4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 void sync_mm_rss(struct mm_struct *mm)
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
138 current->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 sync_mm_rss(task->mm);
162 #else /* SPLIT_RSS_COUNTING */
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
167 static void check_sync_rss_stat(struct task_struct *task)
171 #endif /* SPLIT_RSS_COUNTING */
173 #ifdef HAVE_GENERIC_MMU_GATHER
175 static int tlb_next_batch(struct mmu_gather *tlb)
177 struct mmu_gather_batch *batch;
181 tlb->active = batch->next;
185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
191 batch->max = MAX_GATHER_BATCH;
193 tlb->active->next = batch;
200 * Called to initialize an (on-stack) mmu_gather structure for page-table
201 * tear-down from @mm. The @fullmm argument is used when @mm is without
202 * users and we're going to destroy the full address space (exit/execve).
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
208 tlb->fullmm = fullmm;
212 tlb->fast_mode = (num_possible_cpus() == 1);
213 tlb->local.next = NULL;
215 tlb->local.max = ARRAY_SIZE(tlb->__pages);
216 tlb->active = &tlb->local;
218 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
223 void tlb_flush_mmu(struct mmu_gather *tlb)
225 struct mmu_gather_batch *batch;
227 if (!tlb->need_flush)
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 tlb_table_flush(tlb);
235 if (tlb_fast_mode(tlb))
238 for (batch = &tlb->local; batch; batch = batch->next) {
239 free_pages_and_swap_cache(batch->pages, batch->nr);
242 tlb->active = &tlb->local;
246 * Called at the end of the shootdown operation to free up any resources
247 * that were required.
249 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
251 struct mmu_gather_batch *batch, *next;
257 /* keep the page table cache within bounds */
260 for (batch = tlb->local.next; batch; batch = next) {
262 free_pages((unsigned long)batch, 0);
264 tlb->local.next = NULL;
268 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
269 * handling the additional races in SMP caused by other CPUs caching valid
270 * mappings in their TLBs. Returns the number of free page slots left.
271 * When out of page slots we must call tlb_flush_mmu().
273 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
275 struct mmu_gather_batch *batch;
277 VM_BUG_ON(!tlb->need_flush);
279 if (tlb_fast_mode(tlb)) {
280 free_page_and_swap_cache(page);
281 return 1; /* avoid calling tlb_flush_mmu() */
285 batch->pages[batch->nr++] = page;
286 if (batch->nr == batch->max) {
287 if (!tlb_next_batch(tlb))
291 VM_BUG_ON(batch->nr > batch->max);
293 return batch->max - batch->nr;
296 #endif /* HAVE_GENERIC_MMU_GATHER */
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
301 * See the comment near struct mmu_table_batch.
304 static void tlb_remove_table_smp_sync(void *arg)
306 /* Simply deliver the interrupt */
309 static void tlb_remove_table_one(void *table)
312 * This isn't an RCU grace period and hence the page-tables cannot be
313 * assumed to be actually RCU-freed.
315 * It is however sufficient for software page-table walkers that rely on
316 * IRQ disabling. See the comment near struct mmu_table_batch.
318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 __tlb_remove_table(table);
322 static void tlb_remove_table_rcu(struct rcu_head *head)
324 struct mmu_table_batch *batch;
327 batch = container_of(head, struct mmu_table_batch, rcu);
329 for (i = 0; i < batch->nr; i++)
330 __tlb_remove_table(batch->tables[i]);
332 free_page((unsigned long)batch);
335 void tlb_table_flush(struct mmu_gather *tlb)
337 struct mmu_table_batch **batch = &tlb->batch;
340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
347 struct mmu_table_batch **batch = &tlb->batch;
352 * When there's less then two users of this mm there cannot be a
353 * concurrent page-table walk.
355 if (atomic_read(&tlb->mm->mm_users) < 2) {
356 __tlb_remove_table(table);
360 if (*batch == NULL) {
361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 if (*batch == NULL) {
363 tlb_remove_table_one(table);
368 (*batch)->tables[(*batch)->nr++] = table;
369 if ((*batch)->nr == MAX_TABLE_BATCH)
370 tlb_table_flush(tlb);
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
376 * If a p?d_bad entry is found while walking page tables, report
377 * the error, before resetting entry to p?d_none. Usually (but
378 * very seldom) called out from the p?d_none_or_clear_bad macros.
381 void pgd_clear_bad(pgd_t *pgd)
387 void pud_clear_bad(pud_t *pud)
393 void pmd_clear_bad(pmd_t *pmd)
400 * Note: this doesn't free the actual pages themselves. That
401 * has been handled earlier when unmapping all the memory regions.
403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
406 pgtable_t token = pmd_pgtable(*pmd);
408 pte_free_tlb(tlb, token, addr);
412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413 unsigned long addr, unsigned long end,
414 unsigned long floor, unsigned long ceiling)
421 pmd = pmd_offset(pud, addr);
423 next = pmd_addr_end(addr, end);
424 if (pmd_none_or_clear_bad(pmd))
426 free_pte_range(tlb, pmd, addr);
427 } while (pmd++, addr = next, addr != end);
437 if (end - 1 > ceiling - 1)
440 pmd = pmd_offset(pud, start);
442 pmd_free_tlb(tlb, pmd, start);
445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446 unsigned long addr, unsigned long end,
447 unsigned long floor, unsigned long ceiling)
454 pud = pud_offset(pgd, addr);
456 next = pud_addr_end(addr, end);
457 if (pud_none_or_clear_bad(pud))
459 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
460 } while (pud++, addr = next, addr != end);
466 ceiling &= PGDIR_MASK;
470 if (end - 1 > ceiling - 1)
473 pud = pud_offset(pgd, start);
475 pud_free_tlb(tlb, pud, start);
479 * This function frees user-level page tables of a process.
481 * Must be called with pagetable lock held.
483 void free_pgd_range(struct mmu_gather *tlb,
484 unsigned long addr, unsigned long end,
485 unsigned long floor, unsigned long ceiling)
491 * The next few lines have given us lots of grief...
493 * Why are we testing PMD* at this top level? Because often
494 * there will be no work to do at all, and we'd prefer not to
495 * go all the way down to the bottom just to discover that.
497 * Why all these "- 1"s? Because 0 represents both the bottom
498 * of the address space and the top of it (using -1 for the
499 * top wouldn't help much: the masks would do the wrong thing).
500 * The rule is that addr 0 and floor 0 refer to the bottom of
501 * the address space, but end 0 and ceiling 0 refer to the top
502 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 * that end 0 case should be mythical).
505 * Wherever addr is brought up or ceiling brought down, we must
506 * be careful to reject "the opposite 0" before it confuses the
507 * subsequent tests. But what about where end is brought down
508 * by PMD_SIZE below? no, end can't go down to 0 there.
510 * Whereas we round start (addr) and ceiling down, by different
511 * masks at different levels, in order to test whether a table
512 * now has no other vmas using it, so can be freed, we don't
513 * bother to round floor or end up - the tests don't need that.
527 if (end - 1 > ceiling - 1)
532 pgd = pgd_offset(tlb->mm, addr);
534 next = pgd_addr_end(addr, end);
535 if (pgd_none_or_clear_bad(pgd))
537 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
538 } while (pgd++, addr = next, addr != end);
541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
542 unsigned long floor, unsigned long ceiling)
545 struct vm_area_struct *next = vma->vm_next;
546 unsigned long addr = vma->vm_start;
549 * Hide vma from rmap and truncate_pagecache before freeing
552 unlink_anon_vmas(vma);
553 unlink_file_vma(vma);
555 if (is_vm_hugetlb_page(vma)) {
556 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
557 floor, next? next->vm_start: ceiling);
560 * Optimization: gather nearby vmas into one call down
562 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
563 && !is_vm_hugetlb_page(next)) {
566 unlink_anon_vmas(vma);
567 unlink_file_vma(vma);
569 free_pgd_range(tlb, addr, vma->vm_end,
570 floor, next? next->vm_start: ceiling);
576 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
577 pmd_t *pmd, unsigned long address)
579 pgtable_t new = pte_alloc_one(mm, address);
580 int wait_split_huge_page;
585 * Ensure all pte setup (eg. pte page lock and page clearing) are
586 * visible before the pte is made visible to other CPUs by being
587 * put into page tables.
589 * The other side of the story is the pointer chasing in the page
590 * table walking code (when walking the page table without locking;
591 * ie. most of the time). Fortunately, these data accesses consist
592 * of a chain of data-dependent loads, meaning most CPUs (alpha
593 * being the notable exception) will already guarantee loads are
594 * seen in-order. See the alpha page table accessors for the
595 * smp_read_barrier_depends() barriers in page table walking code.
597 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599 spin_lock(&mm->page_table_lock);
600 wait_split_huge_page = 0;
601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
603 pmd_populate(mm, pmd, new);
605 } else if (unlikely(pmd_trans_splitting(*pmd)))
606 wait_split_huge_page = 1;
607 spin_unlock(&mm->page_table_lock);
610 if (wait_split_huge_page)
611 wait_split_huge_page(vma->anon_vma, pmd);
615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
617 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
621 smp_wmb(); /* See comment in __pte_alloc */
623 spin_lock(&init_mm.page_table_lock);
624 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
625 pmd_populate_kernel(&init_mm, pmd, new);
628 VM_BUG_ON(pmd_trans_splitting(*pmd));
629 spin_unlock(&init_mm.page_table_lock);
631 pte_free_kernel(&init_mm, new);
635 static inline void init_rss_vec(int *rss)
637 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
640 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
644 if (current->mm == mm)
646 for (i = 0; i < NR_MM_COUNTERS; i++)
648 add_mm_counter(mm, i, rss[i]);
652 * This function is called to print an error when a bad pte
653 * is found. For example, we might have a PFN-mapped pte in
654 * a region that doesn't allow it.
656 * The calling function must still handle the error.
658 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
659 pte_t pte, struct page *page)
661 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
662 pud_t *pud = pud_offset(pgd, addr);
663 pmd_t *pmd = pmd_offset(pud, addr);
664 struct address_space *mapping;
666 static unsigned long resume;
667 static unsigned long nr_shown;
668 static unsigned long nr_unshown;
671 * Allow a burst of 60 reports, then keep quiet for that minute;
672 * or allow a steady drip of one report per second.
674 if (nr_shown == 60) {
675 if (time_before(jiffies, resume)) {
681 "BUG: Bad page map: %lu messages suppressed\n",
688 resume = jiffies + 60 * HZ;
690 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691 index = linear_page_index(vma, addr);
694 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
696 (long long)pte_val(pte), (long long)pmd_val(*pmd));
700 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
703 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
706 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
707 (unsigned long)vma->vm_ops->fault);
708 if (vma->vm_file && vma->vm_file->f_op)
709 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
710 (unsigned long)vma->vm_file->f_op->mmap);
712 add_taint(TAINT_BAD_PAGE);
715 static inline bool is_cow_mapping(vm_flags_t flags)
717 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
721 static inline int is_zero_pfn(unsigned long pfn)
723 return pfn == zero_pfn;
728 static inline unsigned long my_zero_pfn(unsigned long addr)
735 * vm_normal_page -- This function gets the "struct page" associated with a pte.
737 * "Special" mappings do not wish to be associated with a "struct page" (either
738 * it doesn't exist, or it exists but they don't want to touch it). In this
739 * case, NULL is returned here. "Normal" mappings do have a struct page.
741 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
742 * pte bit, in which case this function is trivial. Secondly, an architecture
743 * may not have a spare pte bit, which requires a more complicated scheme,
746 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
747 * special mapping (even if there are underlying and valid "struct pages").
748 * COWed pages of a VM_PFNMAP are always normal.
750 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
751 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
752 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
753 * mapping will always honor the rule
755 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
757 * And for normal mappings this is false.
