/syscon/atmel-smc.h>
61 #include <linux/module.h>
62 #include <linux/mtd/rawnand.h>
63 #include <linux/of_address.h>
64 #include <linux/of_irq.h>
65 #include <linux/of_platform.h>
66 #include <linux/iopoll.h>
67 #include <linux/platform_device.h>
68 #include <linux/regmap.h>
72 #define ATMEL_HSMC_NFC_CFG 0x0
73 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
74 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
75 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
76 #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
77 #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
78 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
79 #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
80 #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
81 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
82 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
84 #define ATMEL_HSMC_NFC_CTRL 0x4
85 #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
86 #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
88 #define ATMEL_HSMC_NFC_SR 0x8
89 #define ATMEL_HSMC_NFC_IER 0xc
90 #define ATMEL_HSMC_NFC_IDR 0x10
91 #define ATMEL_HSMC_NFC_IMR 0x14
92 #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
93 #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
94 #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
95 #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
96 #define ATMEL_HSMC_NFC_SR_WR BIT(11)
97 #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
98 #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
99 #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
100 #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
101 #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
102 #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
103 #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
104 #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
105 ATMEL_HSMC_NFC_SR_UNDEF | \
106 ATMEL_HSMC_NFC_SR_AWB | \
107 ATMEL_HSMC_NFC_SR_NFCASE)
108 #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
110 #define ATMEL_HSMC_NFC_ADDR 0x18
111 #define ATMEL_HSMC_NFC_BANK 0x1c
113 #define ATMEL_NFC_MAX_RB_ID 7
115 #define ATMEL_NFC_SRAM_SIZE 0x2400
117 #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
118 #define ATMEL_NFC_VCMD2 BIT(18)
119 #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
120 #define ATMEL_NFC_CSID(cs) ((cs) << 22)
121 #define ATMEL_NFC_DATAEN BIT(25)
122 #define ATMEL_NFC_NFCWR BIT(26)
124 #define ATMEL_NFC_MAX_ADDR_CYCLES 5
126 #define ATMEL_NAND_ALE_OFFSET BIT(21)
127 #define ATMEL_NAND_CLE_OFFSET BIT(22)
129 #define DEFAULT_TIMEOUT_MS 1000
130 #define MIN_DMA_LEN 128
132 enum atmel_nand_rb_type {
134 ATMEL_NAND_NATIVE_RB,
138 struct atmel_nand_rb {
139 enum atmel_nand_rb_type type;
141 struct gpio_desc *gpio;
146 struct atmel_nand_cs {
148 struct atmel_nand_rb rb;
149 struct gpio_desc *csgpio;
155 struct atmel_smc_cs_conf smcconf;
159 struct list_head node;
161 struct nand_chip base;
162 struct atmel_nand_cs *activecs;
163 struct atmel_pmecc_user *pmecc;
164 struct gpio_desc *cdgpio;
166 struct atmel_nand_cs cs[];
169 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
171 return container_of(chip, struct atmel_nand, base);
174 enum atmel_nfc_data_xfer {
177 ATMEL_NFC_WRITE_DATA,
180 struct atmel_nfc_op {
186 enum atmel_nfc_data_xfer data;
191 struct atmel_nand_controller;
192 struct atmel_nand_controller_caps;
194 struct atmel_nand_controller_ops {
195 int (*probe)(struct platform_device *pdev,
196 const struct atmel_nand_controller_caps *caps);
197 int (*remove)(struct atmel_nand_controller *nc);
198 void (*nand_init)(struct atmel_nand_controller *nc,
199 struct atmel_nand *nand);
200 int (*ecc_init)(struct atmel_nand *nand);
201 int (*setup_data_interface)(struct atmel_nand *nand, int csline,
202 const struct nand_data_interface *conf);
205 struct atmel_nand_controller_caps {
207 bool legacy_of_bindings;
210 const struct atmel_nand_controller_ops *ops;
213 struct atmel_nand_controller {
214 struct nand_hw_control base;
215 const struct atmel_nand_controller_caps *caps;
218 struct dma_chan *dmac;
219 struct atmel_pmecc *pmecc;
220 struct list_head chips;
224 static inline struct atmel_nand_controller *
225 to_nand_controller(struct nand_hw_control *ctl)
227 return container_of(ctl, struct atmel_nand_controller, base);
230 struct atmel_smc_nand_controller {
231 struct atmel_nand_controller base;
232 struct regmap *matrix;
233 unsigned int ebi_csa_offs;
236 static inline struct atmel_smc_nand_controller *
237 to_smc_nand_controller(struct nand_hw_control *ctl)
239 return container_of(to_nand_controller(ctl),
240 struct atmel_smc_nand_controller, base);
243 struct atmel_hsmc_nand_controller {
244 struct atmel_nand_controller base;
246 struct gen_pool *pool;
251 struct atmel_nfc_op op;
252 struct completion complete;
255 /* Only used when instantiating from legacy DT bindings. */
259 static inline struct atmel_hsmc_nand_controller *
260 to_hsmc_nand_controller(struct nand_hw_control *ctl)
262 return container_of(to_nand_controller(ctl),
263 struct atmel_hsmc_nand_controller, base);
266 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
268 op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
269 op->wait ^= status & op->wait;
271 return !op->wait || op->errors;
274 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
276 struct atmel_hsmc_nand_controller *nc = data;
280 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
282 rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
283 done = atmel_nfc_op_done(&nc->op, sr);
286 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
289 complete(&nc->complete);
291 return rcvd ? IRQ_HANDLED : IRQ_NONE;
294 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
295 unsigned int timeout_ms)
300 timeout_ms = DEFAULT_TIMEOUT_MS;
305 ret = regmap_read_poll_timeout(nc->base.smc,
306 ATMEL_HSMC_NFC_SR, status,
307 atmel_nfc_op_done(&nc->op,
309 0, timeout_ms * 1000);
311 init_completion(&nc->complete);
312 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
313 nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
314 ret = wait_for_completion_timeout(&nc->complete,
315 msecs_to_jiffies(timeout_ms));
321 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
324 if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
325 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
329 if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
330 dev_err(nc->base.dev, "Access to an undefined area\n");
334 if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
335 dev_err(nc->base.dev, "Access while busy\n");
339 if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
340 dev_err(nc->base.dev, "Wrong access size\n");
347 static void atmel_nand_dma_transfer_finished(void *data)
349 struct completion *finished = data;
354 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
355 void *buf, dma_addr_t dev_dma, size_t len,
356 enum dma_data_direction dir)
358 DECLARE_COMPLETION_ONSTACK(finished);
359 dma_addr_t src_dma, dst_dma, buf_dma;
360 struct dma_async_tx_descriptor *tx;
363 buf_dma = dma_map_single(nc->dev, buf, len, dir);
364 if (dma_mapping_error(nc->dev, dev_dma)) {
366 "Failed to prepare a buffer for DMA access\n");
370 if (dir == DMA_FROM_DEVICE) {
378 tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
379 DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
381 dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
385 tx->callback = atmel_nand_dma_transfer_finished;
386 tx->callback_param = &finished;
388 cookie = dmaengine_submit(tx);
389 if (dma_submit_error(cookie)) {
390 dev_err(nc->dev, "Failed to do DMA tx_submit\n");
394 dma_async_issue_pending(nc->dmac);
395 wait_for_completion(&finished);
400 dma_unmap_single(nc->dev, buf_dma, len, dir);
403 dev_dbg(nc->dev, "Fall back to CPU I/O\n");
408 static u8 atmel_nand_read_byte(struct mtd_info *mtd)
410 struct nand_chip *chip = mtd_to_nand(mtd);
411 struct atmel_nand *nand = to_atmel_nand(chip);
413 return ioread8(nand->activecs->io.virt);
416 static u16 atmel_nand_read_word(struct mtd_info *mtd)
418 struct nand_chip *chip = mtd_to_nand(mtd);
419 struct atmel_nand *nand = to_atmel_nand(chip);
421 return ioread16(nand->activecs->io.virt);
424 static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
426 struct nand_chip *chip = mtd_to_nand(mtd);
427 struct atmel_nand *nand = to_atmel_nand(chip);
429 if (chip->options & NAND_BUSWIDTH_16)
430 iowrite16(byte | (byte << 8), nand->activecs->io.virt);
432 iowrite8(byte, nand->activecs->io.virt);
435 static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
437 struct nand_chip *chip = mtd_to_nand(mtd);
438 struct atmel_nand *nand = to_atmel_nand(chip);
439 struct atmel_nand_controller *nc;
441 nc = to_nand_controller(chip->controller);
444 * If the controller supports DMA, the buffer address is DMA-able and
445 * len is long enough to make DMA transfers profitable, let's trigger
446 * a DMA transfer. If it fails, fallback to PIO mode.
