1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
36 #include <linux/aer.h>
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 EXPORT_SYMBOL_GPL(pci_power_names);
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48 EXPORT_SYMBOL(pci_pci_problems);
50 unsigned int pci_pm_d3_delay;
52 static void pci_pme_list_scan(struct work_struct *work);
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 struct pci_pme_device {
59 struct list_head list;
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
67 unsigned int delay = dev->d3_delay;
69 if (delay < pci_pm_d3_delay)
70 delay = pci_pm_d3_delay;
76 #ifdef CONFIG_PCI_DOMAINS
77 int pci_domains_supported = 1;
80 #define DEFAULT_CARDBUS_IO_SIZE (256)
81 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
82 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
83 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
84 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86 #define DEFAULT_HOTPLUG_IO_SIZE (256)
87 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
88 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
90 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92 #define DEFAULT_HOTPLUG_BUS_SIZE 1
93 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
98 * The default CLS is used if arch didn't set CLS explicitly and not
99 * all pci devices agree on the same value. Arch can override either
100 * the dfl or actual value as it sees fit. Don't forget this is
101 * measured in 32-bit words, not bytes.
103 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
104 u8 pci_cache_line_size;
107 * If we set up a device for bus mastering, we need to check the latency
108 * timer as certain BIOSes forget to set it properly.
110 unsigned int pcibios_max_latency = 255;
112 /* If set, the PCIe ARI capability will not be used. */
113 static bool pcie_ari_disabled;
115 /* If set, the PCIe ATS capability will not be used. */
116 static bool pcie_ats_disabled;
118 bool pci_ats_disabled(void)
120 return pcie_ats_disabled;
123 /* Disable bridge_d3 for all PCIe ports */
124 static bool pci_bridge_d3_disable;
125 /* Force bridge_d3 for all PCIe ports */
126 static bool pci_bridge_d3_force;
128 static int __init pcie_port_pm_setup(char *str)
130 if (!strcmp(str, "off"))
131 pci_bridge_d3_disable = true;
132 else if (!strcmp(str, "force"))
133 pci_bridge_d3_force = true;
136 __setup("pcie_port_pm=", pcie_port_pm_setup);
138 /* Time to wait after a reset for device to become responsive */
139 #define PCIE_RESET_READY_POLL_MS 60000
142 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
143 * @bus: pointer to PCI bus structure to search
145 * Given a PCI bus, returns the highest PCI bus number present in the set
146 * including the given PCI bus and its list of child PCI buses.
148 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
151 unsigned char max, n;
153 max = bus->busn_res.end;
154 list_for_each_entry(tmp, &bus->children, node) {
155 n = pci_bus_max_busnr(tmp);
161 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
163 #ifdef CONFIG_HAS_IOMEM
164 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
166 struct resource *res = &pdev->resource[bar];
169 * Make sure the BAR is actually a memory resource, not an IO resource
171 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
172 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
175 return ioremap_nocache(res->start, resource_size(res));
177 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
179 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
182 * Make sure the BAR is actually a memory resource, not an IO resource
184 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
188 return ioremap_wc(pci_resource_start(pdev, bar),
189 pci_resource_len(pdev, bar));
191 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
195 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
196 u8 pos, int cap, int *ttl)
201 pci_bus_read_config_byte(bus, devfn, pos, &pos);
207 pci_bus_read_config_word(bus, devfn, pos, &ent);
219 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
222 int ttl = PCI_FIND_CAP_TTL;
224 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
227 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
229 return __pci_find_next_cap(dev->bus, dev->devfn,
230 pos + PCI_CAP_LIST_NEXT, cap);
232 EXPORT_SYMBOL_GPL(pci_find_next_capability);
234 static int __pci_bus_find_cap_start(struct pci_bus *bus,
235 unsigned int devfn, u8 hdr_type)
239 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
240 if (!(status & PCI_STATUS_CAP_LIST))
244 case PCI_HEADER_TYPE_NORMAL:
245 case PCI_HEADER_TYPE_BRIDGE:
246 return PCI_CAPABILITY_LIST;
247 case PCI_HEADER_TYPE_CARDBUS:
248 return PCI_CB_CAPABILITY_LIST;
255 * pci_find_capability - query for devices' capabilities
256 * @dev: PCI device to query
257 * @cap: capability code
259 * Tell if a device supports a given PCI capability.
260 * Returns the address of the requested capability structure within the
261 * device's PCI configuration space or 0 in case the device does not
262 * support it. Possible values for @cap:
264 * %PCI_CAP_ID_PM Power Management
265 * %PCI_CAP_ID_AGP Accelerated Graphics Port
266 * %PCI_CAP_ID_VPD Vital Product Data
267 * %PCI_CAP_ID_SLOTID Slot Identification
268 * %PCI_CAP_ID_MSI Message Signalled Interrupts
269 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
270 * %PCI_CAP_ID_PCIX PCI-X
271 * %PCI_CAP_ID_EXP PCI Express
273 int pci_find_capability(struct pci_dev *dev, int cap)
277 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
279 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
283 EXPORT_SYMBOL(pci_find_capability);
286 * pci_bus_find_capability - query for devices' capabilities
287 * @bus: the PCI bus to query
288 * @devfn: PCI device to query
289 * @cap: capability code
291 * Like pci_find_capability() but works for pci devices that do not have a
292 * pci_dev structure set up yet.
294 * Returns the address of the requested capability structure within the
295 * device's PCI configuration space or 0 in case the device does not
298 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
303 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
305 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
307 pos = __pci_find_next_cap(bus, devfn, pos, cap);
311 EXPORT_SYMBOL(pci_bus_find_capability);
314 * pci_find_next_ext_capability - Find an extended capability
315 * @dev: PCI device to query
316 * @start: address at which to start looking (0 to start at beginning of list)
317 * @cap: capability code
319 * Returns the address of the next matching extended capability structure
320 * within the device's PCI configuration space or 0 if the device does
321 * not support it. Some capabilities can occur several times, e.g., the
322 * vendor-specific capability, and this provides a way to find them all.
324 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
328 int pos = PCI_CFG_SPACE_SIZE;
330 /* minimum 8 bytes per capability */
331 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
333 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
339 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
343 * If we have no capabilities, this is indicated by cap ID,
344 * cap version and next pointer all being 0.
350 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
353 pos = PCI_EXT_CAP_NEXT(header);
354 if (pos < PCI_CFG_SPACE_SIZE)
357 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
363 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
366 * pci_find_ext_capability - Find an extended capability
367 * @dev: PCI device to query
368 * @cap: capability code
370 * Returns the address of the requested extended capability structure
371 * within the device's PCI configuration space or 0 if the device does
372 * not support it. Possible values for @cap:
374 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
375 * %PCI_EXT_CAP_ID_VC Virtual Channel
376 * %PCI_EXT_CAP_ID_DSN Device Serial Number
377 * %PCI_EXT_CAP_ID_PWR Power Budgeting
379 int pci_find_ext_capability(struct pci_dev *dev, int cap)
381 return pci_find_next_ext_capability(dev, 0, cap);
383 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
385 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
387 int rc, ttl = PCI_FIND_CAP_TTL;
390 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
391 mask = HT_3BIT_CAP_MASK;
393 mask = HT_5BIT_CAP_MASK;
395 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
396 PCI_CAP_ID_HT, &ttl);
398 rc = pci_read_config_byte(dev, pos + 3, &cap);
399 if (rc != PCIBIOS_SUCCESSFUL)
402 if ((cap & mask) == ht_cap)
405 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
406 pos + PCI_CAP_LIST_NEXT,
407 PCI_CAP_ID_HT, &ttl);
413 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
414 * @dev: PCI device to query
415 * @pos: Position from which to continue searching
416 * @ht_cap: Hypertransport capability code
418 * To be used in conjunction with pci_find_ht_capability() to search for
419 * all capabilities matching @ht_cap. @pos should always be a value returned
420 * from pci_find_ht_capability().
422 * NB. To be 100% safe against broken PCI devices, the caller should take
423 * steps to avoid an infinite loop.
425 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
427 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
429 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
432 * pci_find_ht_capability - query a device's Hypertransport capabilities
433 * @dev: PCI device to query
434 * @ht_cap: Hypertransport capability code
436 * Tell if a device supports a given Hypertransport capability.
437 * Returns an address within the device's PCI configuration space
438 * or 0 in case the device does not support the request capability.
439 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
440 * which has a Hypertransport capability matching @ht_cap.
442 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
446 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
448 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
452 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
455 * pci_find_parent_resource - return resource region of parent bus of given region
456 * @dev: PCI device structure contains resources to be searched
457 * @res: child resource record for which parent is sought
459 * For given resource region of given device, return the resource
460 * region of parent bus the given region is contained in.
462 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
463 struct resource *res)
465 const struct pci_bus *bus = dev->bus;
469 pci_bus_for_each_resource(bus, r, i) {
472 if (resource_contains(r, res)) {
475 * If the window is prefetchable but the BAR is
476 * not, the allocator made a mistake.
478 if (r->flags & IORESOURCE_PREFETCH &&
479 !(res->flags & IORESOURCE_PREFETCH))
483 * If we're below a transparent bridge, there may
484 * be both a positively-decoded aperture and a
485 * subtractively-decoded region that contain the BAR.
486 * We want the positively-decoded one, so this depends
487 * on pci_bus_for_each_resource() giving us those
495 EXPORT_SYMBOL(pci_find_parent_resource);
498 * pci_find_resource - Return matching PCI device resource
499 * @dev: PCI device to query
500 * @res: Resource to look for
502 * Goes over standard PCI resources (BARs) and checks if the given resource
503 * is partially or fully contained in any of them. In that case the
504 * matching resource is returned, %NULL otherwise.
506 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
510 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
511 struct resource *r = &dev->resource[i];
513 if (r->start && resource_contains(r, res))
519 EXPORT_SYMBOL(pci_find_resource);
522 * pci_find_pcie_root_port - return PCIe Root Port
523 * @dev: PCI device to query
525 * Traverse up the parent chain and return the PCIe Root Port PCI Device
526 * for a given PCI Device.
528 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
530 struct pci_dev *bridge, *highest_pcie_bridge = dev;
532 bridge = pci_upstream_bridge(dev);
533 while (bridge && pci_is_pcie(bridge)) {
534 highest_pcie_bridge = bridge;
535 bridge = pci_upstream_bridge(bridge);
538 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
541 return highest_pcie_bridge;
543 EXPORT_SYMBOL(pci_find_pcie_root_port);
546 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
547 * @dev: the PCI device to operate on
548 * @pos: config space offset of status word
549 * @mask: mask of bit(s) to care about in status word
551 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
553 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
557 /* Wait for Transaction Pending bit clean */
558 for (i = 0; i < 4; i++) {
561 msleep((1 << (i - 1)) * 100);
563 pci_read_config_word(dev, pos, &status);
564 if (!(status & mask))
572 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
573 * @dev: PCI device to have its BARs restored
575 * Restore the BAR values for a given device, so as to make it
576 * accessible by its driver.
578 static void pci_restore_bars(struct pci_dev *dev)
582 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
583 pci_update_resource(dev, i);
586 static const struct pci_platform_pm_ops *pci_platform_pm;
588 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
590 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
591 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
593 pci_platform_pm = ops;
597 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
599 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
602 static inline int platform_pci_set_power_state(struct pci_dev *dev,
605 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
608 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
610 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
613 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
615 return pci_platform_pm ?
616 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
619 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
621 return pci_platform_pm ?
622 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
625 static inline bool platform_pci_need_resume(struct pci_dev *dev)
627 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
631 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
633 * @dev: PCI device to handle.
634 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
637 * -EINVAL if the requested state is invalid.
638 * -EIO if device does not support PCI PM or its PM capabilities register has a
639 * wrong version, or device doesn't support the requested state.
640 * 0 if device already is in the requested state.
641 * 0 if device's power state has been successfully changed.
643 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
646 bool need_restore = false;
648 /* Check if we're already there */
649 if (dev->current_state == state)
655 if (state < PCI_D0 || state > PCI_D3hot)
658 /* Validate current state:
659 * Can enter D0 from any state, but if we can only go deeper
660 * to sleep if we're already in a low power state
662 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
663 && dev->current_state > state) {
664 pci_err(dev, "invalid power transition (from state %d to %d)\n",
665 dev->current_state, state);
669 /* check if this device supports the desired state */
670 if ((state == PCI_D1 && !dev->d1_support)
671 || (state == PCI_D2 && !dev->d2_support))
674 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
676 /* If we're (effectively) in D3, force entire word to 0.
677 * This doesn't affect PME_Status, disables PME_En, and
678 * sets PowerState to 0.
680 switch (dev->current_state) {
684 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
689 case PCI_UNKNOWN: /* Boot-up */
690 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
691 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
693 /* Fall-through: force to D0 */
699 /* enter specified state */
700 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
702 /* Mandatory power management transition delays */
703 /* see PCI PM 1.1 5.6.1 table 18 */
704 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
705 pci_dev_d3_sleep(dev);
706 else if (state == PCI_D2 || dev->current_state == PCI_D2)
707 udelay(PCI_PM_D2_DELAY);
709 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
710 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
711 if (dev->current_state != state && printk_ratelimit())
712 pci_info(dev, "Refused to change power state, currently in D%d\n",
716 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
717 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
718 * from D3hot to D0 _may_ perform an internal reset, thereby
719 * going to "D0 Uninitialized" rather than "D0 Initialized".
720 * For example, at least some versions of the 3c905B and the
721 * 3c556B exhibit this behaviour.
723 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
724 * devices in a D3hot state at boot. Consequently, we need to
725 * restore at least the BARs so that the device will be
726 * accessible to its driver.
729 pci_restore_bars(dev);
732 pcie_aspm_pm_state_change(dev->bus->self);
738 * pci_update_current_state - Read power state of given device and cache it
739 * @dev: PCI device to handle.
740 * @state: State to cache in case the device doesn't have the PM capability
742 * The power state is read from the PMCSR register, which however is
743 * inaccessible in D3cold. The platform firmware is therefore queried first
744 * to detect accessibility of the register. In case the platform firmware
745 * reports an incorrect state or the device isn't power manageable by the
746 * platform at all, we try to detect D3cold by testing accessibility of the
747 * vendor ID in config space.
749 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
751 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
752 !pci_device_is_present(dev)) {
753 dev->current_state = PCI_D3cold;
754 } else if (dev->pm_cap) {
757 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
758 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
760 dev->current_state = state;
765 * pci_power_up - Put the given device into D0 forcibly
766 * @dev: PCI device to power up
768 void pci_power_up(struct pci_dev *dev)
770 if (platform_pci_power_manageable(dev))
771 platform_pci_set_power_state(dev, PCI_D0);
773 pci_raw_set_power_state(dev, PCI_D0);
774 pci_update_current_state(dev, PCI_D0);
778 * pci_platform_power_transition - Use platform to change device power state
779 * @dev: PCI device to handle.
780 * @state: State to put the device into.
782 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
786 if (platform_pci_power_manageable(dev)) {
787 error = platform_pci_set_power_state(dev, state);
789 pci_update_current_state(dev, state);
793 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
794 dev->current_state = PCI_D0;
800 * pci_wakeup - Wake up a PCI device
801 * @pci_dev: Device to handle.
802 * @ign: ignored parameter
804 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
806 pci_wakeup_event(pci_dev);
807 pm_request_resume(&pci_dev->dev);
812 * pci_wakeup_bus - Walk given bus and wake up devices on it
813 * @bus: Top bus of the subtree to walk.