759 * This restricts such mappings to be a linear translation from virtual address
760 * to pfn. To get around this restriction, we allow arbitrary mappings so long
761 * as the vma is not a COW mapping; in that case, we know that all ptes are
762 * special (because none can have been COWed).
765 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
767 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
768 * page" backing, however the difference is that _all_ pages with a struct
769 * page (that is, those where pfn_valid is true) are refcounted and considered
770 * normal pages by the VM. The disadvantage is that pages are refcounted
771 * (which can be slower and simply not an option for some PFNMAP users). The
772 * advantage is that we don't have to follow the strict linearity rule of
773 * PFNMAP mappings in order to support COWable mappings.
776 #ifdef __HAVE_ARCH_PTE_SPECIAL
777 # define HAVE_PTE_SPECIAL 1
779 # define HAVE_PTE_SPECIAL 0
781 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
784 unsigned long pfn = pte_pfn(pte);
786 if (HAVE_PTE_SPECIAL) {
787 if (likely(!pte_special(pte)))
789 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
791 if (!is_zero_pfn(pfn))
792 print_bad_pte(vma, addr, pte, NULL);
796 /* !HAVE_PTE_SPECIAL case follows: */
798 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
799 if (vma->vm_flags & VM_MIXEDMAP) {
805 off = (addr - vma->vm_start) >> PAGE_SHIFT;
806 if (pfn == vma->vm_pgoff + off)
808 if (!is_cow_mapping(vma->vm_flags))
813 if (is_zero_pfn(pfn))
816 if (unlikely(pfn > highest_memmap_pfn)) {
817 print_bad_pte(vma, addr, pte, NULL);
822 * NOTE! We still have PageReserved() pages in the page tables.
823 * eg. VDSO mappings can cause them to exist.
826 return pfn_to_page(pfn);
830 * copy one vm_area from one task to the other. Assumes the page tables
831 * already present in the new task to be cleared in the whole range
832 * covered by this vma.
835 static inline unsigned long
836 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
837 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
838 unsigned long addr, int *rss)
840 unsigned long vm_flags = vma->vm_flags;
841 pte_t pte = *src_pte;
844 /* pte contains position in swap or file, so copy. */
845 if (unlikely(!pte_present(pte))) {
846 if (!pte_file(pte)) {
847 swp_entry_t entry = pte_to_swp_entry(pte);
849 if (swap_duplicate(entry) < 0)
852 /* make sure dst_mm is on swapoff's mmlist. */
853 if (unlikely(list_empty(&dst_mm->mmlist))) {
854 spin_lock(&mmlist_lock);
855 if (list_empty(&dst_mm->mmlist))
856 list_add(&dst_mm->mmlist,
858 spin_unlock(&mmlist_lock);
860 if (likely(!non_swap_entry(entry)))
862 else if (is_migration_entry(entry)) {
863 page = migration_entry_to_page(entry);
870 if (is_write_migration_entry(entry) &&
871 is_cow_mapping(vm_flags)) {
873 * COW mappings require pages in both
874 * parent and child to be set to read.
876 make_migration_entry_read(&entry);
877 pte = swp_entry_to_pte(entry);
878 set_pte_at(src_mm, addr, src_pte, pte);
886 * If it's a COW mapping, write protect it both
887 * in the parent and the child
889 if (is_cow_mapping(vm_flags)) {
890 ptep_set_wrprotect(src_mm, addr, src_pte);
891 pte = pte_wrprotect(pte);
895 * If it's a shared mapping, mark it clean in
898 if (vm_flags & VM_SHARED)
899 pte = pte_mkclean(pte);
900 pte = pte_mkold(pte);
902 page = vm_normal_page(vma, addr, pte);
913 set_pte_at(dst_mm, addr, dst_pte, pte);
917 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
919 unsigned long addr, unsigned long end)
921 pte_t *orig_src_pte, *orig_dst_pte;
922 pte_t *src_pte, *dst_pte;
923 spinlock_t *src_ptl, *dst_ptl;
925 int rss[NR_MM_COUNTERS];
926 swp_entry_t entry = (swp_entry_t){0};
931 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
934 src_pte = pte_offset_map(src_pmd, addr);
935 src_ptl = pte_lockptr(src_mm, src_pmd);
936 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
937 orig_src_pte = src_pte;
938 orig_dst_pte = dst_pte;
939 arch_enter_lazy_mmu_mode();
943 * We are holding two locks at this point - either of them
944 * could generate latencies in another task on another CPU.
946 if (progress >= 32) {
948 if (need_resched() ||
949 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
952 if (pte_none(*src_pte)) {
956 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
961 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
963 arch_leave_lazy_mmu_mode();
964 spin_unlock(src_ptl);
965 pte_unmap(orig_src_pte);
966 add_mm_rss_vec(dst_mm, rss);
967 pte_unmap_unlock(orig_dst_pte, dst_ptl);
971 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
980 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
982 unsigned long addr, unsigned long end)
984 pmd_t *src_pmd, *dst_pmd;
987 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
990 src_pmd = pmd_offset(src_pud, addr);
992 next = pmd_addr_end(addr, end);
993 if (pmd_trans_huge(*src_pmd)) {
995 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
996 err = copy_huge_pmd(dst_mm, src_mm,
997 dst_pmd, src_pmd, addr, vma);
1004 if (pmd_none_or_clear_bad(src_pmd))
1006 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1009 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1013 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1014 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1015 unsigned long addr, unsigned long end)
1017 pud_t *src_pud, *dst_pud;
1020 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1023 src_pud = pud_offset(src_pgd, addr);
1025 next = pud_addr_end(addr, end);
1026 if (pud_none_or_clear_bad(src_pud))
1028 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1031 } while (dst_pud++, src_pud++, addr = next, addr != end);
1035 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1036 struct vm_area_struct *vma)
1038 pgd_t *src_pgd, *dst_pgd;
1040 unsigned long addr = vma->vm_start;
1041 unsigned long end = vma->vm_end;
1042 unsigned long mmun_start; /* For mmu_notifiers */
1043 unsigned long mmun_end; /* For mmu_notifiers */
1048 * Don't copy ptes where a page fault will fill them correctly.
1049 * Fork becomes much lighter when there are big shared or private
1050 * readonly mappings. The tradeoff is that copy_page_range is more
1051 * efficient than faulting.
1053 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1054 VM_PFNMAP | VM_MIXEDMAP))) {
1059 if (is_vm_hugetlb_page(vma))
1060 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1062 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1064 * We do not free on error cases below as remove_vma
1065 * gets called on error from higher level routine
1067 ret = track_pfn_copy(vma);
1073 * We need to invalidate the secondary MMU mappings only when
1074 * there could be a permission downgrade on the ptes of the
1075 * parent mm. And a permission downgrade will only happen if
1076 * is_cow_mapping() returns true.
1078 is_cow = is_cow_mapping(vma->vm_flags);
1082 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1086 dst_pgd = pgd_offset(dst_mm, addr);
1087 src_pgd = pgd_offset(src_mm, addr);
1089 next = pgd_addr_end(addr, end);
1090 if (pgd_none_or_clear_bad(src_pgd))
1092 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1093 vma, addr, next))) {
1097 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1100 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1104 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1105 struct vm_area_struct *vma, pmd_t *pmd,
1106 unsigned long addr, unsigned long end,
1107 struct zap_details *details)
1109 struct mm_struct *mm = tlb->mm;
1110 int force_flush = 0;
1111 int rss[NR_MM_COUNTERS];
1118 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1120 arch_enter_lazy_mmu_mode();
1123 if (pte_none(ptent)) {
1127 if (pte_present(ptent)) {
1130 page = vm_normal_page(vma, addr, ptent);
1131 if (unlikely(details) && page) {
1133 * unmap_shared_mapping_pages() wants to
1134 * invalidate cache without truncating:
1135 * unmap shared but keep private pages.
1137 if (details->check_mapping &&
1138 details->check_mapping != page->mapping)
1141 * Each page->index must be checked when
1142 * invalidating or truncating nonlinear.
1144 if (details->nonlinear_vma &&
1145 (page->index < details->first_index ||
1146 page->index > details->last_index))
1149 ptent = ptep_get_and_clear_full(mm, addr, pte,
1151 tlb_remove_tlb_entry(tlb, pte, addr);
1152 if (unlikely(!page))
1154 if (unlikely(details) && details->nonlinear_vma
1155 && linear_page_index(details->nonlinear_vma,
1156 addr) != page->index)
1157 set_pte_at(mm, addr, pte,
1158 pgoff_to_pte(page->index));
1160 rss[MM_ANONPAGES]--;
1162 if (pte_dirty(ptent))
1163 set_page_dirty(page);
1164 if (pte_young(ptent) &&
1165 likely(!VM_SequentialReadHint(vma)))
1166 mark_page_accessed(page);
1167 rss[MM_FILEPAGES]--;
1169 page_remove_rmap(page);
1170 if (unlikely(page_mapcount(page) < 0))
1171 print_bad_pte(vma, addr, ptent, page);
1172 force_flush = !__tlb_remove_page(tlb, page);
1178 * If details->check_mapping, we leave swap entries;
1179 * if details->nonlinear_vma, we leave file entries.
1181 if (unlikely(details))
1183 if (pte_file(ptent)) {
1184 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1185 print_bad_pte(vma, addr, ptent, NULL);
1187 swp_entry_t entry = pte_to_swp_entry(ptent);
1189 if (!non_swap_entry(entry))
1191 else if (is_migration_entry(entry)) {
1194 page = migration_entry_to_page(entry);
1197 rss[MM_ANONPAGES]--;
1199 rss[MM_FILEPAGES]--;
1201 if (unlikely(!free_swap_and_cache(entry)))
1202 print_bad_pte(vma, addr, ptent, NULL);
1204 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1205 } while (pte++, addr += PAGE_SIZE, addr != end);
1207 add_mm_rss_vec(mm, rss);
1208 arch_leave_lazy_mmu_mode();
1209 pte_unmap_unlock(start_pte, ptl);
1212 * mmu_gather ran out of room to batch pages, we break out of
1213 * the PTE lock to avoid doing the potential expensive TLB invalidate
1214 * and page-free while holding it.
1219 #ifdef HAVE_GENERIC_MMU_GATHER
1231 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1232 struct vm_area_struct *vma, pud_t *pud,
1233 unsigned long addr, unsigned long end,
1234 struct zap_details *details)
1239 pmd = pmd_offset(pud, addr);
1241 next = pmd_addr_end(addr, end);
1242 if (pmd_trans_huge(*pmd)) {
1243 if (next - addr != HPAGE_PMD_SIZE) {
1244 #ifdef CONFIG_DEBUG_VM
1245 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1246 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1247 __func__, addr, end,
1253 split_huge_page_pmd(vma->vm_mm, pmd);
1254 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1259 * Here there can be other concurrent MADV_DONTNEED or
1260 * trans huge page faults running, and if the pmd is
1261 * none or trans huge it can change under us. This is
1262 * because MADV_DONTNEED holds the mmap_sem in read
1265 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1267 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1270 } while (pmd++, addr = next, addr != end);
1275 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1276 struct vm_area_struct *vma, pgd_t *pgd,
1277 unsigned long addr, unsigned long end,
1278 struct zap_details *details)
1283 pud = pud_offset(pgd, addr);
1285 next = pud_addr_end(addr, end);
1286 if (pud_none_or_clear_bad(pud))
1288 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1289 } while (pud++, addr = next, addr != end);
1294 static void unmap_page_range(struct mmu_gather *tlb,
1295 struct vm_area_struct *vma,
1296 unsigned long addr, unsigned long end,
1297 struct zap_details *details)
1302 if (details && !details->check_mapping && !details->nonlinear_vma)
1305 BUG_ON(addr >= end);
1306 mem_cgroup_uncharge_start();
1307 tlb_start_vma(tlb, vma);
1308 pgd = pgd_offset(vma->vm_mm, addr);
1310 next = pgd_addr_end(addr, end);
1311 if (pgd_none_or_clear_bad(pgd))
1313 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1314 } while (pgd++, addr = next, addr != end);
1315 tlb_end_vma(tlb, vma);
1316 mem_cgroup_uncharge_end();
1320 static void unmap_single_vma(struct mmu_gather *tlb,
1321 struct vm_area_struct *vma, unsigned long start_addr,
1322 unsigned long end_addr,
1323 struct zap_details *details)
1325 unsigned long start = max(vma->vm_start, start_addr);
1328 if (start >= vma->vm_end)
1330 end = min(vma->vm_end, end_addr);
1331 if (end <= vma->vm_start)
1335 uprobe_munmap(vma, start, end);
1337 if (unlikely(vma->vm_flags & VM_PFNMAP))
1338 untrack_pfn(vma, 0, 0);
1341 if (unlikely(is_vm_hugetlb_page(vma))) {
1343 * It is undesirable to test vma->vm_file as it
1344 * should be non-null for valid hugetlb area.