448 if (nc->dmac && virt_addr_valid(buf) &&
449 len >= MIN_DMA_LEN &&
450 !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
454 if (chip->options & NAND_BUSWIDTH_16)
455 ioread16_rep(nand->activecs->io.virt, buf, len / 2);
457 ioread8_rep(nand->activecs->io.virt, buf, len);
460 static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
462 struct nand_chip *chip = mtd_to_nand(mtd);
463 struct atmel_nand *nand = to_atmel_nand(chip);
464 struct atmel_nand_controller *nc;
466 nc = to_nand_controller(chip->controller);
469 * If the controller supports DMA, the buffer address is DMA-able and
470 * len is long enough to make DMA transfers profitable, let's trigger
471 * a DMA transfer. If it fails, fallback to PIO mode.
473 if (nc->dmac && virt_addr_valid(buf) &&
474 len >= MIN_DMA_LEN &&
475 !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
479 if (chip->options & NAND_BUSWIDTH_16)
480 iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
482 iowrite8_rep(nand->activecs->io.virt, buf, len);
485 static int atmel_nand_dev_ready(struct mtd_info *mtd)
487 struct nand_chip *chip = mtd_to_nand(mtd);
488 struct atmel_nand *nand = to_atmel_nand(chip);
490 return gpiod_get_value(nand->activecs->rb.gpio);
493 static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
495 struct nand_chip *chip = mtd_to_nand(mtd);
496 struct atmel_nand *nand = to_atmel_nand(chip);
498 if (cs < 0 || cs >= nand->numcs) {
499 nand->activecs = NULL;
500 chip->dev_ready = NULL;
504 nand->activecs = &nand->cs[cs];
506 if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
507 chip->dev_ready = atmel_nand_dev_ready;
510 static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
512 struct nand_chip *chip = mtd_to_nand(mtd);
513 struct atmel_nand *nand = to_atmel_nand(chip);
514 struct atmel_hsmc_nand_controller *nc;
517 nc = to_hsmc_nand_controller(chip->controller);
519 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
521 return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
524 static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
526 struct nand_chip *chip = mtd_to_nand(mtd);
527 struct atmel_nand *nand = to_atmel_nand(chip);
528 struct atmel_hsmc_nand_controller *nc;
530 nc = to_hsmc_nand_controller(chip->controller);
532 atmel_nand_select_chip(mtd, cs);
534 if (!nand->activecs) {
535 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
536 ATMEL_HSMC_NFC_CTRL_DIS);
540 if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
541 chip->dev_ready = atmel_hsmc_nand_dev_ready;
543 regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
544 ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
545 ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
546 ATMEL_HSMC_NFC_CFG_RSPARE |
547 ATMEL_HSMC_NFC_CFG_WSPARE,
548 ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
549 ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
550 ATMEL_HSMC_NFC_CFG_RSPARE);
551 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
552 ATMEL_HSMC_NFC_CTRL_EN);
555 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
557 u8 *addrs = nc->op.addrs;
562 nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
564 for (i = 0; i < nc->op.ncmds; i++)
565 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
567 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
568 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
570 op |= ATMEL_NFC_CSID(nc->op.cs) |
571 ATMEL_NFC_ACYCLE(nc->op.naddrs);
573 if (nc->op.ncmds > 1)
574 op |= ATMEL_NFC_VCMD2;
576 addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
579 if (nc->op.data != ATMEL_NFC_NO_DATA) {
580 op |= ATMEL_NFC_DATAEN;
581 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
583 if (nc->op.data == ATMEL_NFC_WRITE_DATA)
584 op |= ATMEL_NFC_NFCWR;
587 /* Clear all flags. */
588 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
590 /* Send the command. */
591 regmap_write(nc->io, op, addr);
593 ret = atmel_nfc_wait(nc, poll, 0);
595 dev_err(nc->base.dev,
596 "Failed to send NAND command (err = %d)!",
599 /* Reset the op state. */
600 memset(&nc->op, 0, sizeof(nc->op));
605 static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
608 struct nand_chip *chip = mtd_to_nand(mtd);
609 struct atmel_nand *nand = to_atmel_nand(chip);
610 struct atmel_hsmc_nand_controller *nc;
612 nc = to_hsmc_nand_controller(chip->controller);
614 if (ctrl & NAND_ALE) {
615 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
618 nc->op.addrs[nc->op.naddrs++] = dat;
619 } else if (ctrl & NAND_CLE) {
620 if (nc->op.ncmds > 1)
623 nc->op.cmds[nc->op.ncmds++] = dat;
626 if (dat == NAND_CMD_NONE) {
627 nc->op.cs = nand->activecs->id;
628 atmel_nfc_exec_op(nc, true);
632 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
635 struct nand_chip *chip = mtd_to_nand(mtd);
636 struct atmel_nand *nand = to_atmel_nand(chip);
637 struct atmel_nand_controller *nc;
639 nc = to_nand_controller(chip->controller);
641 if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
643 gpiod_set_value(nand->activecs->csgpio, 0);
645 gpiod_set_value(nand->activecs->csgpio, 1);
649 writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
650 else if (ctrl & NAND_CLE)
651 writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
654 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
657 struct mtd_info *mtd = nand_to_mtd(chip);
658 struct atmel_hsmc_nand_controller *nc;
661 nc = to_hsmc_nand_controller(chip->controller);
664 ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
665 nc->sram.dma, mtd->writesize,
668 /* Falling back to CPU copy. */
670 memcpy_toio(nc->sram.virt, buf, mtd->writesize);
673 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
677 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
680 struct mtd_info *mtd = nand_to_mtd(chip);
681 struct atmel_hsmc_nand_controller *nc;
684 nc = to_hsmc_nand_controller(chip->controller);
687 ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
688 mtd->writesize, DMA_FROM_DEVICE);
690 /* Falling back to CPU copy. */
692 memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
695 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
699 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
701 struct mtd_info *mtd = nand_to_mtd(chip);
702 struct atmel_hsmc_nand_controller *nc;
704 nc = to_hsmc_nand_controller(chip->controller);
707 nc->op.addrs[nc->op.naddrs++] = column;
710 * 2 address cycles for the column offset on large page NANDs.
