1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1992 Rick Sladkey
7 * nfs directory handling functions
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
43 #include "delegation.h"
50 /* #define NFS_DEBUG_VERBOSE 1 */
52 static int nfs_opendir(struct inode *, struct file *);
53 static int nfs_closedir(struct inode *, struct file *);
54 static int nfs_readdir(struct file *, struct dir_context *);
55 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
56 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
57 static void nfs_readdir_clear_array(struct page*);
59 const struct file_operations nfs_dir_operations = {
60 .llseek = nfs_llseek_dir,
61 .read = generic_read_dir,
62 .iterate_shared = nfs_readdir,
64 .release = nfs_closedir,
65 .fsync = nfs_fsync_dir,
68 const struct address_space_operations nfs_dir_aops = {
69 .freepage = nfs_readdir_clear_array,
72 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
74 struct nfs_inode *nfsi = NFS_I(dir);
75 struct nfs_open_dir_context *ctx;
76 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
79 ctx->attr_gencount = nfsi->attr_gencount;
83 spin_lock(&dir->i_lock);
84 if (list_empty(&nfsi->open_files) &&
85 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
86 nfs_set_cache_invalid(dir,
87 NFS_INO_INVALID_DATA |
88 NFS_INO_REVAL_FORCED);
89 list_add(&ctx->list, &nfsi->open_files);
90 clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
91 spin_unlock(&dir->i_lock);
94 return ERR_PTR(-ENOMEM);
97 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
99 spin_lock(&dir->i_lock);
100 list_del(&ctx->list);
101 spin_unlock(&dir->i_lock);
109 nfs_opendir(struct inode *inode, struct file *filp)
112 struct nfs_open_dir_context *ctx;
114 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
116 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
118 ctx = alloc_nfs_open_dir_context(inode);
123 filp->private_data = ctx;
129 nfs_closedir(struct inode *inode, struct file *filp)
131 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
135 struct nfs_cache_array_entry {
139 unsigned int name_len;
140 unsigned char d_type;
143 struct nfs_cache_array {
146 unsigned char page_full : 1,
148 cookies_are_ordered : 1;
149 struct nfs_cache_array_entry array[];
152 struct nfs_readdir_descriptor {
155 struct dir_context *ctx;
160 loff_t current_index;
163 __be32 verf[NFS_DIR_VERIFIER_SIZE];
164 unsigned long dir_verifier;
165 unsigned long timestamp;
166 unsigned long gencount;
167 unsigned long attr_gencount;
168 unsigned int cache_entry_index;
174 static void nfs_readdir_array_init(struct nfs_cache_array *array)
176 memset(array, 0, sizeof(struct nfs_cache_array));
179 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
181 struct nfs_cache_array *array;
183 array = kmap_atomic(page);
184 nfs_readdir_array_init(array);
185 array->last_cookie = last_cookie;
186 array->cookies_are_ordered = 1;
187 kunmap_atomic(array);
191 * we are freeing strings created by nfs_add_to_readdir_array()
194 void nfs_readdir_clear_array(struct page *page)
196 struct nfs_cache_array *array;
199 array = kmap_atomic(page);
200 for (i = 0; i < array->size; i++)
201 kfree(array->array[i].name);
202 nfs_readdir_array_init(array);
203 kunmap_atomic(array);
207 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
209 struct page *page = alloc_page(gfp_flags);
211 nfs_readdir_page_init_array(page, last_cookie);
215 static void nfs_readdir_page_array_free(struct page *page)
218 nfs_readdir_clear_array(page);
223 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
225 array->page_is_eof = 1;
226 array->page_full = 1;
229 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
231 return array->page_full;
235 * the caller is responsible for freeing qstr.name
236 * when called by nfs_readdir_add_to_array, the strings will be freed in
237 * nfs_clear_readdir_array()
239 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
241 const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
244 * Avoid a kmemleak false positive. The pointer to the name is stored
245 * in a page cache page which kmemleak does not scan.
248 kmemleak_not_leak(ret);
253 * Check that the next array entry lies entirely within the page bounds
255 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
257 struct nfs_cache_array_entry *cache_entry;
259 if (array->page_full)
261 cache_entry = &array->array[array->size + 1];
262 if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
263 array->page_full = 1;
270 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
272 struct nfs_cache_array *array;
273 struct nfs_cache_array_entry *cache_entry;
277 name = nfs_readdir_copy_name(entry->name, entry->len);
281 array = kmap_atomic(page);
282 ret = nfs_readdir_array_can_expand(array);
288 cache_entry = &array->array[array->size];
289 cache_entry->cookie = entry->prev_cookie;
290 cache_entry->ino = entry->ino;
291 cache_entry->d_type = entry->d_type;
292 cache_entry->name_len = entry->len;
293 cache_entry->name = name;
294 array->last_cookie = entry->cookie;
295 if (array->last_cookie <= cache_entry->cookie)
296 array->cookies_are_ordered = 0;
299 nfs_readdir_array_set_eof(array);
301 kunmap_atomic(array);
305 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
306 pgoff_t index, u64 last_cookie)
310 page = grab_cache_page(mapping, index);
311 if (page && !PageUptodate(page)) {
312 nfs_readdir_page_init_array(page, last_cookie);
313 if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
314 nfs_zap_mapping(mapping->host, mapping);
315 SetPageUptodate(page);
321 static u64 nfs_readdir_page_last_cookie(struct page *page)
323 struct nfs_cache_array *array;
326 array = kmap_atomic(page);
327 ret = array->last_cookie;
328 kunmap_atomic(array);
332 static bool nfs_readdir_page_needs_filling(struct page *page)
334 struct nfs_cache_array *array;
337 array = kmap_atomic(page);
338 ret = !nfs_readdir_array_is_full(array);
339 kunmap_atomic(array);
343 static void nfs_readdir_page_set_eof(struct page *page)
345 struct nfs_cache_array *array;
347 array = kmap_atomic(page);
348 nfs_readdir_array_set_eof(array);
349 kunmap_atomic(array);
352 static void nfs_readdir_page_unlock_and_put(struct page *page)
358 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
359 pgoff_t index, u64 cookie)
363 page = nfs_readdir_page_get_locked(mapping, index, cookie);
365 if (nfs_readdir_page_last_cookie(page) == cookie)
367 nfs_readdir_page_unlock_and_put(page);
373 int is_32bit_api(void)
376 return in_compat_syscall();
378 return (BITS_PER_LONG == 32);
383 bool nfs_readdir_use_cookie(const struct file *filp)
385 if ((filp->f_mode & FMODE_32BITHASH) ||
386 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
391 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
392 struct nfs_readdir_descriptor *desc)
394 loff_t diff = desc->ctx->pos - desc->current_index;
399 if (diff >= array->size) {
400 if (array->page_is_eof)
405 index = (unsigned int)diff;
406 desc->dir_cookie = array->array[index].cookie;
407 desc->cache_entry_index = index;
415 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
417 if (nfsi->cache_validity & (NFS_INO_INVALID_CHANGE |
418 NFS_INO_INVALID_DATA))
421 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
424 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
427 if (!array->cookies_are_ordered)
429 /* Optimisation for monotonically increasing cookies */
430 if (cookie >= array->last_cookie)
432 if (array->size && cookie < array->array[0].cookie)
437 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
438 struct nfs_readdir_descriptor *desc)
442 int status = -EAGAIN;
444 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
447 for (i = 0; i < array->size; i++) {
448 if (array->array[i].cookie == desc->dir_cookie) {
449 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
451 new_pos = desc->current_index + i;
452 if (desc->attr_gencount != nfsi->attr_gencount ||
453 !nfs_readdir_inode_mapping_valid(nfsi)) {
455 desc->attr_gencount = nfsi->attr_gencount;
456 } else if (new_pos < desc->prev_index) {
458 && desc->dup_cookie == desc->dir_cookie) {
459 if (printk_ratelimit()) {
460 pr_notice("NFS: directory %pD2 contains a readdir loop."