1345 * However, vm_file will be NULL in the error
1346 * cleanup path of do_mmap_pgoff. When
1347 * hugetlbfs ->mmap method fails,
1348 * do_mmap_pgoff() nullifies vma->vm_file
1349 * before calling this function to clean up.
1350 * Since no pte has actually been setup, it is
1351 * safe to do nothing in this case.
1354 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1355 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1356 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1359 unmap_page_range(tlb, vma, start, end, details);
1364 * unmap_vmas - unmap a range of memory covered by a list of vma's
1365 * @tlb: address of the caller's struct mmu_gather
1366 * @vma: the starting vma
1367 * @start_addr: virtual address at which to start unmapping
1368 * @end_addr: virtual address at which to end unmapping
1370 * Unmap all pages in the vma list.
1372 * Only addresses between `start' and `end' will be unmapped.
1374 * The VMA list must be sorted in ascending virtual address order.
1376 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1377 * range after unmap_vmas() returns. So the only responsibility here is to
1378 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1379 * drops the lock and schedules.
1381 void unmap_vmas(struct mmu_gather *tlb,
1382 struct vm_area_struct *vma, unsigned long start_addr,
1383 unsigned long end_addr)
1385 struct mm_struct *mm = vma->vm_mm;
1387 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1388 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1389 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1390 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1394 * zap_page_range - remove user pages in a given range
1395 * @vma: vm_area_struct holding the applicable pages
1396 * @start: starting address of pages to zap
1397 * @size: number of bytes to zap
1398 * @details: details of nonlinear truncation or shared cache invalidation
1400 * Caller must protect the VMA list
1402 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1403 unsigned long size, struct zap_details *details)
1405 struct mm_struct *mm = vma->vm_mm;
1406 struct mmu_gather tlb;
1407 unsigned long end = start + size;
1410 tlb_gather_mmu(&tlb, mm, 0);
1411 update_hiwater_rss(mm);
1412 mmu_notifier_invalidate_range_start(mm, start, end);
1413 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1414 unmap_single_vma(&tlb, vma, start, end, details);
1415 mmu_notifier_invalidate_range_end(mm, start, end);
1416 tlb_finish_mmu(&tlb, start, end);
1420 * zap_page_range_single - remove user pages in a given range
1421 * @vma: vm_area_struct holding the applicable pages
1422 * @address: starting address of pages to zap
1423 * @size: number of bytes to zap
1424 * @details: details of nonlinear truncation or shared cache invalidation
1426 * The range must fit into one VMA.
1428 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1429 unsigned long size, struct zap_details *details)
1431 struct mm_struct *mm = vma->vm_mm;
1432 struct mmu_gather tlb;
1433 unsigned long end = address + size;
1436 tlb_gather_mmu(&tlb, mm, 0);
1437 update_hiwater_rss(mm);
1438 mmu_notifier_invalidate_range_start(mm, address, end);
1439 unmap_single_vma(&tlb, vma, address, end, details);
1440 mmu_notifier_invalidate_range_end(mm, address, end);
1441 tlb_finish_mmu(&tlb, address, end);
1445 * zap_vma_ptes - remove ptes mapping the vma
1446 * @vma: vm_area_struct holding ptes to be zapped
1447 * @address: starting address of pages to zap
1448 * @size: number of bytes to zap
1450 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1452 * The entire address range must be fully contained within the vma.
1454 * Returns 0 if successful.
1456 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1459 if (address < vma->vm_start || address + size > vma->vm_end ||
1460 !(vma->vm_flags & VM_PFNMAP))
1462 zap_page_range_single(vma, address, size, NULL);
1465 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1468 * follow_page - look up a page descriptor from a user-virtual address
1469 * @vma: vm_area_struct mapping @address
1470 * @address: virtual address to look up
1471 * @flags: flags modifying lookup behaviour
1473 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1475 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1476 * an error pointer if there is a mapping to something not represented
1477 * by a page descriptor (see also vm_normal_page()).
1479 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1488 struct mm_struct *mm = vma->vm_mm;
1490 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1491 if (!IS_ERR(page)) {
1492 BUG_ON(flags & FOLL_GET);
1497 pgd = pgd_offset(mm, address);
1498 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1501 pud = pud_offset(pgd, address);
1504 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1505 BUG_ON(flags & FOLL_GET);
1506 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1509 if (unlikely(pud_bad(*pud)))
1512 pmd = pmd_offset(pud, address);
1515 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1516 BUG_ON(flags & FOLL_GET);
1517 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1520 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1522 if (pmd_trans_huge(*pmd)) {
1523 if (flags & FOLL_SPLIT) {
1524 split_huge_page_pmd(mm, pmd);
1525 goto split_fallthrough;
1527 spin_lock(&mm->page_table_lock);
1528 if (likely(pmd_trans_huge(*pmd))) {
1529 if (unlikely(pmd_trans_splitting(*pmd))) {
1530 spin_unlock(&mm->page_table_lock);
1531 wait_split_huge_page(vma->anon_vma, pmd);
1533 page = follow_trans_huge_pmd(vma, address,
1535 spin_unlock(&mm->page_table_lock);
1539 spin_unlock(&mm->page_table_lock);
1543 if (unlikely(pmd_bad(*pmd)))
1546 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1549 if (!pte_present(pte))
1551 if ((flags & FOLL_NUMA) && pte_numa(pte))
1553 if ((flags & FOLL_WRITE) && !pte_write(pte))
1556 page = vm_normal_page(vma, address, pte);
1557 if (unlikely(!page)) {
1558 if ((flags & FOLL_DUMP) ||
1559 !is_zero_pfn(pte_pfn(pte)))
1561 page = pte_page(pte);
1564 if (flags & FOLL_GET)
1565 get_page_foll(page);
1566 if (flags & FOLL_TOUCH) {
1567 if ((flags & FOLL_WRITE) &&
1568 !pte_dirty(pte) && !PageDirty(page))
1569 set_page_dirty(page);
1571 * pte_mkyoung() would be more correct here, but atomic care
1572 * is needed to avoid losing the dirty bit: it is easier to use
1573 * mark_page_accessed().
1575 mark_page_accessed(page);
1577 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1579 * The preliminary mapping check is mainly to avoid the
1580 * pointless overhead of lock_page on the ZERO_PAGE
1581 * which might bounce very badly if there is contention.
1583 * If the page is already locked, we don't need to
1584 * handle it now - vmscan will handle it later if and
1585 * when it attempts to reclaim the page.
1587 if (page->mapping && trylock_page(page)) {
1588 lru_add_drain(); /* push cached pages to LRU */
1590 * Because we lock page here, and migration is
1591 * blocked by the pte's page reference, and we
1592 * know the page is still mapped, we don't even
1593 * need to check for file-cache page truncation.
1595 mlock_vma_page(page);
1600 pte_unmap_unlock(ptep, ptl);
1605 pte_unmap_unlock(ptep, ptl);
1606 return ERR_PTR(-EFAULT);
1609 pte_unmap_unlock(ptep, ptl);
1615 * When core dumping an enormous anonymous area that nobody
1616 * has touched so far, we don't want to allocate unnecessary pages or
1617 * page tables. Return error instead of NULL to skip handle_mm_fault,
1618 * then get_dump_page() will return NULL to leave a hole in the dump.
1619 * But we can only make this optimization where a hole would surely
1620 * be zero-filled if handle_mm_fault() actually did handle it.
1622 if ((flags & FOLL_DUMP) &&
1623 (!vma->vm_ops || !vma->vm_ops->fault))
1624 return ERR_PTR(-EFAULT);
1628 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1630 return stack_guard_page_start(vma, addr) ||
1631 stack_guard_page_end(vma, addr+PAGE_SIZE);
1635 * __get_user_pages() - pin user pages in memory
1636 * @tsk: task_struct of target task
1637 * @mm: mm_struct of target mm
1638 * @start: starting user address
1639 * @nr_pages: number of pages from start to pin
1640 * @gup_flags: flags modifying pin behaviour
1641 * @pages: array that receives pointers to the pages pinned.
1642 * Should be at least nr_pages long. Or NULL, if caller
1643 * only intends to ensure the pages are faulted in.
1644 * @vmas: array of pointers to vmas corresponding to each page.
1645 * Or NULL if the caller does not require them.
1646 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1648 * Returns number of pages pinned. This may be fewer than the number
1649 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1650 * were pinned, returns -errno. Each page returned must be released
1651 * with a put_page() call when it is finished with. vmas will only
1652 * remain valid while mmap_sem is held.
1654 * Must be called with mmap_sem held for read or write.
1656 * __get_user_pages walks a process's page tables and takes a reference to
1657 * each struct page that each user address corresponds to at a given
1658 * instant. That is, it takes the page that would be accessed if a user
1659 * thread accesses the given user virtual address at that instant.
1661 * This does not guarantee that the page exists in the user mappings when
1662 * __get_user_pages returns, and there may even be a completely different
1663 * page there in some cases (eg. if mmapped pagecache has been invalidated
1664 * and subsequently re faulted). However it does guarantee that the page
1665 * won't be freed completely. And mostly callers simply care that the page
1666 * contains data that was valid *at some point in time*. Typically, an IO
1667 * or similar operation cannot guarantee anything stronger anyway because
1668 * locks can't be held over the syscall boundary.
1670 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1671 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1672 * appropriate) must be called after the page is finished with, and
1673 * before put_page is called.
1675 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1676 * or mmap_sem contention, and if waiting is needed to pin all pages,
1677 * *@nonblocking will be set to 0.
1679 * In most cases, get_user_pages or get_user_pages_fast should be used
1680 * instead of __get_user_pages. __get_user_pages should be used only if
1681 * you need some special @gup_flags.
1683 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1684 unsigned long start, int nr_pages, unsigned int gup_flags,
1685 struct page **pages, struct vm_area_struct **vmas,
1689 unsigned long vm_flags;
1694 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1697 * Require read or write permissions.
1698 * If FOLL_FORCE is set, we only require the "MAY" flags.
1700 vm_flags = (gup_flags & FOLL_WRITE) ?
1701 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1702 vm_flags &= (gup_flags & FOLL_FORCE) ?
1703 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1706 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1707 * would be called on PROT_NONE ranges. We must never invoke
1708 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1709 * page faults would unprotect the PROT_NONE ranges if
1710 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1711 * bitflag. So to avoid that, don't set FOLL_NUMA if
1712 * FOLL_FORCE is set.