712 if (mtd->writesize > 512)
713 nc->op.addrs[nc->op.naddrs++] = column >> 8;
717 nc->op.addrs[nc->op.naddrs++] = page;
718 nc->op.addrs[nc->op.naddrs++] = page >> 8;
720 if ((mtd->writesize > 512 && chip->chipsize > SZ_128M) ||
721 (mtd->writesize <= 512 && chip->chipsize > SZ_32M))
722 nc->op.addrs[nc->op.naddrs++] = page >> 16;
726 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
728 struct atmel_nand *nand = to_atmel_nand(chip);
729 struct atmel_nand_controller *nc;
732 nc = to_nand_controller(chip->controller);
737 ret = atmel_pmecc_enable(nand->pmecc, op);
740 "Failed to enable ECC engine (err = %d)\n", ret);
745 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
747 struct atmel_nand *nand = to_atmel_nand(chip);
750 atmel_pmecc_disable(nand->pmecc);
753 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
755 struct atmel_nand *nand = to_atmel_nand(chip);
756 struct mtd_info *mtd = nand_to_mtd(chip);
757 struct atmel_nand_controller *nc;
758 struct mtd_oob_region oobregion;
762 nc = to_nand_controller(chip->controller);
767 ret = atmel_pmecc_wait_rdy(nand->pmecc);
770 "Failed to transfer NAND page data (err = %d)\n",
775 mtd_ooblayout_ecc(mtd, 0, &oobregion);
776 eccbuf = chip->oob_poi + oobregion.offset;
778 for (i = 0; i < chip->ecc.steps; i++) {
779 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
781 eccbuf += chip->ecc.bytes;
787 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
790 struct atmel_nand *nand = to_atmel_nand(chip);
791 struct mtd_info *mtd = nand_to_mtd(chip);
792 struct atmel_nand_controller *nc;
793 struct mtd_oob_region oobregion;
794 int ret, i, max_bitflips = 0;
795 void *databuf, *eccbuf;
797 nc = to_nand_controller(chip->controller);
802 ret = atmel_pmecc_wait_rdy(nand->pmecc);
805 "Failed to read NAND page data (err = %d)\n",
810 mtd_ooblayout_ecc(mtd, 0, &oobregion);
811 eccbuf = chip->oob_poi + oobregion.offset;
814 for (i = 0; i < chip->ecc.steps; i++) {
815 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
817 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
818 ret = nand_check_erased_ecc_chunk(databuf,
826 max_bitflips = max(ret, max_bitflips);
828 mtd->ecc_stats.failed++;
830 databuf += chip->ecc.size;
831 eccbuf += chip->ecc.bytes;
837 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
838 bool oob_required, int page, bool raw)
840 struct mtd_info *mtd = nand_to_mtd(chip);
841 struct atmel_nand *nand = to_atmel_nand(chip);
844 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
848 atmel_nand_write_buf(mtd, buf, mtd->writesize);
850 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
852 atmel_pmecc_disable(nand->pmecc);
856 atmel_nand_pmecc_disable(chip, raw);
858 atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
863 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
864 struct nand_chip *chip, const u8 *buf,
865 int oob_required, int page)
867 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
870 static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
871 struct nand_chip *chip,
872 const u8 *buf, int oob_required,
875 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
878 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
879 bool oob_required, int page, bool raw)
881 struct mtd_info *mtd = nand_to_mtd(chip);
884 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
888 atmel_nand_read_buf(mtd, buf, mtd->writesize);
889 atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
891 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
893 atmel_nand_pmecc_disable(chip, raw);
898 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
899 struct nand_chip *chip, u8 *buf,
900 int oob_required, int page)
902 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
905 static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
906 struct nand_chip *chip, u8 *buf,
907 int oob_required, int page)
909 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
912 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
913 const u8 *buf, bool oob_required,
916 struct mtd_info *mtd = nand_to_mtd(chip);
917 struct atmel_nand *nand = to_atmel_nand(chip);
918 struct atmel_hsmc_nand_controller *nc;
921 nc = to_hsmc_nand_controller(chip->controller);
923 atmel_nfc_copy_to_sram(chip, buf, false);
925 nc->op.cmds[0] = NAND_CMD_SEQIN;
927 atmel_nfc_set_op_addr(chip, page, 0x0);
928 nc->op.cs = nand->activecs->id;
929 nc->op.data = ATMEL_NFC_WRITE_DATA;
931 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
935 ret = atmel_nfc_exec_op(nc, false);
937 atmel_nand_pmecc_disable(chip, raw);
938 dev_err(nc->base.dev,
939 "Failed to transfer NAND page data (err = %d)\n",
944 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
946 atmel_nand_pmecc_disable(chip, raw);
951 atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
953 nc->op.cmds[0] = NAND_CMD_PAGEPROG;
955 nc->op.cs = nand->activecs->id;
956 ret = atmel_nfc_exec_op(nc, false);
958 dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
961 status = chip->waitfunc(mtd, chip);
962 if (status & NAND_STATUS_FAIL)
968 static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd,
969 struct nand_chip *chip,
970 const u8 *buf, int oob_required,
973 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
977 static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd,
978 struct nand_chip *chip,
980 int oob_required, int page)
982 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
986 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
987 bool oob_required, int page,
990 struct mtd_info *mtd = nand_to_mtd(chip);
991 struct atmel_nand *nand = to_atmel_nand(chip);
992 struct atmel_hsmc_nand_controller *nc;
995 nc = to_hsmc_nand_controller(chip->controller);
998 * Optimized read page accessors only work when the NAND R/B pin is
999 * connected to a native SoC R/B pin. If that's not the case, fallback
1000 * to the non-optimized one.