815 void pci_wakeup_bus(struct pci_bus *bus)
818 pci_walk_bus(bus, pci_wakeup, NULL);
822 * __pci_start_power_transition - Start power transition of a PCI device
823 * @dev: PCI device to handle.
824 * @state: State to put the device into.
826 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
828 if (state == PCI_D0) {
829 pci_platform_power_transition(dev, PCI_D0);
831 * Mandatory power management transition delays, see
832 * PCI Express Base Specification Revision 2.0 Section
833 * 6.6.1: Conventional Reset. Do not delay for
834 * devices powered on/off by corresponding bridge,
835 * because have already delayed for the bridge.
837 if (dev->runtime_d3cold) {
838 if (dev->d3cold_delay)
839 msleep(dev->d3cold_delay);
841 * When powering on a bridge from D3cold, the
842 * whole hierarchy may be powered on into
843 * D0uninitialized state, resume them to give
844 * them a chance to suspend again
846 pci_wakeup_bus(dev->subordinate);
852 * __pci_dev_set_current_state - Set current state of a PCI device
853 * @dev: Device to handle
854 * @data: pointer to state to be set
856 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
858 pci_power_t state = *(pci_power_t *)data;
860 dev->current_state = state;
865 * pci_bus_set_current_state - Walk given bus and set current state of devices
866 * @bus: Top bus of the subtree to walk.
867 * @state: state to be set
869 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
872 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
876 * __pci_complete_power_transition - Complete power transition of a PCI device
877 * @dev: PCI device to handle.
878 * @state: State to put the device into.
880 * This function should not be called directly by device drivers.
882 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
888 ret = pci_platform_power_transition(dev, state);
889 /* Power off the bridge may power off the whole hierarchy */
890 if (!ret && state == PCI_D3cold)
891 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
894 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
897 * pci_set_power_state - Set the power state of a PCI device
898 * @dev: PCI device to handle.
899 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
901 * Transition a device to a new power state, using the platform firmware and/or
902 * the device's PCI PM registers.
905 * -EINVAL if the requested state is invalid.
906 * -EIO if device does not support PCI PM or its PM capabilities register has a
907 * wrong version, or device doesn't support the requested state.
908 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
909 * 0 if device already is in the requested state.
910 * 0 if the transition is to D3 but D3 is not supported.
911 * 0 if device's power state has been successfully changed.
913 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
917 /* bound the state we're entering */
918 if (state > PCI_D3cold)
920 else if (state < PCI_D0)
922 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
924 * If the device or the parent bridge do not support PCI PM,
925 * ignore the request if we're doing anything other than putting
926 * it into D0 (which would only happen on boot).
930 /* Check if we're already there */
931 if (dev->current_state == state)
934 __pci_start_power_transition(dev, state);
936 /* This device is quirked not to be put into D3, so
937 don't put it in D3 */
938 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
942 * To put device in D3cold, we put device into D3hot in native
943 * way, then put device into D3cold with platform ops
945 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
948 if (!__pci_complete_power_transition(dev, state))
953 EXPORT_SYMBOL(pci_set_power_state);
956 * pci_choose_state - Choose the power state of a PCI device
957 * @dev: PCI device to be suspended
958 * @state: target sleep state for the whole system. This is the value
959 * that is passed to suspend() function.
961 * Returns PCI power state suitable for given device and given system
965 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
972 ret = platform_pci_choose_state(dev);
973 if (ret != PCI_POWER_ERROR)
976 switch (state.event) {
979 case PM_EVENT_FREEZE:
980 case PM_EVENT_PRETHAW:
981 /* REVISIT both freeze and pre-thaw "should" use D0 */
982 case PM_EVENT_SUSPEND:
983 case PM_EVENT_HIBERNATE:
986 pci_info(dev, "unrecognized suspend event %d\n",
992 EXPORT_SYMBOL(pci_choose_state);
994 #define PCI_EXP_SAVE_REGS 7
996 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
997 u16 cap, bool extended)
999 struct pci_cap_saved_state *tmp;
1001 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1002 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1008 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1010 return _pci_find_saved_cap(dev, cap, false);
1013 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1015 return _pci_find_saved_cap(dev, cap, true);
1018 static int pci_save_pcie_state(struct pci_dev *dev)
1021 struct pci_cap_saved_state *save_state;
1024 if (!pci_is_pcie(dev))
1027 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1029 pci_err(dev, "buffer not found in %s\n", __func__);
1033 cap = (u16 *)&save_state->cap.data[0];
1034 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1035 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1036 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1037 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1038 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1039 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1040 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1045 static void pci_restore_pcie_state(struct pci_dev *dev)
1048 struct pci_cap_saved_state *save_state;
1051 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1055 cap = (u16 *)&save_state->cap.data[0];
1056 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1057 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1058 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1059 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1060 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1061 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1062 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1066 static int pci_save_pcix_state(struct pci_dev *dev)
1069 struct pci_cap_saved_state *save_state;
1071 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1075 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1077 pci_err(dev, "buffer not found in %s\n", __func__);
1081 pci_read_config_word(dev, pos + PCI_X_CMD,
1082 (u16 *)save_state->cap.data);
1087 static void pci_restore_pcix_state(struct pci_dev *dev)
1090 struct pci_cap_saved_state *save_state;
1093 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1094 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1095 if (!save_state || !pos)
1097 cap = (u16 *)&save_state->cap.data[0];
1099 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1104 * pci_save_state - save the PCI configuration space of a device before suspending
1105 * @dev: - PCI device that we're dealing with
1107 int pci_save_state(struct pci_dev *dev)
1110 /* XXX: 100% dword access ok here? */
1111 for (i = 0; i < 16; i++)
1112 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1113 dev->state_saved = true;
1115 i = pci_save_pcie_state(dev);
1119 i = pci_save_pcix_state(dev);
1123 return pci_save_vc_state(dev);
1125 EXPORT_SYMBOL(pci_save_state);
1127 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1128 u32 saved_val, int retry)
1132 pci_read_config_dword(pdev, offset, &val);
1133 if (val == saved_val)
1137 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1138 offset, val, saved_val);
1139 pci_write_config_dword(pdev, offset, saved_val);
1143 pci_read_config_dword(pdev, offset, &val);
1144 if (val == saved_val)
1151 static void pci_restore_config_space_range(struct pci_dev *pdev,
1152 int start, int end, int retry)
1156 for (index = end; index >= start; index--)
1157 pci_restore_config_dword(pdev, 4 * index,
1158 pdev->saved_config_space[index],
1162 static void pci_restore_config_space(struct pci_dev *pdev)
1164 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1165 pci_restore_config_space_range(pdev, 10, 15, 0);
1166 /* Restore BARs before the command register. */
1167 pci_restore_config_space_range(pdev, 4, 9, 10);
1168 pci_restore_config_space_range(pdev, 0, 3, 0);
1170 pci_restore_config_space_range(pdev, 0, 15, 0);
1175 * pci_restore_state - Restore the saved state of a PCI device
1176 * @dev: - PCI device that we're dealing with
1178 void pci_restore_state(struct pci_dev *dev)
1180 if (!dev->state_saved)
1183 /* PCI Express register must be restored first */
1184 pci_restore_pcie_state(dev);
1185 pci_restore_pasid_state(dev);
1186 pci_restore_pri_state(dev);
1187 pci_restore_ats_state(dev);
1188 pci_restore_vc_state(dev);
1190 pci_cleanup_aer_error_status_regs(dev);
1192 pci_restore_config_space(dev);
1194 pci_restore_pcix_state(dev);
1195 pci_restore_msi_state(dev);
1197 /* Restore ACS and IOV configuration state */
1198 pci_enable_acs(dev);
1199 pci_restore_iov_state(dev);
1201 dev->state_saved = false;
1203 EXPORT_SYMBOL(pci_restore_state);
1205 struct pci_saved_state {
1206 u32 config_space[16];
1207 struct pci_cap_saved_data cap[0];
1211 * pci_store_saved_state - Allocate and return an opaque struct containing
1212 * the device saved state.
1213 * @dev: PCI device that we're dealing with
1215 * Return NULL if no state or error.
1217 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1219 struct pci_saved_state *state;
1220 struct pci_cap_saved_state *tmp;
1221 struct pci_cap_saved_data *cap;
1224 if (!dev->state_saved)
1227 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1229 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1230 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1232 state = kzalloc(size, GFP_KERNEL);
1236 memcpy(state->config_space, dev->saved_config_space,
1237 sizeof(state->config_space));
1240 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1241 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1242 memcpy(cap, &tmp->cap, len);
1243 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1245 /* Empty cap_save terminates list */
1249 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1252 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1253 * @dev: PCI device that we're dealing with
1254 * @state: Saved state returned from pci_store_saved_state()
1256 int pci_load_saved_state(struct pci_dev *dev,
1257 struct pci_saved_state *state)
1259 struct pci_cap_saved_data *cap;
1261 dev->state_saved = false;
1266 memcpy(dev->saved_config_space, state->config_space,
1267 sizeof(state->config_space));
1271 struct pci_cap_saved_state *tmp;
1273 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1274 if (!tmp || tmp->cap.size != cap->size)
1277 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1278 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1279 sizeof(struct pci_cap_saved_data) + cap->size);
1282 dev->state_saved = true;
1285 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1288 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1289 * and free the memory allocated for it.
1290 * @dev: PCI device that we're dealing with
1291 * @state: Pointer to saved state returned from pci_store_saved_state()
1293 int pci_load_and_free_saved_state(struct pci_dev *dev,
1294 struct pci_saved_state **state)
1296 int ret = pci_load_saved_state(dev, *state);
1301 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1303 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1305 return pci_enable_resources(dev, bars);
1308 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1311 struct pci_dev *bridge;
1315 err = pci_set_power_state(dev, PCI_D0);
1316 if (err < 0 && err != -EIO)
1319 bridge = pci_upstream_bridge(dev);
1321 pcie_aspm_powersave_config_link(bridge);
1323 err = pcibios_enable_device(dev, bars);
1326 pci_fixup_device(pci_fixup_enable, dev);
1328 if (dev->msi_enabled || dev->msix_enabled)
1331 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1333 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1334 if (cmd & PCI_COMMAND_INTX_DISABLE)
1335 pci_write_config_word(dev, PCI_COMMAND,
1336 cmd & ~PCI_COMMAND_INTX_DISABLE);
1343 * pci_reenable_device - Resume abandoned device
1344 * @dev: PCI device to be resumed
1346 * Note this function is a backend of pci_default_resume and is not supposed
1347 * to be called by normal code, write proper resume handler and use it instead.
1349 int pci_reenable_device(struct pci_dev *dev)
1351 if (pci_is_enabled(dev))
1352 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1355 EXPORT_SYMBOL(pci_reenable_device);
1357 static void pci_enable_bridge(struct pci_dev *dev)
1359 struct pci_dev *bridge;
1362 bridge = pci_upstream_bridge(dev);
1364 pci_enable_bridge(bridge);
1366 if (pci_is_enabled(dev)) {
1367 if (!dev->is_busmaster)
1368 pci_set_master(dev);
1372 retval = pci_enable_device(dev);
1374 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1376 pci_set_master(dev);
1379 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1381 struct pci_dev *bridge;
1386 * Power state could be unknown at this point, either due to a fresh
1387 * boot or a device removal call. So get the current power state
1388 * so that things like MSI message writing will behave as expected
1389 * (e.g. if the device really is in D0 at enable time).
1393 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1394 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1397 if (atomic_inc_return(&dev->enable_cnt) > 1)
1398 return 0; /* already enabled */
1400 bridge = pci_upstream_bridge(dev);
1402 pci_enable_bridge(bridge);
1404 /* only skip sriov related */
1405 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1406 if (dev->resource[i].flags & flags)
1408 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1409 if (dev->resource[i].flags & flags)
1412 err = do_pci_enable_device(dev, bars);
1414 atomic_dec(&dev->enable_cnt);
1419 * pci_enable_device_io - Initialize a device for use with IO space
1420 * @dev: PCI device to be initialized
1422 * Initialize device before it's used by a driver. Ask low-level code
1423 * to enable I/O resources. Wake up the device if it was suspended.
1424 * Beware, this function can fail.
1426 int pci_enable_device_io(struct pci_dev *dev)
1428 return pci_enable_device_flags(dev, IORESOURCE_IO);
1430 EXPORT_SYMBOL(pci_enable_device_io);
1433 * pci_enable_device_mem - Initialize a device for use with Memory space
1434 * @dev: PCI device to be initialized
1436 * Initialize device before it's used by a driver. Ask low-level code
1437 * to enable Memory resources. Wake up the device if it was suspended.
1438 * Beware, this function can fail.
1440 int pci_enable_device_mem(struct pci_dev *dev)
1442 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1444 EXPORT_SYMBOL(pci_enable_device_mem);
1447 * pci_enable_device - Initialize device before it's used by a driver.
1448 * @dev: PCI device to be initialized
1450 * Initialize device before it's used by a driver. Ask low-level code
1451 * to enable I/O and memory. Wake up the device if it was suspended.
1452 * Beware, this function can fail.
1454 * Note we don't actually enable the device many times if we call
1455 * this function repeatedly (we just increment the count).
1457 int pci_enable_device(struct pci_dev *dev)
1459 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1461 EXPORT_SYMBOL(pci_enable_device);
1464 * Managed PCI resources. This manages device on/off, intx/msi/msix
1465 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1466 * there's no need to track it separately. pci_devres is initialized
1467 * when a device is enabled using managed PCI device enable interface.
1470 unsigned int enabled:1;
1471 unsigned int pinned:1;
1472 unsigned int orig_intx:1;
1473 unsigned int restore_intx:1;
1478 static void pcim_release(struct device *gendev, void *res)
1480 struct pci_dev *dev = to_pci_dev(gendev);
1481 struct pci_devres *this = res;
1484 if (dev->msi_enabled)
1485 pci_disable_msi(dev);
1486 if (dev->msix_enabled)
1487 pci_disable_msix(dev);
1489 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1490 if (this->region_mask & (1 << i))
1491 pci_release_region(dev, i);
1496 if (this->restore_intx)
1497 pci_intx(dev, this->orig_intx);
1499 if (this->enabled && !this->pinned)
1500 pci_disable_device(dev);
1503 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1505 struct pci_devres *dr, *new_dr;
1507 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1511 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1514 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1517 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1519 if (pci_is_managed(pdev))
1520 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1525 * pcim_enable_device - Managed pci_enable_device()
1526 * @pdev: PCI device to be initialized
1528 * Managed pci_enable_device().
1530 int pcim_enable_device(struct pci_dev *pdev)
1532 struct pci_devres *dr;
1535 dr = get_pci_dr(pdev);
1541 rc = pci_enable_device(pdev);
1543 pdev->is_managed = 1;
1548 EXPORT_SYMBOL(pcim_enable_device);
1551 * pcim_pin_device - Pin managed PCI device
1552 * @pdev: PCI device to pin
1554 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1555 * driver detach. @pdev must have been enabled with
1556 * pcim_enable_device().