1714 if (!(gup_flags & FOLL_FORCE))
1715 gup_flags |= FOLL_NUMA;
1720 struct vm_area_struct *vma;
1722 vma = find_extend_vma(mm, start);
1723 if (!vma && in_gate_area(mm, start)) {
1724 unsigned long pg = start & PAGE_MASK;
1730 /* user gate pages are read-only */
1731 if (gup_flags & FOLL_WRITE)
1732 return i ? : -EFAULT;
1734 pgd = pgd_offset_k(pg);
1736 pgd = pgd_offset_gate(mm, pg);
1737 BUG_ON(pgd_none(*pgd));
1738 pud = pud_offset(pgd, pg);
1739 BUG_ON(pud_none(*pud));
1740 pmd = pmd_offset(pud, pg);
1742 return i ? : -EFAULT;
1743 VM_BUG_ON(pmd_trans_huge(*pmd));
1744 pte = pte_offset_map(pmd, pg);
1745 if (pte_none(*pte)) {
1747 return i ? : -EFAULT;
1749 vma = get_gate_vma(mm);
1753 page = vm_normal_page(vma, start, *pte);
1755 if (!(gup_flags & FOLL_DUMP) &&
1756 is_zero_pfn(pte_pfn(*pte)))
1757 page = pte_page(*pte);
1760 return i ? : -EFAULT;
1771 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1772 !(vm_flags & vma->vm_flags))
1773 return i ? : -EFAULT;
1775 if (is_vm_hugetlb_page(vma)) {
1776 i = follow_hugetlb_page(mm, vma, pages, vmas,
1777 &start, &nr_pages, i, gup_flags);
1783 unsigned int foll_flags = gup_flags;
1786 * If we have a pending SIGKILL, don't keep faulting
1787 * pages and potentially allocating memory.
1789 if (unlikely(fatal_signal_pending(current)))
1790 return i ? i : -ERESTARTSYS;
1793 while (!(page = follow_page(vma, start, foll_flags))) {
1795 unsigned int fault_flags = 0;
1797 /* For mlock, just skip the stack guard page. */
1798 if (foll_flags & FOLL_MLOCK) {
1799 if (stack_guard_page(vma, start))
1802 if (foll_flags & FOLL_WRITE)
1803 fault_flags |= FAULT_FLAG_WRITE;
1805 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1806 if (foll_flags & FOLL_NOWAIT)
1807 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1809 ret = handle_mm_fault(mm, vma, start,
1812 if (ret & VM_FAULT_ERROR) {
1813 if (ret & VM_FAULT_OOM)
1814 return i ? i : -ENOMEM;
1815 if (ret & (VM_FAULT_HWPOISON |
1816 VM_FAULT_HWPOISON_LARGE)) {
1819 else if (gup_flags & FOLL_HWPOISON)
1824 if (ret & VM_FAULT_SIGBUS)
1825 return i ? i : -EFAULT;
1830 if (ret & VM_FAULT_MAJOR)
1836 if (ret & VM_FAULT_RETRY) {
1843 * The VM_FAULT_WRITE bit tells us that
1844 * do_wp_page has broken COW when necessary,
1845 * even if maybe_mkwrite decided not to set
1846 * pte_write. We can thus safely do subsequent
1847 * page lookups as if they were reads. But only
1848 * do so when looping for pte_write is futile:
1849 * in some cases userspace may also be wanting
1850 * to write to the gotten user page, which a
1851 * read fault here might prevent (a readonly
1852 * page might get reCOWed by userspace write).
1854 if ((ret & VM_FAULT_WRITE) &&
1855 !(vma->vm_flags & VM_WRITE))
1856 foll_flags &= ~FOLL_WRITE;
1861 return i ? i : PTR_ERR(page);
1865 flush_anon_page(vma, page, start);
1866 flush_dcache_page(page);
1874 } while (nr_pages && start < vma->vm_end);
1878 EXPORT_SYMBOL(__get_user_pages);
1881 * fixup_user_fault() - manually resolve a user page fault
1882 * @tsk: the task_struct to use for page fault accounting, or
1883 * NULL if faults are not to be recorded.
1884 * @mm: mm_struct of target mm
1885 * @address: user address
1886 * @fault_flags:flags to pass down to handle_mm_fault()
1888 * This is meant to be called in the specific scenario where for locking reasons
1889 * we try to access user memory in atomic context (within a pagefault_disable()
1890 * section), this returns -EFAULT, and we want to resolve the user fault before
1893 * Typically this is meant to be used by the futex code.
1895 * The main difference with get_user_pages() is that this function will
1896 * unconditionally call handle_mm_fault() which will in turn perform all the
1897 * necessary SW fixup of the dirty and young bits in the PTE, while
1898 * handle_mm_fault() only guarantees to update these in the struct page.
1900 * This is important for some architectures where those bits also gate the
1901 * access permission to the page because they are maintained in software. On
1902 * such architectures, gup() will not be enough to make a subsequent access
1905 * This should be called with the mm_sem held for read.
1907 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1908 unsigned long address, unsigned int fault_flags)
1910 struct vm_area_struct *vma;
1913 vma = find_extend_vma(mm, address);
1914 if (!vma || address < vma->vm_start)
1917 ret = handle_mm_fault(mm, vma, address, fault_flags);
1918 if (ret & VM_FAULT_ERROR) {
1919 if (ret & VM_FAULT_OOM)
1921 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1923 if (ret & VM_FAULT_SIGBUS)
1928 if (ret & VM_FAULT_MAJOR)
1937 * get_user_pages() - pin user pages in memory
1938 * @tsk: the task_struct to use for page fault accounting, or
1939 * NULL if faults are not to be recorded.
1940 * @mm: mm_struct of target mm
1941 * @start: starting user address
1942 * @nr_pages: number of pages from start to pin
1943 * @write: whether pages will be written to by the caller
1944 * @force: whether to force write access even if user mapping is
1945 * readonly. This will result in the page being COWed even
1946 * in MAP_SHARED mappings. You do not want this.
1947 * @pages: array that receives pointers to the pages pinned.
1948 * Should be at least nr_pages long. Or NULL, if caller
1949 * only intends to ensure the pages are faulted in.
1950 * @vmas: array of pointers to vmas corresponding to each page.
1951 * Or NULL if the caller does not require them.
1953 * Returns number of pages pinned. This may be fewer than the number
1954 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1955 * were pinned, returns -errno. Each page returned must be released
1956 * with a put_page() call when it is finished with. vmas will only
1957 * remain valid while mmap_sem is held.
1959 * Must be called with mmap_sem held for read or write.
1961 * get_user_pages walks a process's page tables and takes a reference to
1962 * each struct page that each user address corresponds to at a given
1963 * instant. That is, it takes the page that would be accessed if a user
1964 * thread accesses the given user virtual address at that instant.
1966 * This does not guarantee that the page exists in the user mappings when
1967 * get_user_pages returns, and there may even be a completely different
1968 * page there in some cases (eg. if mmapped pagecache has been invalidated
1969 * and subsequently re faulted). However it does guarantee that the page
1970 * won't be freed completely. And mostly callers simply care that the page
1971 * contains data that was valid *at some point in time*. Typically, an IO
1972 * or similar operation cannot guarantee anything stronger anyway because
1973 * locks can't be held over the syscall boundary.
1975 * If write=0, the page must not be written to. If the page is written to,
1976 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1977 * after the page is finished with, and before put_page is called.
1979 * get_user_pages is typically used for fewer-copy IO operations, to get a
1980 * handle on the memory by some means other than accesses via the user virtual
1981 * addresses. The pages may be submitted for DMA to devices or accessed via
1982 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1983 * use the correct cache flushing APIs.
1985 * See also get_user_pages_fast, for performance critical applications.
1987 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1988 unsigned long start, int nr_pages, int write, int force,
1989 struct page **pages, struct vm_area_struct **vmas)
1991 int flags = FOLL_TOUCH;
1996 flags |= FOLL_WRITE;
1998 flags |= FOLL_FORCE;
2000 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2003 EXPORT_SYMBOL(get_user_pages);
2006 * get_dump_page() - pin user page in memory while writing it to core dump
2007 * @addr: user address
2009 * Returns struct page pointer of user page pinned for dump,
2010 * to be freed afterwards by page_cache_release() or put_page().
2012 * Returns NULL on any kind of failure - a hole must then be inserted into
2013 * the corefile, to preserve alignment with its headers; and also returns
2014 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2015 * allowing a hole to be left in the corefile to save diskspace.
2017 * Called without mmap_sem, but after all other threads have been killed.
2019 #ifdef CONFIG_ELF_CORE
2020 struct page *get_dump_page(unsigned long addr)
2022 struct vm_area_struct *vma;
2025 if (__get_user_pages(current, current->mm, addr, 1,
2026 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2029 flush_cache_page(vma, addr, page_to_pfn(page));
2032 #endif /* CONFIG_ELF_CORE */
2034 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2037 pgd_t * pgd = pgd_offset(mm, addr);
2038 pud_t * pud = pud_alloc(mm, pgd, addr);
2040 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2042 VM_BUG_ON(pmd_trans_huge(*pmd));
2043 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2050 * This is the old fallback for page remapping.
2052 * For historical reasons, it only allows reserved pages. Only
2053 * old drivers should use this, and they needed to mark their
2054 * pages reserved for the old functions anyway.
2056 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2057 struct page *page, pgprot_t prot)
2059 struct mm_struct *mm = vma->vm_mm;
2068 flush_dcache_page(page);
2069 pte = get_locked_pte(mm, addr, &ptl);
2073 if (!pte_none(*pte))
2076 /* Ok, finally just insert the thing.. */
2078 inc_mm_counter_fast(mm, MM_FILEPAGES);
2079 page_add_file_rmap(page);
2080 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2083 pte_unmap_unlock(pte, ptl);
2086 pte_unmap_unlock(pte, ptl);
2092 * vm_insert_page - insert single page into user vma
2093 * @vma: user vma to map to
2094 * @addr: target user address of this page
2095 * @page: source kernel page
2097 * This allows drivers to insert individual pages they've allocated
2100 * The page has to be a nice clean _individual_ kernel allocation.
2101 * If you allocate a compound page, you need to have marked it as
2102 * such (__GFP_COMP), or manually just split the page up yourself
2103 * (see split_page()).
2105 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2106 * took an arbitrary page protection parameter. This doesn't allow
2107 * that. Your vma protection will have to be set up correctly, which
2108 * means that if you want a shared writable mapping, you'd better
2109 * ask for a shared writable mapping!
2111 * The page does not need to be reserved.
2113 * Usually this function is called from f_op->mmap() handler
2114 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2115 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2116 * function from other places, for example from page-fault handler.
2118 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2121 if (addr < vma->vm_start || addr >= vma->vm_end)
2123 if (!page_count(page))
2125 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2126 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2127 BUG_ON(vma->vm_flags & VM_PFNMAP);
2128 vma->vm_flags |= VM_MIXEDMAP;
2130 return insert_page(vma, addr, page, vma->vm_page_prot);
2132 EXPORT_SYMBOL(vm_insert_page);
2134 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2135 unsigned long pfn, pgprot_t prot)
2137 struct mm_struct *mm = vma->vm_mm;
2143 pte = get_locked_pte(mm, addr, &ptl);
2147 if (!pte_none(*pte))
2150 /* Ok, finally just insert the thing.. */
2151 entry = pte_mkspecial(pfn_pte(pfn, prot));
2152 set_pte_at(mm, addr, pte, entry);
2153 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2157 pte_unmap_unlock(pte, ptl);
2163 * vm_insert_pfn - insert single pfn into user vma
2164 * @vma: user vma to map to
2165 * @addr: target user address of this page
2166 * @pfn: source kernel pfn
2168 * Similar to vm_insert_page, this allows drivers to insert individual pages
2169 * they've allocated into a user vma. Same comments apply.
2171 * This function should only be called from a vm_ops->fault handler, and
2172 * in that case the handler should return NULL.