1002 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
1003 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1005 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
1009 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
1011 if (mtd->writesize > 512)
1012 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1014 atmel_nfc_set_op_addr(chip, page, 0x0);
1015 nc->op.cs = nand->activecs->id;
1016 nc->op.data = ATMEL_NFC_READ_DATA;
1018 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1022 ret = atmel_nfc_exec_op(nc, false);
1024 atmel_nand_pmecc_disable(chip, raw);
1025 dev_err(nc->base.dev,
1026 "Failed to load NAND page data (err = %d)\n",
1031 atmel_nfc_copy_from_sram(chip, buf, true);
1033 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1035 atmel_nand_pmecc_disable(chip, raw);
1040 static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
1041 struct nand_chip *chip, u8 *buf,
1042 int oob_required, int page)
1044 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1048 static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
1049 struct nand_chip *chip,
1050 u8 *buf, int oob_required,
1053 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1057 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1059 struct mtd_info *mtd = nand_to_mtd(chip);
1060 struct atmel_nand *nand = to_atmel_nand(chip);
1061 struct atmel_nand_controller *nc;
1062 struct atmel_pmecc_user_req req;
1064 nc = to_nand_controller(chip->controller);
1067 dev_err(nc->dev, "HW ECC not supported\n");
1071 if (nc->caps->legacy_of_bindings) {
1074 if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1076 chip->ecc.strength = val;
1078 if (!of_property_read_u32(nc->dev->of_node,
1079 "atmel,pmecc-sector-size",
1081 chip->ecc.size = val;
1084 if (chip->ecc.options & NAND_ECC_MAXIMIZE)
1085 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1086 else if (chip->ecc.strength)
1087 req.ecc.strength = chip->ecc.strength;
1088 else if (chip->ecc_strength_ds)
1089 req.ecc.strength = chip->ecc_strength_ds;
1091 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1094 req.ecc.sectorsize = chip->ecc.size;
1095 else if (chip->ecc_step_ds)
1096 req.ecc.sectorsize = chip->ecc_step_ds;
1098 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1100 req.pagesize = mtd->writesize;
1101 req.oobsize = mtd->oobsize;
1103 if (mtd->writesize <= 512) {
1105 req.ecc.ooboffset = 0;
1107 req.ecc.bytes = mtd->oobsize - 2;
1108 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1111 nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1112 if (IS_ERR(nand->pmecc))
1113 return PTR_ERR(nand->pmecc);
1115 chip->ecc.algo = NAND_ECC_BCH;
1116 chip->ecc.size = req.ecc.sectorsize;
1117 chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1118 chip->ecc.strength = req.ecc.strength;
1120 chip->options |= NAND_NO_SUBPAGE_WRITE;
1122 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1127 static int atmel_nand_ecc_init(struct atmel_nand *nand)
1129 struct nand_chip *chip = &nand->base;
1130 struct atmel_nand_controller *nc;
1133 nc = to_nand_controller(chip->controller);
1135 switch (chip->ecc.mode) {
1139 * Nothing to do, the core will initialize everything for us.
1144 ret = atmel_nand_pmecc_init(chip);
1148 chip->ecc.read_page = atmel_nand_pmecc_read_page;
1149 chip->ecc.write_page = atmel_nand_pmecc_write_page;
1150 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1151 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1155 /* Other modes are not supported. */
1156 dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1164 static int atmel_hsmc_nand_ecc_init(struct atmel_nand *nand)
1166 struct nand_chip *chip = &nand->base;
1169 ret = atmel_nand_ecc_init(nand);
1173 if (chip->ecc.mode != NAND_ECC_HW)
1176 /* Adjust the ECC operations for the HSMC IP. */
1177 chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1178 chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1179 chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1180 chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1181 chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
1186 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1187 const struct nand_data_interface *conf,
1188 struct atmel_smc_cs_conf *smcconf)
1190 u32 ncycles, totalcycles, timeps, mckperiodps;
1191 struct atmel_nand_controller *nc;
1194 nc = to_nand_controller(nand->base.controller);
1196 /* DDR interface not supported. */
1197 if (conf->type != NAND_SDR_IFACE)
1201 * tRC < 30ns implies EDO mode. This controller does not support this
1204 if (conf->timings.sdr.tRC_min < 30000)
1207 atmel_smc_cs_conf_init(smcconf);
1209 mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1210 mckperiodps *= 1000;
1213 * Set write pulse timing. This one is easy to extract:
1217 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1218 totalcycles = ncycles;
1219 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1225 * The write setup timing depends on the operation done on the NAND.
1226 * All operations goes through the same data bus, but the operation
1227 * type depends on the address we are writing to (ALE/CLE address
1229 * Since we have no way to differentiate the different operations at
1230 * the SMC level, we must consider the worst case (the biggest setup
1231 * time among all operation types):
1233 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1235 timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1236 conf->timings.sdr.tALS_min);
1237 timeps = max(timeps, conf->timings.sdr.tDS_min);
1238 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1239 ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1240 totalcycles += ncycles;
1241 ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1247 * As for the write setup timing, the write hold timing depends on the
1248 * operation done on the NAND:
1250 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1252 timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1253 conf->timings.sdr.tALH_min);
1254 timeps = max3(timeps, conf->timings.sdr.tDH_min,
1255 conf->timings.sdr.tWH_min);
1256 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1257 totalcycles += ncycles;
1260 * The write cycle timing is directly matching tWC, but is also
1261 * dependent on the other timings on the setup and hold timings we
1262 * calculated earlier, which gives:
1264 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1266 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1267 ncycles = max(totalcycles, ncycles);
1268 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1274 * We don't want the CS line to be toggled between each byte/word
1275 * transfer to the NAND. The only way to guarantee that is to have the
1276 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1278 * NCS_WR_PULSE = NWE_CYCLE
1280 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1286 * As for the write setup timing, the read hold timing depends on the
1287 * operation done on the NAND:
1289 * NRD_HOLD = max(tREH, tRHOH)
1291 timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1292 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1293 totalcycles = ncycles;
1296 * TDF = tRHZ - NRD_HOLD
1298 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1299 ncycles -= totalcycles;
1302 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1303 * we might end up with a config that does not fit in the TDF field.
1304 * Just take the max value in this case and hope that the NAND is more
1305 * tolerant than advertised.