1558 void pcim_pin_device(struct pci_dev *pdev)
1560 struct pci_devres *dr;
1562 dr = find_pci_dr(pdev);
1563 WARN_ON(!dr || !dr->enabled);
1567 EXPORT_SYMBOL(pcim_pin_device);
1570 * pcibios_add_device - provide arch specific hooks when adding device dev
1571 * @dev: the PCI device being added
1573 * Permits the platform to provide architecture specific functionality when
1574 * devices are added. This is the default implementation. Architecture
1575 * implementations can override this.
1577 int __weak pcibios_add_device(struct pci_dev *dev)
1583 * pcibios_release_device - provide arch specific hooks when releasing device dev
1584 * @dev: the PCI device being released
1586 * Permits the platform to provide architecture specific functionality when
1587 * devices are released. This is the default implementation. Architecture
1588 * implementations can override this.
1590 void __weak pcibios_release_device(struct pci_dev *dev) {}
1593 * pcibios_disable_device - disable arch specific PCI resources for device dev
1594 * @dev: the PCI device to disable
1596 * Disables architecture specific PCI resources for the device. This
1597 * is the default implementation. Architecture implementations can
1600 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1603 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1604 * @irq: ISA IRQ to penalize
1605 * @active: IRQ active or not
1607 * Permits the platform to provide architecture-specific functionality when
1608 * penalizing ISA IRQs. This is the default implementation. Architecture
1609 * implementations can override this.
1611 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1613 static void do_pci_disable_device(struct pci_dev *dev)
1617 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1618 if (pci_command & PCI_COMMAND_MASTER) {
1619 pci_command &= ~PCI_COMMAND_MASTER;
1620 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1623 pcibios_disable_device(dev);
1627 * pci_disable_enabled_device - Disable device without updating enable_cnt
1628 * @dev: PCI device to disable
1630 * NOTE: This function is a backend of PCI power management routines and is
1631 * not supposed to be called drivers.
1633 void pci_disable_enabled_device(struct pci_dev *dev)
1635 if (pci_is_enabled(dev))
1636 do_pci_disable_device(dev);
1640 * pci_disable_device - Disable PCI device after use
1641 * @dev: PCI device to be disabled
1643 * Signal to the system that the PCI device is not in use by the system
1644 * anymore. This only involves disabling PCI bus-mastering, if active.
1646 * Note we don't actually disable the device until all callers of
1647 * pci_enable_device() have called pci_disable_device().
1649 void pci_disable_device(struct pci_dev *dev)
1651 struct pci_devres *dr;
1653 dr = find_pci_dr(dev);
1657 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1658 "disabling already-disabled device");
1660 if (atomic_dec_return(&dev->enable_cnt) != 0)
1663 do_pci_disable_device(dev);
1665 dev->is_busmaster = 0;
1667 EXPORT_SYMBOL(pci_disable_device);
1670 * pcibios_set_pcie_reset_state - set reset state for device dev
1671 * @dev: the PCIe device reset
1672 * @state: Reset state to enter into
1675 * Sets the PCIe reset state for the device. This is the default
1676 * implementation. Architecture implementations can override this.
1678 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1679 enum pcie_reset_state state)
1685 * pci_set_pcie_reset_state - set reset state for device dev
1686 * @dev: the PCIe device reset
1687 * @state: Reset state to enter into
1690 * Sets the PCI reset state for the device.
1692 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1694 return pcibios_set_pcie_reset_state(dev, state);
1696 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1699 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1700 * @dev: PCIe root port or event collector.
1702 void pcie_clear_root_pme_status(struct pci_dev *dev)
1704 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1708 * pci_check_pme_status - Check if given device has generated PME.
1709 * @dev: Device to check.
1711 * Check the PME status of the device and if set, clear it and clear PME enable
1712 * (if set). Return 'true' if PME status and PME enable were both set or
1713 * 'false' otherwise.
1715 bool pci_check_pme_status(struct pci_dev *dev)
1724 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1725 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1726 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1729 /* Clear PME status. */
1730 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1731 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1732 /* Disable PME to avoid interrupt flood. */
1733 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1737 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1743 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1744 * @dev: Device to handle.
1745 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1747 * Check if @dev has generated PME and queue a resume request for it in that
1750 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1752 if (pme_poll_reset && dev->pme_poll)
1753 dev->pme_poll = false;
1755 if (pci_check_pme_status(dev)) {
1756 pci_wakeup_event(dev);
1757 pm_request_resume(&dev->dev);
1763 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1764 * @bus: Top bus of the subtree to walk.
1766 void pci_pme_wakeup_bus(struct pci_bus *bus)
1769 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1774 * pci_pme_capable - check the capability of PCI device to generate PME#
1775 * @dev: PCI device to handle.
1776 * @state: PCI state from which device will issue PME#.
1778 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1783 return !!(dev->pme_support & (1 << state));
1785 EXPORT_SYMBOL(pci_pme_capable);
1787 static void pci_pme_list_scan(struct work_struct *work)
1789 struct pci_pme_device *pme_dev, *n;
1791 mutex_lock(&pci_pme_list_mutex);
1792 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1793 if (pme_dev->dev->pme_poll) {
1794 struct pci_dev *bridge;
1796 bridge = pme_dev->dev->bus->self;
1798 * If bridge is in low power state, the
1799 * configuration space of subordinate devices
1800 * may be not accessible
1802 if (bridge && bridge->current_state != PCI_D0)
1804 pci_pme_wakeup(pme_dev->dev, NULL);
1806 list_del(&pme_dev->list);
1810 if (!list_empty(&pci_pme_list))
1811 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1812 msecs_to_jiffies(PME_TIMEOUT));
1813 mutex_unlock(&pci_pme_list_mutex);
1816 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1820 if (!dev->pme_support)
1823 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1824 /* Clear PME_Status by writing 1 to it and enable PME# */
1825 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1827 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1829 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1833 * pci_pme_restore - Restore PME configuration after config space restore.
1834 * @dev: PCI device to update.
1836 void pci_pme_restore(struct pci_dev *dev)
1840 if (!dev->pme_support)
1843 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1844 if (dev->wakeup_prepared) {
1845 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1846 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1848 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1849 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1851 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1855 * pci_pme_active - enable or disable PCI device's PME# function
1856 * @dev: PCI device to handle.
1857 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1859 * The caller must verify that the device is capable of generating PME# before
1860 * calling this function with @enable equal to 'true'.
1862 void pci_pme_active(struct pci_dev *dev, bool enable)
1864 __pci_pme_active(dev, enable);
1867 * PCI (as opposed to PCIe) PME requires that the device have
1868 * its PME# line hooked up correctly. Not all hardware vendors
1869 * do this, so the PME never gets delivered and the device
1870 * remains asleep. The easiest way around this is to
1871 * periodically walk the list of suspended devices and check
1872 * whether any have their PME flag set. The assumption is that
1873 * we'll wake up often enough anyway that this won't be a huge
1874 * hit, and the power savings from the devices will still be a
1877 * Although PCIe uses in-band PME message instead of PME# line
1878 * to report PME, PME does not work for some PCIe devices in
1879 * reality. For example, there are devices that set their PME
1880 * status bits, but don't really bother to send a PME message;
1881 * there are PCI Express Root Ports that don't bother to
1882 * trigger interrupts when they receive PME messages from the
1883 * devices below. So PME poll is used for PCIe devices too.
1886 if (dev->pme_poll) {
1887 struct pci_pme_device *pme_dev;
1889 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1892 pci_warn(dev, "can't enable PME#\n");
1896 mutex_lock(&pci_pme_list_mutex);
1897 list_add(&pme_dev->list, &pci_pme_list);
1898 if (list_is_singular(&pci_pme_list))
1899 queue_delayed_work(system_freezable_wq,
1901 msecs_to_jiffies(PME_TIMEOUT));
1902 mutex_unlock(&pci_pme_list_mutex);
1904 mutex_lock(&pci_pme_list_mutex);
1905 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1906 if (pme_dev->dev == dev) {
1907 list_del(&pme_dev->list);
1912 mutex_unlock(&pci_pme_list_mutex);
1916 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
1918 EXPORT_SYMBOL(pci_pme_active);
1921 * __pci_enable_wake - enable PCI device as wakeup event source
1922 * @dev: PCI device affected
1923 * @state: PCI state from which device will issue wakeup events
1924 * @enable: True to enable event generation; false to disable
1926 * This enables the device as a wakeup event source, or disables it.
1927 * When such events involves platform-specific hooks, those hooks are
1928 * called automatically by this routine.
1930 * Devices with legacy power management (no standard PCI PM capabilities)
1931 * always require such platform hooks.
1934 * 0 is returned on success
1935 * -EINVAL is returned if device is not supposed to wake up the system
1936 * Error code depending on the platform is returned if both the platform and
1937 * the native mechanism fail to enable the generation of wake-up events
1939 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1944 * Bridges can only signal wakeup on behalf of subordinate devices,
1945 * but that is set up elsewhere, so skip them.
1947 if (pci_has_subordinate(dev))
1950 /* Don't do the same thing twice in a row for one device. */
1951 if (!!enable == !!dev->wakeup_prepared)
1955 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1956 * Anderson we should be doing PME# wake enable followed by ACPI wake
1957 * enable. To disable wake-up we call the platform first, for symmetry.
1963 if (pci_pme_capable(dev, state))
1964 pci_pme_active(dev, true);
1967 error = platform_pci_set_wakeup(dev, true);
1971 dev->wakeup_prepared = true;
1973 platform_pci_set_wakeup(dev, false);
1974 pci_pme_active(dev, false);
1975 dev->wakeup_prepared = false;
1982 * pci_enable_wake - change wakeup settings for a PCI device
1983 * @pci_dev: Target device
1984 * @state: PCI state from which device will issue wakeup events
1985 * @enable: Whether or not to enable event generation
1987 * If @enable is set, check device_may_wakeup() for the device before calling
1988 * __pci_enable_wake() for it.
1990 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
1992 if (enable && !device_may_wakeup(&pci_dev->dev))
1995 return __pci_enable_wake(pci_dev, state, enable);
1997 EXPORT_SYMBOL(pci_enable_wake);
2000 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2001 * @dev: PCI device to prepare
2002 * @enable: True to enable wake-up event generation; false to disable
2004 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2005 * and this function allows them to set that up cleanly - pci_enable_wake()
2006 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2007 * ordering constraints.
2009 * This function only returns error code if the device is not allowed to wake
2010 * up the system from sleep or it is not capable of generating PME# from both
2011 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2013 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2015 return pci_pme_capable(dev, PCI_D3cold) ?
2016 pci_enable_wake(dev, PCI_D3cold, enable) :
2017 pci_enable_wake(dev, PCI_D3hot, enable);
2019 EXPORT_SYMBOL(pci_wake_from_d3);
2022 * pci_target_state - find an appropriate low power state for a given PCI dev
2024 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2026 * Use underlying platform code to find a supported low power state for @dev.
2027 * If the platform can't manage @dev, return the deepest state from which it
2028 * can generate wake events, based on any available PME info.
2030 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2032 pci_power_t target_state = PCI_D3hot;
2034 if (platform_pci_power_manageable(dev)) {
2036 * Call the platform to find the target state for the device.
2038 pci_power_t state = platform_pci_choose_state(dev);
2041 case PCI_POWER_ERROR:
2046 if (pci_no_d1d2(dev))
2049 target_state = state;
2052 return target_state;
2056 target_state = PCI_D0;
2059 * If the device is in D3cold even though it's not power-manageable by
2060 * the platform, it may have been powered down by non-standard means.
2061 * Best to let it slumber.
2063 if (dev->current_state == PCI_D3cold)
2064 target_state = PCI_D3cold;
2068 * Find the deepest state from which the device can generate
2071 if (dev->pme_support) {
2073 && !(dev->pme_support & (1 << target_state)))
2078 return target_state;
2082 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2083 * @dev: Device to handle.
2085 * Choose the power state appropriate for the device depending on whether
2086 * it can wake up the system and/or is power manageable by the platform
2087 * (PCI_D3hot is the default) and put the device into that state.
2089 int pci_prepare_to_sleep(struct pci_dev *dev)
2091 bool wakeup = device_may_wakeup(&dev->dev);
2092 pci_power_t target_state = pci_target_state(dev, wakeup);
2095 if (target_state == PCI_POWER_ERROR)
2098 pci_enable_wake(dev, target_state, wakeup);
2100 error = pci_set_power_state(dev, target_state);
2103 pci_enable_wake(dev, target_state, false);
2107 EXPORT_SYMBOL(pci_prepare_to_sleep);
2110 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2111 * @dev: Device to handle.
2113 * Disable device's system wake-up capability and put it into D0.
2115 int pci_back_from_sleep(struct pci_dev *dev)
2117 pci_enable_wake(dev, PCI_D0, false);
2118 return pci_set_power_state(dev, PCI_D0);
2120 EXPORT_SYMBOL(pci_back_from_sleep);
2123 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2124 * @dev: PCI device being suspended.
2126 * Prepare @dev to generate wake-up events at run time and put it into a low
2129 int pci_finish_runtime_suspend(struct pci_dev *dev)
2131 pci_power_t target_state;
2134 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2135 if (target_state == PCI_POWER_ERROR)
2138 dev->runtime_d3cold = target_state == PCI_D3cold;
2140 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2142 error = pci_set_power_state(dev, target_state);
2145 pci_enable_wake(dev, target_state, false);
2146 dev->runtime_d3cold = false;
2153 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2154 * @dev: Device to check.
2156 * Return true if the device itself is capable of generating wake-up events
2157 * (through the platform or using the native PCIe PME) or if the device supports
2158 * PME and one of its upstream bridges can generate wake-up events.
2160 bool pci_dev_run_wake(struct pci_dev *dev)
2162 struct pci_bus *bus = dev->bus;
2164 if (!dev->pme_support)
2167 /* PME-capable in principle, but not from the target power state */
2168 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2171 if (device_can_wakeup(&dev->dev))
2174 while (bus->parent) {
2175 struct pci_dev *bridge = bus->self;
2177 if (device_can_wakeup(&bridge->dev))
2183 /* We have reached the root bus. */
2185 return device_can_wakeup(bus->bridge);
2189 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2192 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2193 * @pci_dev: Device to check.
2195 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2196 * reconfigured due to wakeup settings difference between system and runtime
2197 * suspend and the current power state of it is suitable for the upcoming
2198 * (system) transition.
2200 * If the device is not configured for system wakeup, disable PME for it before
2201 * returning 'true' to prevent it from waking up the system unnecessarily.
2203 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2205 struct device *dev = &pci_dev->dev;
2206 bool wakeup = device_may_wakeup(dev);
2208 if (!pm_runtime_suspended(dev)
2209 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2210 || platform_pci_need_resume(pci_dev))
2214 * At this point the device is good to go unless it's been configured
2215 * to generate PME at the runtime suspend time, but it is not supposed
2216 * to wake up the system. In that case, simply disable PME for it
2217 * (it will have to be re-enabled on exit from system resume).
2219 * If the device's power state is D3cold and the platform check above
2220 * hasn't triggered, the device's configuration is suitable and we don't
2221 * need to manipulate it at all.
2223 spin_lock_irq(&dev->power.lock);
2225 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2227 __pci_pme_active(pci_dev, false);
2229 spin_unlock_irq(&dev->power.lock);
2234 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2235 * @pci_dev: Device to handle.
2237 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2238 * it might have been disabled during the prepare phase of system suspend if
2239 * the device was not configured for system wakeup.