2174 * vma cannot be a COW mapping.
2176 * As this is called only for pages that do not currently exist, we
2177 * do not need to flush old virtual caches or the TLB.
2179 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2183 pgprot_t pgprot = vma->vm_page_prot;
2185 * Technically, architectures with pte_special can avoid all these
2186 * restrictions (same for remap_pfn_range). However we would like
2187 * consistency in testing and feature parity among all, so we should
2188 * try to keep these invariants in place for everybody.
2190 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2191 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2192 (VM_PFNMAP|VM_MIXEDMAP));
2193 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2194 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2196 if (addr < vma->vm_start || addr >= vma->vm_end)
2198 if (track_pfn_insert(vma, &pgprot, pfn))
2201 ret = insert_pfn(vma, addr, pfn, pgprot);
2205 EXPORT_SYMBOL(vm_insert_pfn);
2207 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2210 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2212 if (addr < vma->vm_start || addr >= vma->vm_end)
2216 * If we don't have pte special, then we have to use the pfn_valid()
2217 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2218 * refcount the page if pfn_valid is true (hence insert_page rather
2219 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2220 * without pte special, it would there be refcounted as a normal page.
2222 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2225 page = pfn_to_page(pfn);
2226 return insert_page(vma, addr, page, vma->vm_page_prot);
2228 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2230 EXPORT_SYMBOL(vm_insert_mixed);
2233 * maps a range of physical memory into the requested pages. the old
2234 * mappings are removed. any references to nonexistent pages results
2235 * in null mappings (currently treated as "copy-on-access")
2237 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2238 unsigned long addr, unsigned long end,
2239 unsigned long pfn, pgprot_t prot)
2244 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2247 arch_enter_lazy_mmu_mode();
2249 BUG_ON(!pte_none(*pte));
2250 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2252 } while (pte++, addr += PAGE_SIZE, addr != end);
2253 arch_leave_lazy_mmu_mode();
2254 pte_unmap_unlock(pte - 1, ptl);
2258 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2259 unsigned long addr, unsigned long end,
2260 unsigned long pfn, pgprot_t prot)
2265 pfn -= addr >> PAGE_SHIFT;
2266 pmd = pmd_alloc(mm, pud, addr);
2269 VM_BUG_ON(pmd_trans_huge(*pmd));
2271 next = pmd_addr_end(addr, end);
2272 if (remap_pte_range(mm, pmd, addr, next,
2273 pfn + (addr >> PAGE_SHIFT), prot))
2275 } while (pmd++, addr = next, addr != end);
2279 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2280 unsigned long addr, unsigned long end,
2281 unsigned long pfn, pgprot_t prot)
2286 pfn -= addr >> PAGE_SHIFT;
2287 pud = pud_alloc(mm, pgd, addr);
2291 next = pud_addr_end(addr, end);
2292 if (remap_pmd_range(mm, pud, addr, next,
2293 pfn + (addr >> PAGE_SHIFT), prot))
2295 } while (pud++, addr = next, addr != end);
2300 * remap_pfn_range - remap kernel memory to userspace
2301 * @vma: user vma to map to
2302 * @addr: target user address to start at
2303 * @pfn: physical address of kernel memory
2304 * @size: size of map area
2305 * @prot: page protection flags for this mapping
2307 * Note: this is only safe if the mm semaphore is held when called.
2309 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2310 unsigned long pfn, unsigned long size, pgprot_t prot)
2314 unsigned long end = addr + PAGE_ALIGN(size);
2315 struct mm_struct *mm = vma->vm_mm;
2319 * Physically remapped pages are special. Tell the
2320 * rest of the world about it:
2321 * VM_IO tells people not to look at these pages
2322 * (accesses can have side effects).
2323 * VM_PFNMAP tells the core MM that the base pages are just
2324 * raw PFN mappings, and do not have a "struct page" associated
2327 * Disable vma merging and expanding with mremap().
2329 * Omit vma from core dump, even when VM_IO turned off.
2331 * There's a horrible special case to handle copy-on-write
2332 * behaviour that some programs depend on. We mark the "original"
2333 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2334 * See vm_normal_page() for details.
2336 if (is_cow_mapping(vma->vm_flags)) {
2337 if (addr != vma->vm_start || end != vma->vm_end)
2339 vma->vm_pgoff = pfn;
2342 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2346 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2348 BUG_ON(addr >= end);
2349 pfn -= addr >> PAGE_SHIFT;
2350 pgd = pgd_offset(mm, addr);
2351 flush_cache_range(vma, addr, end);
2353 next = pgd_addr_end(addr, end);
2354 err = remap_pud_range(mm, pgd, addr, next,
2355 pfn + (addr >> PAGE_SHIFT), prot);
2358 } while (pgd++, addr = next, addr != end);
2361 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2365 EXPORT_SYMBOL(remap_pfn_range);
2367 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2368 unsigned long addr, unsigned long end,
2369 pte_fn_t fn, void *data)
2374 spinlock_t *uninitialized_var(ptl);
2376 pte = (mm == &init_mm) ?
2377 pte_alloc_kernel(pmd, addr) :
2378 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2382 BUG_ON(pmd_huge(*pmd));
2384 arch_enter_lazy_mmu_mode();
2386 token = pmd_pgtable(*pmd);
2389 err = fn(pte++, token, addr, data);
2392 } while (addr += PAGE_SIZE, addr != end);
2394 arch_leave_lazy_mmu_mode();
2397 pte_unmap_unlock(pte-1, ptl);
2401 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2402 unsigned long addr, unsigned long end,
2403 pte_fn_t fn, void *data)
2409 BUG_ON(pud_huge(*pud));
2411 pmd = pmd_alloc(mm, pud, addr);
2415 next = pmd_addr_end(addr, end);
2416 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2419 } while (pmd++, addr = next, addr != end);
2423 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2424 unsigned long addr, unsigned long end,
2425 pte_fn_t fn, void *data)
2431 pud = pud_alloc(mm, pgd, addr);
2435 next = pud_addr_end(addr, end);
2436 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2439 } while (pud++, addr = next, addr != end);
2444 * Scan a region of virtual memory, filling in page tables as necessary
2445 * and calling a provided function on each leaf page table.
2447 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2448 unsigned long size, pte_fn_t fn, void *data)
2452 unsigned long end = addr + size;
2455 BUG_ON(addr >= end);
2456 pgd = pgd_offset(mm, addr);
2458 next = pgd_addr_end(addr, end);
2459 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2462 } while (pgd++, addr = next, addr != end);
2466 EXPORT_SYMBOL_GPL(apply_to_page_range);
2469 * handle_pte_fault chooses page fault handler according to an entry
2470 * which was read non-atomically. Before making any commitment, on
2471 * those architectures or configurations (e.g. i386 with PAE) which
2472 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2473 * must check under lock before unmapping the pte and proceeding
2474 * (but do_wp_page is only called after already making such a check;
2475 * and do_anonymous_page can safely check later on).
2477 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2478 pte_t *page_table, pte_t orig_pte)
2481 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2482 if (sizeof(pte_t) > sizeof(unsigned long)) {
2483 spinlock_t *ptl = pte_lockptr(mm, pmd);
2485 same = pte_same(*page_table, orig_pte);
2489 pte_unmap(page_table);
2493 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2496 * If the source page was a PFN mapping, we don't have
2497 * a "struct page" for it. We do a best-effort copy by
2498 * just copying from the original user address. If that
2499 * fails, we just zero-fill it. Live with it.
2501 if (unlikely(!src)) {
2502 void *kaddr = kmap_atomic(dst);
2503 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2506 * This really shouldn't fail, because the page is there
2507 * in the page tables. But it might just be unreadable,
2508 * in which case we just give up and fill the result with
2511 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2513 kunmap_atomic(kaddr);
2514 flush_dcache_page(dst);
2516 copy_user_highpage(dst, src, va, vma);
2520 * This routine handles present pages, when users try to write
2521 * to a shared page. It is done by copying the page to a new address
2522 * and decrementing the shared-page counter for the old page.
2524 * Note that this routine assumes that the protection checks have been
2525 * done by the caller (the low-level page fault routine in most cases).
2526 * Thus we can safely just mark it writable once we've done any necessary
2529 * We also mark the page dirty at this point even though the page will
2530 * change only once the write actually happens. This avoids a few races,
2531 * and potentially makes it more efficient.
2533 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2534 * but allow concurrent faults), with pte both mapped and locked.
2535 * We return with mmap_sem still held, but pte unmapped and unlocked.
2537 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2538 unsigned long address, pte_t *page_table, pmd_t *pmd,
2539 spinlock_t *ptl, pte_t orig_pte)
2542 struct page *old_page, *new_page = NULL;
2545 int page_mkwrite = 0;
2546 struct page *dirty_page = NULL;
2547 unsigned long mmun_start = 0; /* For mmu_notifiers */
2548 unsigned long mmun_end = 0; /* For mmu_notifiers */
2550 old_page = vm_normal_page(vma, address, orig_pte);
2553 * VM_MIXEDMAP !pfn_valid() case
2555 * We should not cow pages in a shared writeable mapping.
2556 * Just mark the pages writable as we can't do any dirty
2557 * accounting on raw pfn maps.
2559 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2560 (VM_WRITE|VM_SHARED))
2566 * Take out anonymous pages first, anonymous shared vmas are
2567 * not dirty accountable.
2569 if (PageAnon(old_page) && !PageKsm(old_page)) {
2570 if (!trylock_page(old_page)) {
2571 page_cache_get(old_page);
2572 pte_unmap_unlock(page_table, ptl);
2573 lock_page(old_page);
2574 page_table = pte_offset_map_lock(mm, pmd, address,
2576 if (!pte_same(*page_table, orig_pte)) {
2577 unlock_page(old_page);
2580 page_cache_release(old_page);
2582 if (reuse_swap_page(old_page)) {
2584 * The page is all ours. Move it to our anon_vma so
2585 * the rmap code will not search our parent or siblings.
2586 * Protected against the rmap code by the page lock.
2588 page_move_anon_rmap(old_page, vma, address);
2589 unlock_page(old_page);
2592 unlock_page(old_page);
2593 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2594 (VM_WRITE|VM_SHARED))) {
2596 * Only catch write-faults on shared writable pages,
2597 * read-only shared pages can get COWed by
2598 * get_user_pages(.write=1, .force=1).
2600 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2601 struct vm_fault vmf;
2604 vmf.virtual_address = (void __user *)(address &
2606 vmf.pgoff = old_page->index;
2607 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2608 vmf.page = old_page;
2611 * Notify the address space that the page is about to
2612 * become writable so that it can prohibit this or wait
2613 * for the page to get into an appropriate state.
2615 * We do this without the lock held, so that it can
2616 * sleep if it needs to.
2618 page_cache_get(old_page);
2619 pte_unmap_unlock(page_table, ptl);
2621 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2623 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2625 goto unwritable_page;
2627 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2628 lock_page(old_page);
2629 if (!old_page->mapping) {
2630 ret = 0; /* retry the fault */
2631 unlock_page(old_page);
2632 goto unwritable_page;
2635 VM_BUG_ON(!PageLocked(old_page));
2638 * Since we dropped the lock we need to revalidate
2639 * the PTE as someone else may have changed it. If
2640 * they did, we just return, as we can count on the
2641 * MMU to tell us if they didn't also make it writable.