1307 if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1308 ncycles = ATMEL_SMC_MODE_TDF_MAX;
1309 else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1310 ncycles = ATMEL_SMC_MODE_TDF_MIN;
1312 smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1313 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1316 * Read pulse timing directly matches tRP:
1320 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1321 totalcycles += ncycles;
1322 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1328 * The write cycle timing is directly matching tWC, but is also
1329 * dependent on the setup and hold timings we calculated earlier,
1332 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1334 * NRD_SETUP is always 0.
1336 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1337 ncycles = max(totalcycles, ncycles);
1338 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1344 * We don't want the CS line to be toggled between each byte/word
1345 * transfer from the NAND. The only way to guarantee that is to have
1346 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1348 * NCS_RD_PULSE = NRD_CYCLE
1350 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1355 /* Txxx timings are directly matching tXXX ones. */
1356 ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1357 ret = atmel_smc_cs_conf_set_timing(smcconf,
1358 ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1363 ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1364 ret = atmel_smc_cs_conf_set_timing(smcconf,
1365 ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1368 * Version 4 of the ONFI spec mandates that tADL be at least 400
1369 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1370 * fit in the tADL field of the SMC reg. We need to relax the check and
1371 * accept the -ERANGE return code.
1373 * Note that previous versions of the ONFI spec had a lower tADL_min
1374 * (100 or 200 ns). It's not clear why this timing constraint got
1375 * increased but it seems most NANDs are fine with values lower than
1376 * 400ns, so we should be safe.
1378 if (ret && ret != -ERANGE)
1381 ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1382 ret = atmel_smc_cs_conf_set_timing(smcconf,
1383 ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1388 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1389 ret = atmel_smc_cs_conf_set_timing(smcconf,
1390 ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1395 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1396 ret = atmel_smc_cs_conf_set_timing(smcconf,
1397 ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1402 /* Attach the CS line to the NFC logic. */
1403 smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1405 /* Set the appropriate data bus width. */
1406 if (nand->base.options & NAND_BUSWIDTH_16)
1407 smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1409 /* Operate in NRD/NWE READ/WRITEMODE. */
1410 smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1411 ATMEL_SMC_MODE_WRITEMODE_NWE;
1416 static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
1418 const struct nand_data_interface *conf)
1420 struct atmel_nand_controller *nc;
1421 struct atmel_smc_cs_conf smcconf;
1422 struct atmel_nand_cs *cs;
1425 nc = to_nand_controller(nand->base.controller);
1427 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1431 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1434 cs = &nand->cs[csline];
1435 cs->smcconf = smcconf;
1436 atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1441 static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
1443 const struct nand_data_interface *conf)
1445 struct atmel_nand_controller *nc;
1446 struct atmel_smc_cs_conf smcconf;
1447 struct atmel_nand_cs *cs;
1450 nc = to_nand_controller(nand->base.controller);
1452 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1456 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1459 cs = &nand->cs[csline];
1460 cs->smcconf = smcconf;
1462 if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1463 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1465 atmel_hsmc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1470 static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
1471 const struct nand_data_interface *conf)
1473 struct nand_chip *chip = mtd_to_nand(mtd);
1474 struct atmel_nand *nand = to_atmel_nand(chip);
1475 struct atmel_nand_controller *nc;
1477 nc = to_nand_controller(nand->base.controller);
1479 if (csline >= nand->numcs ||
1480 (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1483 return nc->caps->ops->setup_data_interface(nand, csline, conf);
1486 static void atmel_nand_init(struct atmel_nand_controller *nc,
1487 struct atmel_nand *nand)
1489 struct nand_chip *chip = &nand->base;
1490 struct mtd_info *mtd = nand_to_mtd(chip);
1492 mtd->dev.parent = nc->dev;
1493 nand->base.controller = &nc->base;
1495 chip->cmd_ctrl = atmel_nand_cmd_ctrl;
1496 chip->read_byte = atmel_nand_read_byte;
1497 chip->read_word = atmel_nand_read_word;
1498 chip->write_byte = atmel_nand_write_byte;
1499 chip->read_buf = atmel_nand_read_buf;
1500 chip->write_buf = atmel_nand_write_buf;
1501 chip->select_chip = atmel_nand_select_chip;
1503 if (nc->mck && nc->caps->ops->setup_data_interface)
1504 chip->setup_data_interface = atmel_nand_setup_data_interface;
1506 /* Some NANDs require a longer delay than the default one (20us). */
1507 chip->chip_delay = 40;
1510 * Use a bounce buffer when the buffer passed by the MTD user is not
1514 chip->options |= NAND_USE_BOUNCE_BUFFER;
1516 /* Default to HW ECC if pmecc is available. */
1518 chip->ecc.mode = NAND_ECC_HW;
1521 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1522 struct atmel_nand *nand)
1524 struct nand_chip *chip = &nand->base;
1525 struct atmel_smc_nand_controller *smc_nc;
1528 atmel_nand_init(nc, nand);
1530 smc_nc = to_smc_nand_controller(chip->controller);
1531 if (!smc_nc->matrix)
1534 /* Attach the CS to the NAND Flash logic. */
1535 for (i = 0; i < nand->numcs; i++)
1536 regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
1537 BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1540 static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
1541 struct atmel_nand *nand)
1543 struct nand_chip *chip = &nand->base;
1545 atmel_nand_init(nc, nand);
1547 /* Overload some methods for the HSMC controller. */
1548 chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
1549 chip->select_chip = atmel_hsmc_nand_select_chip;
1552 static int atmel_nand_detect(struct atmel_nand *nand)
1554 struct nand_chip *chip = &nand->base;
1555 struct mtd_info *mtd = nand_to_mtd(chip);
1556 struct atmel_nand_controller *nc;
1559 nc = to_nand_controller(chip->controller);
1561 ret = nand_scan_ident(mtd, nand->numcs, NULL);
1563 dev_err(nc->dev, "nand_scan_ident() failed: %d\n", ret);
1568 static int atmel_nand_unregister(struct atmel_nand *nand)
1570 struct nand_chip *chip = &nand->base;
1571 struct mtd_info *mtd = nand_to_mtd(chip);
1574 ret = mtd_device_unregister(mtd);
1579 list_del(&nand->node);
1584 static int atmel_nand_register(struct atmel_nand *nand)
1586 struct nand_chip *chip = &nand->base;
1587 struct mtd_info *mtd = nand_to_mtd(chip);
1588 struct atmel_nand_controller *nc;
1591 nc = to_nand_controller(chip->controller);
1593 if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1595 * We keep the MTD name unchanged to avoid breaking platforms
1596 * where the MTD cmdline parser is used and the bootloader
1597 * has not been updated to use the new naming scheme.
1599 mtd->name = "atmel_nand";
1600 } else if (!mtd->name) {
1602 * If the new bindings are used and the bootloader has not been
1603 * updated to pass a new mtdparts parameter on the cmdline, you
1604 * should define the following property in your nand node:
1606 * label = "atmel_nand";
1608 * This way, mtd->name will be set by the core when
1609 * nand_set_flash_node() is called.