2241 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2243 struct device *dev = &pci_dev->dev;
2245 if (!pci_dev_run_wake(pci_dev))
2248 spin_lock_irq(&dev->power.lock);
2250 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2251 __pci_pme_active(pci_dev, true);
2253 spin_unlock_irq(&dev->power.lock);
2256 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2258 struct device *dev = &pdev->dev;
2259 struct device *parent = dev->parent;
2262 pm_runtime_get_sync(parent);
2263 pm_runtime_get_noresume(dev);
2265 * pdev->current_state is set to PCI_D3cold during suspending,
2266 * so wait until suspending completes
2268 pm_runtime_barrier(dev);
2270 * Only need to resume devices in D3cold, because config
2271 * registers are still accessible for devices suspended but
2274 if (pdev->current_state == PCI_D3cold)
2275 pm_runtime_resume(dev);
2278 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2280 struct device *dev = &pdev->dev;
2281 struct device *parent = dev->parent;
2283 pm_runtime_put(dev);
2285 pm_runtime_put_sync(parent);
2289 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2290 * @bridge: Bridge to check
2292 * This function checks if it is possible to move the bridge to D3.
2293 * Currently we only allow D3 for recent enough PCIe ports.
2295 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2297 if (!pci_is_pcie(bridge))
2300 switch (pci_pcie_type(bridge)) {
2301 case PCI_EXP_TYPE_ROOT_PORT:
2302 case PCI_EXP_TYPE_UPSTREAM:
2303 case PCI_EXP_TYPE_DOWNSTREAM:
2304 if (pci_bridge_d3_disable)
2308 * Hotplug interrupts cannot be delivered if the link is down,
2309 * so parents of a hotplug port must stay awake. In addition,
2310 * hotplug ports handled by firmware in System Management Mode
2311 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2312 * For simplicity, disallow in general for now.
2314 if (bridge->is_hotplug_bridge)
2317 if (pci_bridge_d3_force)
2321 * It should be safe to put PCIe ports from 2015 or newer
2324 if (dmi_get_bios_year() >= 2015)
2332 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2334 bool *d3cold_ok = data;
2336 if (/* The device needs to be allowed to go D3cold ... */
2337 dev->no_d3cold || !dev->d3cold_allowed ||
2339 /* ... and if it is wakeup capable to do so from D3cold. */
2340 (device_may_wakeup(&dev->dev) &&
2341 !pci_pme_capable(dev, PCI_D3cold)) ||
2343 /* If it is a bridge it must be allowed to go to D3. */
2344 !pci_power_manageable(dev))
2352 * pci_bridge_d3_update - Update bridge D3 capabilities
2353 * @dev: PCI device which is changed
2355 * Update upstream bridge PM capabilities accordingly depending on if the
2356 * device PM configuration was changed or the device is being removed. The
2357 * change is also propagated upstream.
2359 void pci_bridge_d3_update(struct pci_dev *dev)
2361 bool remove = !device_is_registered(&dev->dev);
2362 struct pci_dev *bridge;
2363 bool d3cold_ok = true;
2365 bridge = pci_upstream_bridge(dev);
2366 if (!bridge || !pci_bridge_d3_possible(bridge))
2370 * If D3 is currently allowed for the bridge, removing one of its
2371 * children won't change that.
2373 if (remove && bridge->bridge_d3)
2377 * If D3 is currently allowed for the bridge and a child is added or
2378 * changed, disallowance of D3 can only be caused by that child, so
2379 * we only need to check that single device, not any of its siblings.
2381 * If D3 is currently not allowed for the bridge, checking the device
2382 * first may allow us to skip checking its siblings.
2385 pci_dev_check_d3cold(dev, &d3cold_ok);
2388 * If D3 is currently not allowed for the bridge, this may be caused
2389 * either by the device being changed/removed or any of its siblings,
2390 * so we need to go through all children to find out if one of them
2391 * continues to block D3.
2393 if (d3cold_ok && !bridge->bridge_d3)
2394 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2397 if (bridge->bridge_d3 != d3cold_ok) {
2398 bridge->bridge_d3 = d3cold_ok;
2399 /* Propagate change to upstream bridges */
2400 pci_bridge_d3_update(bridge);
2405 * pci_d3cold_enable - Enable D3cold for device
2406 * @dev: PCI device to handle
2408 * This function can be used in drivers to enable D3cold from the device
2409 * they handle. It also updates upstream PCI bridge PM capabilities
2412 void pci_d3cold_enable(struct pci_dev *dev)
2414 if (dev->no_d3cold) {
2415 dev->no_d3cold = false;
2416 pci_bridge_d3_update(dev);
2419 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2422 * pci_d3cold_disable - Disable D3cold for device
2423 * @dev: PCI device to handle
2425 * This function can be used in drivers to disable D3cold from the device
2426 * they handle. It also updates upstream PCI bridge PM capabilities
2429 void pci_d3cold_disable(struct pci_dev *dev)
2431 if (!dev->no_d3cold) {
2432 dev->no_d3cold = true;
2433 pci_bridge_d3_update(dev);
2436 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2439 * pci_pm_init - Initialize PM functions of given PCI device
2440 * @dev: PCI device to handle.
2442 void pci_pm_init(struct pci_dev *dev)
2447 pm_runtime_forbid(&dev->dev);
2448 pm_runtime_set_active(&dev->dev);
2449 pm_runtime_enable(&dev->dev);
2450 device_enable_async_suspend(&dev->dev);
2451 dev->wakeup_prepared = false;
2454 dev->pme_support = 0;
2456 /* find PCI PM capability in list */
2457 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2460 /* Check device's ability to generate PME# */
2461 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2463 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2464 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2465 pmc & PCI_PM_CAP_VER_MASK);
2470 dev->d3_delay = PCI_PM_D3_WAIT;
2471 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2472 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2473 dev->d3cold_allowed = true;
2475 dev->d1_support = false;
2476 dev->d2_support = false;
2477 if (!pci_no_d1d2(dev)) {
2478 if (pmc & PCI_PM_CAP_D1)
2479 dev->d1_support = true;
2480 if (pmc & PCI_PM_CAP_D2)
2481 dev->d2_support = true;
2483 if (dev->d1_support || dev->d2_support)
2484 pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2485 dev->d1_support ? " D1" : "",
2486 dev->d2_support ? " D2" : "");
2489 pmc &= PCI_PM_CAP_PME_MASK;
2491 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2492 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2493 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2494 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2495 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2496 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2497 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2498 dev->pme_poll = true;
2500 * Make device's PM flags reflect the wake-up capability, but
2501 * let the user space enable it to wake up the system as needed.
2503 device_set_wakeup_capable(&dev->dev, true);
2504 /* Disable the PME# generation functionality */
2505 pci_pme_active(dev, false);
2509 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2511 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2515 case PCI_EA_P_VF_MEM:
2516 flags |= IORESOURCE_MEM;
2518 case PCI_EA_P_MEM_PREFETCH:
2519 case PCI_EA_P_VF_MEM_PREFETCH:
2520 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2523 flags |= IORESOURCE_IO;
2532 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2535 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2536 return &dev->resource[bei];
2537 #ifdef CONFIG_PCI_IOV
2538 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2539 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2540 return &dev->resource[PCI_IOV_RESOURCES +
2541 bei - PCI_EA_BEI_VF_BAR0];
2543 else if (bei == PCI_EA_BEI_ROM)
2544 return &dev->resource[PCI_ROM_RESOURCE];
2549 /* Read an Enhanced Allocation (EA) entry */
2550 static int pci_ea_read(struct pci_dev *dev, int offset)
2552 struct resource *res;
2553 int ent_size, ent_offset = offset;
2554 resource_size_t start, end;
2555 unsigned long flags;
2556 u32 dw0, bei, base, max_offset;
2558 bool support_64 = (sizeof(resource_size_t) >= 8);
2560 pci_read_config_dword(dev, ent_offset, &dw0);
2563 /* Entry size field indicates DWORDs after 1st */
2564 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2566 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2569 bei = (dw0 & PCI_EA_BEI) >> 4;
2570 prop = (dw0 & PCI_EA_PP) >> 8;
2573 * If the Property is in the reserved range, try the Secondary
2576 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2577 prop = (dw0 & PCI_EA_SP) >> 16;
2578 if (prop > PCI_EA_P_BRIDGE_IO)
2581 res = pci_ea_get_resource(dev, bei, prop);
2583 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2587 flags = pci_ea_flags(dev, prop);
2589 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2594 pci_read_config_dword(dev, ent_offset, &base);
2595 start = (base & PCI_EA_FIELD_MASK);
2598 /* Read MaxOffset */
2599 pci_read_config_dword(dev, ent_offset, &max_offset);
2602 /* Read Base MSBs (if 64-bit entry) */
2603 if (base & PCI_EA_IS_64) {
2606 pci_read_config_dword(dev, ent_offset, &base_upper);
2609 flags |= IORESOURCE_MEM_64;
2611 /* entry starts above 32-bit boundary, can't use */
2612 if (!support_64 && base_upper)
2616 start |= ((u64)base_upper << 32);
2619 end = start + (max_offset | 0x03);
2621 /* Read MaxOffset MSBs (if 64-bit entry) */
2622 if (max_offset & PCI_EA_IS_64) {
2623 u32 max_offset_upper;
2625 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2628 flags |= IORESOURCE_MEM_64;
2630 /* entry too big, can't use */
2631 if (!support_64 && max_offset_upper)
2635 end += ((u64)max_offset_upper << 32);
2639 pci_err(dev, "EA Entry crosses address boundary\n");
2643 if (ent_size != ent_offset - offset) {
2644 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2645 ent_size, ent_offset - offset);
2649 res->name = pci_name(dev);
2654 if (bei <= PCI_EA_BEI_BAR5)
2655 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2657 else if (bei == PCI_EA_BEI_ROM)
2658 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2660 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2661 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2662 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2664 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2668 return offset + ent_size;
2671 /* Enhanced Allocation Initialization */
2672 void pci_ea_init(struct pci_dev *dev)
2679 /* find PCI EA capability in list */
2680 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2684 /* determine the number of entries */
2685 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2687 num_ent &= PCI_EA_NUM_ENT_MASK;
2689 offset = ea + PCI_EA_FIRST_ENT;
2691 /* Skip DWORD 2 for type 1 functions */
2692 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2695 /* parse each EA entry */
2696 for (i = 0; i < num_ent; ++i)
2697 offset = pci_ea_read(dev, offset);
2700 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2701 struct pci_cap_saved_state *new_cap)
2703 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2707 * _pci_add_cap_save_buffer - allocate buffer for saving given
2708 * capability registers
2709 * @dev: the PCI device
2710 * @cap: the capability to allocate the buffer for
2711 * @extended: Standard or Extended capability ID
2712 * @size: requested size of the buffer
2714 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2715 bool extended, unsigned int size)
2718 struct pci_cap_saved_state *save_state;
2721 pos = pci_find_ext_capability(dev, cap);
2723 pos = pci_find_capability(dev, cap);
2728 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2732 save_state->cap.cap_nr = cap;
2733 save_state->cap.cap_extended = extended;
2734 save_state->cap.size = size;
2735 pci_add_saved_cap(dev, save_state);
2740 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2742 return _pci_add_cap_save_buffer(dev, cap, false, size);
2745 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2747 return _pci_add_cap_save_buffer(dev, cap, true, size);
2751 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2752 * @dev: the PCI device
2754 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2758 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2759 PCI_EXP_SAVE_REGS * sizeof(u16));
2761 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2763 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2765 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
2767 pci_allocate_vc_save_buffers(dev);
2770 void pci_free_cap_save_buffers(struct pci_dev *dev)
2772 struct pci_cap_saved_state *tmp;
2773 struct hlist_node *n;
2775 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2780 * pci_configure_ari - enable or disable ARI forwarding
2781 * @dev: the PCI device
2783 * If @dev and its upstream bridge both support ARI, enable ARI in the
2784 * bridge. Otherwise, disable ARI in the bridge.
2786 void pci_configure_ari(struct pci_dev *dev)
2789 struct pci_dev *bridge;
2791 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2794 bridge = dev->bus->self;
2798 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2799 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2802 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2803 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2804 PCI_EXP_DEVCTL2_ARI);
2805 bridge->ari_enabled = 1;
2807 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2808 PCI_EXP_DEVCTL2_ARI);
2809 bridge->ari_enabled = 0;
2813 static int pci_acs_enable;
2816 * pci_request_acs - ask for ACS to be enabled if supported
2818 void pci_request_acs(void)
2824 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2825 * @dev: the PCI device
2827 static void pci_std_enable_acs(struct pci_dev *dev)
2833 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2837 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2838 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2840 /* Source Validation */
2841 ctrl |= (cap & PCI_ACS_SV);
2843 /* P2P Request Redirect */
2844 ctrl |= (cap & PCI_ACS_RR);
2846 /* P2P Completion Redirect */
2847 ctrl |= (cap & PCI_ACS_CR);
2849 /* Upstream Forwarding */
2850 ctrl |= (cap & PCI_ACS_UF);
2852 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2856 * pci_enable_acs - enable ACS if hardware support it
2857 * @dev: the PCI device
2859 void pci_enable_acs(struct pci_dev *dev)
2861 if (!pci_acs_enable)
2864 if (!pci_dev_specific_enable_acs(dev))
2867 pci_std_enable_acs(dev);
2870 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2875 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2880 * Except for egress control, capabilities are either required
2881 * or only required if controllable. Features missing from the
2882 * capability field can therefore be assumed as hard-wired enabled.
2884 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2885 acs_flags &= (cap | PCI_ACS_EC);
2887 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2888 return (ctrl & acs_flags) == acs_flags;
2892 * pci_acs_enabled - test ACS against required flags for a given device
2893 * @pdev: device to test
2894 * @acs_flags: required PCI ACS flags
2896 * Return true if the device supports the provided flags. Automatically
2897 * filters out flags that are not implemented on multifunction devices.
2899 * Note that this interface checks the effective ACS capabilities of the
2900 * device rather than the actual capabilities. For instance, most single
2901 * function endpoints are not required to support ACS because they have no
2902 * opportunity for peer-to-peer access. We therefore return 'true'
2903 * regardless of whether the device exposes an ACS capability. This makes
2904 * it much easier for callers of this function to ignore the actual type
2905 * or topology of the device when testing ACS support.
2907 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2911 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2916 * Conventional PCI and PCI-X devices never support ACS, either
2917 * effectively or actually. The shared bus topology implies that
2918 * any device on the bus can receive or snoop DMA.
2920 if (!pci_is_pcie(pdev))
2923 switch (pci_pcie_type(pdev)) {
2925 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2926 * but since their primary interface is PCI/X, we conservatively
2927 * handle them as we would a non-PCIe device.
2929 case PCI_EXP_TYPE_PCIE_BRIDGE:
2931 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2932 * applicable... must never implement an ACS Extended Capability...".
2933 * This seems arbitrary, but we take a conservative interpretation
2934 * of this statement.
2936 case PCI_EXP_TYPE_PCI_BRIDGE:
2937 case PCI_EXP_TYPE_RC_EC:
2940 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2941 * implement ACS in order to indicate their peer-to-peer capabilities,
2942 * regardless of whether they are single- or multi-function devices.
2944 case PCI_EXP_TYPE_DOWNSTREAM:
2945 case PCI_EXP_TYPE_ROOT_PORT:
2946 return pci_acs_flags_enabled(pdev, acs_flags);
2948 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2949 * implemented by the remaining PCIe types to indicate peer-to-peer
2950 * capabilities, but only when they are part of a multifunction
2951 * device. The footnote for section 6.12 indicates the specific
2952 * PCIe types included here.
2954 case PCI_EXP_TYPE_ENDPOINT:
2955 case PCI_EXP_TYPE_UPSTREAM:
2956 case PCI_EXP_TYPE_LEG_END:
2957 case PCI_EXP_TYPE_RC_END:
2958 if (!pdev->multifunction)
2961 return pci_acs_flags_enabled(pdev, acs_flags);
2965 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2966 * to single function devices with the exception of downstream ports.
2972 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2973 * @start: starting downstream device
2974 * @end: ending upstream device or NULL to search to the root bus
2975 * @acs_flags: required flags
2977 * Walk up a device tree from start to end testing PCI ACS support. If
2978 * any step along the way does not support the required flags, return false.
2980 bool pci_acs_path_enabled(struct pci_dev *start,
2981 struct pci_dev *end, u16 acs_flags)
2983 struct pci_dev *pdev, *parent = start;
2988 if (!pci_acs_enabled(pdev, acs_flags))
2991 if (pci_is_root_bus(pdev->bus))
2992 return (end == NULL);
2994 parent = pdev->bus->self;
2995 } while (pdev != end);
3001 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3005 * Helper to find the position of the ctrl register for a BAR.
3006 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3007 * Returns -ENOENT if no ctrl register for the BAR could be found.
3009 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3011 unsigned int pos, nbars, i;
3014 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3018 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3019 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3020 PCI_REBAR_CTRL_NBAR_SHIFT;
3022 for (i = 0; i < nbars; i++, pos += 8) {
3025 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3026 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3035 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3037 * @bar: BAR to query
3039 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3040 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3042 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3047 pos = pci_rebar_find_pos(pdev, bar);
3051 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3052 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3056 * pci_rebar_get_current_size - get the current size of a BAR
3058 * @bar: BAR to set size to
3060 * Read the size of a BAR from the resizable BAR config.
3061 * Returns size if found or negative error code.
3063 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3068 pos = pci_rebar_find_pos(pdev, bar);
3072 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3073 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3077 * pci_rebar_set_size - set a new size for a BAR
3079 * @bar: BAR to set size to
3080 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3082 * Set the new size of a BAR as defined in the spec.
3083 * Returns zero if resizing was successful, error code otherwise.
3085 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3090 pos = pci_rebar_find_pos(pdev, bar);
3094 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3095 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3097 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3102 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3103 * @dev: the PCI device
3104 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3105 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3106 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3107 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3109 * Return 0 if all upstream bridges support AtomicOp routing, egress
3110 * blocking is disabled on all upstream ports, and the root port supports
3111 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3112 * AtomicOp completion), or negative otherwise.
3114 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3116 struct pci_bus *bus = dev->bus;
3117 struct pci_dev *bridge;
3120 if (!pci_is_pcie(dev))
3124 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3125 * AtomicOp requesters. For now, we only support endpoints as
3126 * requesters and root ports as completers. No endpoints as
3127 * completers, and no peer-to-peer.
3130 switch (pci_pcie_type(dev)) {
3131 case PCI_EXP_TYPE_ENDPOINT:
3132 case PCI_EXP_TYPE_LEG_END:
3133 case PCI_EXP_TYPE_RC_END:
3139 while (bus->parent) {
3142 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3144 switch (pci_pcie_type(bridge)) {
3145 /* Ensure switch ports support AtomicOp routing */
3146 case PCI_EXP_TYPE_UPSTREAM:
3147 case PCI_EXP_TYPE_DOWNSTREAM:
3148 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3152 /* Ensure root port supports all the sizes we care about */
3153 case PCI_EXP_TYPE_ROOT_PORT:
3154 if ((cap & cap_mask) != cap_mask)
3159 /* Ensure upstream ports don't block AtomicOps on egress */
3160 if (!bridge->has_secondary_link) {
3161 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3163 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3170 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3171 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3174 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3177 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3178 * @dev: the PCI device
3179 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3181 * Perform INTx swizzling for a device behind one level of bridge. This is
3182 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3183 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3184 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3185 * the PCI Express Base Specification, Revision 2.1)
3187 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3191 if (pci_ari_enabled(dev->bus))
3194 slot = PCI_SLOT(dev->devfn);
3196 return (((pin - 1) + slot) % 4) + 1;
3199 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3207 while (!pci_is_root_bus(dev->bus)) {
3208 pin = pci_swizzle_interrupt_pin(dev, pin);
3209 dev = dev->bus->self;
3216 * pci_common_swizzle - swizzle INTx all the way to root bridge
3217 * @dev: the PCI device
3218 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3220 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3221 * bridges all the way up to a PCI root bus.
3223 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3227 while (!pci_is_root_bus(dev->bus)) {
3228 pin = pci_swizzle_interrupt_pin(dev, pin);
3229 dev = dev->bus->self;
3232 return PCI_SLOT(dev->devfn);
3234 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3237 * pci_release_region - Release a PCI bar
3238 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3239 * @bar: BAR to release
3241 * Releases the PCI I/O and memory resources previously reserved by a
3242 * successful call to pci_request_region. Call this function only
3243 * after all use of the PCI regions has ceased.
3245 void pci_release_region(struct pci_dev *pdev, int bar)
3247 struct pci_devres *dr;
3249 if (pci_resource_len(pdev, bar) == 0)
3251 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3252 release_region(pci_resource_start(pdev, bar),
3253 pci_resource_len(pdev, bar));
3254 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3255 release_mem_region(pci_resource_start(pdev, bar),
3256 pci_resource_len(pdev, bar));
3258 dr = find_pci_dr(pdev);
3260 dr->region_mask &= ~(1 << bar);
3262 EXPORT_SYMBOL(pci_release_region);
3265 * __pci_request_region - Reserved PCI I/O and memory resource
3266 * @pdev: PCI device whose resources are to be reserved
3267 * @bar: BAR to be reserved
3268 * @res_name: Name to be associated with resource.
3269 * @exclusive: whether the region access is exclusive or not
3271 * Mark the PCI region associated with PCI device @pdev BR @bar as
3272 * being reserved by owner @res_name. Do not access any
3273 * address inside the PCI regions unless this call returns
3276 * If @exclusive is set, then the region is marked so that userspace
3277 * is explicitly not allowed to map the resource via /dev/mem or
3278 * sysfs MMIO access.
3280 * Returns 0 on success, or %EBUSY on error. A warning
3281 * message is also printed on failure.
3283 static int __pci_request_region(struct pci_dev *pdev, int bar,
3284 const char *res_name, int exclusive)
3286 struct pci_devres *dr;
3288 if (pci_resource_len(pdev, bar) == 0)
3291 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3292 if (!request_region(pci_resource_start(pdev, bar),
3293 pci_resource_len(pdev, bar), res_name))
3295 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3296 if (!__request_mem_region(pci_resource_start(pdev, bar),
3297 pci_resource_len(pdev, bar), res_name,
3302 dr = find_pci_dr(pdev);
3304 dr->region_mask |= 1 << bar;
3309 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3310 &pdev->resource[bar]);
3315 * pci_request_region - Reserve PCI I/O and memory resource
3316 * @pdev: PCI device whose resources are to be reserved
3317 * @bar: BAR to be reserved
3318 * @res_name: Name to be associated with resource
3320 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3321 * being reserved by owner @res_name. Do not access any
3322 * address inside the PCI regions unless this call returns
3325 * Returns 0 on success, or %EBUSY on error. A warning
3326 * message is also printed on failure.
3328 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3330 return __pci_request_region(pdev, bar, res_name, 0);
3332 EXPORT_SYMBOL(pci_request_region);
3335 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3336 * @pdev: PCI device whose resources are to be reserved
3337 * @bar: BAR to be reserved
3338 * @res_name: Name to be associated with resource.
3340 * Mark the PCI region associated with PCI device @pdev BR @bar as
3341 * being reserved by owner @res_name. Do not access any
3342 * address inside the PCI regions unless this call returns
3345 * Returns 0 on success, or %EBUSY on error. A warning
3346 * message is also printed on failure.
3348 * The key difference that _exclusive makes it that userspace is
3349 * explicitly not allowed to map the resource via /dev/mem or
3352 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3353 const char *res_name)
3355 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3357 EXPORT_SYMBOL(pci_request_region_exclusive);
3360 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3361 * @pdev: PCI device whose resources were previously reserved
3362 * @bars: Bitmask of BARs to be released
3364 * Release selected PCI I/O and memory resources previously reserved.
3365 * Call this function only after all use of the PCI regions has ceased.
3367 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3371 for (i = 0; i < 6; i++)
3372 if (bars & (1 << i))
3373 pci_release_region(pdev, i);
3375 EXPORT_SYMBOL(pci_release_selected_regions);
3377 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3378 const char *res_name, int excl)
3382 for (i = 0; i < 6; i++)
3383 if (bars & (1 << i))
3384 if (__pci_request_region(pdev, i, res_name, excl))
3390 if (bars & (1 << i))
3391 pci_release_region(pdev, i);
3398 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3399 * @pdev: PCI device whose resources are to be reserved
3400 * @bars: Bitmask of BARs to be requested
3401 * @res_name: Name to be associated with resource
3403 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3404 const char *res_name)
3406 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3408 EXPORT_SYMBOL(pci_request_selected_regions);
3410 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3411 const char *res_name)
3413 return __pci_request_selected_regions(pdev, bars, res_name,
3414 IORESOURCE_EXCLUSIVE);
3416 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3419 * pci_release_regions - Release reserved PCI I/O and memory resources
3420 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3422 * Releases all PCI I/O and memory resources previously reserved by a
3423 * successful call to pci_request_regions. Call this function only
3424 * after all use of the PCI regions has ceased.
3427 void pci_release_regions(struct pci_dev *pdev)
3429 pci_release_selected_regions(pdev, (1 << 6) - 1);
3431 EXPORT_SYMBOL(pci_release_regions);
3434 * pci_request_regions - Reserved PCI I/O and memory resources
3435 * @pdev: PCI device whose resources are to be reserved
3436 * @res_name: Name to be associated with resource.
3438 * Mark all PCI regions associated with PCI device @pdev as
3439 * being reserved by owner @res_name. Do not access any
3440 * address inside the PCI regions unless this call returns
3443 * Returns 0 on success, or %EBUSY on error. A warning
3444 * message is also printed on failure.
3446 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3448 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3450 EXPORT_SYMBOL(pci_request_regions);
3453 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3454 * @pdev: PCI device whose resources are to be reserved
3455 * @res_name: Name to be associated with resource.
3457 * Mark all PCI regions associated with PCI device @pdev as
3458 * being reserved by owner @res_name. Do not access any
3459 * address inside the PCI regions unless this call returns
3462 * pci_request_regions_exclusive() will mark the region so that
3463 * /dev/mem and the sysfs MMIO access will not be allowed.
3465 * Returns 0 on success, or %EBUSY on error. A warning
3466 * message is also printed on failure.
3468 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3470 return pci_request_selected_regions_exclusive(pdev,
3471 ((1 << 6) - 1), res_name);
3473 EXPORT_SYMBOL(pci_request_regions_exclusive);
3476 * Record the PCI IO range (expressed as CPU physical address + size).
3477 * Return a negative value if an error has occured, zero otherwise
3479 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3480 resource_size_t size)
3484 struct logic_pio_hwaddr *range;
3486 if (!size || addr + size < addr)
3489 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3493 range->fwnode = fwnode;
3495 range->hw_start = addr;
3496 range->flags = LOGIC_PIO_CPU_MMIO;
3498 ret = logic_pio_register_range(range);
3506 phys_addr_t pci_pio_to_address(unsigned long pio)
3508 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3511 if (pio >= MMIO_UPPER_LIMIT)
3514 address = logic_pio_to_hwaddr(pio);
3520 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3523 return logic_pio_trans_cpuaddr(address);
3525 if (address > IO_SPACE_LIMIT)
3526 return (unsigned long)-1;
3528 return (unsigned long) address;
3533 * pci_remap_iospace - Remap the memory mapped I/O space
3534 * @res: Resource describing the I/O space
3535 * @phys_addr: physical address of range to be mapped
3537 * Remap the memory mapped I/O space described by the @res
3538 * and the CPU physical address @phys_addr into virtual address space.
3539 * Only architectures that have memory mapped IO functions defined
3540 * (and the PCI_IOBASE value defined) should call this function.
3542 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3544 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3545 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3547 if (!(res->flags & IORESOURCE_IO))
3550 if (res->end > IO_SPACE_LIMIT)
3553 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3554 pgprot_device(PAGE_KERNEL));
3556 /* this architecture does not have memory mapped I/O space,
3557 so this function should never be called */
3558 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3562 EXPORT_SYMBOL(pci_remap_iospace);
3565 * pci_unmap_iospace - Unmap the memory mapped I/O space
3566 * @res: resource to be unmapped
3568 * Unmap the CPU virtual address @res from virtual address space.
3569 * Only architectures that have memory mapped IO functions defined
3570 * (and the PCI_IOBASE value defined) should call this function.
3572 void pci_unmap_iospace(struct resource *res)
3574 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3575 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3577 unmap_kernel_range(vaddr, resource_size(res));
3580 EXPORT_SYMBOL(pci_unmap_iospace);
3582 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3584 struct resource **res = ptr;
3586 pci_unmap_iospace(*res);
3590 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3591 * @dev: Generic device to remap IO address for
3592 * @res: Resource describing the I/O space
3593 * @phys_addr: physical address of range to be mapped
3595 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
3598 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3599 phys_addr_t phys_addr)
3601 const struct resource **ptr;
3604 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
3608 error = pci_remap_iospace(res, phys_addr);
3613 devres_add(dev, ptr);
3618 EXPORT_SYMBOL(devm_pci_remap_iospace);
3621 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3622 * @dev: Generic device to remap IO address for
3623 * @offset: Resource address to map
3624 * @size: Size of map
3626 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3629 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3630 resource_size_t offset,
3631 resource_size_t size)
3633 void __iomem **ptr, *addr;
3635 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3639 addr = pci_remap_cfgspace(offset, size);
3642 devres_add(dev, ptr);
3648 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3651 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3652 * @dev: generic device to handle the resource for
3653 * @res: configuration space resource to be handled
3655 * Checks that a resource is a valid memory region, requests the memory
3656 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3657 * proper PCI configuration space memory attributes are guaranteed.
3659 * All operations are managed and will be undone on driver detach.
3661 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3662 * on failure. Usage example::
3664 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3665 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3667 * return PTR_ERR(base);
3669 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3670 struct resource *res)
3672 resource_size_t size;
3674 void __iomem *dest_ptr;
3678 if (!res || resource_type(res) != IORESOURCE_MEM) {
3679 dev_err(dev, "invalid resource\n");
3680 return IOMEM_ERR_PTR(-EINVAL);
3683 size = resource_size(res);
3684 name = res->name ?: dev_name(dev);
3686 if (!devm_request_mem_region(dev, res->start, size, name)) {
3687 dev_err(dev, "can't request region for resource %pR\n", res);
3688 return IOMEM_ERR_PTR(-EBUSY);
3691 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3693 dev_err(dev, "ioremap failed for resource %pR\n", res);
3694 devm_release_mem_region(dev, res->start, size);
3695 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3700 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3702 static void __pci_set_master(struct pci_dev *dev, bool enable)
3706 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3708 cmd = old_cmd | PCI_COMMAND_MASTER;
3710 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3711 if (cmd != old_cmd) {
3712 pci_dbg(dev, "%s bus mastering\n",
3713 enable ? "enabling" : "disabling");
3714 pci_write_config_word(dev, PCI_COMMAND, cmd);
3716 dev->is_busmaster = enable;
3720 * pcibios_setup - process "pci=" kernel boot arguments
3721 * @str: string used to pass in "pci=" kernel boot arguments
3723 * Process kernel boot arguments. This is the default implementation.
3724 * Architecture specific implementations can override this as necessary.
3726 char * __weak __init pcibios_setup(char *str)
3732 * pcibios_set_master - enable PCI bus-mastering for device dev
3733 * @dev: the PCI device to enable
3735 * Enables PCI bus-mastering for the device. This is the default
3736 * implementation. Architecture specific implementations can override
3737 * this if necessary.
3739 void __weak pcibios_set_master(struct pci_dev *dev)
3743 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3744 if (pci_is_pcie(dev))
3747 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3749 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3750 else if (lat > pcibios_max_latency)
3751 lat = pcibios_max_latency;
3755 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3759 * pci_set_master - enables bus-mastering for device dev
3760 * @dev: the PCI device to enable
3762 * Enables bus-mastering on the device and calls pcibios_set_master()
3763 * to do the needed arch specific settings.
3765 void pci_set_master(struct pci_dev *dev)
3767 __pci_set_master(dev, true);
3768 pcibios_set_master(dev);
3770 EXPORT_SYMBOL(pci_set_master);
3773 * pci_clear_master - disables bus-mastering for device dev
3774 * @dev: the PCI device to disable
3776 void pci_clear_master(struct pci_dev *dev)
3778 __pci_set_master(dev, false);
3780 EXPORT_SYMBOL(pci_clear_master);
3783 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3784 * @dev: the PCI device for which MWI is to be enabled
3786 * Helper function for pci_set_mwi.
3787 * Originally copied from drivers/net/acenic.c.
3790 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3792 int pci_set_cacheline_size(struct pci_dev *dev)
3796 if (!pci_cache_line_size)
3799 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3800 equal to or multiple of the right value. */
3801 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3802 if (cacheline_size >= pci_cache_line_size &&
3803 (cacheline_size % pci_cache_line_size) == 0)
3806 /* Write the correct value. */
3807 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3809 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3810 if (cacheline_size == pci_cache_line_size)
3813 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
3814 pci_cache_line_size << 2);
3818 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3821 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3822 * @dev: the PCI device for which MWI is enabled
3824 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3826 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3828 int pci_set_mwi(struct pci_dev *dev)
3830 #ifdef PCI_DISABLE_MWI
3836 rc = pci_set_cacheline_size(dev);
3840 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3841 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3842 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
3843 cmd |= PCI_COMMAND_INVALIDATE;
3844 pci_write_config_word(dev, PCI_COMMAND, cmd);
3849 EXPORT_SYMBOL(pci_set_mwi);
3852 * pcim_set_mwi - a device-managed pci_set_mwi()
3853 * @dev: the PCI device for which MWI is enabled
3855 * Managed pci_set_mwi().
3857 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3859 int pcim_set_mwi(struct pci_dev *dev)
3861 struct pci_devres *dr;
3863 dr = find_pci_dr(dev);
3868 return pci_set_mwi(dev);
3870 EXPORT_SYMBOL(pcim_set_mwi);
3873 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3874 * @dev: the PCI device for which MWI is enabled
3876 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3877 * Callers are not required to check the return value.
3879 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3881 int pci_try_set_mwi(struct pci_dev *dev)
3883 #ifdef PCI_DISABLE_MWI
3886 return pci_set_mwi(dev);
3889 EXPORT_SYMBOL(pci_try_set_mwi);
3892 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3893 * @dev: the PCI device to disable
3895 * Disables PCI Memory-Write-Invalidate transaction on the device
3897 void pci_clear_mwi(struct pci_dev *dev)
3899 #ifndef PCI_DISABLE_MWI
3902 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3903 if (cmd & PCI_COMMAND_INVALIDATE) {
3904 cmd &= ~PCI_COMMAND_INVALIDATE;
3905 pci_write_config_word(dev, PCI_COMMAND, cmd);
3909 EXPORT_SYMBOL(pci_clear_mwi);
3912 * pci_intx - enables/disables PCI INTx for device dev
3913 * @pdev: the PCI device to operate on
3914 * @enable: boolean: whether to enable or disable PCI INTx
3916 * Enables/disables PCI INTx for device dev
3918 void pci_intx(struct pci_dev *pdev, int enable)
3920 u16 pci_command, new;
3922 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3925 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3927 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3929 if (new != pci_command) {
3930 struct pci_devres *dr;
3932 pci_write_config_word(pdev, PCI_COMMAND, new);
3934 dr = find_pci_dr(pdev);
3935 if (dr && !dr->restore_intx) {
3936 dr->restore_intx = 1;
3937 dr->orig_intx = !enable;
3941 EXPORT_SYMBOL_GPL(pci_intx);
3943 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3945 struct pci_bus *bus = dev->bus;
3946 bool mask_updated = true;
3947 u32 cmd_status_dword;
3948 u16 origcmd, newcmd;
3949 unsigned long flags;
3953 * We do a single dword read to retrieve both command and status.
3954 * Document assumptions that make this possible.
3956 BUILD_BUG_ON(PCI_COMMAND % 4);
3957 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3959 raw_spin_lock_irqsave(&pci_lock, flags);
3961 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3963 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3966 * Check interrupt status register to see whether our device
3967 * triggered the interrupt (when masking) or the next IRQ is
3968 * already pending (when unmasking).
3970 if (mask != irq_pending) {
3971 mask_updated = false;
3975 origcmd = cmd_status_dword;
3976 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3978 newcmd |= PCI_COMMAND_INTX_DISABLE;
3979 if (newcmd != origcmd)
3980 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3983 raw_spin_unlock_irqrestore(&pci_lock, flags);
3985 return mask_updated;
3989 * pci_check_and_mask_intx - mask INTx on pending interrupt
3990 * @dev: the PCI device to operate on
3992 * Check if the device dev has its INTx line asserted, mask it and
3993 * return true in that case. False is returned if no interrupt was
3996 bool pci_check_and_mask_intx(struct pci_dev *dev)
3998 return pci_check_and_set_intx_mask(dev, true);
4000 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4003 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4004 * @dev: the PCI device to operate on
4006 * Check if the device dev has its INTx line asserted, unmask it if not
4007 * and return true. False is returned and the mask remains active if
4008 * there was still an interrupt pending.
4010 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4012 return pci_check_and_set_intx_mask(dev, false);
4014 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4017 * pci_wait_for_pending_transaction - waits for pending transaction
4018 * @dev: the PCI device to operate on
4020 * Return 0 if transaction is pending 1 otherwise.
4022 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4024 if (!pci_is_pcie(dev))
4027 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4028 PCI_EXP_DEVSTA_TRPND);
4030 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4032 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4038 * After reset, the device should not silently discard config
4039 * requests, but it may still indicate that it needs more time by
4040 * responding to them with CRS completions. The Root Port will
4041 * generally synthesize ~0 data to complete the read (except when
4042 * CRS SV is enabled and the read was for the Vendor ID; in that
4043 * case it synthesizes 0x0001 data).
4045 * Wait for the device to return a non-CRS completion. Read the
4046 * Command register instead of Vendor ID so we don't have to
4047 * contend with the CRS SV value.
4049 pci_read_config_dword(dev, PCI_COMMAND, &id);
4051 if (delay > timeout) {
4052 pci_warn(dev, "not ready %dms after %s; giving up\n",
4053 delay - 1, reset_type);
4058 pci_info(dev, "not ready %dms after %s; waiting\n",
4059 delay - 1, reset_type);
4063 pci_read_config_dword(dev, PCI_COMMAND, &id);
4067 pci_info(dev, "ready %dms after %s\n", delay - 1,
4074 * pcie_has_flr - check if a device supports function level resets
4075 * @dev: device to check
4077 * Returns true if the device advertises support for PCIe function level
4080 static bool pcie_has_flr(struct pci_dev *dev)
4084 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4087 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4088 return cap & PCI_EXP_DEVCAP_FLR;
4092 * pcie_flr - initiate a PCIe function level reset
4093 * @dev: device to reset
4095 * Initiate a function level reset on @dev. The caller should ensure the
4096 * device supports FLR before calling this function, e.g. by using the
4097 * pcie_has_flr() helper.
4099 int pcie_flr(struct pci_dev *dev)
4101 if (!pci_wait_for_pending_transaction(dev))
4102 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4104 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4107 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4108 * 100ms, but may silently discard requests while the FLR is in
4109 * progress. Wait 100ms before trying to access the device.
4113 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4115 EXPORT_SYMBOL_GPL(pcie_flr);
4117 static int pci_af_flr(struct pci_dev *dev, int probe)
4122 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4126 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4129 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4130 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4137 * Wait for Transaction Pending bit to clear. A word-aligned test
4138 * is used, so we use the conrol offset rather than status and shift
4139 * the test bit to match.
4141 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4142 PCI_AF_STATUS_TP << 8))
4143 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4145 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4148 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4149 * updated 27 July 2006; a device must complete an FLR within
4150 * 100ms, but may silently discard requests while the FLR is in
4151 * progress. Wait 100ms before trying to access the device.
4155 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4159 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4160 * @dev: Device to reset.
4161 * @probe: If set, only check if the device can be reset this way.
4163 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4164 * unset, it will be reinitialized internally when going from PCI_D3hot to
4165 * PCI_D0. If that's the case and the device is not in a low-power state
4166 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4168 * NOTE: This causes the caller to sleep for twice the device power transition
4169 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4170 * by default (i.e. unless the @dev's d3_delay field has a different value).
4171 * Moreover, only devices in D0 can be reset by this function.
4173 static int pci_pm_reset(struct pci_dev *dev, int probe)
4177 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4180 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4181 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4187 if (dev->current_state != PCI_D0)
4190 csr &= ~PCI_PM_CTRL_STATE_MASK;
4192 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4193 pci_dev_d3_sleep(dev);
4195 csr &= ~PCI_PM_CTRL_STATE_MASK;
4197 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4198 pci_dev_d3_sleep(dev);
4200 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4203 * pcie_wait_for_link - Wait until link is active or inactive
4204 * @pdev: Bridge device
4205 * @active: waiting for active or inactive?
4207 * Use this to wait till link becomes active or inactive.
4209 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4216 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4217 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4226 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4227 active ? "set" : "cleared");
4232 void pci_reset_secondary_bus(struct pci_dev *dev)
4236 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4237 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4238 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4241 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4242 * this to 2ms to ensure that we meet the minimum requirement.
4246 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4247 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4250 * Trhfa for conventional PCI is 2^25 clock cycles.
4251 * Assuming a minimum 33MHz clock this results in a 1s
4252 * delay before we can consider subordinate devices to
4253 * be re-initialized. PCIe has some ways to shorten this,
4254 * but we don't make use of them yet.
4259 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4261 pci_reset_secondary_bus(dev);
4265 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4266 * @dev: Bridge device
4268 * Use the bridge control register to assert reset on the secondary bus.
4269 * Devices on the secondary bus are left in power-on state.
4271 int pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4273 pcibios_reset_secondary_bus(dev);
4275 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4277 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4279 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4281 struct pci_dev *pdev;
4283 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4284 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4287 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4294 pci_reset_bridge_secondary_bus(dev->bus->self);
4299 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4303 if (!hotplug || !try_module_get(hotplug->ops->owner))
4306 if (hotplug->ops->reset_slot)
4307 rc = hotplug->ops->reset_slot(hotplug, probe);
4309 module_put(hotplug->ops->owner);
4314 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4316 struct pci_dev *pdev;
4318 if (dev->subordinate || !dev->slot ||
4319 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4322 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4323 if (pdev != dev && pdev->slot == dev->slot)
4326 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4329 static void pci_dev_lock(struct pci_dev *dev)
4331 pci_cfg_access_lock(dev);
4332 /* block PM suspend, driver probe, etc. */
4333 device_lock(&dev->dev);
4336 /* Return 1 on successful lock, 0 on contention */
4337 static int pci_dev_trylock(struct pci_dev *dev)
4339 if (pci_cfg_access_trylock(dev)) {
4340 if (device_trylock(&dev->dev))
4342 pci_cfg_access_unlock(dev);
4348 static void pci_dev_unlock(struct pci_dev *dev)
4350 device_unlock(&dev->dev);
4351 pci_cfg_access_unlock(dev);
4354 static void pci_dev_save_and_disable(struct pci_dev *dev)
4356 const struct pci_error_handlers *err_handler =
4357 dev->driver ? dev->driver->err_handler : NULL;
4360 * dev->driver->err_handler->reset_prepare() is protected against
4361 * races with ->remove() by the device lock, which must be held by
4364 if (err_handler && err_handler->reset_prepare)
4365 err_handler->reset_prepare(dev);
4368 * Wake-up device prior to save. PM registers default to D0 after
4369 * reset and a simple register restore doesn't reliably return
4370 * to a non-D0 state anyway.
4372 pci_set_power_state(dev, PCI_D0);
4374 pci_save_state(dev);
4376 * Disable the device by clearing the Command register, except for
4377 * INTx-disable which is set. This not only disables MMIO and I/O port
4378 * BARs, but also prevents the device from being Bus Master, preventing
4379 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4380 * compliant devices, INTx-disable prevents legacy interrupts.
4382 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4385 static void pci_dev_restore(struct pci_dev *dev)
4387 const struct pci_error_handlers *err_handler =
4388 dev->driver ? dev->driver->err_handler : NULL;
4390 pci_restore_state(dev);
4393 * dev->driver->err_handler->reset_done() is protected against
4394 * races with ->remove() by the device lock, which must be held by
4397 if (err_handler && err_handler->reset_done)
4398 err_handler->reset_done(dev);
4402 * __pci_reset_function_locked - reset a PCI device function while holding
4403 * the @dev mutex lock.
4404 * @dev: PCI device to reset
4406 * Some devices allow an individual function to be reset without affecting
4407 * other functions in the same device. The PCI device must be responsive
4408 * to PCI config space in order to use this function.
4410 * The device function is presumed to be unused and the caller is holding
4411 * the device mutex lock when this function is called.
4412 * Resetting the device will make the contents of PCI configuration space
4413 * random, so any caller of this must be prepared to reinitialise the
4414 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4417 * Returns 0 if the device function was successfully reset or negative if the
4418 * device doesn't support resetting a single function.
4420 int __pci_reset_function_locked(struct pci_dev *dev)
4427 * A reset method returns -ENOTTY if it doesn't support this device
4428 * and we should try the next method.
4430 * If it returns 0 (success), we're finished. If it returns any
4431 * other error, we're also finished: this indicates that further
4432 * reset mechanisms might be broken on the device.
4434 rc = pci_dev_specific_reset(dev, 0);
4437 if (pcie_has_flr(dev)) {
4442 rc = pci_af_flr(dev, 0);
4445 rc = pci_pm_reset(dev, 0);
4448 rc = pci_dev_reset_slot_function(dev, 0);
4451 return pci_parent_bus_reset(dev, 0);
4453 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4456 * pci_probe_reset_function - check whether the device can be safely reset
4457 * @dev: PCI device to reset
4459 * Some devices allow an individual function to be reset without affecting
4460 * other functions in the same device. The PCI device must be responsive
4461 * to PCI config space in order to use this function.