2643 page_table = pte_offset_map_lock(mm, pmd, address,
2645 if (!pte_same(*page_table, orig_pte)) {
2646 unlock_page(old_page);
2652 dirty_page = old_page;
2653 get_page(dirty_page);
2656 flush_cache_page(vma, address, pte_pfn(orig_pte));
2657 entry = pte_mkyoung(orig_pte);
2658 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2659 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2660 update_mmu_cache(vma, address, page_table);
2661 pte_unmap_unlock(page_table, ptl);
2662 ret |= VM_FAULT_WRITE;
2668 * Yes, Virginia, this is actually required to prevent a race
2669 * with clear_page_dirty_for_io() from clearing the page dirty
2670 * bit after it clear all dirty ptes, but before a racing
2671 * do_wp_page installs a dirty pte.
2673 * __do_fault is protected similarly.
2675 if (!page_mkwrite) {
2676 wait_on_page_locked(dirty_page);
2677 set_page_dirty_balance(dirty_page, page_mkwrite);
2678 /* file_update_time outside page_lock */
2680 file_update_time(vma->vm_file);
2682 put_page(dirty_page);
2684 struct address_space *mapping = dirty_page->mapping;
2686 set_page_dirty(dirty_page);
2687 unlock_page(dirty_page);
2688 page_cache_release(dirty_page);
2691 * Some device drivers do not set page.mapping
2692 * but still dirty their pages
2694 balance_dirty_pages_ratelimited(mapping);
2702 * Ok, we need to copy. Oh, well..
2704 page_cache_get(old_page);
2706 pte_unmap_unlock(page_table, ptl);
2708 if (unlikely(anon_vma_prepare(vma)))
2711 if (is_zero_pfn(pte_pfn(orig_pte))) {
2712 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2716 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2719 cow_user_page(new_page, old_page, address, vma);
2721 __SetPageUptodate(new_page);
2723 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2726 mmun_start = address & PAGE_MASK;
2727 mmun_end = mmun_start + PAGE_SIZE;
2728 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2731 * Re-check the pte - we dropped the lock
2733 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2734 if (likely(pte_same(*page_table, orig_pte))) {
2736 if (!PageAnon(old_page)) {
2737 dec_mm_counter_fast(mm, MM_FILEPAGES);
2738 inc_mm_counter_fast(mm, MM_ANONPAGES);
2741 inc_mm_counter_fast(mm, MM_ANONPAGES);
2742 flush_cache_page(vma, address, pte_pfn(orig_pte));
2743 entry = mk_pte(new_page, vma->vm_page_prot);
2744 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2746 * Clear the pte entry and flush it first, before updating the
2747 * pte with the new entry. This will avoid a race condition
2748 * seen in the presence of one thread doing SMC and another
2751 ptep_clear_flush(vma, address, page_table);
2752 page_add_new_anon_rmap(new_page, vma, address);
2754 * We call the notify macro here because, when using secondary
2755 * mmu page tables (such as kvm shadow page tables), we want the
2756 * new page to be mapped directly into the secondary page table.
2758 set_pte_at_notify(mm, address, page_table, entry);
2759 update_mmu_cache(vma, address, page_table);
2762 * Only after switching the pte to the new page may
2763 * we remove the mapcount here. Otherwise another
2764 * process may come and find the rmap count decremented
2765 * before the pte is switched to the new page, and
2766 * "reuse" the old page writing into it while our pte
2767 * here still points into it and can be read by other
2770 * The critical issue is to order this
2771 * page_remove_rmap with the ptp_clear_flush above.
2772 * Those stores are ordered by (if nothing else,)
2773 * the barrier present in the atomic_add_negative
2774 * in page_remove_rmap.
2776 * Then the TLB flush in ptep_clear_flush ensures that
2777 * no process can access the old page before the
2778 * decremented mapcount is visible. And the old page
2779 * cannot be reused until after the decremented
2780 * mapcount is visible. So transitively, TLBs to
2781 * old page will be flushed before it can be reused.
2783 page_remove_rmap(old_page);
2786 /* Free the old page.. */
2787 new_page = old_page;
2788 ret |= VM_FAULT_WRITE;
2790 mem_cgroup_uncharge_page(new_page);
2793 page_cache_release(new_page);
2795 pte_unmap_unlock(page_table, ptl);
2796 if (mmun_end > mmun_start)
2797 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2800 * Don't let another task, with possibly unlocked vma,
2801 * keep the mlocked page.
2803 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2804 lock_page(old_page); /* LRU manipulation */
2805 munlock_vma_page(old_page);
2806 unlock_page(old_page);
2808 page_cache_release(old_page);
2812 page_cache_release(new_page);
2816 unlock_page(old_page);
2817 page_cache_release(old_page);
2819 page_cache_release(old_page);
2821 return VM_FAULT_OOM;
2824 page_cache_release(old_page);
2828 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2829 unsigned long start_addr, unsigned long end_addr,
2830 struct zap_details *details)
2832 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2835 static inline void unmap_mapping_range_tree(struct rb_root *root,
2836 struct zap_details *details)
2838 struct vm_area_struct *vma;
2839 pgoff_t vba, vea, zba, zea;
2841 vma_interval_tree_foreach(vma, root,
2842 details->first_index, details->last_index) {
2844 vba = vma->vm_pgoff;
2845 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2846 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2847 zba = details->first_index;
2850 zea = details->last_index;
2854 unmap_mapping_range_vma(vma,
2855 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2856 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2861 static inline void unmap_mapping_range_list(struct list_head *head,
2862 struct zap_details *details)
2864 struct vm_area_struct *vma;
2867 * In nonlinear VMAs there is no correspondence between virtual address
2868 * offset and file offset. So we must perform an exhaustive search
2869 * across *all* the pages in each nonlinear VMA, not just the pages
2870 * whose virtual address lies outside the file truncation point.
2872 list_for_each_entry(vma, head, shared.nonlinear) {
2873 details->nonlinear_vma = vma;
2874 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2879 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2880 * @mapping: the address space containing mmaps to be unmapped.
2881 * @holebegin: byte in first page to unmap, relative to the start of
2882 * the underlying file. This will be rounded down to a PAGE_SIZE
2883 * boundary. Note that this is different from truncate_pagecache(), which
2884 * must keep the partial page. In contrast, we must get rid of
2886 * @holelen: size of prospective hole in bytes. This will be rounded
2887 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2889 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2890 * but 0 when invalidating pagecache, don't throw away private data.
2892 void unmap_mapping_range(struct address_space *mapping,
2893 loff_t const holebegin, loff_t const holelen, int even_cows)
2895 struct zap_details details;
2896 pgoff_t hba = holebegin >> PAGE_SHIFT;
2897 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2899 /* Check for overflow. */
2900 if (sizeof(holelen) > sizeof(hlen)) {
2902 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2903 if (holeend & ~(long long)ULONG_MAX)
2904 hlen = ULONG_MAX - hba + 1;
2907 details.check_mapping = even_cows? NULL: mapping;
2908 details.nonlinear_vma = NULL;
2909 details.first_index = hba;
2910 details.last_index = hba + hlen - 1;
2911 if (details.last_index < details.first_index)
2912 details.last_index = ULONG_MAX;
2915 mutex_lock(&mapping->i_mmap_mutex);
2916 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2917 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2918 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2919 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2920 mutex_unlock(&mapping->i_mmap_mutex);
2922 EXPORT_SYMBOL(unmap_mapping_range);
2925 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2926 * but allow concurrent faults), and pte mapped but not yet locked.
2927 * We return with mmap_sem still held, but pte unmapped and unlocked.
2929 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2930 unsigned long address, pte_t *page_table, pmd_t *pmd,
2931 unsigned int flags, pte_t orig_pte)
2934 struct page *page, *swapcache = NULL;
2938 struct mem_cgroup *ptr;
2942 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2945 entry = pte_to_swp_entry(orig_pte);
2946 if (unlikely(non_swap_entry(entry))) {
2947 if (is_migration_entry(entry)) {
2948 migration_entry_wait(mm, pmd, address);
2949 } else if (is_hwpoison_entry(entry)) {
2950 ret = VM_FAULT_HWPOISON;
2952 print_bad_pte(vma, address, orig_pte, NULL);
2953 ret = VM_FAULT_SIGBUS;
2957 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2958 page = lookup_swap_cache(entry);
2960 page = swapin_readahead(entry,
2961 GFP_HIGHUSER_MOVABLE, vma, address);
2964 * Back out if somebody else faulted in this pte
2965 * while we released the pte lock.
2967 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2968 if (likely(pte_same(*page_table, orig_pte)))
2970 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2974 /* Had to read the page from swap area: Major fault */
2975 ret = VM_FAULT_MAJOR;
2976 count_vm_event(PGMAJFAULT);
2977 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2978 } else if (PageHWPoison(page)) {
2980 * hwpoisoned dirty swapcache pages are kept for killing
2981 * owner processes (which may be unknown at hwpoison time)
2983 ret = VM_FAULT_HWPOISON;
2984 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2988 locked = lock_page_or_retry(page, mm, flags);
2990 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2992 ret |= VM_FAULT_RETRY;
2997 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2998 * release the swapcache from under us. The page pin, and pte_same
2999 * test below, are not enough to exclude that. Even if it is still
3000 * swapcache, we need to check that the page's swap has not changed.
3002 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3005 if (ksm_might_need_to_copy(page, vma, address)) {
3007 page = ksm_does_need_to_copy(page, vma, address);
3009 if (unlikely(!page)) {
3017 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3023 * Back out if somebody else already faulted in this pte.
3025 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3026 if (unlikely(!pte_same(*page_table, orig_pte)))
3029 if (unlikely(!PageUptodate(page))) {
3030 ret = VM_FAULT_SIGBUS;
3035 * The page isn't present yet, go ahead with the fault.
3037 * Be careful about the sequence of operations here.
3038 * To get its accounting right, reuse_swap_page() must be called
3039 * while the page is counted on swap but not yet in mapcount i.e.
3040 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3041 * must be called after the swap_free(), or it will never succeed.
3042 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3043 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3044 * in page->private. In this case, a record in swap_cgroup is silently
3045 * discarded at swap_free().
3048 inc_mm_counter_fast(mm, MM_ANONPAGES);
3049 dec_mm_counter_fast(mm, MM_SWAPENTS);
3050 pte = mk_pte(page, vma->vm_page_prot);
3051 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3052 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3053 flags &= ~FAULT_FLAG_WRITE;
3054 ret |= VM_FAULT_WRITE;
3057 flush_icache_page(vma, page);
3058 set_pte_at(mm, address, page_table, pte);
3059 do_page_add_anon_rmap(page, vma, address, exclusive);
3060 /* It's better to call commit-charge after rmap is established */
3061 mem_cgroup_commit_charge_swapin(page, ptr);
3064 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3065 try_to_free_swap(page);
3069 * Hold the lock to avoid the swap entry to be reused
3070 * until we take the PT lock for the pte_same() check
3071 * (to avoid false positives from pte_same). For
3072 * further safety release the lock after the swap_free
3073 * so that the swap count won't change under a
3074 * parallel locked swapcache.
3076 unlock_page(swapcache);
3077 page_cache_release(swapcache);
3080 if (flags & FAULT_FLAG_WRITE) {
3081 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3082 if (ret & VM_FAULT_ERROR)
3083 ret &= VM_FAULT_ERROR;
3087 /* No need to invalidate - it was non-present before */
3088 update_mmu_cache(vma, address, page_table);
3090 pte_unmap_unlock(page_table, ptl);
3094 mem_cgroup_cancel_charge_swapin(ptr);
3095 pte_unmap_unlock(page_table, ptl);
3099 page_cache_release(page);
3101 unlock_page(swapcache);
3102 page_cache_release(swapcache);
3108 * This is like a special single-page "expand_{down|up}wards()",
3109 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3110 * doesn't hit another vma.
3112 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3114 address &= PAGE_MASK;
3115 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3116 struct vm_area_struct *prev = vma->vm_prev;
3119 * Is there a mapping abutting this one below?
3121 * That's only ok if it's the same stack mapping
3122 * that has gotten split..