1611 mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
1612 "%s:nand.%d", dev_name(nc->dev),
1615 dev_err(nc->dev, "Failed to allocate mtd->name\n");
1620 ret = nand_scan_tail(mtd);
1622 dev_err(nc->dev, "nand_scan_tail() failed: %d\n", ret);
1626 ret = mtd_device_register(mtd, NULL, 0);
1628 dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1633 list_add_tail(&nand->node, &nc->chips);
1638 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1639 struct device_node *np,
1642 struct atmel_nand *nand;
1643 struct gpio_desc *gpio;
1646 numcs = of_property_count_elems_of_size(np, "reg",
1647 reg_cells * sizeof(u32));
1649 dev_err(nc->dev, "Missing or invalid reg property\n");
1650 return ERR_PTR(-EINVAL);
1653 nand = devm_kzalloc(nc->dev,
1654 sizeof(*nand) + (numcs * sizeof(*nand->cs)),
1657 dev_err(nc->dev, "Failed to allocate NAND object\n");
1658 return ERR_PTR(-ENOMEM);
1661 nand->numcs = numcs;
1663 gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
1664 &np->fwnode, GPIOD_IN,
1666 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1668 "Failed to get detect gpio (err = %ld)\n",
1670 return ERR_CAST(gpio);
1674 nand->cdgpio = gpio;
1676 for (i = 0; i < numcs; i++) {
1677 struct resource res;
1680 ret = of_address_to_resource(np, 0, &res);
1682 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1684 return ERR_PTR(ret);
1687 ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1690 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1692 return ERR_PTR(ret);
1695 nand->cs[i].id = val;
1697 nand->cs[i].io.dma = res.start;
1698 nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1699 if (IS_ERR(nand->cs[i].io.virt))
1700 return ERR_CAST(nand->cs[i].io.virt);
1702 if (!of_property_read_u32(np, "atmel,rb", &val)) {
1703 if (val > ATMEL_NFC_MAX_RB_ID)
1704 return ERR_PTR(-EINVAL);
1706 nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1707 nand->cs[i].rb.id = val;
1709 gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
1710 "rb", i, &np->fwnode,
1711 GPIOD_IN, "nand-rb");
1712 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1714 "Failed to get R/B gpio (err = %ld)\n",
1716 return ERR_CAST(gpio);
1719 if (!IS_ERR(gpio)) {
1720 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1721 nand->cs[i].rb.gpio = gpio;
1725 gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
1729 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1731 "Failed to get CS gpio (err = %ld)\n",
1733 return ERR_CAST(gpio);
1737 nand->cs[i].csgpio = gpio;
1740 nand_set_flash_node(&nand->base, np);
1746 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1747 struct atmel_nand *nand)
1751 /* No card inserted, skip this NAND. */
1752 if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1753 dev_info(nc->dev, "No SmartMedia card inserted.\n");
1757 nc->caps->ops->nand_init(nc, nand);
1759 ret = atmel_nand_detect(nand);
1763 ret = nc->caps->ops->ecc_init(nand);
1767 return atmel_nand_register(nand);
1771 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1773 struct atmel_nand *nand, *tmp;
1776 list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1777 ret = atmel_nand_unregister(nand);
1786 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1788 struct device *dev = nc->dev;
1789 struct platform_device *pdev = to_platform_device(dev);
1790 struct atmel_nand *nand;
1791 struct gpio_desc *gpio;
1792 struct resource *res;
1795 * Legacy bindings only allow connecting a single NAND with a unique CS
1796 * line to the controller.
1798 nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1805 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1806 nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
1807 if (IS_ERR(nand->cs[0].io.virt))
1808 return PTR_ERR(nand->cs[0].io.virt);
1810 nand->cs[0].io.dma = res->start;
1813 * The old driver was hardcoding the CS id to 3 for all sama5
1814 * controllers. Since this id is only meaningful for the sama5
1815 * controller we can safely assign this id to 3 no matter the
1817 * If one wants to connect a NAND to a different CS line, he will
1818 * have to use the new bindings.
1823 gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
1825 dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1827 return PTR_ERR(gpio);
1831 nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1832 nand->cs[0].rb.gpio = gpio;
1836 gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1838 dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1840 return PTR_ERR(gpio);
1843 nand->cs[0].csgpio = gpio;
1845 /* Card detect GPIO. */
1846 gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1849 "Failed to get detect gpio (err = %ld)\n",
1851 return PTR_ERR(gpio);
1854 nand->cdgpio = gpio;
1856 nand_set_flash_node(&nand->base, nc->dev->of_node);
1858 return atmel_nand_controller_add_nand(nc, nand);
1861 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1863 struct device_node *np, *nand_np;
1864 struct device *dev = nc->dev;
1868 /* We do not retrieve the SMC syscon when parsing old DTs. */
1869 if (nc->caps->legacy_of_bindings)
1870 return atmel_nand_controller_legacy_add_nands(nc);
1874 ret = of_property_read_u32(np, "#address-cells", &val);
1876 dev_err(dev, "missing #address-cells property\n");
1882 ret = of_property_read_u32(np, "#size-cells", &val);
1884 dev_err(dev, "missing #address-cells property\n");
1890 for_each_child_of_node(np, nand_np) {
1891 struct atmel_nand *nand;
1893 nand = atmel_nand_create(nc, nand_np, reg_cells);
1895 ret = PTR_ERR(nand);
1899 ret = atmel_nand_controller_add_nand(nc, nand);
1907 atmel_nand_controller_remove_nands(nc);
1912 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1915 dma_release_channel(nc->dmac);
1920 static const struct of_device_id atmel_matrix_of_ids[] = {
1922 .compatible = "atmel,at91sam9260-matrix",
1923 .data = (void *)AT91SAM9260_MATRIX_EBICSA,
1926 .compatible = "atmel,at91sam9261-matrix",
1927 .data = (void *)AT91SAM9261_MATRIX_EBICSA,
1930 .compatible = "atmel,at91sam9263-matrix",
1931 .data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
1934 .compatible = "atmel,at91sam9rl-matrix",
1935 .data = (void *)AT91SAM9RL_MATRIX_EBICSA,
1938 .compatible = "atmel,at91sam9g45-matrix",
1939 .data = (void *)AT91SAM9G45_MATRIX_EBICSA,
1942 .compatible = "atmel,at91sam9n12-matrix",
1943 .data = (void *)AT91SAM9N12_MATRIX_EBICSA,
1946 .compatible = "atmel,at91sam9x5-matrix",
1947 .data = (void *)AT91SAM9X5_MATRIX_EBICSA,
1952 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
1953 struct platform_device *pdev,
1954 const struct atmel_nand_controller_caps *caps)
1956 struct device *dev = &pdev->dev;
1957 struct device_node *np = dev->of_node;
1960 nand_hw_control_init(&nc->base);
1961 INIT_LIST_HEAD(&nc->chips);
1965 platform_set_drvdata(pdev, nc);
1967 nc->pmecc = devm_atmel_pmecc_get(dev);
1968 if (IS_ERR(nc->pmecc)) {
1969 ret = PTR_ERR(nc->pmecc);
1970 if (ret != -EPROBE_DEFER)
1971 dev_err(dev, "Could not get PMECC object (err = %d)\n",
1976 if (nc->caps->has_dma) {
1977 dma_cap_mask_t mask;
1980 dma_cap_set(DMA_MEMCPY, mask);
1982 nc->dmac = dma_request_channel(mask, NULL, NULL);
1984 dev_err(nc->dev, "Failed to request DMA channel\n");
1987 /* We do not retrieve the SMC syscon when parsing old DTs. */
1988 if (nc->caps->legacy_of_bindings)
1991 nc->mck = of_clk_get(dev->parent->of_node, 0);
1992 if (IS_ERR(nc->mck)) {
1993 dev_err(dev, "Failed to retrieve MCK clk\n");
1994 return PTR_ERR(nc->mck);
1997 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
1999 dev_err(dev, "Missing or invalid atmel,smc property\n");
2003 nc->smc = syscon_node_to_regmap(np);
2005 if (IS_ERR(nc->smc)) {
2006 ret = PTR_ERR(nc->smc);
2007 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
2015 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2017 struct device *dev = nc->base.dev;
2018 const struct of_device_id *match;
2019 struct device_node *np;
2022 /* We do not retrieve the matrix syscon when parsing old DTs. */
2023 if (nc->base.caps->legacy_of_bindings)
2026 np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
2030 match = of_match_node(atmel_matrix_of_ids, np);
2036 nc->matrix = syscon_node_to_regmap(np);
2038 if (IS_ERR(nc->matrix)) {
2039 ret = PTR_ERR(nc->matrix);
2040 dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
2044 nc->ebi_csa_offs = (unsigned int)match->data;
2047 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2048 * add 4 to ->ebi_csa_offs.
2050 if (of_device_is_compatible(dev->parent->of_node,
2051 "atmel,at91sam9263-ebi1"))
2052 nc->ebi_csa_offs += 4;
2058 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2060 struct regmap_config regmap_conf = {
2066 struct device *dev = nc->base.dev;
2067 struct device_node *nand_np, *nfc_np;
2068 void __iomem *iomem;
2069 struct resource res;
2072 nand_np = dev->of_node;
2073 nfc_np = of_find_compatible_node(dev->of_node, NULL,
2074 "atmel,sama5d3-nfc");
2076 nc->clk = of_clk_get(nfc_np, 0);
2077 if (IS_ERR(nc->clk)) {
2078 ret = PTR_ERR(nc->clk);
2079 dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2084 ret = clk_prepare_enable(nc->clk);
2086 dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2091 nc->irq = of_irq_get(nand_np, 0);
2093 ret = nc->irq ?: -ENXIO;
2094 if (ret != -EPROBE_DEFER)
2095 dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2100 ret = of_address_to_resource(nfc_np, 0, &res);
2102 dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2107 iomem = devm_ioremap_resource(dev, &res);
2108 if (IS_ERR(iomem)) {
2109 ret = PTR_ERR(iomem);
2113 regmap_conf.name = "nfc-io";
2114 regmap_conf.max_register = resource_size(&res) - 4;
2115 nc->io = devm_regmap_init_mmio(dev, iomem, ®map_conf);
2116 if (IS_ERR(nc->io)) {
2117 ret = PTR_ERR(nc->io);
2118 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2123 ret = of_address_to_resource(nfc_np, 1, &res);
2125 dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2130 iomem = devm_ioremap_resource(dev, &res);
2131 if (IS_ERR(iomem)) {
2132 ret = PTR_ERR(iomem);
2136 regmap_conf.name = "smc";
2137 regmap_conf.max_register = resource_size(&res) - 4;
2138 nc->base.smc = devm_regmap_init_mmio(dev, iomem, ®map_conf);
2139 if (IS_ERR(nc->base.smc)) {
2140 ret = PTR_ERR(nc->base.smc);
2141 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2146 ret = of_address_to_resource(nfc_np, 2, &res);
2148 dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2153 nc->sram.virt = devm_ioremap_resource(dev, &res);
2154 if (IS_ERR(nc->sram.virt)) {
2155 ret = PTR_ERR(nc->sram.virt);
2159 nc->sram.dma = res.start;
2162 of_node_put(nfc_np);
2168 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2170 struct device *dev = nc->base.dev;
2171 struct device_node *np;
2174 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2176 dev_err(dev, "Missing or invalid atmel,smc property\n");
2180 nc->irq = of_irq_get(np, 0);
2183 ret = nc->irq ?: -ENXIO;
2184 if (ret != -EPROBE_DEFER)
2185 dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2190 np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2192 dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2196 nc->io = syscon_node_to_regmap(np);
2198 if (IS_ERR(nc->io)) {
2199 ret = PTR_ERR(nc->io);
2200 dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2204 nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2205 "atmel,nfc-sram", 0);
2206 if (!nc->sram.pool) {
2207 dev_err(nc->base.dev, "Missing SRAM\n");
2211 nc->sram.virt = gen_pool_dma_alloc(nc->sram.pool,
2212 ATMEL_NFC_SRAM_SIZE,
2214 if (!nc->sram.virt) {
2215 dev_err(nc->base.dev,
2216 "Could not allocate memory from the NFC SRAM pool\n");
2224 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2226 struct atmel_hsmc_nand_controller *hsmc_nc;
2229 ret = atmel_nand_controller_remove_nands(nc);
2233 hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2234 if (hsmc_nc->sram.pool)
2235 gen_pool_free(hsmc_nc->sram.pool,
2236 (unsigned long)hsmc_nc->sram.virt,
2237 ATMEL_NFC_SRAM_SIZE);
2240 clk_disable_unprepare(hsmc_nc->clk);
2241 clk_put(hsmc_nc->clk);
2244 atmel_nand_controller_cleanup(nc);
2249 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2250 const struct atmel_nand_controller_caps *caps)
2252 struct device *dev = &pdev->dev;
2253 struct atmel_hsmc_nand_controller *nc;
2256 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2260 ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2264 if (caps->legacy_of_bindings)
2265 ret = atmel_hsmc_nand_controller_legacy_init(nc);
2267 ret = atmel_hsmc_nand_controller_init(nc);
2272 /* Make sure all irqs are masked before registering our IRQ handler. */
2273 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2274 ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2275 IRQF_SHARED, "nfc", nc);
2278 "Could not get register NFC interrupt handler (err = %d)\n",
2283 /* Initial NFC configuration. */
2284 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2285 ATMEL_HSMC_NFC_CFG_DTO_MAX);
2287 ret = atmel_nand_controller_add_nands(&nc->base);
2294 atmel_hsmc_nand_controller_remove(&nc->base);
2299 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2300 .probe = atmel_hsmc_nand_controller_probe,
2301 .remove = atmel_hsmc_nand_controller_remove,
2302 .ecc_init = atmel_hsmc_nand_ecc_init,
2303 .nand_init = atmel_hsmc_nand_init,
2304 .setup_data_interface = atmel_hsmc_nand_setup_data_interface,
2307 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2309 .ale_offs = BIT(21),
2310 .cle_offs = BIT(22),
2311 .ops = &atmel_hsmc_nc_ops,
2314 /* Only used to parse old bindings. */
2315 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2317 .ale_offs = BIT(21),
2318 .cle_offs = BIT(22),
2319 .ops = &atmel_hsmc_nc_ops,
2320 .legacy_of_bindings = true,
2323 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2324 const struct atmel_nand_controller_caps *caps)
2326 struct device *dev = &pdev->dev;
2327 struct atmel_smc_nand_controller *nc;
2330 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2334 ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2338 ret = atmel_smc_nand_controller_init(nc);
2342 return atmel_nand_controller_add_nands(&nc->base);
2346 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2350 ret = atmel_nand_controller_remove_nands(nc);
2354 atmel_nand_controller_cleanup(nc);
2360 * The SMC reg layout of at91rm9200 is completely different which prevents us
2361 * from re-using atmel_smc_nand_setup_data_interface() for the
2362 * ->setup_data_interface() hook.
2363 * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2364 * ->setup_data_interface() unassigned.
2366 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2367 .probe = atmel_smc_nand_controller_probe,
2368 .remove = atmel_smc_nand_controller_remove,
2369 .ecc_init = atmel_nand_ecc_init,
2370 .nand_init = atmel_smc_nand_init,
2373 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2374 .ale_offs = BIT(21),
2375 .cle_offs = BIT(22),
2376 .ops = &at91rm9200_nc_ops,
2379 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2380 .probe = atmel_smc_nand_controller_probe,
2381 .remove = atmel_smc_nand_controller_remove,
2382 .ecc_init = atmel_nand_ecc_init,
2383 .nand_init = atmel_smc_nand_init,
2384 .setup_data_interface = atmel_smc_nand_setup_data_interface,
2387 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2388 .ale_offs = BIT(21),
2389 .cle_offs = BIT(22),
2390 .ops = &atmel_smc_nc_ops,
2393 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2394 .ale_offs = BIT(22),
2395 .cle_offs = BIT(21),
2396 .ops = &atmel_smc_nc_ops,
2399 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2401 .ale_offs = BIT(21),
2402 .cle_offs = BIT(22),
2403 .ops = &atmel_smc_nc_ops,
2406 /* Only used to parse old bindings. */
2407 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2408 .ale_offs = BIT(21),
2409 .cle_offs = BIT(22),
2410 .ops = &atmel_smc_nc_ops,
2411 .legacy_of_bindings = true,
2414 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2415 .ale_offs = BIT(22),
2416 .cle_offs = BIT(21),
2417 .ops = &atmel_smc_nc_ops,
2418 .legacy_of_bindings = true,
2421 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2423 .ale_offs = BIT(21),
2424 .cle_offs = BIT(22),
2425 .ops = &atmel_smc_nc_ops,
2426 .legacy_of_bindings = true,
2429 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2431 .compatible = "atmel,at91rm9200-nand-controller",
2432 .data = &atmel_rm9200_nc_caps,
2435 .compatible = "atmel,at91sam9260-nand-controller",
2436 .data = &atmel_sam9260_nc_caps,
2439 .compatible = "atmel,at91sam9261-nand-controller",
2440 .data = &atmel_sam9261_nc_caps,
2443 .compatible = "atmel,at91sam9g45-nand-controller",
2444 .data = &atmel_sam9g45_nc_caps,
2447 .compatible = "atmel,sama5d3-nand-controller",
2448 .data = &atmel_sama5_nc_caps,
2450 /* Support for old/deprecated bindings: */
2452 .compatible = "atmel,at91rm9200-nand",
2453 .data = &atmel_rm9200_nand_caps,
2456 .compatible = "atmel,sama5d4-nand",
2457 .data = &atmel_rm9200_nand_caps,
2460 .compatible = "atmel,sama5d2-nand",
2461 .data = &atmel_rm9200_nand_caps,
2465 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2467 static int atmel_nand_controller_probe(struct platform_device *pdev)
2469 const struct atmel_nand_controller_caps *caps;
2472 caps = (void *)pdev->id_entry->driver_data;
2474 caps = of_device_get_match_data(&pdev->dev);
2477 dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2481 if (caps->legacy_of_bindings) {
2485 * If we are parsing legacy DT props and the DT contains a
2486 * valid NFC node, forward the request to the sama5 logic.
2488 if (of_find_compatible_node(pdev->dev.of_node, NULL,
2489 "atmel,sama5d3-nfc"))
2490 caps = &atmel_sama5_nand_caps;
2493 * Even if the compatible says we are dealing with an
2494 * at91rm9200 controller, the atmel,nand-has-dma specify that
2495 * this controller supports DMA, which means we are in fact
2496 * dealing with an at91sam9g45+ controller.
2498 if (!caps->has_dma &&
2499 of_property_read_bool(pdev->dev.of_node,
2500 "atmel,nand-has-dma"))
2501 caps = &atmel_sam9g45_nand_caps;
2504 * All SoCs except the at91sam9261 are assigning ALE to A21 and
2505 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2506 * actually dealing with an at91sam9261 controller.
2508 of_property_read_u32(pdev->dev.of_node,
2509 "atmel,nand-addr-offset", &ale_offs);
2511 caps = &atmel_sam9261_nand_caps;
2514 return caps->ops->probe(pdev, caps);
2517 static int atmel_nand_controller_remove(struct platform_device *pdev)
2519 struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2521 return nc->caps->ops->remove(nc);
2524 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2526 struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2527 struct atmel_nand *nand;
2529 list_for_each_entry(nand, &nc->chips, node) {
2532 for (i = 0; i < nand->numcs; i++)
2533 nand_reset(&nand->base, i);
2539 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2540 atmel_nand_controller_resume);
2542 static struct platform_driver atmel_nand_controller_driver = {
2544 .name = "atmel-nand-controller",
2545 .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
2547 .probe = atmel_nand_controller_probe,
2548 .remove = atmel_nand_controller_remove,
2550 module_platform_driver(atmel_nand_controller_driver);
2552 MODULE_LICENSE("GPL");
2554 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2555 MODULE_ALIAS("platform:atmel-nand-controller");