4463 * Returns 0 if the device function can be reset or negative if the
4464 * device doesn't support resetting a single function.
4466 int pci_probe_reset_function(struct pci_dev *dev)
4472 rc = pci_dev_specific_reset(dev, 1);
4475 if (pcie_has_flr(dev))
4477 rc = pci_af_flr(dev, 1);
4480 rc = pci_pm_reset(dev, 1);
4483 rc = pci_dev_reset_slot_function(dev, 1);
4487 return pci_parent_bus_reset(dev, 1);
4491 * pci_reset_function - quiesce and reset a PCI device function
4492 * @dev: PCI device to reset
4494 * Some devices allow an individual function to be reset without affecting
4495 * other functions in the same device. The PCI device must be responsive
4496 * to PCI config space in order to use this function.
4498 * This function does not just reset the PCI portion of a device, but
4499 * clears all the state associated with the device. This function differs
4500 * from __pci_reset_function_locked() in that it saves and restores device state
4501 * over the reset and takes the PCI device lock.
4503 * Returns 0 if the device function was successfully reset or negative if the
4504 * device doesn't support resetting a single function.
4506 int pci_reset_function(struct pci_dev *dev)
4514 pci_dev_save_and_disable(dev);
4516 rc = __pci_reset_function_locked(dev);
4518 pci_dev_restore(dev);
4519 pci_dev_unlock(dev);
4523 EXPORT_SYMBOL_GPL(pci_reset_function);
4526 * pci_reset_function_locked - quiesce and reset a PCI device function
4527 * @dev: PCI device to reset
4529 * Some devices allow an individual function to be reset without affecting
4530 * other functions in the same device. The PCI device must be responsive
4531 * to PCI config space in order to use this function.
4533 * This function does not just reset the PCI portion of a device, but
4534 * clears all the state associated with the device. This function differs
4535 * from __pci_reset_function_locked() in that it saves and restores device state
4536 * over the reset. It also differs from pci_reset_function() in that it
4537 * requires the PCI device lock to be held.
4539 * Returns 0 if the device function was successfully reset or negative if the
4540 * device doesn't support resetting a single function.
4542 int pci_reset_function_locked(struct pci_dev *dev)
4549 pci_dev_save_and_disable(dev);
4551 rc = __pci_reset_function_locked(dev);
4553 pci_dev_restore(dev);
4557 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4560 * pci_try_reset_function - quiesce and reset a PCI device function
4561 * @dev: PCI device to reset
4563 * Same as above, except return -EAGAIN if unable to lock device.
4565 int pci_try_reset_function(struct pci_dev *dev)
4572 if (!pci_dev_trylock(dev))
4575 pci_dev_save_and_disable(dev);
4576 rc = __pci_reset_function_locked(dev);
4577 pci_dev_restore(dev);
4578 pci_dev_unlock(dev);
4582 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4584 /* Do any devices on or below this bus prevent a bus reset? */
4585 static bool pci_bus_resetable(struct pci_bus *bus)
4587 struct pci_dev *dev;
4590 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4593 list_for_each_entry(dev, &bus->devices, bus_list) {
4594 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4595 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4602 /* Lock devices from the top of the tree down */
4603 static void pci_bus_lock(struct pci_bus *bus)
4605 struct pci_dev *dev;
4607 list_for_each_entry(dev, &bus->devices, bus_list) {
4609 if (dev->subordinate)
4610 pci_bus_lock(dev->subordinate);
4614 /* Unlock devices from the bottom of the tree up */
4615 static void pci_bus_unlock(struct pci_bus *bus)
4617 struct pci_dev *dev;
4619 list_for_each_entry(dev, &bus->devices, bus_list) {
4620 if (dev->subordinate)
4621 pci_bus_unlock(dev->subordinate);
4622 pci_dev_unlock(dev);
4626 /* Return 1 on successful lock, 0 on contention */
4627 static int pci_bus_trylock(struct pci_bus *bus)
4629 struct pci_dev *dev;
4631 list_for_each_entry(dev, &bus->devices, bus_list) {
4632 if (!pci_dev_trylock(dev))
4634 if (dev->subordinate) {
4635 if (!pci_bus_trylock(dev->subordinate)) {
4636 pci_dev_unlock(dev);
4644 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4645 if (dev->subordinate)
4646 pci_bus_unlock(dev->subordinate);
4647 pci_dev_unlock(dev);
4652 /* Do any devices on or below this slot prevent a bus reset? */
4653 static bool pci_slot_resetable(struct pci_slot *slot)
4655 struct pci_dev *dev;
4657 if (slot->bus->self &&
4658 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4661 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4662 if (!dev->slot || dev->slot != slot)
4664 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4665 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4672 /* Lock devices from the top of the tree down */
4673 static void pci_slot_lock(struct pci_slot *slot)
4675 struct pci_dev *dev;
4677 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4678 if (!dev->slot || dev->slot != slot)
4681 if (dev->subordinate)
4682 pci_bus_lock(dev->subordinate);
4686 /* Unlock devices from the bottom of the tree up */
4687 static void pci_slot_unlock(struct pci_slot *slot)
4689 struct pci_dev *dev;
4691 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4692 if (!dev->slot || dev->slot != slot)
4694 if (dev->subordinate)
4695 pci_bus_unlock(dev->subordinate);
4696 pci_dev_unlock(dev);
4700 /* Return 1 on successful lock, 0 on contention */
4701 static int pci_slot_trylock(struct pci_slot *slot)
4703 struct pci_dev *dev;
4705 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4706 if (!dev->slot || dev->slot != slot)
4708 if (!pci_dev_trylock(dev))
4710 if (dev->subordinate) {
4711 if (!pci_bus_trylock(dev->subordinate)) {
4712 pci_dev_unlock(dev);
4720 list_for_each_entry_continue_reverse(dev,
4721 &slot->bus->devices, bus_list) {
4722 if (!dev->slot || dev->slot != slot)
4724 if (dev->subordinate)
4725 pci_bus_unlock(dev->subordinate);
4726 pci_dev_unlock(dev);
4731 /* Save and disable devices from the top of the tree down */
4732 static void pci_bus_save_and_disable(struct pci_bus *bus)
4734 struct pci_dev *dev;
4736 list_for_each_entry(dev, &bus->devices, bus_list) {
4738 pci_dev_save_and_disable(dev);
4739 pci_dev_unlock(dev);
4740 if (dev->subordinate)
4741 pci_bus_save_and_disable(dev->subordinate);
4746 * Restore devices from top of the tree down - parent bridges need to be
4747 * restored before we can get to subordinate devices.
4749 static void pci_bus_restore(struct pci_bus *bus)
4751 struct pci_dev *dev;
4753 list_for_each_entry(dev, &bus->devices, bus_list) {
4755 pci_dev_restore(dev);
4756 pci_dev_unlock(dev);
4757 if (dev->subordinate)
4758 pci_bus_restore(dev->subordinate);
4762 /* Save and disable devices from the top of the tree down */
4763 static void pci_slot_save_and_disable(struct pci_slot *slot)
4765 struct pci_dev *dev;
4767 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4768 if (!dev->slot || dev->slot != slot)
4770 pci_dev_save_and_disable(dev);
4771 if (dev->subordinate)
4772 pci_bus_save_and_disable(dev->subordinate);
4777 * Restore devices from top of the tree down - parent bridges need to be
4778 * restored before we can get to subordinate devices.
4780 static void pci_slot_restore(struct pci_slot *slot)
4782 struct pci_dev *dev;
4784 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4785 if (!dev->slot || dev->slot != slot)
4788 pci_dev_restore(dev);
4789 pci_dev_unlock(dev);
4790 if (dev->subordinate)
4791 pci_bus_restore(dev->subordinate);
4795 static int pci_slot_reset(struct pci_slot *slot, int probe)
4799 if (!slot || !pci_slot_resetable(slot))
4803 pci_slot_lock(slot);
4807 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4810 pci_slot_unlock(slot);
4816 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4817 * @slot: PCI slot to probe
4819 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4821 int pci_probe_reset_slot(struct pci_slot *slot)
4823 return pci_slot_reset(slot, 1);
4825 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4828 * pci_reset_slot - reset a PCI slot
4829 * @slot: PCI slot to reset
4831 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4832 * independent of other slots. For instance, some slots may support slot power
4833 * control. In the case of a 1:1 bus to slot architecture, this function may
4834 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4835 * Generally a slot reset should be attempted before a bus reset. All of the
4836 * function of the slot and any subordinate buses behind the slot are reset
4837 * through this function. PCI config space of all devices in the slot and
4838 * behind the slot is saved before and restored after reset.
4840 * Return 0 on success, non-zero on error.
4842 int pci_reset_slot(struct pci_slot *slot)
4846 rc = pci_slot_reset(slot, 1);
4850 pci_slot_save_and_disable(slot);
4852 rc = pci_slot_reset(slot, 0);
4854 pci_slot_restore(slot);
4858 EXPORT_SYMBOL_GPL(pci_reset_slot);
4861 * pci_try_reset_slot - Try to reset a PCI slot
4862 * @slot: PCI slot to reset
4864 * Same as above except return -EAGAIN if the slot cannot be locked
4866 int pci_try_reset_slot(struct pci_slot *slot)
4870 rc = pci_slot_reset(slot, 1);
4874 pci_slot_save_and_disable(slot);
4876 if (pci_slot_trylock(slot)) {
4878 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4879 pci_slot_unlock(slot);
4883 pci_slot_restore(slot);
4887 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4889 static int pci_bus_reset(struct pci_bus *bus, int probe)
4891 if (!bus->self || !pci_bus_resetable(bus))
4901 pci_reset_bridge_secondary_bus(bus->self);
4903 pci_bus_unlock(bus);
4909 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4910 * @bus: PCI bus to probe
4912 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4914 int pci_probe_reset_bus(struct pci_bus *bus)
4916 return pci_bus_reset(bus, 1);
4918 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4921 * pci_reset_bus - reset a PCI bus
4922 * @bus: top level PCI bus to reset
4924 * Do a bus reset on the given bus and any subordinate buses, saving
4925 * and restoring state of all devices.
4927 * Return 0 on success, non-zero on error.
4929 int pci_reset_bus(struct pci_bus *bus)
4933 rc = pci_bus_reset(bus, 1);
4937 pci_bus_save_and_disable(bus);
4939 rc = pci_bus_reset(bus, 0);
4941 pci_bus_restore(bus);
4945 EXPORT_SYMBOL_GPL(pci_reset_bus);
4948 * pci_try_reset_bus - Try to reset a PCI bus
4949 * @bus: top level PCI bus to reset
4951 * Same as above except return -EAGAIN if the bus cannot be locked
4953 int pci_try_reset_bus(struct pci_bus *bus)
4957 rc = pci_bus_reset(bus, 1);
4961 pci_bus_save_and_disable(bus);
4963 if (pci_bus_trylock(bus)) {
4965 pci_reset_bridge_secondary_bus(bus->self);
4966 pci_bus_unlock(bus);
4970 pci_bus_restore(bus);
4974 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4977 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4978 * @dev: PCI device to query
4980 * Returns mmrbc: maximum designed memory read count in bytes
4981 * or appropriate error value.
4983 int pcix_get_max_mmrbc(struct pci_dev *dev)
4988 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4992 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4995 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4997 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5000 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5001 * @dev: PCI device to query
5003 * Returns mmrbc: maximum memory read count in bytes
5004 * or appropriate error value.
5006 int pcix_get_mmrbc(struct pci_dev *dev)
5011 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5015 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5018 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5020 EXPORT_SYMBOL(pcix_get_mmrbc);
5023 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5024 * @dev: PCI device to query
5025 * @mmrbc: maximum memory read count in bytes
5026 * valid values are 512, 1024, 2048, 4096
5028 * If possible sets maximum memory read byte count, some bridges have erratas
5029 * that prevent this.
5031 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5037 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5040 v = ffs(mmrbc) - 10;
5042 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5046 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5049 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5052 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5055 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5057 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5060 cmd &= ~PCI_X_CMD_MAX_READ;
5062 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5067 EXPORT_SYMBOL(pcix_set_mmrbc);
5070 * pcie_get_readrq - get PCI Express read request size
5071 * @dev: PCI device to query
5073 * Returns maximum memory read request in bytes
5074 * or appropriate error value.
5076 int pcie_get_readrq(struct pci_dev *dev)
5080 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5082 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5084 EXPORT_SYMBOL(pcie_get_readrq);
5087 * pcie_set_readrq - set PCI Express maximum memory read request
5088 * @dev: PCI device to query
5089 * @rq: maximum memory read count in bytes
5090 * valid values are 128, 256, 512, 1024, 2048, 4096
5092 * If possible sets maximum memory read request in bytes
5094 int pcie_set_readrq(struct pci_dev *dev, int rq)
5098 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5102 * If using the "performance" PCIe config, we clamp the
5103 * read rq size to the max packet size to prevent the
5104 * host bridge generating requests larger than we can
5107 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5108 int mps = pcie_get_mps(dev);
5114 v = (ffs(rq) - 8) << 12;
5116 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5117 PCI_EXP_DEVCTL_READRQ, v);
5119 EXPORT_SYMBOL(pcie_set_readrq);
5122 * pcie_get_mps - get PCI Express maximum payload size
5123 * @dev: PCI device to query
5125 * Returns maximum payload size in bytes
5127 int pcie_get_mps(struct pci_dev *dev)
5131 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5133 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5135 EXPORT_SYMBOL(pcie_get_mps);
5138 * pcie_set_mps - set PCI Express maximum payload size
5139 * @dev: PCI device to query
5140 * @mps: maximum payload size in bytes
5141 * valid values are 128, 256, 512, 1024, 2048, 4096
5143 * If possible sets maximum payload size
5145 int pcie_set_mps(struct pci_dev *dev, int mps)
5149 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5153 if (v > dev->pcie_mpss)
5157 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5158 PCI_EXP_DEVCTL_PAYLOAD, v);
5160 EXPORT_SYMBOL(pcie_set_mps);
5163 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5164 * device and its bandwidth limitation
5165 * @dev: PCI device to query
5166 * @limiting_dev: storage for device causing the bandwidth limitation
5167 * @speed: storage for speed of limiting device
5168 * @width: storage for width of limiting device
5170 * Walk up the PCI device chain and find the point where the minimum
5171 * bandwidth is available. Return the bandwidth available there and (if
5172 * limiting_dev, speed, and width pointers are supplied) information about
5173 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5176 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5177 enum pci_bus_speed *speed,
5178 enum pcie_link_width *width)
5181 enum pci_bus_speed next_speed;
5182 enum pcie_link_width next_width;
5186 *speed = PCI_SPEED_UNKNOWN;
5188 *width = PCIE_LNK_WIDTH_UNKNOWN;
5193 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5195 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5196 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5197 PCI_EXP_LNKSTA_NLW_SHIFT;
5199 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5201 /* Check if current device limits the total bandwidth */
5202 if (!bw || next_bw <= bw) {
5206 *limiting_dev = dev;
5208 *speed = next_speed;
5210 *width = next_width;
5213 dev = pci_upstream_bridge(dev);
5218 EXPORT_SYMBOL(pcie_bandwidth_available);
5221 * pcie_get_speed_cap - query for the PCI device's link speed capability
5222 * @dev: PCI device to query
5224 * Query the PCI device speed capability. Return the maximum link speed
5225 * supported by the device.
5227 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5229 u32 lnkcap2, lnkcap;
5232 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link
5233 * Speeds Vector in Link Capabilities 2 when supported, falling
5234 * back to Max Link Speed in Link Capabilities otherwise.
5236 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5237 if (lnkcap2) { /* PCIe r3.0-compliant */
5238 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5239 return PCIE_SPEED_16_0GT;
5240 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5241 return PCIE_SPEED_8_0GT;
5242 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5243 return PCIE_SPEED_5_0GT;
5244 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5245 return PCIE_SPEED_2_5GT;
5246 return PCI_SPEED_UNKNOWN;
5249 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5251 if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB)
5252 return PCIE_SPEED_16_0GT;
5253 else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB)
5254 return PCIE_SPEED_8_0GT;
5255 else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB)
5256 return PCIE_SPEED_5_0GT;
5257 else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB)
5258 return PCIE_SPEED_2_5GT;
5261 return PCI_SPEED_UNKNOWN;
5265 * pcie_get_width_cap - query for the PCI device's link width capability
5266 * @dev: PCI device to query
5268 * Query the PCI device width capability. Return the maximum link width
5269 * supported by the device.
5271 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5275 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5277 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5279 return PCIE_LNK_WIDTH_UNKNOWN;
5283 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5285 * @speed: storage for link speed
5286 * @width: storage for link width
5288 * Calculate a PCI device's link bandwidth by querying for its link speed
5289 * and width, multiplying them, and applying encoding overhead. The result
5290 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5292 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5293 enum pcie_link_width *width)
5295 *speed = pcie_get_speed_cap(dev);
5296 *width = pcie_get_width_cap(dev);
5298 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5301 return *width * PCIE_SPEED2MBS_ENC(*speed);
5305 * pcie_print_link_status - Report the PCI device's link speed and width
5306 * @dev: PCI device to query
5308 * Report the available bandwidth at the device. If this is less than the
5309 * device is capable of, report the device's maximum possible bandwidth and
5310 * the upstream link that limits its performance to less than that.
5312 void pcie_print_link_status(struct pci_dev *dev)
5314 enum pcie_link_width width, width_cap;
5315 enum pci_bus_speed speed, speed_cap;
5316 struct pci_dev *limiting_dev = NULL;
5317 u32 bw_avail, bw_cap;
5319 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5320 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5322 if (bw_avail >= bw_cap)
5323 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5324 bw_cap / 1000, bw_cap % 1000,
5325 PCIE_SPEED2STR(speed_cap), width_cap);
5327 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5328 bw_avail / 1000, bw_avail % 1000,
5329 PCIE_SPEED2STR(speed), width,
5330 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5331 bw_cap / 1000, bw_cap % 1000,
5332 PCIE_SPEED2STR(speed_cap), width_cap);
5334 EXPORT_SYMBOL(pcie_print_link_status);
5337 * pci_select_bars - Make BAR mask from the type of resource
5338 * @dev: the PCI device for which BAR mask is made
5339 * @flags: resource type mask to be selected
5341 * This helper routine makes bar mask from the type of resource.
5343 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5346 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5347 if (pci_resource_flags(dev, i) & flags)
5351 EXPORT_SYMBOL(pci_select_bars);
5353 /* Some architectures require additional programming to enable VGA */
5354 static arch_set_vga_state_t arch_set_vga_state;
5356 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5358 arch_set_vga_state = func; /* NULL disables */
5361 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5362 unsigned int command_bits, u32 flags)
5364 if (arch_set_vga_state)
5365 return arch_set_vga_state(dev, decode, command_bits,
5371 * pci_set_vga_state - set VGA decode state on device and parents if requested
5372 * @dev: the PCI device
5373 * @decode: true = enable decoding, false = disable decoding
5374 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5375 * @flags: traverse ancestors and change bridges
5376 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5378 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5379 unsigned int command_bits, u32 flags)
5381 struct pci_bus *bus;
5382 struct pci_dev *bridge;
5386 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5388 /* ARCH specific VGA enables */
5389 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5393 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5394 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5396 cmd |= command_bits;
5398 cmd &= ~command_bits;
5399 pci_write_config_word(dev, PCI_COMMAND, cmd);
5402 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5409 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5412 cmd |= PCI_BRIDGE_CTL_VGA;
5414 cmd &= ~PCI_BRIDGE_CTL_VGA;
5415 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5424 * pci_add_dma_alias - Add a DMA devfn alias for a device
5425 * @dev: the PCI device for which alias is added
5426 * @devfn: alias slot and function
5428 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5429 * It should be called early, preferably as PCI fixup header quirk.
5431 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5433 if (!dev->dma_alias_mask)
5434 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5435 sizeof(long), GFP_KERNEL);
5436 if (!dev->dma_alias_mask) {
5437 pci_warn(dev, "Unable to allocate DMA alias mask\n");
5441 set_bit(devfn, dev->dma_alias_mask);
5442 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5443 PCI_SLOT(devfn), PCI_FUNC(devfn));
5446 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5448 return (dev1->dma_alias_mask &&
5449 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5450 (dev2->dma_alias_mask &&
5451 test_bit(dev1->devfn, dev2->dma_alias_mask));
5454 bool pci_device_is_present(struct pci_dev *pdev)
5458 if (pci_dev_is_disconnected(pdev))
5460 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5462 EXPORT_SYMBOL_GPL(pci_device_is_present);
5464 void pci_ignore_hotplug(struct pci_dev *dev)
5466 struct pci_dev *bridge = dev->bus->self;
5468 dev->ignore_hotplug = 1;
5469 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5471 bridge->ignore_hotplug = 1;
5473 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5475 resource_size_t __weak pcibios_default_alignment(void)
5480 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5481 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5482 static DEFINE_SPINLOCK(resource_alignment_lock);
5485 * pci_specified_resource_alignment - get resource alignment specified by user.
5486 * @dev: the PCI device to get
5487 * @resize: whether or not to change resources' size when reassigning alignment
5489 * RETURNS: Resource alignment if it is specified.
5490 * Zero if it is not specified.
5492 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5495 int seg, bus, slot, func, align_order, count;
5496 unsigned short vendor, device, subsystem_vendor, subsystem_device;
5497 resource_size_t align = pcibios_default_alignment();
5500 spin_lock(&resource_alignment_lock);
5501 p = resource_alignment_param;
5504 if (pci_has_flag(PCI_PROBE_ONLY)) {
5506 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5512 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5518 if (strncmp(p, "pci:", 4) == 0) {
5519 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5521 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5522 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5523 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5524 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5528 subsystem_vendor = subsystem_device = 0;
5531 if ((!vendor || (vendor == dev->vendor)) &&
5532 (!device || (device == dev->device)) &&
5533 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5534 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5536 if (align_order == -1)
5539 align = 1 << align_order;
5545 if (sscanf(p, "%x:%x:%x.%x%n",
5546 &seg, &bus, &slot, &func, &count) != 4) {
5548 if (sscanf(p, "%x:%x.%x%n",
5549 &bus, &slot, &func, &count) != 3) {
5550 /* Invalid format */
5551 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5557 if (seg == pci_domain_nr(dev->bus) &&
5558 bus == dev->bus->number &&
5559 slot == PCI_SLOT(dev->devfn) &&
5560 func == PCI_FUNC(dev->devfn)) {
5562 if (align_order == -1)
5565 align = 1 << align_order;
5570 if (*p != ';' && *p != ',') {
5571 /* End of param or invalid format */
5577 spin_unlock(&resource_alignment_lock);
5581 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5582 resource_size_t align, bool resize)
5584 struct resource *r = &dev->resource[bar];
5585 resource_size_t size;
5587 if (!(r->flags & IORESOURCE_MEM))
5590 if (r->flags & IORESOURCE_PCI_FIXED) {
5591 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5592 bar, r, (unsigned long long)align);
5596 size = resource_size(r);
5601 * Increase the alignment of the resource. There are two ways we
5604 * 1) Increase the size of the resource. BARs are aligned on their
5605 * size, so when we reallocate space for this resource, we'll
5606 * allocate it with the larger alignment. This also prevents
5607 * assignment of any other BARs inside the alignment region, so
5608 * if we're requesting page alignment, this means no other BARs
5609 * will share the page.
5611 * The disadvantage is that this makes the resource larger than
5612 * the hardware BAR, which may break drivers that compute things
5613 * based on the resource size, e.g., to find registers at a
5614 * fixed offset before the end of the BAR.
5616 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5617 * set r->start to the desired alignment. By itself this
5618 * doesn't prevent other BARs being put inside the alignment
5619 * region, but if we realign *every* resource of every device in
5620 * the system, none of them will share an alignment region.
5622 * When the user has requested alignment for only some devices via
5623 * the "pci=resource_alignment" argument, "resize" is true and we
5624 * use the first method. Otherwise we assume we're aligning all
5625 * devices and we use the second.
5628 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5629 bar, r, (unsigned long long)align);
5635 r->flags &= ~IORESOURCE_SIZEALIGN;
5636 r->flags |= IORESOURCE_STARTALIGN;
5638 r->end = r->start + size - 1;
5640 r->flags |= IORESOURCE_UNSET;
5644 * This function disables memory decoding and releases memory resources
5645 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5646 * It also rounds up size to specified alignment.
5647 * Later on, the kernel will assign page-aligned memory resource back
5650 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5654 resource_size_t align;
5656 bool resize = false;
5659 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5660 * 3.4.1.11. Their resources are allocated from the space
5661 * described by the VF BARx register in the PF's SR-IOV capability.
5662 * We can't influence their alignment here.
5667 /* check if specified PCI is target device to reassign */
5668 align = pci_specified_resource_alignment(dev, &resize);
5672 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5673 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5674 pci_warn(dev, "Can't reassign resources to host bridge\n");
5678 pci_read_config_word(dev, PCI_COMMAND, &command);
5679 command &= ~PCI_COMMAND_MEMORY;
5680 pci_write_config_word(dev, PCI_COMMAND, command);
5682 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5683 pci_request_resource_alignment(dev, i, align, resize);
5686 * Need to disable bridge's resource window,
5687 * to enable the kernel to reassign new resource
5690 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5691 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5692 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5693 r = &dev->resource[i];
5694 if (!(r->flags & IORESOURCE_MEM))
5696 r->flags |= IORESOURCE_UNSET;
5697 r->end = resource_size(r) - 1;
5700 pci_disable_bridge_window(dev);
5704 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5706 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5707 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5708 spin_lock(&resource_alignment_lock);
5709 strncpy(resource_alignment_param, buf, count);
5710 resource_alignment_param[count] = '\0';
5711 spin_unlock(&resource_alignment_lock);
5715 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5718 spin_lock(&resource_alignment_lock);
5719 count = snprintf(buf, size, "%s", resource_alignment_param);
5720 spin_unlock(&resource_alignment_lock);
5724 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5726 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5729 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5730 const char *buf, size_t count)
5732 return pci_set_resource_alignment_param(buf, count);
5735 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5736 pci_resource_alignment_store);
5738 static int __init pci_resource_alignment_sysfs_init(void)
5740 return bus_create_file(&pci_bus_type,
5741 &bus_attr_resource_alignment);
5743 late_initcall(pci_resource_alignment_sysfs_init);
5745 static void pci_no_domains(void)
5747 #ifdef CONFIG_PCI_DOMAINS
5748 pci_domains_supported = 0;
5752 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5753 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5755 static int pci_get_new_domain_nr(void)
5757 return atomic_inc_return(&__domain_nr);
5760 static int of_pci_bus_find_domain_nr(struct device *parent)
5762 static int use_dt_domains = -1;
5766 domain = of_get_pci_domain_nr(parent->of_node);
5768 * Check DT domain and use_dt_domains values.
5770 * If DT domain property is valid (domain >= 0) and
5771 * use_dt_domains != 0, the DT assignment is valid since this means
5772 * we have not previously allocated a domain number by using
5773 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5774 * 1, to indicate that we have just assigned a domain number from
5777 * If DT domain property value is not valid (ie domain < 0), and we
5778 * have not previously assigned a domain number from DT
5779 * (use_dt_domains != 1) we should assign a domain number by
5782 * pci_get_new_domain_nr()
5784 * API and update the use_dt_domains value to keep track of method we
5785 * are using to assign domain numbers (use_dt_domains = 0).
5787 * All other combinations imply we have a platform that is trying
5788 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5789 * which is a recipe for domain mishandling and it is prevented by
5790 * invalidating the domain value (domain = -1) and printing a
5791 * corresponding error.
5793 if (domain >= 0 && use_dt_domains) {
5795 } else if (domain < 0 && use_dt_domains != 1) {
5797 domain = pci_get_new_domain_nr();
5800 pr_err("Node %pOF has ", parent->of_node);
5801 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
5808 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5810 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5811 acpi_pci_bus_find_domain_nr(bus);
5816 * pci_ext_cfg_avail - can we access extended PCI config space?
5818 * Returns 1 if we can access PCI extended config space (offsets
5819 * greater than 0xff). This is the default implementation. Architecture
5820 * implementations can override this.
5822 int __weak pci_ext_cfg_avail(void)
5827 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5830 EXPORT_SYMBOL(pci_fixup_cardbus);
5832 static int __init pci_setup(char *str)
5835 char *k = strchr(str, ',');
5838 if (*str && (str = pcibios_setup(str)) && *str) {
5839 if (!strcmp(str, "nomsi")) {
5841 } else if (!strncmp(str, "noats", 5)) {
5842 pr_info("PCIe: ATS is disabled\n");
5843 pcie_ats_disabled = true;
5844 } else if (!strcmp(str, "noaer")) {
5846 } else if (!strncmp(str, "realloc=", 8)) {
5847 pci_realloc_get_opt(str + 8);
5848 } else if (!strncmp(str, "realloc", 7)) {
5849 pci_realloc_get_opt("on");
5850 } else if (!strcmp(str, "nodomains")) {
5852 } else if (!strncmp(str, "noari", 5)) {
5853 pcie_ari_disabled = true;
5854 } else if (!strncmp(str, "cbiosize=", 9)) {
5855 pci_cardbus_io_size = memparse(str + 9, &str);
5856 } else if (!strncmp(str, "cbmemsize=", 10)) {
5857 pci_cardbus_mem_size = memparse(str + 10, &str);
5858 } else if (!strncmp(str, "resource_alignment=", 19)) {
5859 pci_set_resource_alignment_param(str + 19,
5861 } else if (!strncmp(str, "ecrc=", 5)) {
5862 pcie_ecrc_get_policy(str + 5);
5863 } else if (!strncmp(str, "hpiosize=", 9)) {
5864 pci_hotplug_io_size = memparse(str + 9, &str);
5865 } else if (!strncmp(str, "hpmemsize=", 10)) {
5866 pci_hotplug_mem_size = memparse(str + 10, &str);
5867 } else if (!strncmp(str, "hpbussize=", 10)) {
5868 pci_hotplug_bus_size =
5869 simple_strtoul(str + 10, &str, 0);
5870 if (pci_hotplug_bus_size > 0xff)
5871 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5872 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5873 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5874 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5875 pcie_bus_config = PCIE_BUS_SAFE;
5876 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5877 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5878 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5879 pcie_bus_config = PCIE_BUS_PEER2PEER;
5880 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5881 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5883 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5891 early_param("pci", pci_setup);