3124 if (prev && prev->vm_end == address)
3125 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3127 expand_downwards(vma, address - PAGE_SIZE);
3129 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3130 struct vm_area_struct *next = vma->vm_next;
3132 /* As VM_GROWSDOWN but s/below/above/ */
3133 if (next && next->vm_start == address + PAGE_SIZE)
3134 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3136 expand_upwards(vma, address + PAGE_SIZE);
3142 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3143 * but allow concurrent faults), and pte mapped but not yet locked.
3144 * We return with mmap_sem still held, but pte unmapped and unlocked.
3146 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3147 unsigned long address, pte_t *page_table, pmd_t *pmd,
3154 pte_unmap(page_table);
3156 /* Check if we need to add a guard page to the stack */
3157 if (check_stack_guard_page(vma, address) < 0)
3158 return VM_FAULT_SIGBUS;
3160 /* Use the zero-page for reads */
3161 if (!(flags & FAULT_FLAG_WRITE)) {
3162 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3163 vma->vm_page_prot));
3164 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3165 if (!pte_none(*page_table))
3170 /* Allocate our own private page. */
3171 if (unlikely(anon_vma_prepare(vma)))
3173 page = alloc_zeroed_user_highpage_movable(vma, address);
3176 __SetPageUptodate(page);
3178 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3181 entry = mk_pte(page, vma->vm_page_prot);
3182 if (vma->vm_flags & VM_WRITE)
3183 entry = pte_mkwrite(pte_mkdirty(entry));
3185 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3186 if (!pte_none(*page_table))
3189 inc_mm_counter_fast(mm, MM_ANONPAGES);
3190 page_add_new_anon_rmap(page, vma, address);
3192 set_pte_at(mm, address, page_table, entry);
3194 /* No need to invalidate - it was non-present before */
3195 update_mmu_cache(vma, address, page_table);
3197 pte_unmap_unlock(page_table, ptl);
3200 mem_cgroup_uncharge_page(page);
3201 page_cache_release(page);
3204 page_cache_release(page);
3206 return VM_FAULT_OOM;
3210 * __do_fault() tries to create a new page mapping. It aggressively
3211 * tries to share with existing pages, but makes a separate copy if
3212 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3213 * the next page fault.
3215 * As this is called only for pages that do not currently exist, we
3216 * do not need to flush old virtual caches or the TLB.
3218 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3219 * but allow concurrent faults), and pte neither mapped nor locked.
3220 * We return with mmap_sem still held, but pte unmapped and unlocked.
3222 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3223 unsigned long address, pmd_t *pmd,
3224 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3229 struct page *cow_page;
3232 struct page *dirty_page = NULL;
3233 struct vm_fault vmf;
3235 int page_mkwrite = 0;
3238 * If we do COW later, allocate page befor taking lock_page()
3239 * on the file cache page. This will reduce lock holding time.
3241 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3243 if (unlikely(anon_vma_prepare(vma)))
3244 return VM_FAULT_OOM;
3246 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3248 return VM_FAULT_OOM;
3250 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3251 page_cache_release(cow_page);
3252 return VM_FAULT_OOM;
3257 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3262 ret = vma->vm_ops->fault(vma, &vmf);
3263 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3267 if (unlikely(PageHWPoison(vmf.page))) {
3268 if (ret & VM_FAULT_LOCKED)
3269 unlock_page(vmf.page);
3270 ret = VM_FAULT_HWPOISON;
3275 * For consistency in subsequent calls, make the faulted page always
3278 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3279 lock_page(vmf.page);
3281 VM_BUG_ON(!PageLocked(vmf.page));
3284 * Should we do an early C-O-W break?
3287 if (flags & FAULT_FLAG_WRITE) {
3288 if (!(vma->vm_flags & VM_SHARED)) {
3291 copy_user_highpage(page, vmf.page, address, vma);
3292 __SetPageUptodate(page);
3295 * If the page will be shareable, see if the backing
3296 * address space wants to know that the page is about
3297 * to become writable
3299 if (vma->vm_ops->page_mkwrite) {
3303 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3304 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3306 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3308 goto unwritable_page;
3310 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3312 if (!page->mapping) {
3313 ret = 0; /* retry the fault */
3315 goto unwritable_page;
3318 VM_BUG_ON(!PageLocked(page));
3325 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3328 * This silly early PAGE_DIRTY setting removes a race
3329 * due to the bad i386 page protection. But it's valid
3330 * for other architectures too.
3332 * Note that if FAULT_FLAG_WRITE is set, we either now have
3333 * an exclusive copy of the page, or this is a shared mapping,
3334 * so we can make it writable and dirty to avoid having to
3335 * handle that later.
3337 /* Only go through if we didn't race with anybody else... */
3338 if (likely(pte_same(*page_table, orig_pte))) {
3339 flush_icache_page(vma, page);
3340 entry = mk_pte(page, vma->vm_page_prot);
3341 if (flags & FAULT_FLAG_WRITE)
3342 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3344 inc_mm_counter_fast(mm, MM_ANONPAGES);
3345 page_add_new_anon_rmap(page, vma, address);
3347 inc_mm_counter_fast(mm, MM_FILEPAGES);
3348 page_add_file_rmap(page);
3349 if (flags & FAULT_FLAG_WRITE) {
3351 get_page(dirty_page);
3354 set_pte_at(mm, address, page_table, entry);
3356 /* no need to invalidate: a not-present page won't be cached */
3357 update_mmu_cache(vma, address, page_table);
3360 mem_cgroup_uncharge_page(cow_page);
3362 page_cache_release(page);
3364 anon = 1; /* no anon but release faulted_page */
3367 pte_unmap_unlock(page_table, ptl);
3370 struct address_space *mapping = page->mapping;
3373 if (set_page_dirty(dirty_page))
3375 unlock_page(dirty_page);
3376 put_page(dirty_page);
3377 if ((dirtied || page_mkwrite) && mapping) {
3379 * Some device drivers do not set page.mapping but still
3382 balance_dirty_pages_ratelimited(mapping);
3385 /* file_update_time outside page_lock */
3386 if (vma->vm_file && !page_mkwrite)
3387 file_update_time(vma->vm_file);
3389 unlock_page(vmf.page);
3391 page_cache_release(vmf.page);
3397 page_cache_release(page);
3400 /* fs's fault handler get error */
3402 mem_cgroup_uncharge_page(cow_page);
3403 page_cache_release(cow_page);
3408 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3409 unsigned long address, pte_t *page_table, pmd_t *pmd,
3410 unsigned int flags, pte_t orig_pte)
3412 pgoff_t pgoff = (((address & PAGE_MASK)
3413 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3415 pte_unmap(page_table);
3416 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3420 * Fault of a previously existing named mapping. Repopulate the pte
3421 * from the encoded file_pte if possible. This enables swappable
3424 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3425 * but allow concurrent faults), and pte mapped but not yet locked.
3426 * We return with mmap_sem still held, but pte unmapped and unlocked.
3428 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3429 unsigned long address, pte_t *page_table, pmd_t *pmd,
3430 unsigned int flags, pte_t orig_pte)
3434 flags |= FAULT_FLAG_NONLINEAR;
3436 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3439 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3441 * Page table corrupted: show pte and kill process.
3443 print_bad_pte(vma, address, orig_pte, NULL);
3444 return VM_FAULT_SIGBUS;
3447 pgoff = pte_to_pgoff(orig_pte);
3448 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3451 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3452 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3458 * The "pte" at this point cannot be used safely without
3459 * validation through pte_unmap_same(). It's of NUMA type but
3460 * the pfn may be screwed if the read is non atomic.
3462 * ptep_modify_prot_start is not called as this is clearing
3463 * the _PAGE_NUMA bit and it is not really expected that there
3464 * would be concurrent hardware modifications to the PTE.
3466 ptl = pte_lockptr(mm, pmd);
3468 if (unlikely(!pte_same(*ptep, pte)))
3470 pte = pte_mknonnuma(pte);
3471 set_pte_at(mm, addr, ptep, pte);
3472 update_mmu_cache(vma, addr, ptep);
3474 page = vm_normal_page(vma, addr, pte);
3476 pte_unmap_unlock(ptep, ptl);
3481 pte_unmap_unlock(ptep, ptl);
3485 /* NUMA hinting page fault entry point for regular pmds */
3486 #ifdef CONFIG_NUMA_BALANCING
3487 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3488 unsigned long addr, pmd_t *pmdp)
3491 pte_t *pte, *orig_pte;
3492 unsigned long _addr = addr & PMD_MASK;
3493 unsigned long offset;
3497 spin_lock(&mm->page_table_lock);
3499 if (pmd_numa(pmd)) {
3500 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3503 spin_unlock(&mm->page_table_lock);
3508 /* we're in a page fault so some vma must be in the range */
3510 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3511 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3512 VM_BUG_ON(offset >= PMD_SIZE);
3513 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3514 pte += offset >> PAGE_SHIFT;
3515 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3516 pte_t pteval = *pte;
3518 if (!pte_present(pteval))
3520 if (!pte_numa(pteval))
3522 if (addr >= vma->vm_end) {
3523 vma = find_vma(mm, addr);
3524 /* there's a pte present so there must be a vma */
3526 BUG_ON(addr < vma->vm_start);
3528 if (pte_numa(pteval)) {
3529 pteval = pte_mknonnuma(pteval);
3530 set_pte_at(mm, addr, pte, pteval);
3532 page = vm_normal_page(vma, addr, pteval);
3533 if (unlikely(!page))
3536 pte_unmap_unlock(orig_pte, ptl);
3541 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3542 unsigned long addr, pmd_t *pmdp)
3546 #endif /* CONFIG_NUMA_BALANCING */
3549 * These routines also need to handle stuff like marking pages dirty
3550 * and/or accessed for architectures that don't do it in hardware (most
3551 * RISC architectures). The early dirtying is also good on the i386.
3553 * There is also a hook called "update_mmu_cache()" that architectures
3554 * with external mmu caches can use to update those (ie the Sparc or
3555 * PowerPC hashed page tables that act as extended TLBs).
3557 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3558 * but allow concurrent faults), and pte mapped but not yet locked.
3559 * We return with mmap_sem still held, but pte unmapped and unlocked.
3561 int handle_pte_fault(struct mm_struct *mm,
3562 struct vm_area_struct *vma, unsigned long address,
3563 pte_t *pte, pmd_t *pmd, unsigned int flags)
3569 if (!pte_present(entry)) {
3570 if (pte_none(entry)) {
3572 if (likely(vma->vm_ops->fault))
3573 return do_linear_fault(mm, vma, address,
3574 pte, pmd, flags, entry);
3576 return do_anonymous_page(mm, vma, address,
3579 if (pte_file(entry))
3580 return do_nonlinear_fault(mm, vma, address,
3581 pte, pmd, flags, entry);
3582 return do_swap_page(mm, vma, address,
3583 pte, pmd, flags, entry);
3586 if (pte_numa(entry))
3587 return do_numa_page(mm, vma, address, entry, pte, pmd);
3589 ptl = pte_lockptr(mm, pmd);
3591 if (unlikely(!pte_same(*pte, entry)))
3593 if (flags & FAULT_FLAG_WRITE) {
3594 if (!pte_write(entry))
3595 return do_wp_page(mm, vma, address,
3596 pte, pmd, ptl, entry);
3597 entry = pte_mkdirty(entry);
3599 entry = pte_mkyoung(entry);
3600 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3601 update_mmu_cache(vma, address, pte);
3604 * This is needed only for protection faults but the arch code
3605 * is not yet telling us if this is a protection fault or not.