461 "Please contact your server vendor. "
462 "The file: %s has duplicate cookie %llu\n",
463 desc->file, array->array[i].name, desc->dir_cookie);
468 desc->dup_cookie = desc->dir_cookie;
471 if (nfs_readdir_use_cookie(desc->file))
472 desc->ctx->pos = desc->dir_cookie;
474 desc->ctx->pos = new_pos;
475 desc->prev_index = new_pos;
476 desc->cache_entry_index = i;
481 if (array->page_is_eof) {
482 status = -EBADCOOKIE;
483 if (desc->dir_cookie == array->last_cookie)
490 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
492 struct nfs_cache_array *array;
495 array = kmap_atomic(desc->page);
497 if (desc->dir_cookie == 0)
498 status = nfs_readdir_search_for_pos(array, desc);
500 status = nfs_readdir_search_for_cookie(array, desc);
502 if (status == -EAGAIN) {
503 desc->last_cookie = array->last_cookie;
504 desc->current_index += array->size;
507 kunmap_atomic(array);
511 /* Fill a page with xdr information before transferring to the cache page */
512 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
513 __be32 *verf, u64 cookie,
514 struct page **pages, size_t bufsize,
517 struct inode *inode = file_inode(desc->file);
518 struct nfs_readdir_arg arg = {
519 .dentry = file_dentry(desc->file),
520 .cred = desc->file->f_cred,
527 struct nfs_readdir_res res = {
530 unsigned long timestamp, gencount;
535 gencount = nfs_inc_attr_generation_counter();
536 desc->dir_verifier = nfs_save_change_attribute(inode);
537 error = NFS_PROTO(inode)->readdir(&arg, &res);
539 /* We requested READDIRPLUS, but the server doesn't grok it */
540 if (error == -ENOTSUPP && desc->plus) {
541 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
542 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
543 desc->plus = arg.plus = false;
548 desc->timestamp = timestamp;
549 desc->gencount = gencount;
554 static int xdr_decode(struct nfs_readdir_descriptor *desc,
555 struct nfs_entry *entry, struct xdr_stream *xdr)
557 struct inode *inode = file_inode(desc->file);
560 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
563 entry->fattr->time_start = desc->timestamp;
564 entry->fattr->gencount = desc->gencount;
568 /* Match file and dirent using either filehandle or fileid
569 * Note: caller is responsible for checking the fsid
572 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
575 struct nfs_inode *nfsi;
577 if (d_really_is_negative(dentry))
580 inode = d_inode(dentry);
581 if (is_bad_inode(inode) || NFS_STALE(inode))
585 if (entry->fattr->fileid != nfsi->fileid)
587 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
593 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
595 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
597 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
605 * This function is called by the lookup and getattr code to request the
606 * use of readdirplus to accelerate any future lookups in the same
609 void nfs_advise_use_readdirplus(struct inode *dir)
611 struct nfs_inode *nfsi = NFS_I(dir);
613 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
614 !list_empty(&nfsi->open_files))
615 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
619 * This function is mainly for use by nfs_getattr().
621 * If this is an 'ls -l', we want to force use of readdirplus.
622 * Do this by checking if there is an active file descriptor
623 * and calling nfs_advise_use_readdirplus, then forcing a
626 void nfs_force_use_readdirplus(struct inode *dir)
628 struct nfs_inode *nfsi = NFS_I(dir);
630 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
631 !list_empty(&nfsi->open_files)) {
632 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
633 set_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
638 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
639 unsigned long dir_verifier)
641 struct qstr filename = QSTR_INIT(entry->name, entry->len);
642 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
643 struct dentry *dentry;
644 struct dentry *alias;
648 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
650 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
652 if (filename.len == 0)
654 /* Validate that the name doesn't contain any illegal '\0' */
655 if (strnlen(filename.name, filename.len) != filename.len)
658 if (strnchr(filename.name, filename.len, '/'))
660 if (filename.name[0] == '.') {
661 if (filename.len == 1)
663 if (filename.len == 2 && filename.name[1] == '.')
666 filename.hash = full_name_hash(parent, filename.name, filename.len);
668 dentry = d_lookup(parent, &filename);
671 dentry = d_alloc_parallel(parent, &filename, &wq);
675 if (!d_in_lookup(dentry)) {
676 /* Is there a mountpoint here? If so, just exit */
677 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
678 &entry->fattr->fsid))
680 if (nfs_same_file(dentry, entry)) {
681 if (!entry->fh->size)
683 nfs_set_verifier(dentry, dir_verifier);
684 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
686 nfs_setsecurity(d_inode(dentry), entry->fattr);
689 d_invalidate(dentry);
695 if (!entry->fh->size) {
696 d_lookup_done(dentry);
700 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
701 alias = d_splice_alias(inode, dentry);
702 d_lookup_done(dentry);
709 nfs_set_verifier(dentry, dir_verifier);
714 /* Perform conversion from xdr to cache array */
715 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
716 struct nfs_entry *entry,
717 struct page **xdr_pages,
719 struct page **arrays,
722 struct address_space *mapping = desc->file->f_mapping;
723 struct xdr_stream stream;
725 struct page *scratch, *new, *page = *arrays;
728 scratch = alloc_page(GFP_KERNEL);
732 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
733 xdr_set_scratch_page(&stream, scratch);
736 if (entry->fattr->label)
737 entry->fattr->label->len = NFS4_MAXLABELLEN;
739 status = xdr_decode(desc, entry, &stream);
744 nfs_prime_dcache(file_dentry(desc->file), entry,
747 status = nfs_readdir_add_to_array(entry, page);
748 if (status != -ENOSPC)
751 if (page->mapping != mapping) {
754 new = nfs_readdir_page_array_alloc(entry->prev_cookie,
759 *arrays = page = new;
761 new = nfs_readdir_page_get_next(mapping,
767 nfs_readdir_page_unlock_and_put(page);
770 status = nfs_readdir_add_to_array(entry, page);
771 } while (!status && !entry->eof);
776 nfs_readdir_page_set_eof(page);
787 nfs_readdir_page_unlock_and_put(page);
793 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
796 put_page(pages[npages]);
801 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
802 * to nfs_readdir_free_pages()
804 static struct page **nfs_readdir_alloc_pages(size_t npages)
809 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
812 for (i = 0; i < npages; i++) {
813 struct page *page = alloc_page(GFP_KERNEL);
821 nfs_readdir_free_pages(pages, i);
825 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
826 __be32 *verf_arg, __be32 *verf_res,
827 struct page **arrays, size_t narrays)
830 struct page *page = *arrays;
831 struct nfs_entry *entry;
833 struct inode *inode = file_inode(desc->file);
834 size_t dtsize = NFS_SERVER(inode)->dtsize;
835 int status = -ENOMEM;
837 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
840 entry->cookie = nfs_readdir_page_last_cookie(page);
841 entry->fh = nfs_alloc_fhandle();
842 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
843 entry->server = NFS_SERVER(inode);
844 if (entry->fh == NULL || entry->fattr == NULL)
847 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
848 pages = nfs_readdir_alloc_pages(array_size);
854 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
862 nfs_readdir_page_set_eof(page);
868 status = nfs_readdir_page_filler(desc, entry, pages, pglen,
870 } while (!status && nfs_readdir_page_needs_filling(page));
872 nfs_readdir_free_pages(pages, array_size);
874 nfs_free_fattr(entry->fattr);
875 nfs_free_fhandle(entry->fh);
880 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
882 put_page(desc->page);
887 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
889 unlock_page(desc->page);
890 nfs_readdir_page_put(desc);
894 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
896 return nfs_readdir_page_get_locked(desc->file->f_mapping,
902 * Returns 0 if desc->dir_cookie was found on page desc->page_index
903 * and locks the page to prevent removal from the page cache.
905 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
907 struct inode *inode = file_inode(desc->file);
908 struct nfs_inode *nfsi = NFS_I(inode);
909 __be32 verf[NFS_DIR_VERIFIER_SIZE];
912 desc->page = nfs_readdir_page_get_cached(desc);
915 if (nfs_readdir_page_needs_filling(desc->page)) {
916 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
919 nfs_readdir_page_unlock_and_put_cached(desc);
920 if (res == -EBADCOOKIE || res == -ENOTSYNC) {
921 invalidate_inode_pages2(desc->file->f_mapping);
922 desc->page_index = 0;
928 * Set the cookie verifier if the page cache was empty
930 if (desc->page_index == 0)
931 memcpy(nfsi->cookieverf, verf,
932 sizeof(nfsi->cookieverf));
934 res = nfs_readdir_search_array(desc);
937 nfs_readdir_page_unlock_and_put_cached(desc);
941 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
943 struct address_space *mapping = desc->file->f_mapping;
944 struct inode *dir = file_inode(desc->file);
945 unsigned int dtsize = NFS_SERVER(dir)->dtsize;
946 loff_t size = i_size_read(dir);
949 * Default to uncached readdir if the page cache is empty, and
950 * we're looking for a non-zero cookie in a large directory.
952 return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
955 /* Search for desc->dir_cookie from the beginning of the page cache */
956 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
960 if (nfs_readdir_dont_search_cache(desc))
964 if (desc->page_index == 0) {
965 desc->current_index = 0;
966 desc->prev_index = 0;
967 desc->last_cookie = 0;
969 res = find_and_lock_cache_page(desc);
970 } while (res == -EAGAIN);
975 * Once we've found the start of the dirent within a page: fill 'er up...
977 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
980 struct file *file = desc->file;
981 struct nfs_cache_array *array;
984 array = kmap(desc->page);
985 for (i = desc->cache_entry_index; i < array->size; i++) {
986 struct nfs_cache_array_entry *ent;
988 ent = &array->array[i];
989 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
990 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
994 memcpy(desc->verf, verf, sizeof(desc->verf));
995 if (i < (array->size-1))
996 desc->dir_cookie = array->array[i+1].cookie;
998 desc->dir_cookie = array->last_cookie;
999 if (nfs_readdir_use_cookie(file))
1000 desc->ctx->pos = desc->dir_cookie;
1003 if (desc->duped != 0)
1006 if (array->page_is_eof)
1010 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1011 (unsigned long long)desc->dir_cookie);
1015 * If we cannot find a cookie in our cache, we suspect that this is
1016 * because it points to a deleted file, so we ask the server to return
1017 * whatever it thinks is the next entry. We then feed this to filldir.
1018 * If all goes well, we should then be able to find our way round the
1019 * cache on the next call to readdir_search_pagecache();
1021 * NOTE: we cannot add the anonymous page to the pagecache because
1022 * the data it contains might not be page aligned. Besides,
1023 * we should already have a complete representation of the
1024 * directory in the page cache by the time we get here.
1026 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1028 struct page **arrays;
1030 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1031 int status = -ENOMEM;
1033 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1034 (unsigned long long)desc->dir_cookie);
1036 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1039 arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1043 desc->page_index = 0;
1044 desc->last_cookie = desc->dir_cookie;
1047 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1049 for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1050 desc->page = arrays[i];
1051 nfs_do_filldir(desc, verf);
1056 for (i = 0; i < sz && arrays[i]; i++)
1057 nfs_readdir_page_array_free(arrays[i]);
1060 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1064 /* The file offset position represents the dirent entry number. A
1065 last cookie cache takes care of the common case of reading the
1068 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1070 struct dentry *dentry = file_dentry(file);
1071 struct inode *inode = d_inode(dentry);
1072 struct nfs_inode *nfsi = NFS_I(inode);
1073 struct nfs_open_dir_context *dir_ctx = file->private_data;
1074 struct nfs_readdir_descriptor *desc;
1078 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1079 file, (long long)ctx->pos);
1080 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1083 * ctx->pos points to the dirent entry number.
1084 * *desc->dir_cookie has the cookie for the next entry. We have
1085 * to either find the entry with the appropriate number or
1086 * revalidate the cookie.
1088 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1089 res = nfs_revalidate_mapping(inode, file->f_mapping);
1095 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1100 desc->plus = nfs_use_readdirplus(inode, ctx);
1102 spin_lock(&file->f_lock);
1103 desc->dir_cookie = dir_ctx->dir_cookie;
1104 desc->dup_cookie = dir_ctx->dup_cookie;
1105 desc->duped = dir_ctx->duped;
1106 page_index = dir_ctx->page_index;
1107 desc->attr_gencount = dir_ctx->attr_gencount;
1108 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1109 spin_unlock(&file->f_lock);
1111 if (test_and_clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags) &&
1112 list_is_singular(&nfsi->open_files))
1113 invalidate_mapping_pages(inode->i_mapping, page_index + 1, -1);
1116 res = readdir_search_pagecache(desc);
1118 if (res == -EBADCOOKIE) {
1120 /* This means either end of directory */
1121 if (desc->dir_cookie && !desc->eof) {
1122 /* Or that the server has 'lost' a cookie */
1123 res = uncached_readdir(desc);
1126 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1131 if (res == -ETOOSMALL && desc->plus) {
1132 clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1133 nfs_zap_caches(inode);
1134 desc->page_index = 0;
1142 nfs_do_filldir(desc, nfsi->cookieverf);
1143 nfs_readdir_page_unlock_and_put_cached(desc);
1144 } while (!desc->eof);
1146 spin_lock(&file->f_lock);
1147 dir_ctx->dir_cookie = desc->dir_cookie;
1148 dir_ctx->dup_cookie = desc->dup_cookie;
1149 dir_ctx->duped = desc->duped;
1150 dir_ctx->attr_gencount = desc->attr_gencount;
1151 dir_ctx->page_index = desc->page_index;
1152 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1153 spin_unlock(&file->f_lock);
1158 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1162 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1164 struct nfs_open_dir_context *dir_ctx = filp->private_data;
1166 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1167 filp, offset, whence);
1175 spin_lock(&filp->f_lock);
1180 spin_lock(&filp->f_lock);
1181 offset += filp->f_pos;
1183 spin_unlock(&filp->f_lock);
1187 if (offset != filp->f_pos) {
1188 filp->f_pos = offset;
1189 if (nfs_readdir_use_cookie(filp))
1190 dir_ctx->dir_cookie = offset;
1192 dir_ctx->dir_cookie = 0;
1194 memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1197 spin_unlock(&filp->f_lock);
1202 * All directory operations under NFS are synchronous, so fsync()
1203 * is a dummy operation.
1205 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1208 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1210 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1215 * nfs_force_lookup_revalidate - Mark the directory as having changed
1216 * @dir: pointer to directory inode
1218 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1219 * full lookup on all child dentries of 'dir' whenever a change occurs
1220 * on the server that might have invalidated our dcache.
1222 * Note that we reserve bit '0' as a tag to let us know when a dentry
1223 * was revalidated while holding a delegation on its inode.
1225 * The caller should be holding dir->i_lock
1227 void nfs_force_lookup_revalidate(struct inode *dir)
1229 NFS_I(dir)->cache_change_attribute += 2;
1231 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1234 * nfs_verify_change_attribute - Detects NFS remote directory changes
1235 * @dir: pointer to parent directory inode
1236 * @verf: previously saved change attribute
1238 * Return "false" if the verifiers doesn't match the change attribute.
1239 * This would usually indicate that the directory contents have changed on
1240 * the server, and that any dentries need revalidating.
1242 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1244 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1247 static void nfs_set_verifier_delegated(unsigned long *verf)
1252 #if IS_ENABLED(CONFIG_NFS_V4)
1253 static void nfs_unset_verifier_delegated(unsigned long *verf)
1257 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1259 static bool nfs_test_verifier_delegated(unsigned long verf)
1264 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1266 return nfs_test_verifier_delegated(dentry->d_time);
1269 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1271 struct inode *inode = d_inode(dentry);
1272 struct inode *dir = d_inode(dentry->d_parent);
1274 if (!nfs_verify_change_attribute(dir, verf))
1276 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1277 nfs_set_verifier_delegated(&verf);
1278 dentry->d_time = verf;
1282 * nfs_set_verifier - save a parent directory verifier in the dentry
1283 * @dentry: pointer to dentry
1284 * @verf: verifier to save
1286 * Saves the parent directory verifier in @dentry. If the inode has
1287 * a delegation, we also tag the dentry as having been revalidated
1288 * while holding a delegation so that we know we don't have to
1289 * look it up again after a directory change.
1291 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1294 spin_lock(&dentry->d_lock);
1295 nfs_set_verifier_locked(dentry, verf);
1296 spin_unlock(&dentry->d_lock);
1298 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1300 #if IS_ENABLED(CONFIG_NFS_V4)
1302 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1303 * @inode: pointer to inode
1305 * Iterates through the dentries in the inode alias list and clears
1306 * the tag used to indicate that the dentry has been revalidated
1307 * while holding a delegation.
1308 * This function is intended for use when the delegation is being
1309 * returned or revoked.
1311 void nfs_clear_verifier_delegated(struct inode *inode)
1313 struct dentry *alias;
1317 spin_lock(&inode->i_lock);
1318 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1319 spin_lock(&alias->d_lock);
1320 nfs_unset_verifier_delegated(&alias->d_time);
1321 spin_unlock(&alias->d_lock);
1323 spin_unlock(&inode->i_lock);
1325 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1326 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1329 * A check for whether or not the parent directory has changed.
1330 * In the case it has, we assume that the dentries are untrustworthy
1331 * and may need to be looked up again.
1332 * If rcu_walk prevents us from performing a full check, return 0.
1334 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1337 if (IS_ROOT(dentry))
1339 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1341 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1343 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1344 if (nfs_mapping_need_revalidate_inode(dir)) {
1347 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1350 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1356 * Use intent information to check whether or not we're going to do
1357 * an O_EXCL create using this path component.
1359 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1361 if (NFS_PROTO(dir)->version == 2)
1363 return flags & LOOKUP_EXCL;
1367 * Inode and filehandle revalidation for lookups.
1369 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1370 * or if the intent information indicates that we're about to open this
1371 * particular file and the "nocto" mount flag is not set.
1375 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1377 struct nfs_server *server = NFS_SERVER(inode);
1380 if (IS_AUTOMOUNT(inode))
1383 if (flags & LOOKUP_OPEN) {
1384 switch (inode->i_mode & S_IFMT) {
1386 /* A NFSv4 OPEN will revalidate later */
1387 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1391 if (server->flags & NFS_MOUNT_NOCTO)
1393 /* NFS close-to-open cache consistency validation */
1398 /* VFS wants an on-the-wire revalidation */
1399 if (flags & LOOKUP_REVAL)
1402 return (inode->i_nlink == 0) ? -ESTALE : 0;
1404 if (flags & LOOKUP_RCU)
1406 ret = __nfs_revalidate_inode(server, inode);
1412 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1414 spin_lock(&inode->i_lock);
1415 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1416 spin_unlock(&inode->i_lock);
1420 * We judge how long we want to trust negative
1421 * dentries by looking at the parent inode mtime.
1423 * If parent mtime has changed, we revalidate, else we wait for a
1424 * period corresponding to the parent's attribute cache timeout value.
1426 * If LOOKUP_RCU prevents us from performing a full check, return 1
1427 * suggesting a reval is needed.
1429 * Note that when creating a new file, or looking up a rename target,
1430 * then it shouldn't be necessary to revalidate a negative dentry.
1433 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1436 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1438 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1440 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1444 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1445 struct inode *inode, int error)
1449 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1454 * We can't d_drop the root of a disconnected tree:
1455 * its d_hash is on the s_anon list and d_drop() would hide
1456 * it from shrink_dcache_for_unmount(), leading to busy
1457 * inodes on unmount and further oopses.
1459 if (inode && IS_ROOT(dentry))
1461 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1465 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1466 __func__, dentry, error);
1471 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1475 if (nfs_neg_need_reval(dir, dentry, flags)) {
1476 if (flags & LOOKUP_RCU)
1480 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1484 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1485 struct inode *inode)
1487 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1488 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1492 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1493 struct inode *inode)
1495 struct nfs_fh *fhandle;
1496 struct nfs_fattr *fattr;
1497 unsigned long dir_verifier;
1501 fhandle = nfs_alloc_fhandle();
1502 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1503 if (fhandle == NULL || fattr == NULL)
1506 dir_verifier = nfs_save_change_attribute(dir);
1507 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1515 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1521 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1523 if (nfs_refresh_inode(inode, fattr) < 0)
1526 nfs_setsecurity(inode, fattr);
1527 nfs_set_verifier(dentry, dir_verifier);
1529 /* set a readdirplus hint that we had a cache miss */
1530 nfs_force_use_readdirplus(dir);
1533 nfs_free_fattr(fattr);
1534 nfs_free_fhandle(fhandle);
1537 * If the lookup failed despite the dentry change attribute being
1538 * a match, then we should revalidate the directory cache.
1540 if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1541 nfs_mark_dir_for_revalidate(dir);
1542 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1546 * This is called every time the dcache has a lookup hit,
1547 * and we should check whether we can really trust that
1550 * NOTE! The hit can be a negative hit too, don't assume
1553 * If the parent directory is seen to have changed, we throw out the
1554 * cached dentry and do a new lookup.
1557 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1560 struct inode *inode;
1563 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1564 inode = d_inode(dentry);
1567 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1569 if (is_bad_inode(inode)) {
1570 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1575 if (nfs_verifier_is_delegated(dentry))
1576 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1578 /* Force a full look up iff the parent directory has changed */
1579 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1580 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1581 error = nfs_lookup_verify_inode(inode, flags);
1583 if (error == -ESTALE)
1584 nfs_mark_dir_for_revalidate(dir);
1587 nfs_advise_use_readdirplus(dir);
1591 if (flags & LOOKUP_RCU)
1594 if (NFS_STALE(inode))
1597 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1598 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1599 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1602 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1604 if (flags & LOOKUP_RCU)
1606 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1610 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1611 int (*reval)(struct inode *, struct dentry *, unsigned int))
1613 struct dentry *parent;
1617 if (flags & LOOKUP_RCU) {
1618 parent = READ_ONCE(dentry->d_parent);
1619 dir = d_inode_rcu(parent);
1622 ret = reval(dir, dentry, flags);
1623 if (parent != READ_ONCE(dentry->d_parent))
1626 parent = dget_parent(dentry);
1627 ret = reval(d_inode(parent), dentry, flags);
1633 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1635 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1639 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1640 * when we don't really care about the dentry name. This is called when a
1641 * pathwalk ends on a dentry that was not found via a normal lookup in the
1642 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1644 * In this situation, we just want to verify that the inode itself is OK
1645 * since the dentry might have changed on the server.
1647 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1649 struct inode *inode = d_inode(dentry);
1653 * I believe we can only get a negative dentry here in the case of a
1654 * procfs-style symlink. Just assume it's correct for now, but we may
1655 * eventually need to do something more here.
1658 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1663 if (is_bad_inode(inode)) {
1664 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1669 error = nfs_lookup_verify_inode(inode, flags);
1670 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1671 __func__, inode->i_ino, error ? "invalid" : "valid");
1676 * This is called from dput() when d_count is going to 0.
1678 static int nfs_dentry_delete(const struct dentry *dentry)
1680 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1681 dentry, dentry->d_flags);
1683 /* Unhash any dentry with a stale inode */
1684 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1687 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1688 /* Unhash it, so that ->d_iput() would be called */
1691 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1692 /* Unhash it, so that ancestors of killed async unlink
1693 * files will be cleaned up during umount */
1700 /* Ensure that we revalidate inode->i_nlink */
1701 static void nfs_drop_nlink(struct inode *inode)
1703 spin_lock(&inode->i_lock);
1704 /* drop the inode if we're reasonably sure this is the last link */
1705 if (inode->i_nlink > 0)
1707 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1708 nfs_set_cache_invalid(
1709 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1710 NFS_INO_INVALID_NLINK);
1711 spin_unlock(&inode->i_lock);
1715 * Called when the dentry loses inode.
1716 * We use it to clean up silly-renamed files.
1718 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1720 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1721 nfs_complete_unlink(dentry, inode);
1722 nfs_drop_nlink(inode);
1727 static void nfs_d_release(struct dentry *dentry)
1729 /* free cached devname value, if it survived that far */
1730 if (unlikely(dentry->d_fsdata)) {
1731 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1734 kfree(dentry->d_fsdata);
1738 const struct dentry_operations nfs_dentry_operations = {
1739 .d_revalidate = nfs_lookup_revalidate,
1740 .d_weak_revalidate = nfs_weak_revalidate,
1741 .d_delete = nfs_dentry_delete,
1742 .d_iput = nfs_dentry_iput,
1743 .d_automount = nfs_d_automount,
1744 .d_release = nfs_d_release,
1746 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1748 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1751 struct inode *inode = NULL;
1752 struct nfs_fh *fhandle = NULL;
1753 struct nfs_fattr *fattr = NULL;
1754 unsigned long dir_verifier;
1757 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1758 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1760 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1761 return ERR_PTR(-ENAMETOOLONG);
1764 * If we're doing an exclusive create, optimize away the lookup
1765 * but don't hash the dentry.
1767 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1770 res = ERR_PTR(-ENOMEM);
1771 fhandle = nfs_alloc_fhandle();
1772 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1773 if (fhandle == NULL || fattr == NULL)
1776 dir_verifier = nfs_save_change_attribute(dir);
1777 trace_nfs_lookup_enter(dir, dentry, flags);
1778 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1779 if (error == -ENOENT)
1782 res = ERR_PTR(error);
1785 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1786 res = ERR_CAST(inode);
1790 /* Notify readdir to use READDIRPLUS */
1791 nfs_force_use_readdirplus(dir);
1794 res = d_splice_alias(inode, dentry);
1800 nfs_set_verifier(dentry, dir_verifier);
1802 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1803 nfs_free_fattr(fattr);
1804 nfs_free_fhandle(fhandle);
1807 EXPORT_SYMBOL_GPL(nfs_lookup);
1809 #if IS_ENABLED(CONFIG_NFS_V4)
1810 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1812 const struct dentry_operations nfs4_dentry_operations = {
1813 .d_revalidate = nfs4_lookup_revalidate,
1814 .d_weak_revalidate = nfs_weak_revalidate,
1815 .d_delete = nfs_dentry_delete,
1816 .d_iput = nfs_dentry_iput,
1817 .d_automount = nfs_d_automount,
1818 .d_release = nfs_d_release,
1820 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1822 static fmode_t flags_to_mode(int flags)
1824 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1825 if ((flags & O_ACCMODE) != O_WRONLY)
1827 if ((flags & O_ACCMODE) != O_RDONLY)
1832 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1834 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1837 static int do_open(struct inode *inode, struct file *filp)
1839 nfs_fscache_open_file(inode, filp);
1843 static int nfs_finish_open(struct nfs_open_context *ctx,
1844 struct dentry *dentry,
1845 struct file *file, unsigned open_flags)
1849 err = finish_open(file, dentry, do_open);
1852 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1853 nfs_file_set_open_context(file, ctx);
1860 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1861 struct file *file, unsigned open_flags,
1864 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1865 struct nfs_open_context *ctx;
1867 struct iattr attr = { .ia_valid = ATTR_OPEN };
1868 struct inode *inode;
1869 unsigned int lookup_flags = 0;
1870 bool switched = false;
1874 /* Expect a negative dentry */
1875 BUG_ON(d_inode(dentry));
1877 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1878 dir->i_sb->s_id, dir->i_ino, dentry);
1880 err = nfs_check_flags(open_flags);
1884 /* NFS only supports OPEN on regular files */
1885 if ((open_flags & O_DIRECTORY)) {
1886 if (!d_in_lookup(dentry)) {
1888 * Hashed negative dentry with O_DIRECTORY: dentry was
1889 * revalidated and is fine, no need to perform lookup
1894 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1898 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1899 return -ENAMETOOLONG;
1901 if (open_flags & O_CREAT) {
1902 struct nfs_server *server = NFS_SERVER(dir);
1904 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1905 mode &= ~current_umask();
1907 attr.ia_valid |= ATTR_MODE;
1908 attr.ia_mode = mode;
1910 if (open_flags & O_TRUNC) {
1911 attr.ia_valid |= ATTR_SIZE;
1915 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1918 dentry = d_alloc_parallel(dentry->d_parent,
1919 &dentry->d_name, &wq);
1921 return PTR_ERR(dentry);
1922 if (unlikely(!d_in_lookup(dentry)))
1923 return finish_no_open(file, dentry);
1926 ctx = create_nfs_open_context(dentry, open_flags, file);
1931 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1932 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1934 file->f_mode |= FMODE_CREATED;
1935 if (IS_ERR(inode)) {
1936 err = PTR_ERR(inode);
1937 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1938 put_nfs_open_context(ctx);
1942 d_splice_alias(NULL, dentry);
1943 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1949 if (!(open_flags & O_NOFOLLOW))
1959 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1960 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1961 put_nfs_open_context(ctx);
1963 if (unlikely(switched)) {
1964 d_lookup_done(dentry);
1970 res = nfs_lookup(dir, dentry, lookup_flags);
1972 d_lookup_done(dentry);
1979 return PTR_ERR(res);
1980 return finish_no_open(file, res);
1982 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1985 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1988 struct inode *inode;
1990 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1992 if (d_mountpoint(dentry))
1995 inode = d_inode(dentry);
1997 /* We can't create new files in nfs_open_revalidate(), so we
1998 * optimize away revalidation of negative dentries.
2003 if (nfs_verifier_is_delegated(dentry))
2004 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2006 /* NFS only supports OPEN on regular files */
2007 if (!S_ISREG(inode->i_mode))
2010 /* We cannot do exclusive creation on a positive dentry */
2011 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2014 /* Check if the directory changed */
2015 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2018 /* Let f_op->open() actually open (and revalidate) the file */
2021 if (flags & LOOKUP_RCU)
2023 return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2026 return nfs_do_lookup_revalidate(dir, dentry, flags);
2029 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2031 return __nfs_lookup_revalidate(dentry, flags,
2032 nfs4_do_lookup_revalidate);
2035 #endif /* CONFIG_NFSV4 */
2038 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2039 struct nfs_fattr *fattr)
2041 struct dentry *parent = dget_parent(dentry);
2042 struct inode *dir = d_inode(parent);
2043 struct inode *inode;
2049 if (fhandle->size == 0) {
2050 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2054 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2055 if (!(fattr->valid & NFS_ATTR_FATTR)) {
2056 struct nfs_server *server = NFS_SB(dentry->d_sb);
2057 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2062 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2063 d = d_splice_alias(inode, dentry);
2071 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2074 * Code common to create, mkdir, and mknod.
2076 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2077 struct nfs_fattr *fattr)
2081 d = nfs_add_or_obtain(dentry, fhandle, fattr);
2085 /* Callers don't care */
2089 EXPORT_SYMBOL_GPL(nfs_instantiate);
2092 * Following a failed create operation, we drop the dentry rather
2093 * than retain a negative dentry. This avoids a problem in the event
2094 * that the operation succeeded on the server, but an error in the
2095 * reply path made it appear to have failed.
2097 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2098 struct dentry *dentry, umode_t mode, bool excl)
2101 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2104 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2105 dir->i_sb->s_id, dir->i_ino, dentry);
2107 attr.ia_mode = mode;
2108 attr.ia_valid = ATTR_MODE;
2110 trace_nfs_create_enter(dir, dentry, open_flags);
2111 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2112 trace_nfs_create_exit(dir, dentry, open_flags, error);
2120 EXPORT_SYMBOL_GPL(nfs_create);
2123 * See comments for nfs_proc_create regarding failed operations.
2126 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2127 struct dentry *dentry, umode_t mode, dev_t rdev)
2132 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2133 dir->i_sb->s_id, dir->i_ino, dentry);
2135 attr.ia_mode = mode;
2136 attr.ia_valid = ATTR_MODE;
2138 trace_nfs_mknod_enter(dir, dentry);
2139 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2140 trace_nfs_mknod_exit(dir, dentry, status);
2148 EXPORT_SYMBOL_GPL(nfs_mknod);
2151 * See comments for nfs_proc_create regarding failed operations.
2153 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2154 struct dentry *dentry, umode_t mode)
2159 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2160 dir->i_sb->s_id, dir->i_ino, dentry);
2162 attr.ia_valid = ATTR_MODE;
2163 attr.ia_mode = mode | S_IFDIR;
2165 trace_nfs_mkdir_enter(dir, dentry);
2166 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2167 trace_nfs_mkdir_exit(dir, dentry, error);
2175 EXPORT_SYMBOL_GPL(nfs_mkdir);
2177 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2179 if (simple_positive(dentry))
2183 static void nfs_dentry_remove_handle_error(struct inode *dir,
2184 struct dentry *dentry, int error)
2191 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2195 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2199 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2200 dir->i_sb->s_id, dir->i_ino, dentry);
2202 trace_nfs_rmdir_enter(dir, dentry);
2203 if (d_really_is_positive(dentry)) {
2204 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2205 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2206 /* Ensure the VFS deletes this inode */
2209 clear_nlink(d_inode(dentry));
2212 nfs_dentry_handle_enoent(dentry);
2214 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2216 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2217 nfs_dentry_remove_handle_error(dir, dentry, error);
2218 trace_nfs_rmdir_exit(dir, dentry, error);
2222 EXPORT_SYMBOL_GPL(nfs_rmdir);
2225 * Remove a file after making sure there are no pending writes,
2226 * and after checking that the file has only one user.
2228 * We invalidate the attribute cache and free the inode prior to the operation
2229 * to avoid possible races if the server reuses the inode.
2231 static int nfs_safe_remove(struct dentry *dentry)
2233 struct inode *dir = d_inode(dentry->d_parent);
2234 struct inode *inode = d_inode(dentry);
2237 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2239 /* If the dentry was sillyrenamed, we simply call d_delete() */
2240 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2245 trace_nfs_remove_enter(dir, dentry);
2246 if (inode != NULL) {
2247 error = NFS_PROTO(dir)->remove(dir, dentry);
2249 nfs_drop_nlink(inode);
2251 error = NFS_PROTO(dir)->remove(dir, dentry);
2252 if (error == -ENOENT)
2253 nfs_dentry_handle_enoent(dentry);
2254 trace_nfs_remove_exit(dir, dentry, error);
2259 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2260 * belongs to an active ".nfs..." file and we return -EBUSY.
2262 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2264 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2267 int need_rehash = 0;
2269 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2270 dir->i_ino, dentry);
2272 trace_nfs_unlink_enter(dir, dentry);
2273 spin_lock(&dentry->d_lock);
2274 if (d_count(dentry) > 1) {
2275 spin_unlock(&dentry->d_lock);
2276 /* Start asynchronous writeout of the inode */
2277 write_inode_now(d_inode(dentry), 0);
2278 error = nfs_sillyrename(dir, dentry);
2281 if (!d_unhashed(dentry)) {
2285 spin_unlock(&dentry->d_lock);
2286 error = nfs_safe_remove(dentry);
2287 nfs_dentry_remove_handle_error(dir, dentry, error);
2291 trace_nfs_unlink_exit(dir, dentry, error);
2294 EXPORT_SYMBOL_GPL(nfs_unlink);
2297 * To create a symbolic link, most file systems instantiate a new inode,
2298 * add a page to it containing the path, then write it out to the disk
2299 * using prepare_write/commit_write.
2301 * Unfortunately the NFS client can't create the in-core inode first
2302 * because it needs a file handle to create an in-core inode (see
2303 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2304 * symlink request has completed on the server.
2306 * So instead we allocate a raw page, copy the symname into it, then do
2307 * the SYMLINK request with the page as the buffer. If it succeeds, we
2308 * now have a new file handle and can instantiate an in-core NFS inode
2309 * and move the raw page into its mapping.
2311 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2312 struct dentry *dentry, const char *symname)
2317 unsigned int pathlen = strlen(symname);
2320 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2321 dir->i_ino, dentry, symname);
2323 if (pathlen > PAGE_SIZE)
2324 return -ENAMETOOLONG;
2326 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2327 attr.ia_valid = ATTR_MODE;
2329 page = alloc_page(GFP_USER);
2333 kaddr = page_address(page);
2334 memcpy(kaddr, symname, pathlen);
2335 if (pathlen < PAGE_SIZE)
2336 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2338 trace_nfs_symlink_enter(dir, dentry);
2339 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2340 trace_nfs_symlink_exit(dir, dentry, error);
2342 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2343 dir->i_sb->s_id, dir->i_ino,
2344 dentry, symname, error);
2350 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2353 * No big deal if we can't add this page to the page cache here.
2354 * READLINK will get the missing page from the server if needed.
2356 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2358 SetPageUptodate(page);
2361 * add_to_page_cache_lru() grabs an extra page refcount.
2362 * Drop it here to avoid leaking this page later.
2370 EXPORT_SYMBOL_GPL(nfs_symlink);
2373 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2375 struct inode *inode = d_inode(old_dentry);
2378 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2379 old_dentry, dentry);
2381 trace_nfs_link_enter(inode, dir, dentry);
2383 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2385 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2387 d_add(dentry, inode);
2389 trace_nfs_link_exit(inode, dir, dentry, error);
2392 EXPORT_SYMBOL_GPL(nfs_link);
2396 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2397 * different file handle for the same inode after a rename (e.g. when
2398 * moving to a different directory). A fail-safe method to do so would
2399 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2400 * rename the old file using the sillyrename stuff. This way, the original
2401 * file in old_dir will go away when the last process iput()s the inode.
2405 * It actually works quite well. One needs to have the possibility for
2406 * at least one ".nfs..." file in each directory the file ever gets
2407 * moved or linked to which happens automagically with the new
2408 * implementation that only depends on the dcache stuff instead of
2409 * using the inode layer
2411 * Unfortunately, things are a little more complicated than indicated
2412 * above. For a cross-directory move, we want to make sure we can get
2413 * rid of the old inode after the operation. This means there must be
2414 * no pending writes (if it's a file), and the use count must be 1.
2415 * If these conditions are met, we can drop the dentries before doing
2418 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2419 struct dentry *old_dentry, struct inode *new_dir,
2420 struct dentry *new_dentry, unsigned int flags)
2422 struct inode *old_inode = d_inode(old_dentry);
2423 struct inode *new_inode = d_inode(new_dentry);
2424 struct dentry *dentry = NULL, *rehash = NULL;
2425 struct rpc_task *task;
2431 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2432 old_dentry, new_dentry,
2433 d_count(new_dentry));
2435 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2437 * For non-directories, check whether the target is busy and if so,
2438 * make a copy of the dentry and then do a silly-rename. If the
2439 * silly-rename succeeds, the copied dentry is hashed and becomes
2442 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2444 * To prevent any new references to the target during the
2445 * rename, we unhash the dentry in advance.
2447 if (!d_unhashed(new_dentry)) {
2449 rehash = new_dentry;
2452 if (d_count(new_dentry) > 2) {
2455 /* copy the target dentry's name */
2456 dentry = d_alloc(new_dentry->d_parent,
2457 &new_dentry->d_name);
2461 /* silly-rename the existing target ... */
2462 err = nfs_sillyrename(new_dir, new_dentry);
2466 new_dentry = dentry;
2472 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2474 error = PTR_ERR(task);
2478 error = rpc_wait_for_completion_task(task);
2480 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2481 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2484 error = task->tk_status;
2486 /* Ensure the inode attributes are revalidated */
2488 spin_lock(&old_inode->i_lock);
2489 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2490 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2491 NFS_INO_INVALID_CTIME |
2492 NFS_INO_REVAL_FORCED);
2493 spin_unlock(&old_inode->i_lock);
2498 trace_nfs_rename_exit(old_dir, old_dentry,
2499 new_dir, new_dentry, error);
2501 if (new_inode != NULL)
2502 nfs_drop_nlink(new_inode);
2504 * The d_move() should be here instead of in an async RPC completion
2505 * handler because we need the proper locks to move the dentry. If
2506 * we're interrupted by a signal, the async RPC completion handler
2507 * should mark the directories for revalidation.
2509 d_move(old_dentry, new_dentry);
2510 nfs_set_verifier(old_dentry,
2511 nfs_save_change_attribute(new_dir));
2512 } else if (error == -ENOENT)
2513 nfs_dentry_handle_enoent(old_dentry);
2515 /* new dentry created? */
2520 EXPORT_SYMBOL_GPL(nfs_rename);
2522 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2523 static LIST_HEAD(nfs_access_lru_list);
2524 static atomic_long_t nfs_access_nr_entries;
2526 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2527 module_param(nfs_access_max_cachesize, ulong, 0644);
2528 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2530 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2532 put_cred(entry->cred);
2533 kfree_rcu(entry, rcu_head);
2534 smp_mb__before_atomic();
2535 atomic_long_dec(&nfs_access_nr_entries);
2536 smp_mb__after_atomic();
2539 static void nfs_access_free_list(struct list_head *head)
2541 struct nfs_access_entry *cache;
2543 while (!list_empty(head)) {
2544 cache = list_entry(head->next, struct nfs_access_entry, lru);
2545 list_del(&cache->lru);
2546 nfs_access_free_entry(cache);
2550 static unsigned long
2551 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2554 struct nfs_inode *nfsi, *next;
2555 struct nfs_access_entry *cache;
2558 spin_lock(&nfs_access_lru_lock);
2559 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2560 struct inode *inode;
2562 if (nr_to_scan-- == 0)
2564 inode = &nfsi->vfs_inode;
2565 spin_lock(&inode->i_lock);
2566 if (list_empty(&nfsi->access_cache_entry_lru))
2567 goto remove_lru_entry;
2568 cache = list_entry(nfsi->access_cache_entry_lru.next,
2569 struct nfs_access_entry, lru);
2570 list_move(&cache->lru, &head);
2571 rb_erase(&cache->rb_node, &nfsi->access_cache);
2573 if (!list_empty(&nfsi->access_cache_entry_lru))
2574 list_move_tail(&nfsi->access_cache_inode_lru,
2575 &nfs_access_lru_list);
2578 list_del_init(&nfsi->access_cache_inode_lru);
2579 smp_mb__before_atomic();
2580 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2581 smp_mb__after_atomic();
2583 spin_unlock(&inode->i_lock);
2585 spin_unlock(&nfs_access_lru_lock);
2586 nfs_access_free_list(&head);
2591 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2593 int nr_to_scan = sc->nr_to_scan;
2594 gfp_t gfp_mask = sc->gfp_mask;
2596 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2598 return nfs_do_access_cache_scan(nr_to_scan);
2603 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2605 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2609 nfs_access_cache_enforce_limit(void)
2611 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2613 unsigned int nr_to_scan;
2615 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2618 diff = nr_entries - nfs_access_max_cachesize;
2619 if (diff < nr_to_scan)
2621 nfs_do_access_cache_scan(nr_to_scan);
2624 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2626 struct rb_root *root_node = &nfsi->access_cache;
2628 struct nfs_access_entry *entry;
2630 /* Unhook entries from the cache */
2631 while ((n = rb_first(root_node)) != NULL) {
2632 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2633 rb_erase(n, root_node);
2634 list_move(&entry->lru, head);
2636 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2639 void nfs_access_zap_cache(struct inode *inode)
2643 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2645 /* Remove from global LRU init */
2646 spin_lock(&nfs_access_lru_lock);
2647 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2648 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2650 spin_lock(&inode->i_lock);
2651 __nfs_access_zap_cache(NFS_I(inode), &head);
2652 spin_unlock(&inode->i_lock);
2653 spin_unlock(&nfs_access_lru_lock);
2654 nfs_access_free_list(&head);
2656 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2658 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2660 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2663 struct nfs_access_entry *entry =
2664 rb_entry(n, struct nfs_access_entry, rb_node);
2665 int cmp = cred_fscmp(cred, entry->cred);
2677 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2679 struct nfs_inode *nfsi = NFS_I(inode);
2680 struct nfs_access_entry *cache;
2684 spin_lock(&inode->i_lock);
2686 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2688 cache = nfs_access_search_rbtree(inode, cred);
2692 /* Found an entry, is our attribute cache valid? */
2693 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2700 spin_unlock(&inode->i_lock);
2701 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2704 spin_lock(&inode->i_lock);
2707 res->cred = cache->cred;
2708 res->mask = cache->mask;
2709 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2712 spin_unlock(&inode->i_lock);
2715 spin_unlock(&inode->i_lock);
2716 nfs_access_zap_cache(inode);
2720 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2722 /* Only check the most recently returned cache entry,
2723 * but do it without locking.
2725 struct nfs_inode *nfsi = NFS_I(inode);
2726 struct nfs_access_entry *cache;
2728 struct list_head *lh;
2731 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2733 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2734 cache = list_entry(lh, struct nfs_access_entry, lru);
2735 if (lh == &nfsi->access_cache_entry_lru ||
2736 cred_fscmp(cred, cache->cred) != 0)
2740 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2742 res->cred = cache->cred;
2743 res->mask = cache->mask;
2750 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2751 nfs_access_entry *res, bool may_block)
2755 status = nfs_access_get_cached_rcu(inode, cred, res);
2757 status = nfs_access_get_cached_locked(inode, cred, res,
2762 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2764 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2766 struct nfs_inode *nfsi = NFS_I(inode);
2767 struct rb_root *root_node = &nfsi->access_cache;
2768 struct rb_node **p = &root_node->rb_node;
2769 struct rb_node *parent = NULL;
2770 struct nfs_access_entry *entry;
2773 spin_lock(&inode->i_lock);
2774 while (*p != NULL) {
2776 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2777 cmp = cred_fscmp(set->cred, entry->cred);
2780 p = &parent->rb_left;
2782 p = &parent->rb_right;
2786 rb_link_node(&set->rb_node, parent, p);
2787 rb_insert_color(&set->rb_node, root_node);
2788 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2789 spin_unlock(&inode->i_lock);
2792 rb_replace_node(parent, &set->rb_node, root_node);
2793 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2794 list_del(&entry->lru);
2795 spin_unlock(&inode->i_lock);
2796 nfs_access_free_entry(entry);
2799 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2801 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2804 RB_CLEAR_NODE(&cache->rb_node);
2805 cache->cred = get_cred(set->cred);
2806 cache->mask = set->mask;
2808 /* The above field assignments must be visible
2809 * before this item appears on the lru. We cannot easily
2810 * use rcu_assign_pointer, so just force the memory barrier.
2813 nfs_access_add_rbtree(inode, cache);
2815 /* Update accounting */
2816 smp_mb__before_atomic();
2817 atomic_long_inc(&nfs_access_nr_entries);
2818 smp_mb__after_atomic();
2820 /* Add inode to global LRU list */
2821 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2822 spin_lock(&nfs_access_lru_lock);
2823 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2824 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2825 &nfs_access_lru_list);
2826 spin_unlock(&nfs_access_lru_lock);
2828 nfs_access_cache_enforce_limit();
2830 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2832 #define NFS_MAY_READ (NFS_ACCESS_READ)
2833 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2834 NFS_ACCESS_EXTEND | \
2836 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2838 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2839 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2840 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2842 nfs_access_calc_mask(u32 access_result, umode_t umode)
2846 if (access_result & NFS_MAY_READ)
2848 if (S_ISDIR(umode)) {
2849 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2851 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2853 } else if (S_ISREG(umode)) {
2854 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2856 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2858 } else if (access_result & NFS_MAY_WRITE)
2863 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2865 entry->mask = access_result;
2867 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2869 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2871 struct nfs_access_entry cache;
2872 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2873 int cache_mask = -1;
2876 trace_nfs_access_enter(inode);
2878 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2887 * Determine which access bits we want to ask for...
2889 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2890 if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2891 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2894 if (S_ISDIR(inode->i_mode))
2895 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2897 cache.mask |= NFS_ACCESS_EXECUTE;
2899 status = NFS_PROTO(inode)->access(inode, &cache);
2901 if (status == -ESTALE) {
2902 if (!S_ISDIR(inode->i_mode))
2903 nfs_set_inode_stale(inode);
2905 nfs_zap_caches(inode);
2909 nfs_access_add_cache(inode, &cache);
2911 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2912 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2915 trace_nfs_access_exit(inode, mask, cache_mask, status);
2919 static int nfs_open_permission_mask(int openflags)
2923 if (openflags & __FMODE_EXEC) {
2924 /* ONLY check exec rights */
2927 if ((openflags & O_ACCMODE) != O_WRONLY)
2929 if ((openflags & O_ACCMODE) != O_RDONLY)
2936 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2938 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2940 EXPORT_SYMBOL_GPL(nfs_may_open);
2942 static int nfs_execute_ok(struct inode *inode, int mask)
2944 struct nfs_server *server = NFS_SERVER(inode);
2947 if (S_ISDIR(inode->i_mode))
2949 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
2950 if (mask & MAY_NOT_BLOCK)
2952 ret = __nfs_revalidate_inode(server, inode);
2954 if (ret == 0 && !execute_ok(inode))
2959 int nfs_permission(struct user_namespace *mnt_userns,
2960 struct inode *inode,
2963 const struct cred *cred = current_cred();
2966 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2968 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2970 /* Is this sys_access() ? */
2971 if (mask & (MAY_ACCESS | MAY_CHDIR))
2974 switch (inode->i_mode & S_IFMT) {
2978 if ((mask & MAY_OPEN) &&
2979 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2984 * Optimize away all write operations, since the server
2985 * will check permissions when we perform the op.
2987 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2992 if (!NFS_PROTO(inode)->access)
2995 res = nfs_do_access(inode, cred, mask);
2997 if (!res && (mask & MAY_EXEC))
2998 res = nfs_execute_ok(inode, mask);
3000 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3001 inode->i_sb->s_id, inode->i_ino, mask, res);
3004 if (mask & MAY_NOT_BLOCK)
3007 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3008 NFS_INO_INVALID_OTHER);
3010 res = generic_permission(&init_user_ns, inode, mask);
3013 EXPORT_SYMBOL_GPL(nfs_permission);