3606 * This still avoids useless tlb flushes for .text page faults
3609 if (flags & FAULT_FLAG_WRITE)
3610 flush_tlb_fix_spurious_fault(vma, address);
3613 pte_unmap_unlock(pte, ptl);
3618 * By the time we get here, we already hold the mm semaphore
3620 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3621 unsigned long address, unsigned int flags)
3628 __set_current_state(TASK_RUNNING);
3630 count_vm_event(PGFAULT);
3631 mem_cgroup_count_vm_event(mm, PGFAULT);
3633 /* do counter updates before entering really critical section. */
3634 check_sync_rss_stat(current);
3636 if (unlikely(is_vm_hugetlb_page(vma)))
3637 return hugetlb_fault(mm, vma, address, flags);
3640 pgd = pgd_offset(mm, address);
3641 pud = pud_alloc(mm, pgd, address);
3643 return VM_FAULT_OOM;
3644 pmd = pmd_alloc(mm, pud, address);
3646 return VM_FAULT_OOM;
3647 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3649 return do_huge_pmd_anonymous_page(mm, vma, address,
3652 pmd_t orig_pmd = *pmd;
3656 if (pmd_trans_huge(orig_pmd)) {
3658 return do_huge_pmd_numa_page(mm, address,
3661 if ((flags & FAULT_FLAG_WRITE) && !pmd_write(orig_pmd)) {
3662 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3665 * If COW results in an oom, the huge pmd will
3666 * have been split, so retry the fault on the
3667 * pte for a smaller charge.
3669 if (unlikely(ret & VM_FAULT_OOM))
3679 return do_pmd_numa_page(mm, vma, address, pmd);
3682 * Use __pte_alloc instead of pte_alloc_map, because we can't
3683 * run pte_offset_map on the pmd, if an huge pmd could
3684 * materialize from under us from a different thread.
3686 if (unlikely(pmd_none(*pmd)) &&
3687 unlikely(__pte_alloc(mm, vma, pmd, address)))
3688 return VM_FAULT_OOM;
3689 /* if an huge pmd materialized from under us just retry later */
3690 if (unlikely(pmd_trans_huge(*pmd)))
3693 * A regular pmd is established and it can't morph into a huge pmd
3694 * from under us anymore at this point because we hold the mmap_sem
3695 * read mode and khugepaged takes it in write mode. So now it's
3696 * safe to run pte_offset_map().
3698 pte = pte_offset_map(pmd, address);
3700 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3703 #ifndef __PAGETABLE_PUD_FOLDED
3705 * Allocate page upper directory.
3706 * We've already handled the fast-path in-line.
3708 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3710 pud_t *new = pud_alloc_one(mm, address);
3714 smp_wmb(); /* See comment in __pte_alloc */
3716 spin_lock(&mm->page_table_lock);
3717 if (pgd_present(*pgd)) /* Another has populated it */
3720 pgd_populate(mm, pgd, new);
3721 spin_unlock(&mm->page_table_lock);
3724 #endif /* __PAGETABLE_PUD_FOLDED */
3726 #ifndef __PAGETABLE_PMD_FOLDED
3728 * Allocate page middle directory.
3729 * We've already handled the fast-path in-line.
3731 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3733 pmd_t *new = pmd_alloc_one(mm, address);
3737 smp_wmb(); /* See comment in __pte_alloc */
3739 spin_lock(&mm->page_table_lock);
3740 #ifndef __ARCH_HAS_4LEVEL_HACK
3741 if (pud_present(*pud)) /* Another has populated it */
3744 pud_populate(mm, pud, new);
3746 if (pgd_present(*pud)) /* Another has populated it */
3749 pgd_populate(mm, pud, new);
3750 #endif /* __ARCH_HAS_4LEVEL_HACK */
3751 spin_unlock(&mm->page_table_lock);
3754 #endif /* __PAGETABLE_PMD_FOLDED */
3756 int make_pages_present(unsigned long addr, unsigned long end)
3758 int ret, len, write;
3759 struct vm_area_struct * vma;
3761 vma = find_vma(current->mm, addr);
3765 * We want to touch writable mappings with a write fault in order
3766 * to break COW, except for shared mappings because these don't COW
3767 * and we would not want to dirty them for nothing.
3769 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3770 BUG_ON(addr >= end);
3771 BUG_ON(end > vma->vm_end);
3772 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3773 ret = get_user_pages(current, current->mm, addr,
3774 len, write, 0, NULL, NULL);
3777 return ret == len ? 0 : -EFAULT;
3780 #if !defined(__HAVE_ARCH_GATE_AREA)
3782 #if defined(AT_SYSINFO_EHDR)
3783 static struct vm_area_struct gate_vma;
3785 static int __init gate_vma_init(void)
3787 gate_vma.vm_mm = NULL;
3788 gate_vma.vm_start = FIXADDR_USER_START;
3789 gate_vma.vm_end = FIXADDR_USER_END;
3790 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3791 gate_vma.vm_page_prot = __P101;
3795 __initcall(gate_vma_init);
3798 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3800 #ifdef AT_SYSINFO_EHDR
3807 int in_gate_area_no_mm(unsigned long addr)
3809 #ifdef AT_SYSINFO_EHDR
3810 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3816 #endif /* __HAVE_ARCH_GATE_AREA */
3818 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3819 pte_t **ptepp, spinlock_t **ptlp)
3826 pgd = pgd_offset(mm, address);
3827 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3830 pud = pud_offset(pgd, address);
3831 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3834 pmd = pmd_offset(pud, address);
3835 VM_BUG_ON(pmd_trans_huge(*pmd));
3836 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3839 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3843 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3846 if (!pte_present(*ptep))
3851 pte_unmap_unlock(ptep, *ptlp);
3856 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3857 pte_t **ptepp, spinlock_t **ptlp)
3861 /* (void) is needed to make gcc happy */
3862 (void) __cond_lock(*ptlp,
3863 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3868 * follow_pfn - look up PFN at a user virtual address
3869 * @vma: memory mapping
3870 * @address: user virtual address
3871 * @pfn: location to store found PFN
3873 * Only IO mappings and raw PFN mappings are allowed.
3875 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3877 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3884 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3887 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3890 *pfn = pte_pfn(*ptep);
3891 pte_unmap_unlock(ptep, ptl);
3894 EXPORT_SYMBOL(follow_pfn);
3896 #ifdef CONFIG_HAVE_IOREMAP_PROT
3897 int follow_phys(struct vm_area_struct *vma,
3898 unsigned long address, unsigned int flags,
3899 unsigned long *prot, resource_size_t *phys)
3905 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3908 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3912 if ((flags & FOLL_WRITE) && !pte_write(pte))
3915 *prot = pgprot_val(pte_pgprot(pte));
3916 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3920 pte_unmap_unlock(ptep, ptl);
3925 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3926 void *buf, int len, int write)
3928 resource_size_t phys_addr;
3929 unsigned long prot = 0;
3930 void __iomem *maddr;
3931 int offset = addr & (PAGE_SIZE-1);
3933 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3936 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3938 memcpy_toio(maddr + offset, buf, len);
3940 memcpy_fromio(buf, maddr + offset, len);
3948 * Access another process' address space as given in mm. If non-NULL, use the
3949 * given task for page fault accounting.
3951 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3952 unsigned long addr, void *buf, int len, int write)
3954 struct vm_area_struct *vma;
3955 void *old_buf = buf;
3957 down_read(&mm->mmap_sem);
3958 /* ignore errors, just check how much was successfully transferred */
3960 int bytes, ret, offset;
3962 struct page *page = NULL;
3964 ret = get_user_pages(tsk, mm, addr, 1,
3965 write, 1, &page, &vma);
3968 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3969 * we can access using slightly different code.
3971 #ifdef CONFIG_HAVE_IOREMAP_PROT
3972 vma = find_vma(mm, addr);
3973 if (!vma || vma->vm_start > addr)
3975 if (vma->vm_ops && vma->vm_ops->access)
3976 ret = vma->vm_ops->access(vma, addr, buf,
3984 offset = addr & (PAGE_SIZE-1);
3985 if (bytes > PAGE_SIZE-offset)
3986 bytes = PAGE_SIZE-offset;
3990 copy_to_user_page(vma, page, addr,
3991 maddr + offset, buf, bytes);
3992 set_page_dirty_lock(page);
3994 copy_from_user_page(vma, page, addr,
3995 buf, maddr + offset, bytes);
3998 page_cache_release(page);
4004 up_read(&mm->mmap_sem);
4006 return buf - old_buf;
4010 * access_remote_vm - access another process' address space
4011 * @mm: the mm_struct of the target address space
4012 * @addr: start address to access
4013 * @buf: source or destination buffer
4014 * @len: number of bytes to transfer
4015 * @write: whether the access is a write
4017 * The caller must hold a reference on @mm.
4019 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4020 void *buf, int len, int write)
4022 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4026 * Access another process' address space.
4027 * Source/target buffer must be kernel space,
4028 * Do not walk the page table directly, use get_user_pages
4030 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4031 void *buf, int len, int write)
4033 struct mm_struct *mm;
4036 mm = get_task_mm(tsk);
4040 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4047 * Print the name of a VMA.
4049 void print_vma_addr(char *prefix, unsigned long ip)
4051 struct mm_struct *mm = current->mm;
4052 struct vm_area_struct *vma;
4055 * Do not print if we are in atomic
4056 * contexts (in exception stacks, etc.):
4058 if (preempt_count())
4061 down_read(&mm->mmap_sem);
4062 vma = find_vma(mm, ip);
4063 if (vma && vma->vm_file) {
4064 struct file *f = vma->vm_file;
4065 char *buf = (char *)__get_free_page(GFP_KERNEL);
4069 p = d_path(&f->f_path, buf, PAGE_SIZE);
4072 s = strrchr(p, '/');
4075 printk("%s%s[%lx+%lx]", prefix, p,
4077 vma->vm_end - vma->vm_start);
4078 free_page((unsigned long)buf);
4081 up_read(&mm->mmap_sem);
4084 #ifdef CONFIG_PROVE_LOCKING
4085 void might_fault(void)
4088 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4089 * holding the mmap_sem, this is safe because kernel memory doesn't
4090 * get paged out, therefore we'll never actually fault, and the
4091 * below annotations will generate false positives.
4093 if (segment_eq(get_fs(), KERNEL_DS))
4098 * it would be nicer only to annotate paths which are not under
4099 * pagefault_disable, however that requires a larger audit and
4100 * providing helpers like get_user_atomic.
4102 if (!in_atomic() && current->mm)
4103 might_lock_read(¤t->mm->mmap_sem);
4105 EXPORT_SYMBOL(might_fault);
4108 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4109 static void clear_gigantic_page(struct page *page,
4111 unsigned int pages_per_huge_page)
4114 struct page *p = page;
4117 for (i = 0; i < pages_per_huge_page;
4118 i++, p = mem_map_next(p, page, i)) {
4120 clear_user_highpage(p, addr + i * PAGE_SIZE);
4123 void clear_huge_page(struct page *page,
4124 unsigned long addr, unsigned int pages_per_huge_page)
4128 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4129 clear_gigantic_page(page, addr, pages_per_huge_page);
4134 for (i = 0; i < pages_per_huge_page; i++) {
4136 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4140 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4142 struct vm_area_struct *vma,
4143 unsigned int pages_per_huge_page)
4146 struct page *dst_base = dst;
4147 struct page *src_base = src;
4149 for (i = 0; i < pages_per_huge_page; ) {
4151 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4154 dst = mem_map_next(dst, dst_base, i);
4155 src = mem_map_next(src, src_base, i);
4159 void copy_user_huge_page(struct page *dst, struct page *src,
4160 unsigned long addr, struct vm_area_struct *vma,
4161 unsigned int pages_per_huge_page)
4165 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4166 copy_user_gigantic_page(dst, src, addr, vma,
4167 pages_per_huge_page);
4172 for (i = 0; i < pages_per_huge_page; i++) {
4174 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4177 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */