1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/super.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Big-endian to little-endian byte-swapping/bitmaps by
20 #include <linux/module.h>
21 #include <linux/string.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
53 #include "ext4_extents.h" /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90 static int ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static const struct fs_parameter_spec ext4_param_specs[];
102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103 * -> page lock -> i_data_sem (rw)
105 * buffered write path:
106 * sb_start_write -> i_mutex -> mmap_lock
107 * sb_start_write -> i_mutex -> transaction start -> page lock ->
111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
117 * sb_start_write -> i_mutex -> mmap_lock
118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
121 * transaction start -> page lock(s) -> i_data_sem (rw)
124 static const struct fs_context_operations ext4_context_ops = {
125 .parse_param = ext4_parse_param,
126 .get_tree = ext4_get_tree,
127 .reconfigure = ext4_reconfigure,
128 .free = ext4_fc_free,
132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133 static struct file_system_type ext2_fs_type = {
134 .owner = THIS_MODULE,
136 .init_fs_context = ext4_init_fs_context,
137 .parameters = ext4_param_specs,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
141 MODULE_ALIAS_FS("ext2");
142 MODULE_ALIAS("ext2");
143 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
145 #define IS_EXT2_SB(sb) (0)
149 static struct file_system_type ext3_fs_type = {
150 .owner = THIS_MODULE,
152 .init_fs_context = ext4_init_fs_context,
153 .parameters = ext4_param_specs,
154 .kill_sb = kill_block_super,
155 .fs_flags = FS_REQUIRES_DEV,
157 MODULE_ALIAS_FS("ext3");
158 MODULE_ALIAS("ext3");
159 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
162 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
166 * buffer's verified bit is no longer valid after reading from
167 * disk again due to write out error, clear it to make sure we
168 * recheck the buffer contents.
170 clear_buffer_verified(bh);
172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
174 submit_bh(REQ_OP_READ, op_flags, bh);
177 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
180 BUG_ON(!buffer_locked(bh));
182 if (ext4_buffer_uptodate(bh)) {
186 __ext4_read_bh(bh, op_flags, end_io);
189 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
191 BUG_ON(!buffer_locked(bh));
193 if (ext4_buffer_uptodate(bh)) {
198 __ext4_read_bh(bh, op_flags, end_io);
201 if (buffer_uptodate(bh))
206 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
208 if (trylock_buffer(bh)) {
210 return ext4_read_bh(bh, op_flags, NULL);
211 ext4_read_bh_nowait(bh, op_flags, NULL);
216 if (buffer_uptodate(bh))
224 * This works like __bread_gfp() except it uses ERR_PTR for error
225 * returns. Currently with sb_bread it's impossible to distinguish
226 * between ENOMEM and EIO situations (since both result in a NULL
229 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
230 sector_t block, int op_flags,
233 struct buffer_head *bh;
236 bh = sb_getblk_gfp(sb, block, gfp);
238 return ERR_PTR(-ENOMEM);
239 if (ext4_buffer_uptodate(bh))
242 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
250 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
253 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
256 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
259 return __ext4_sb_bread_gfp(sb, block, 0, 0);
262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
264 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
267 ext4_read_bh_lock(bh, REQ_RAHEAD, false);
272 static int ext4_verify_csum_type(struct super_block *sb,
273 struct ext4_super_block *es)
275 if (!ext4_has_feature_metadata_csum(sb))
278 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
281 __le32 ext4_superblock_csum(struct super_block *sb,
282 struct ext4_super_block *es)
284 struct ext4_sb_info *sbi = EXT4_SB(sb);
285 int offset = offsetof(struct ext4_super_block, s_checksum);
288 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
290 return cpu_to_le32(csum);
293 static int ext4_superblock_csum_verify(struct super_block *sb,
294 struct ext4_super_block *es)
296 if (!ext4_has_metadata_csum(sb))
299 return es->s_checksum == ext4_superblock_csum(sb, es);
302 void ext4_superblock_csum_set(struct super_block *sb)
304 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
306 if (!ext4_has_metadata_csum(sb))
309 es->s_checksum = ext4_superblock_csum(sb, es);
312 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
313 struct ext4_group_desc *bg)
315 return le32_to_cpu(bg->bg_block_bitmap_lo) |
316 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
317 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
320 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
321 struct ext4_group_desc *bg)
323 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
324 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
325 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
328 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
329 struct ext4_group_desc *bg)
331 return le32_to_cpu(bg->bg_inode_table_lo) |
332 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
333 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
336 __u32 ext4_free_group_clusters(struct super_block *sb,
337 struct ext4_group_desc *bg)
339 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
340 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
341 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
344 __u32 ext4_free_inodes_count(struct super_block *sb,
345 struct ext4_group_desc *bg)
347 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
348 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
349 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
352 __u32 ext4_used_dirs_count(struct super_block *sb,
353 struct ext4_group_desc *bg)
355 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
356 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
357 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
360 __u32 ext4_itable_unused_count(struct super_block *sb,
361 struct ext4_group_desc *bg)
363 return le16_to_cpu(bg->bg_itable_unused_lo) |
364 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
365 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
368 void ext4_block_bitmap_set(struct super_block *sb,
369 struct ext4_group_desc *bg, ext4_fsblk_t blk)
371 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
372 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
373 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
376 void ext4_inode_bitmap_set(struct super_block *sb,
377 struct ext4_group_desc *bg, ext4_fsblk_t blk)
379 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
380 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
381 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
384 void ext4_inode_table_set(struct super_block *sb,
385 struct ext4_group_desc *bg, ext4_fsblk_t blk)
387 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
388 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
389 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
392 void ext4_free_group_clusters_set(struct super_block *sb,
393 struct ext4_group_desc *bg, __u32 count)
395 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
396 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
397 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
400 void ext4_free_inodes_set(struct super_block *sb,
401 struct ext4_group_desc *bg, __u32 count)
403 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
404 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
405 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
408 void ext4_used_dirs_set(struct super_block *sb,
409 struct ext4_group_desc *bg, __u32 count)
411 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
412 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
413 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
416 void ext4_itable_unused_set(struct super_block *sb,
417 struct ext4_group_desc *bg, __u32 count)
419 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
420 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
421 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
424 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
426 now = clamp_val(now, 0, (1ull << 40) - 1);
428 *lo = cpu_to_le32(lower_32_bits(now));
429 *hi = upper_32_bits(now);
432 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
434 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
436 #define ext4_update_tstamp(es, tstamp) \
437 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
438 ktime_get_real_seconds())
439 #define ext4_get_tstamp(es, tstamp) \
440 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
443 * The del_gendisk() function uninitializes the disk-specific data
444 * structures, including the bdi structure, without telling anyone
445 * else. Once this happens, any attempt to call mark_buffer_dirty()
446 * (for example, by ext4_commit_super), will cause a kernel OOPS.
447 * This is a kludge to prevent these oops until we can put in a proper
448 * hook in del_gendisk() to inform the VFS and file system layers.
450 static int block_device_ejected(struct super_block *sb)
452 struct inode *bd_inode = sb->s_bdev->bd_inode;
453 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
455 return bdi->dev == NULL;
458 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
460 struct super_block *sb = journal->j_private;
461 struct ext4_sb_info *sbi = EXT4_SB(sb);
462 int error = is_journal_aborted(journal);
463 struct ext4_journal_cb_entry *jce;
465 BUG_ON(txn->t_state == T_FINISHED);
467 ext4_process_freed_data(sb, txn->t_tid);
469 spin_lock(&sbi->s_md_lock);
470 while (!list_empty(&txn->t_private_list)) {
471 jce = list_entry(txn->t_private_list.next,
472 struct ext4_journal_cb_entry, jce_list);
473 list_del_init(&jce->jce_list);
474 spin_unlock(&sbi->s_md_lock);
475 jce->jce_func(sb, jce, error);
476 spin_lock(&sbi->s_md_lock);
478 spin_unlock(&sbi->s_md_lock);
482 * This writepage callback for write_cache_pages()
483 * takes care of a few cases after page cleaning.
485 * write_cache_pages() already checks for dirty pages
486 * and calls clear_page_dirty_for_io(), which we want,
487 * to write protect the pages.
489 * However, we may have to redirty a page (see below.)
491 static int ext4_journalled_writepage_callback(struct page *page,
492 struct writeback_control *wbc,
495 transaction_t *transaction = (transaction_t *) data;
496 struct buffer_head *bh, *head;
497 struct journal_head *jh;
499 bh = head = page_buffers(page);
502 * We have to redirty a page in these cases:
503 * 1) If buffer is dirty, it means the page was dirty because it
504 * contains a buffer that needs checkpointing. So the dirty bit
505 * needs to be preserved so that checkpointing writes the buffer
507 * 2) If buffer is not part of the committing transaction
508 * (we may have just accidentally come across this buffer because
509 * inode range tracking is not exact) or if the currently running
510 * transaction already contains this buffer as well, dirty bit
511 * needs to be preserved so that the buffer gets writeprotected
512 * properly on running transaction's commit.
515 if (buffer_dirty(bh) ||
516 (jh && (jh->b_transaction != transaction ||
517 jh->b_next_transaction))) {
518 redirty_page_for_writepage(wbc, page);
521 } while ((bh = bh->b_this_page) != head);
524 return AOP_WRITEPAGE_ACTIVATE;
527 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
529 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
530 struct writeback_control wbc = {
531 .sync_mode = WB_SYNC_ALL,
532 .nr_to_write = LONG_MAX,
533 .range_start = jinode->i_dirty_start,
534 .range_end = jinode->i_dirty_end,
537 return write_cache_pages(mapping, &wbc,
538 ext4_journalled_writepage_callback,
539 jinode->i_transaction);
542 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
546 if (ext4_should_journal_data(jinode->i_vfs_inode))
547 ret = ext4_journalled_submit_inode_data_buffers(jinode);
549 ret = jbd2_journal_submit_inode_data_buffers(jinode);
554 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
558 if (!ext4_should_journal_data(jinode->i_vfs_inode))
559 ret = jbd2_journal_finish_inode_data_buffers(jinode);
564 static bool system_going_down(void)
566 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
567 || system_state == SYSTEM_RESTART;
570 struct ext4_err_translation {
575 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
577 static struct ext4_err_translation err_translation[] = {
578 EXT4_ERR_TRANSLATE(EIO),
579 EXT4_ERR_TRANSLATE(ENOMEM),
580 EXT4_ERR_TRANSLATE(EFSBADCRC),
581 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
582 EXT4_ERR_TRANSLATE(ENOSPC),
583 EXT4_ERR_TRANSLATE(ENOKEY),
584 EXT4_ERR_TRANSLATE(EROFS),
585 EXT4_ERR_TRANSLATE(EFBIG),
586 EXT4_ERR_TRANSLATE(EEXIST),
587 EXT4_ERR_TRANSLATE(ERANGE),
588 EXT4_ERR_TRANSLATE(EOVERFLOW),
589 EXT4_ERR_TRANSLATE(EBUSY),
590 EXT4_ERR_TRANSLATE(ENOTDIR),
591 EXT4_ERR_TRANSLATE(ENOTEMPTY),
592 EXT4_ERR_TRANSLATE(ESHUTDOWN),
593 EXT4_ERR_TRANSLATE(EFAULT),
596 static int ext4_errno_to_code(int errno)
600 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
601 if (err_translation[i].errno == errno)
602 return err_translation[i].code;
603 return EXT4_ERR_UNKNOWN;
606 static void save_error_info(struct super_block *sb, int error,
607 __u32 ino, __u64 block,
608 const char *func, unsigned int line)
610 struct ext4_sb_info *sbi = EXT4_SB(sb);
612 /* We default to EFSCORRUPTED error... */
614 error = EFSCORRUPTED;
616 spin_lock(&sbi->s_error_lock);
617 sbi->s_add_error_count++;
618 sbi->s_last_error_code = error;
619 sbi->s_last_error_line = line;
620 sbi->s_last_error_ino = ino;
621 sbi->s_last_error_block = block;
622 sbi->s_last_error_func = func;
623 sbi->s_last_error_time = ktime_get_real_seconds();
624 if (!sbi->s_first_error_time) {
625 sbi->s_first_error_code = error;
626 sbi->s_first_error_line = line;
627 sbi->s_first_error_ino = ino;
628 sbi->s_first_error_block = block;
629 sbi->s_first_error_func = func;
630 sbi->s_first_error_time = sbi->s_last_error_time;
632 spin_unlock(&sbi->s_error_lock);
635 /* Deal with the reporting of failure conditions on a filesystem such as
636 * inconsistencies detected or read IO failures.
638 * On ext2, we can store the error state of the filesystem in the
639 * superblock. That is not possible on ext4, because we may have other
640 * write ordering constraints on the superblock which prevent us from
641 * writing it out straight away; and given that the journal is about to
642 * be aborted, we can't rely on the current, or future, transactions to
643 * write out the superblock safely.
645 * We'll just use the jbd2_journal_abort() error code to record an error in
646 * the journal instead. On recovery, the journal will complain about
647 * that error until we've noted it down and cleared it.
649 * If force_ro is set, we unconditionally force the filesystem into an
650 * ABORT|READONLY state, unless the error response on the fs has been set to
651 * panic in which case we take the easy way out and panic immediately. This is
652 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
653 * at a critical moment in log management.
655 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
656 __u32 ino, __u64 block,
657 const char *func, unsigned int line)
659 journal_t *journal = EXT4_SB(sb)->s_journal;
660 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
662 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
663 if (test_opt(sb, WARN_ON_ERROR))
666 if (!continue_fs && !sb_rdonly(sb)) {
667 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
669 jbd2_journal_abort(journal, -EIO);
672 if (!bdev_read_only(sb->s_bdev)) {
673 save_error_info(sb, error, ino, block, func, line);
675 * In case the fs should keep running, we need to writeout
676 * superblock through the journal. Due to lock ordering
677 * constraints, it may not be safe to do it right here so we
678 * defer superblock flushing to a workqueue.
680 if (continue_fs && journal)
681 schedule_work(&EXT4_SB(sb)->s_error_work);
683 ext4_commit_super(sb);
687 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
688 * could panic during 'reboot -f' as the underlying device got already
691 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
692 panic("EXT4-fs (device %s): panic forced after error\n",
696 if (sb_rdonly(sb) || continue_fs)
699 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
701 * Make sure updated value of ->s_mount_flags will be visible before
705 sb->s_flags |= SB_RDONLY;
708 static void flush_stashed_error_work(struct work_struct *work)
710 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
712 journal_t *journal = sbi->s_journal;
716 * If the journal is still running, we have to write out superblock
717 * through the journal to avoid collisions of other journalled sb
720 * We use directly jbd2 functions here to avoid recursing back into
721 * ext4 error handling code during handling of previous errors.
723 if (!sb_rdonly(sbi->s_sb) && journal) {
724 struct buffer_head *sbh = sbi->s_sbh;
725 handle = jbd2_journal_start(journal, 1);
728 if (jbd2_journal_get_write_access(handle, sbh)) {
729 jbd2_journal_stop(handle);
732 ext4_update_super(sbi->s_sb);
733 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
734 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
735 "superblock detected");
736 clear_buffer_write_io_error(sbh);
737 set_buffer_uptodate(sbh);
740 if (jbd2_journal_dirty_metadata(handle, sbh)) {
741 jbd2_journal_stop(handle);
744 jbd2_journal_stop(handle);
745 ext4_notify_error_sysfs(sbi);
750 * Write through journal failed. Write sb directly to get error info
751 * out and hope for the best.
753 ext4_commit_super(sbi->s_sb);
754 ext4_notify_error_sysfs(sbi);
757 #define ext4_error_ratelimit(sb) \
758 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
761 void __ext4_error(struct super_block *sb, const char *function,
762 unsigned int line, bool force_ro, int error, __u64 block,
763 const char *fmt, ...)
765 struct va_format vaf;
768 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
771 trace_ext4_error(sb, function, line);
772 if (ext4_error_ratelimit(sb)) {
777 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
778 sb->s_id, function, line, current->comm, &vaf);
781 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
783 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
786 void __ext4_error_inode(struct inode *inode, const char *function,
787 unsigned int line, ext4_fsblk_t block, int error,
788 const char *fmt, ...)
791 struct va_format vaf;
793 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
796 trace_ext4_error(inode->i_sb, function, line);
797 if (ext4_error_ratelimit(inode->i_sb)) {
802 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
803 "inode #%lu: block %llu: comm %s: %pV\n",
804 inode->i_sb->s_id, function, line, inode->i_ino,
805 block, current->comm, &vaf);
807 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
808 "inode #%lu: comm %s: %pV\n",
809 inode->i_sb->s_id, function, line, inode->i_ino,
810 current->comm, &vaf);
813 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
815 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
819 void __ext4_error_file(struct file *file, const char *function,
820 unsigned int line, ext4_fsblk_t block,
821 const char *fmt, ...)
824 struct va_format vaf;
825 struct inode *inode = file_inode(file);
826 char pathname[80], *path;
828 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
831 trace_ext4_error(inode->i_sb, function, line);
832 if (ext4_error_ratelimit(inode->i_sb)) {
833 path = file_path(file, pathname, sizeof(pathname));
841 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
842 "block %llu: comm %s: path %s: %pV\n",
843 inode->i_sb->s_id, function, line, inode->i_ino,
844 block, current->comm, path, &vaf);
847 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
848 "comm %s: path %s: %pV\n",
849 inode->i_sb->s_id, function, line, inode->i_ino,
850 current->comm, path, &vaf);
853 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
855 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
859 const char *ext4_decode_error(struct super_block *sb, int errno,
866 errstr = "Corrupt filesystem";
869 errstr = "Filesystem failed CRC";
872 errstr = "IO failure";
875 errstr = "Out of memory";
878 if (!sb || (EXT4_SB(sb)->s_journal &&
879 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
880 errstr = "Journal has aborted";
882 errstr = "Readonly filesystem";
885 /* If the caller passed in an extra buffer for unknown
886 * errors, textualise them now. Else we just return
889 /* Check for truncated error codes... */
890 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
899 /* __ext4_std_error decodes expected errors from journaling functions
900 * automatically and invokes the appropriate error response. */
902 void __ext4_std_error(struct super_block *sb, const char *function,
903 unsigned int line, int errno)
908 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
911 /* Special case: if the error is EROFS, and we're not already
912 * inside a transaction, then there's really no point in logging
914 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
917 if (ext4_error_ratelimit(sb)) {
918 errstr = ext4_decode_error(sb, errno, nbuf);
919 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
920 sb->s_id, function, line, errstr);
922 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
924 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
927 void __ext4_msg(struct super_block *sb,
928 const char *prefix, const char *fmt, ...)
930 struct va_format vaf;
934 atomic_inc(&EXT4_SB(sb)->s_msg_count);
935 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
944 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
946 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
950 static int ext4_warning_ratelimit(struct super_block *sb)
952 atomic_inc(&EXT4_SB(sb)->s_warning_count);
953 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
957 void __ext4_warning(struct super_block *sb, const char *function,
958 unsigned int line, const char *fmt, ...)
960 struct va_format vaf;
963 if (!ext4_warning_ratelimit(sb))
969 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
970 sb->s_id, function, line, &vaf);
974 void __ext4_warning_inode(const struct inode *inode, const char *function,
975 unsigned int line, const char *fmt, ...)
977 struct va_format vaf;
980 if (!ext4_warning_ratelimit(inode->i_sb))
986 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
987 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
988 function, line, inode->i_ino, current->comm, &vaf);
992 void __ext4_grp_locked_error(const char *function, unsigned int line,
993 struct super_block *sb, ext4_group_t grp,
994 unsigned long ino, ext4_fsblk_t block,
995 const char *fmt, ...)
999 struct va_format vaf;
1002 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
1005 trace_ext4_error(sb, function, line);
1006 if (ext4_error_ratelimit(sb)) {
1007 va_start(args, fmt);
1010 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1011 sb->s_id, function, line, grp);
1013 printk(KERN_CONT "inode %lu: ", ino);
1015 printk(KERN_CONT "block %llu:",
1016 (unsigned long long) block);
1017 printk(KERN_CONT "%pV\n", &vaf);
1021 if (test_opt(sb, ERRORS_CONT)) {
1022 if (test_opt(sb, WARN_ON_ERROR))
1024 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1025 if (!bdev_read_only(sb->s_bdev)) {
1026 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1028 schedule_work(&EXT4_SB(sb)->s_error_work);
1032 ext4_unlock_group(sb, grp);
1033 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1035 * We only get here in the ERRORS_RO case; relocking the group
1036 * may be dangerous, but nothing bad will happen since the
1037 * filesystem will have already been marked read/only and the
1038 * journal has been aborted. We return 1 as a hint to callers
1039 * who might what to use the return value from
1040 * ext4_grp_locked_error() to distinguish between the
1041 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1042 * aggressively from the ext4 function in question, with a
1043 * more appropriate error code.
1045 ext4_lock_group(sb, grp);
1049 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1053 struct ext4_sb_info *sbi = EXT4_SB(sb);
1054 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1055 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1058 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1059 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1062 percpu_counter_sub(&sbi->s_freeclusters_counter,
1066 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1067 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1072 count = ext4_free_inodes_count(sb, gdp);
1073 percpu_counter_sub(&sbi->s_freeinodes_counter,
1079 void ext4_update_dynamic_rev(struct super_block *sb)
1081 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1083 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1087 "updating to rev %d because of new feature flag, "
1088 "running e2fsck is recommended",
1091 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1092 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1093 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1094 /* leave es->s_feature_*compat flags alone */
1095 /* es->s_uuid will be set by e2fsck if empty */
1098 * The rest of the superblock fields should be zero, and if not it
1099 * means they are likely already in use, so leave them alone. We
1100 * can leave it up to e2fsck to clean up any inconsistencies there.
1105 * Open the external journal device
1107 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1109 struct block_device *bdev;
1111 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1117 ext4_msg(sb, KERN_ERR,
1118 "failed to open journal device unknown-block(%u,%u) %ld",
1119 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1124 * Release the journal device
1126 static void ext4_blkdev_put(struct block_device *bdev)
1128 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1131 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1133 struct block_device *bdev;
1134 bdev = sbi->s_journal_bdev;
1136 ext4_blkdev_put(bdev);
1137 sbi->s_journal_bdev = NULL;
1141 static inline struct inode *orphan_list_entry(struct list_head *l)
1143 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1146 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1148 struct list_head *l;
1150 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1151 le32_to_cpu(sbi->s_es->s_last_orphan));
1153 printk(KERN_ERR "sb_info orphan list:\n");
1154 list_for_each(l, &sbi->s_orphan) {
1155 struct inode *inode = orphan_list_entry(l);
1157 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1158 inode->i_sb->s_id, inode->i_ino, inode,
1159 inode->i_mode, inode->i_nlink,
1160 NEXT_ORPHAN(inode));
1165 static int ext4_quota_off(struct super_block *sb, int type);
1167 static inline void ext4_quota_off_umount(struct super_block *sb)
1171 /* Use our quota_off function to clear inode flags etc. */
1172 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1173 ext4_quota_off(sb, type);
1177 * This is a helper function which is used in the mount/remount
1178 * codepaths (which holds s_umount) to fetch the quota file name.
1180 static inline char *get_qf_name(struct super_block *sb,
1181 struct ext4_sb_info *sbi,
1184 return rcu_dereference_protected(sbi->s_qf_names[type],
1185 lockdep_is_held(&sb->s_umount));
1188 static inline void ext4_quota_off_umount(struct super_block *sb)
1193 static void ext4_put_super(struct super_block *sb)
1195 struct ext4_sb_info *sbi = EXT4_SB(sb);
1196 struct ext4_super_block *es = sbi->s_es;
1197 struct buffer_head **group_desc;
1198 struct flex_groups **flex_groups;
1202 ext4_unregister_li_request(sb);
1203 ext4_quota_off_umount(sb);
1205 flush_work(&sbi->s_error_work);
1206 destroy_workqueue(sbi->rsv_conversion_wq);
1207 ext4_release_orphan_info(sb);
1210 * Unregister sysfs before destroying jbd2 journal.
1211 * Since we could still access attr_journal_task attribute via sysfs
1212 * path which could have sbi->s_journal->j_task as NULL
1214 ext4_unregister_sysfs(sb);
1216 if (sbi->s_journal) {
1217 aborted = is_journal_aborted(sbi->s_journal);
1218 err = jbd2_journal_destroy(sbi->s_journal);
1219 sbi->s_journal = NULL;
1220 if ((err < 0) && !aborted) {
1221 ext4_abort(sb, -err, "Couldn't clean up the journal");
1225 ext4_es_unregister_shrinker(sbi);
1226 del_timer_sync(&sbi->s_err_report);
1227 ext4_release_system_zone(sb);
1228 ext4_mb_release(sb);
1229 ext4_ext_release(sb);
1231 if (!sb_rdonly(sb) && !aborted) {
1232 ext4_clear_feature_journal_needs_recovery(sb);
1233 ext4_clear_feature_orphan_present(sb);
1234 es->s_state = cpu_to_le16(sbi->s_mount_state);
1237 ext4_commit_super(sb);
1240 group_desc = rcu_dereference(sbi->s_group_desc);
1241 for (i = 0; i < sbi->s_gdb_count; i++)
1242 brelse(group_desc[i]);
1244 flex_groups = rcu_dereference(sbi->s_flex_groups);
1246 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1247 kvfree(flex_groups[i]);
1248 kvfree(flex_groups);
1251 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1252 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1253 percpu_counter_destroy(&sbi->s_dirs_counter);
1254 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1255 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1256 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1258 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1259 kfree(get_qf_name(sb, sbi, i));
1262 /* Debugging code just in case the in-memory inode orphan list
1263 * isn't empty. The on-disk one can be non-empty if we've
1264 * detected an error and taken the fs readonly, but the
1265 * in-memory list had better be clean by this point. */
1266 if (!list_empty(&sbi->s_orphan))
1267 dump_orphan_list(sb, sbi);
1268 ASSERT(list_empty(&sbi->s_orphan));
1270 sync_blockdev(sb->s_bdev);
1271 invalidate_bdev(sb->s_bdev);
1272 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1274 * Invalidate the journal device's buffers. We don't want them
1275 * floating about in memory - the physical journal device may
1276 * hotswapped, and it breaks the `ro-after' testing code.
1278 sync_blockdev(sbi->s_journal_bdev);
1279 invalidate_bdev(sbi->s_journal_bdev);
1280 ext4_blkdev_remove(sbi);
1283 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1284 sbi->s_ea_inode_cache = NULL;
1286 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1287 sbi->s_ea_block_cache = NULL;
1289 ext4_stop_mmpd(sbi);
1292 sb->s_fs_info = NULL;
1294 * Now that we are completely done shutting down the
1295 * superblock, we need to actually destroy the kobject.
1297 kobject_put(&sbi->s_kobj);
1298 wait_for_completion(&sbi->s_kobj_unregister);
1299 if (sbi->s_chksum_driver)
1300 crypto_free_shash(sbi->s_chksum_driver);
1301 kfree(sbi->s_blockgroup_lock);
1302 fs_put_dax(sbi->s_daxdev);
1303 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1304 #ifdef CONFIG_UNICODE
1305 utf8_unload(sb->s_encoding);
1310 static struct kmem_cache *ext4_inode_cachep;
1313 * Called inside transaction, so use GFP_NOFS
1315 static struct inode *ext4_alloc_inode(struct super_block *sb)
1317 struct ext4_inode_info *ei;
1319 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1323 inode_set_iversion(&ei->vfs_inode, 1);
1324 spin_lock_init(&ei->i_raw_lock);
1325 INIT_LIST_HEAD(&ei->i_prealloc_list);
1326 atomic_set(&ei->i_prealloc_active, 0);
1327 spin_lock_init(&ei->i_prealloc_lock);
1328 ext4_es_init_tree(&ei->i_es_tree);
1329 rwlock_init(&ei->i_es_lock);
1330 INIT_LIST_HEAD(&ei->i_es_list);
1331 ei->i_es_all_nr = 0;
1332 ei->i_es_shk_nr = 0;
1333 ei->i_es_shrink_lblk = 0;
1334 ei->i_reserved_data_blocks = 0;
1335 spin_lock_init(&(ei->i_block_reservation_lock));
1336 ext4_init_pending_tree(&ei->i_pending_tree);
1338 ei->i_reserved_quota = 0;
1339 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1342 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1343 spin_lock_init(&ei->i_completed_io_lock);
1345 ei->i_datasync_tid = 0;
1346 atomic_set(&ei->i_unwritten, 0);
1347 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1348 ext4_fc_init_inode(&ei->vfs_inode);
1349 mutex_init(&ei->i_fc_lock);
1350 return &ei->vfs_inode;
1353 static int ext4_drop_inode(struct inode *inode)
1355 int drop = generic_drop_inode(inode);
1358 drop = fscrypt_drop_inode(inode);
1360 trace_ext4_drop_inode(inode, drop);
1364 static void ext4_free_in_core_inode(struct inode *inode)
1366 fscrypt_free_inode(inode);
1367 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1368 pr_warn("%s: inode %ld still in fc list",
1369 __func__, inode->i_ino);
1371 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1374 static void ext4_destroy_inode(struct inode *inode)
1376 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1377 ext4_msg(inode->i_sb, KERN_ERR,
1378 "Inode %lu (%p): orphan list check failed!",
1379 inode->i_ino, EXT4_I(inode));
1380 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1381 EXT4_I(inode), sizeof(struct ext4_inode_info),
1386 if (EXT4_I(inode)->i_reserved_data_blocks)
1387 ext4_msg(inode->i_sb, KERN_ERR,
1388 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1389 inode->i_ino, EXT4_I(inode),
1390 EXT4_I(inode)->i_reserved_data_blocks);
1393 static void init_once(void *foo)
1395 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1397 INIT_LIST_HEAD(&ei->i_orphan);
1398 init_rwsem(&ei->xattr_sem);
1399 init_rwsem(&ei->i_data_sem);
1400 inode_init_once(&ei->vfs_inode);
1401 ext4_fc_init_inode(&ei->vfs_inode);
1404 static int __init init_inodecache(void)
1406 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1407 sizeof(struct ext4_inode_info), 0,
1408 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1410 offsetof(struct ext4_inode_info, i_data),
1411 sizeof_field(struct ext4_inode_info, i_data),
1413 if (ext4_inode_cachep == NULL)
1418 static void destroy_inodecache(void)
1421 * Make sure all delayed rcu free inodes are flushed before we
1425 kmem_cache_destroy(ext4_inode_cachep);
1428 void ext4_clear_inode(struct inode *inode)
1431 invalidate_inode_buffers(inode);
1433 ext4_discard_preallocations(inode, 0);
1434 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1436 if (EXT4_I(inode)->jinode) {
1437 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1438 EXT4_I(inode)->jinode);
1439 jbd2_free_inode(EXT4_I(inode)->jinode);
1440 EXT4_I(inode)->jinode = NULL;
1442 fscrypt_put_encryption_info(inode);
1443 fsverity_cleanup_inode(inode);
1446 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1447 u64 ino, u32 generation)
1449 struct inode *inode;
1452 * Currently we don't know the generation for parent directory, so
1453 * a generation of 0 means "accept any"
1455 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1457 return ERR_CAST(inode);
1458 if (generation && inode->i_generation != generation) {
1460 return ERR_PTR(-ESTALE);
1466 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1467 int fh_len, int fh_type)
1469 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1470 ext4_nfs_get_inode);
1473 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1474 int fh_len, int fh_type)
1476 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1477 ext4_nfs_get_inode);
1480 static int ext4_nfs_commit_metadata(struct inode *inode)
1482 struct writeback_control wbc = {
1483 .sync_mode = WB_SYNC_ALL
1486 trace_ext4_nfs_commit_metadata(inode);
1487 return ext4_write_inode(inode, &wbc);
1490 #ifdef CONFIG_FS_ENCRYPTION
1491 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1493 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1494 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1497 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1500 handle_t *handle = fs_data;
1501 int res, res2, credits, retries = 0;
1504 * Encrypting the root directory is not allowed because e2fsck expects
1505 * lost+found to exist and be unencrypted, and encrypting the root
1506 * directory would imply encrypting the lost+found directory as well as
1507 * the filename "lost+found" itself.
1509 if (inode->i_ino == EXT4_ROOT_INO)
1512 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1515 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1518 res = ext4_convert_inline_data(inode);
1523 * If a journal handle was specified, then the encryption context is
1524 * being set on a new inode via inheritance and is part of a larger
1525 * transaction to create the inode. Otherwise the encryption context is
1526 * being set on an existing inode in its own transaction. Only in the
1527 * latter case should the "retry on ENOSPC" logic be used.
1531 res = ext4_xattr_set_handle(handle, inode,
1532 EXT4_XATTR_INDEX_ENCRYPTION,
1533 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1536 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1537 ext4_clear_inode_state(inode,
1538 EXT4_STATE_MAY_INLINE_DATA);
1540 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1541 * S_DAX may be disabled
1543 ext4_set_inode_flags(inode, false);
1548 res = dquot_initialize(inode);
1552 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1557 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1559 return PTR_ERR(handle);
1561 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1562 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1565 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1567 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1568 * S_DAX may be disabled
1570 ext4_set_inode_flags(inode, false);
1571 res = ext4_mark_inode_dirty(handle, inode);
1573 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1575 res2 = ext4_journal_stop(handle);
1577 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1584 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1586 return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1589 static bool ext4_has_stable_inodes(struct super_block *sb)
1591 return ext4_has_feature_stable_inodes(sb);
1594 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1595 int *ino_bits_ret, int *lblk_bits_ret)
1597 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1598 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1601 static const struct fscrypt_operations ext4_cryptops = {
1602 .key_prefix = "ext4:",
1603 .get_context = ext4_get_context,
1604 .set_context = ext4_set_context,
1605 .get_dummy_policy = ext4_get_dummy_policy,
1606 .empty_dir = ext4_empty_dir,
1607 .has_stable_inodes = ext4_has_stable_inodes,
1608 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1613 static const char * const quotatypes[] = INITQFNAMES;
1614 #define QTYPE2NAME(t) (quotatypes[t])
1616 static int ext4_write_dquot(struct dquot *dquot);
1617 static int ext4_acquire_dquot(struct dquot *dquot);
1618 static int ext4_release_dquot(struct dquot *dquot);
1619 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1620 static int ext4_write_info(struct super_block *sb, int type);
1621 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1622 const struct path *path);
1623 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1624 size_t len, loff_t off);
1625 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1626 const char *data, size_t len, loff_t off);
1627 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1628 unsigned int flags);
1630 static struct dquot **ext4_get_dquots(struct inode *inode)
1632 return EXT4_I(inode)->i_dquot;
1635 static const struct dquot_operations ext4_quota_operations = {
1636 .get_reserved_space = ext4_get_reserved_space,
1637 .write_dquot = ext4_write_dquot,
1638 .acquire_dquot = ext4_acquire_dquot,
1639 .release_dquot = ext4_release_dquot,
1640 .mark_dirty = ext4_mark_dquot_dirty,
1641 .write_info = ext4_write_info,
1642 .alloc_dquot = dquot_alloc,
1643 .destroy_dquot = dquot_destroy,
1644 .get_projid = ext4_get_projid,
1645 .get_inode_usage = ext4_get_inode_usage,
1646 .get_next_id = dquot_get_next_id,
1649 static const struct quotactl_ops ext4_qctl_operations = {
1650 .quota_on = ext4_quota_on,
1651 .quota_off = ext4_quota_off,
1652 .quota_sync = dquot_quota_sync,
1653 .get_state = dquot_get_state,
1654 .set_info = dquot_set_dqinfo,
1655 .get_dqblk = dquot_get_dqblk,
1656 .set_dqblk = dquot_set_dqblk,
1657 .get_nextdqblk = dquot_get_next_dqblk,
1661 static const struct super_operations ext4_sops = {
1662 .alloc_inode = ext4_alloc_inode,
1663 .free_inode = ext4_free_in_core_inode,
1664 .destroy_inode = ext4_destroy_inode,
1665 .write_inode = ext4_write_inode,
1666 .dirty_inode = ext4_dirty_inode,
1667 .drop_inode = ext4_drop_inode,
1668 .evict_inode = ext4_evict_inode,
1669 .put_super = ext4_put_super,
1670 .sync_fs = ext4_sync_fs,
1671 .freeze_fs = ext4_freeze,
1672 .unfreeze_fs = ext4_unfreeze,
1673 .statfs = ext4_statfs,
1674 .show_options = ext4_show_options,
1676 .quota_read = ext4_quota_read,
1677 .quota_write = ext4_quota_write,
1678 .get_dquots = ext4_get_dquots,
1682 static const struct export_operations ext4_export_ops = {
1683 .fh_to_dentry = ext4_fh_to_dentry,
1684 .fh_to_parent = ext4_fh_to_parent,
1685 .get_parent = ext4_get_parent,
1686 .commit_metadata = ext4_nfs_commit_metadata,
1690 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1691 Opt_resgid, Opt_resuid, Opt_sb,
1692 Opt_nouid32, Opt_debug, Opt_removed,
1693 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1694 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1695 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1696 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1697 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1698 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1700 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1701 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1702 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1703 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1704 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1705 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1706 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1707 Opt_inode_readahead_blks, Opt_journal_ioprio,
1708 Opt_dioread_nolock, Opt_dioread_lock,
1709 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1710 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1711 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1712 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1713 #ifdef CONFIG_EXT4_DEBUG
1714 Opt_fc_debug_max_replay, Opt_fc_debug_force
1718 static const struct constant_table ext4_param_errors[] = {
1719 {"continue", EXT4_MOUNT_ERRORS_CONT},
1720 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1721 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1725 static const struct constant_table ext4_param_data[] = {
1726 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1727 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1728 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1732 static const struct constant_table ext4_param_data_err[] = {
1733 {"abort", Opt_data_err_abort},
1734 {"ignore", Opt_data_err_ignore},
1738 static const struct constant_table ext4_param_jqfmt[] = {
1739 {"vfsold", QFMT_VFS_OLD},
1740 {"vfsv0", QFMT_VFS_V0},
1741 {"vfsv1", QFMT_VFS_V1},
1745 static const struct constant_table ext4_param_dax[] = {
1746 {"always", Opt_dax_always},
1747 {"inode", Opt_dax_inode},
1748 {"never", Opt_dax_never},
1752 /* String parameter that allows empty argument */
1753 #define fsparam_string_empty(NAME, OPT) \
1754 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1757 * Mount option specification
1758 * We don't use fsparam_flag_no because of the way we set the
1759 * options and the way we show them in _ext4_show_options(). To
1760 * keep the changes to a minimum, let's keep the negative options
1763 static const struct fs_parameter_spec ext4_param_specs[] = {
1764 fsparam_flag ("bsddf", Opt_bsd_df),
1765 fsparam_flag ("minixdf", Opt_minix_df),
1766 fsparam_flag ("grpid", Opt_grpid),
1767 fsparam_flag ("bsdgroups", Opt_grpid),
1768 fsparam_flag ("nogrpid", Opt_nogrpid),
1769 fsparam_flag ("sysvgroups", Opt_nogrpid),
1770 fsparam_u32 ("resgid", Opt_resgid),
1771 fsparam_u32 ("resuid", Opt_resuid),
1772 fsparam_u32 ("sb", Opt_sb),
1773 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1774 fsparam_flag ("nouid32", Opt_nouid32),
1775 fsparam_flag ("debug", Opt_debug),
1776 fsparam_flag ("oldalloc", Opt_removed),
1777 fsparam_flag ("orlov", Opt_removed),
1778 fsparam_flag ("user_xattr", Opt_user_xattr),
1779 fsparam_flag ("nouser_xattr", Opt_nouser_xattr),
1780 fsparam_flag ("acl", Opt_acl),
1781 fsparam_flag ("noacl", Opt_noacl),
1782 fsparam_flag ("norecovery", Opt_noload),
1783 fsparam_flag ("noload", Opt_noload),
1784 fsparam_flag ("bh", Opt_removed),
1785 fsparam_flag ("nobh", Opt_removed),
1786 fsparam_u32 ("commit", Opt_commit),
1787 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1788 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1789 fsparam_u32 ("journal_dev", Opt_journal_dev),
1790 fsparam_bdev ("journal_path", Opt_journal_path),
1791 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1792 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1793 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1794 fsparam_flag ("abort", Opt_abort),
1795 fsparam_enum ("data", Opt_data, ext4_param_data),
1796 fsparam_enum ("data_err", Opt_data_err,
1797 ext4_param_data_err),
1798 fsparam_string_empty
1799 ("usrjquota", Opt_usrjquota),
1800 fsparam_string_empty
1801 ("grpjquota", Opt_grpjquota),
1802 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1803 fsparam_flag ("grpquota", Opt_grpquota),
1804 fsparam_flag ("quota", Opt_quota),
1805 fsparam_flag ("noquota", Opt_noquota),
1806 fsparam_flag ("usrquota", Opt_usrquota),
1807 fsparam_flag ("prjquota", Opt_prjquota),
1808 fsparam_flag ("barrier", Opt_barrier),
1809 fsparam_u32 ("barrier", Opt_barrier),
1810 fsparam_flag ("nobarrier", Opt_nobarrier),
1811 fsparam_flag ("i_version", Opt_i_version),
1812 fsparam_flag ("dax", Opt_dax),
1813 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1814 fsparam_u32 ("stripe", Opt_stripe),
1815 fsparam_flag ("delalloc", Opt_delalloc),
1816 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1817 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1818 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1819 fsparam_u32 ("debug_want_extra_isize",
1820 Opt_debug_want_extra_isize),
1821 fsparam_flag ("mblk_io_submit", Opt_removed),
1822 fsparam_flag ("nomblk_io_submit", Opt_removed),
1823 fsparam_flag ("block_validity", Opt_block_validity),
1824 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1825 fsparam_u32 ("inode_readahead_blks",
1826 Opt_inode_readahead_blks),
1827 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1828 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1829 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1830 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1831 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1832 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1833 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1834 fsparam_flag ("discard", Opt_discard),
1835 fsparam_flag ("nodiscard", Opt_nodiscard),
1836 fsparam_u32 ("init_itable", Opt_init_itable),
1837 fsparam_flag ("init_itable", Opt_init_itable),
1838 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1839 #ifdef CONFIG_EXT4_DEBUG
1840 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1841 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1843 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1844 fsparam_flag ("test_dummy_encryption",
1845 Opt_test_dummy_encryption),
1846 fsparam_string ("test_dummy_encryption",
1847 Opt_test_dummy_encryption),
1848 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1849 fsparam_flag ("nombcache", Opt_nombcache),
1850 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1851 fsparam_flag ("prefetch_block_bitmaps",
1853 fsparam_flag ("no_prefetch_block_bitmaps",
1854 Opt_no_prefetch_block_bitmaps),
1855 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1856 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1857 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1858 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1859 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1860 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1864 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1865 #define DEFAULT_MB_OPTIMIZE_SCAN (-1)
1867 static const char deprecated_msg[] =
1868 "Mount option \"%s\" will be removed by %s\n"
1871 #define MOPT_SET 0x0001
1872 #define MOPT_CLEAR 0x0002
1873 #define MOPT_NOSUPPORT 0x0004
1874 #define MOPT_EXPLICIT 0x0008
1877 #define MOPT_QFMT 0x0010
1879 #define MOPT_Q MOPT_NOSUPPORT
1880 #define MOPT_QFMT MOPT_NOSUPPORT
1882 #define MOPT_NO_EXT2 0x0020
1883 #define MOPT_NO_EXT3 0x0040
1884 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1885 #define MOPT_SKIP 0x0080
1886 #define MOPT_2 0x0100
1888 static const struct mount_opts {
1892 } ext4_mount_opts[] = {
1893 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1894 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1895 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1896 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1897 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1898 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1899 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1900 MOPT_EXT4_ONLY | MOPT_SET},
1901 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1902 MOPT_EXT4_ONLY | MOPT_CLEAR},
1903 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1904 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1905 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1906 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1907 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1908 MOPT_EXT4_ONLY | MOPT_CLEAR},
1909 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1910 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1911 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1912 MOPT_EXT4_ONLY | MOPT_CLEAR},
1913 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1914 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1915 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1916 EXT4_MOUNT_JOURNAL_CHECKSUM),
1917 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1918 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1919 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1920 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1921 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1922 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1923 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1924 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1925 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1926 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1927 {Opt_journal_path, 0, MOPT_NO_EXT2},
1928 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1929 {Opt_data, 0, MOPT_NO_EXT2},
1930 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1931 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1932 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1933 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1934 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1936 {Opt_acl, 0, MOPT_NOSUPPORT},
1937 {Opt_noacl, 0, MOPT_NOSUPPORT},
1939 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1940 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1941 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1942 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1944 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1946 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1948 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1949 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1950 MOPT_CLEAR | MOPT_Q},
1951 {Opt_usrjquota, 0, MOPT_Q},
1952 {Opt_grpjquota, 0, MOPT_Q},
1953 {Opt_jqfmt, 0, MOPT_QFMT},
1954 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1955 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1957 #ifdef CONFIG_EXT4_DEBUG
1958 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1959 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1964 #ifdef CONFIG_UNICODE
1965 static const struct ext4_sb_encodings {
1968 unsigned int version;
1969 } ext4_sb_encoding_map[] = {
1970 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1973 static const struct ext4_sb_encodings *
1974 ext4_sb_read_encoding(const struct ext4_super_block *es)
1976 __u16 magic = le16_to_cpu(es->s_encoding);
1979 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1980 if (magic == ext4_sb_encoding_map[i].magic)
1981 return &ext4_sb_encoding_map[i];
1987 static int ext4_set_test_dummy_encryption(struct super_block *sb, char *arg)
1989 #ifdef CONFIG_FS_ENCRYPTION
1990 struct ext4_sb_info *sbi = EXT4_SB(sb);
1993 err = fscrypt_set_test_dummy_encryption(sb, arg,
1994 &sbi->s_dummy_enc_policy);
1996 ext4_msg(sb, KERN_WARNING,
1997 "Error while setting test dummy encryption [%d]", err);
2000 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2005 #define EXT4_SPEC_JQUOTA (1 << 0)
2006 #define EXT4_SPEC_JQFMT (1 << 1)
2007 #define EXT4_SPEC_DATAJ (1 << 2)
2008 #define EXT4_SPEC_SB_BLOCK (1 << 3)
2009 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
2010 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
2011 #define EXT4_SPEC_DUMMY_ENCRYPTION (1 << 6)
2012 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
2013 #define EXT4_SPEC_s_max_batch_time (1 << 8)
2014 #define EXT4_SPEC_s_min_batch_time (1 << 9)
2015 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
2016 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
2017 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
2018 #define EXT4_SPEC_s_stripe (1 << 13)
2019 #define EXT4_SPEC_s_resuid (1 << 14)
2020 #define EXT4_SPEC_s_resgid (1 << 15)
2021 #define EXT4_SPEC_s_commit_interval (1 << 16)
2022 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
2023 #define EXT4_SPEC_s_sb_block (1 << 18)
2025 struct ext4_fs_context {
2026 char *s_qf_names[EXT4_MAXQUOTAS];
2027 char *test_dummy_enc_arg;
2028 int s_jquota_fmt; /* Format of quota to use */
2029 int mb_optimize_scan;
2030 #ifdef CONFIG_EXT4_DEBUG
2031 int s_fc_debug_max_replay;
2033 unsigned short qname_spec;
2034 unsigned long vals_s_flags; /* Bits to set in s_flags */
2035 unsigned long mask_s_flags; /* Bits changed in s_flags */
2036 unsigned long journal_devnum;
2037 unsigned long s_commit_interval;
2038 unsigned long s_stripe;
2039 unsigned int s_inode_readahead_blks;
2040 unsigned int s_want_extra_isize;
2041 unsigned int s_li_wait_mult;
2042 unsigned int s_max_dir_size_kb;
2043 unsigned int journal_ioprio;
2044 unsigned int vals_s_mount_opt;
2045 unsigned int mask_s_mount_opt;
2046 unsigned int vals_s_mount_opt2;
2047 unsigned int mask_s_mount_opt2;
2048 unsigned int vals_s_mount_flags;
2049 unsigned int mask_s_mount_flags;
2050 unsigned int opt_flags; /* MOPT flags */
2052 u32 s_max_batch_time;
2053 u32 s_min_batch_time;
2056 ext4_fsblk_t s_sb_block;
2059 static void ext4_fc_free(struct fs_context *fc)
2061 struct ext4_fs_context *ctx = fc->fs_private;
2067 for (i = 0; i < EXT4_MAXQUOTAS; i++)
2068 kfree(ctx->s_qf_names[i]);
2070 kfree(ctx->test_dummy_enc_arg);
2074 int ext4_init_fs_context(struct fs_context *fc)
2076 struct ext4_fs_context *ctx;
2078 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2082 fc->fs_private = ctx;
2083 fc->ops = &ext4_context_ops;
2090 * Note the name of the specified quota file.
2092 static int note_qf_name(struct fs_context *fc, int qtype,
2093 struct fs_parameter *param)
2095 struct ext4_fs_context *ctx = fc->fs_private;
2098 if (param->size < 1) {
2099 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2102 if (strchr(param->string, '/')) {
2103 ext4_msg(NULL, KERN_ERR,
2104 "quotafile must be on filesystem root");
2107 if (ctx->s_qf_names[qtype]) {
2108 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2109 ext4_msg(NULL, KERN_ERR,
2110 "%s quota file already specified",
2117 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2119 ext4_msg(NULL, KERN_ERR,
2120 "Not enough memory for storing quotafile name");
2123 ctx->s_qf_names[qtype] = qname;
2124 ctx->qname_spec |= 1 << qtype;
2125 ctx->spec |= EXT4_SPEC_JQUOTA;
2130 * Clear the name of the specified quota file.
2132 static int unnote_qf_name(struct fs_context *fc, int qtype)
2134 struct ext4_fs_context *ctx = fc->fs_private;
2136 if (ctx->s_qf_names[qtype])
2137 kfree(ctx->s_qf_names[qtype]);
2139 ctx->s_qf_names[qtype] = NULL;
2140 ctx->qname_spec |= 1 << qtype;
2141 ctx->spec |= EXT4_SPEC_JQUOTA;
2146 #define EXT4_SET_CTX(name) \
2147 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2148 unsigned long flag) \
2150 ctx->mask_s_##name |= flag; \
2151 ctx->vals_s_##name |= flag; \
2153 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2154 unsigned long flag) \
2156 ctx->mask_s_##name |= flag; \
2157 ctx->vals_s_##name &= ~flag; \
2159 static inline unsigned long \
2160 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2162 return (ctx->vals_s_##name & flag); \
2165 EXT4_SET_CTX(flags);
2166 EXT4_SET_CTX(mount_opt);
2167 EXT4_SET_CTX(mount_opt2);
2168 EXT4_SET_CTX(mount_flags);
2170 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2172 struct ext4_fs_context *ctx = fc->fs_private;
2173 struct fs_parse_result result;
2174 const struct mount_opts *m;
2180 token = fs_parse(fc, ext4_param_specs, param, &result);
2183 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2185 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2186 if (token == m->token)
2189 ctx->opt_flags |= m->flags;
2191 if (m->flags & MOPT_EXPLICIT) {
2192 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2193 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2194 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2195 ctx_set_mount_opt2(ctx,
2196 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2201 if (m->flags & MOPT_NOSUPPORT) {
2202 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2210 if (!*param->string)
2211 return unnote_qf_name(fc, USRQUOTA);
2213 return note_qf_name(fc, USRQUOTA, param);
2215 if (!*param->string)
2216 return unnote_qf_name(fc, GRPQUOTA);
2218 return note_qf_name(fc, GRPQUOTA, param);
2221 case Opt_nouser_xattr:
2222 ext4_msg(NULL, KERN_WARNING, deprecated_msg, param->key, "3.5");
2225 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2226 ext4_msg(NULL, KERN_WARNING,
2227 "Ignoring %s option on remount", param->key);
2229 ctx->s_sb_block = result.uint_32;
2230 ctx->spec |= EXT4_SPEC_s_sb_block;
2234 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2238 ctx_set_mount_flags(ctx, EXT4_MF_FS_ABORTED);
2241 ext4_msg(NULL, KERN_WARNING, deprecated_msg, param->key, "5.20");
2242 ext4_msg(NULL, KERN_WARNING, "Use iversion instead\n");
2243 ctx_set_flags(ctx, SB_I_VERSION);
2245 case Opt_inlinecrypt:
2246 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2247 ctx_set_flags(ctx, SB_INLINECRYPT);
2249 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2253 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2254 ctx_set_mount_opt(ctx, result.uint_32);
2258 ctx->s_jquota_fmt = result.uint_32;
2259 ctx->spec |= EXT4_SPEC_JQFMT;
2263 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2264 ctx_set_mount_opt(ctx, result.uint_32);
2265 ctx->spec |= EXT4_SPEC_DATAJ;
2268 if (result.uint_32 == 0)
2269 ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE;
2270 else if (result.uint_32 > INT_MAX / HZ) {
2271 ext4_msg(NULL, KERN_ERR,
2272 "Invalid commit interval %d, "
2273 "must be smaller than %d",
2274 result.uint_32, INT_MAX / HZ);
2277 ctx->s_commit_interval = HZ * result.uint_32;
2278 ctx->spec |= EXT4_SPEC_s_commit_interval;
2280 case Opt_debug_want_extra_isize:
2281 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2282 ext4_msg(NULL, KERN_ERR,
2283 "Invalid want_extra_isize %d", result.uint_32);
2286 ctx->s_want_extra_isize = result.uint_32;
2287 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2289 case Opt_max_batch_time:
2290 ctx->s_max_batch_time = result.uint_32;
2291 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2293 case Opt_min_batch_time:
2294 ctx->s_min_batch_time = result.uint_32;
2295 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2297 case Opt_inode_readahead_blks:
2298 if (result.uint_32 &&
2299 (result.uint_32 > (1 << 30) ||
2300 !is_power_of_2(result.uint_32))) {
2301 ext4_msg(NULL, KERN_ERR,
2302 "EXT4-fs: inode_readahead_blks must be "
2303 "0 or a power of 2 smaller than 2^31");
2306 ctx->s_inode_readahead_blks = result.uint_32;
2307 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2309 case Opt_init_itable:
2310 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2311 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2312 if (param->type == fs_value_is_string)
2313 ctx->s_li_wait_mult = result.uint_32;
2314 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2316 case Opt_max_dir_size_kb:
2317 ctx->s_max_dir_size_kb = result.uint_32;
2318 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2320 #ifdef CONFIG_EXT4_DEBUG
2321 case Opt_fc_debug_max_replay:
2322 ctx->s_fc_debug_max_replay = result.uint_32;
2323 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2327 ctx->s_stripe = result.uint_32;
2328 ctx->spec |= EXT4_SPEC_s_stripe;
2331 uid = make_kuid(current_user_ns(), result.uint_32);
2332 if (!uid_valid(uid)) {
2333 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2337 ctx->s_resuid = uid;
2338 ctx->spec |= EXT4_SPEC_s_resuid;
2341 gid = make_kgid(current_user_ns(), result.uint_32);
2342 if (!gid_valid(gid)) {
2343 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2347 ctx->s_resgid = gid;
2348 ctx->spec |= EXT4_SPEC_s_resgid;
2350 case Opt_journal_dev:
2352 ext4_msg(NULL, KERN_ERR,
2353 "Cannot specify journal on remount");
2356 ctx->journal_devnum = result.uint_32;
2357 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2359 case Opt_journal_path:
2361 struct inode *journal_inode;
2366 ext4_msg(NULL, KERN_ERR,
2367 "Cannot specify journal on remount");
2371 error = fs_lookup_param(fc, param, 1, &path);
2373 ext4_msg(NULL, KERN_ERR, "error: could not find "
2374 "journal device path");
2378 journal_inode = d_inode(path.dentry);
2379 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2380 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2384 case Opt_journal_ioprio:
2385 if (result.uint_32 > 7) {
2386 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2390 ctx->journal_ioprio =
2391 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2392 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2394 case Opt_test_dummy_encryption:
2395 #ifdef CONFIG_FS_ENCRYPTION
2396 if (param->type == fs_value_is_flag) {
2397 ctx->spec |= EXT4_SPEC_DUMMY_ENCRYPTION;
2398 ctx->test_dummy_enc_arg = NULL;
2401 if (*param->string &&
2402 !(!strcmp(param->string, "v1") ||
2403 !strcmp(param->string, "v2"))) {
2404 ext4_msg(NULL, KERN_WARNING,
2405 "Value of option \"%s\" is unrecognized",
2409 ctx->spec |= EXT4_SPEC_DUMMY_ENCRYPTION;
2410 ctx->test_dummy_enc_arg = kmemdup_nul(param->string, param->size,
2413 ext4_msg(NULL, KERN_WARNING,
2414 "Test dummy encryption mount option ignored");
2419 #ifdef CONFIG_FS_DAX
2421 int type = (token == Opt_dax) ?
2422 Opt_dax : result.uint_32;
2426 case Opt_dax_always:
2427 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2428 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2431 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2432 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2435 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2436 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2437 /* Strictly for printing options */
2438 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2444 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2448 if (result.uint_32 == Opt_data_err_abort)
2449 ctx_set_mount_opt(ctx, m->mount_opt);
2450 else if (result.uint_32 == Opt_data_err_ignore)
2451 ctx_clear_mount_opt(ctx, m->mount_opt);
2453 case Opt_mb_optimize_scan:
2454 if (result.int_32 != 0 && result.int_32 != 1) {
2455 ext4_msg(NULL, KERN_WARNING,
2456 "mb_optimize_scan should be set to 0 or 1.");
2459 ctx->mb_optimize_scan = result.int_32;
2464 * At this point we should only be getting options requiring MOPT_SET,
2465 * or MOPT_CLEAR. Anything else is a bug
2467 if (m->token == Opt_err) {
2468 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2475 unsigned int set = 0;
2477 if ((param->type == fs_value_is_flag) ||
2481 if (m->flags & MOPT_CLEAR)
2483 else if (unlikely(!(m->flags & MOPT_SET))) {
2484 ext4_msg(NULL, KERN_WARNING,
2485 "buggy handling of option %s",
2490 if (m->flags & MOPT_2) {
2492 ctx_set_mount_opt2(ctx, m->mount_opt);
2494 ctx_clear_mount_opt2(ctx, m->mount_opt);
2497 ctx_set_mount_opt(ctx, m->mount_opt);
2499 ctx_clear_mount_opt(ctx, m->mount_opt);
2506 static int parse_options(struct fs_context *fc, char *options)
2508 struct fs_parameter param;
2515 while ((key = strsep(&options, ",")) != NULL) {
2518 char *value = strchr(key, '=');
2520 param.type = fs_value_is_flag;
2521 param.string = NULL;
2528 v_len = strlen(value);
2529 param.string = kmemdup_nul(value, v_len,
2533 param.type = fs_value_is_string;
2539 ret = ext4_parse_param(fc, ¶m);
2541 kfree(param.string);
2547 ret = ext4_validate_options(fc);
2554 static int parse_apply_sb_mount_options(struct super_block *sb,
2555 struct ext4_fs_context *m_ctx)
2557 struct ext4_sb_info *sbi = EXT4_SB(sb);
2558 char *s_mount_opts = NULL;
2559 struct ext4_fs_context *s_ctx = NULL;
2560 struct fs_context *fc = NULL;
2563 if (!sbi->s_es->s_mount_opts[0])
2566 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2567 sizeof(sbi->s_es->s_mount_opts),
2572 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2576 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2580 fc->fs_private = s_ctx;
2581 fc->s_fs_info = sbi;
2583 ret = parse_options(fc, s_mount_opts);
2587 ret = ext4_check_opt_consistency(fc, sb);
2590 ext4_msg(sb, KERN_WARNING,
2591 "failed to parse options in superblock: %s",
2597 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2598 m_ctx->journal_devnum = s_ctx->journal_devnum;
2599 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2600 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2602 ret = ext4_apply_options(fc, sb);
2607 kfree(s_mount_opts);
2611 static void ext4_apply_quota_options(struct fs_context *fc,
2612 struct super_block *sb)
2615 bool quota_feature = ext4_has_feature_quota(sb);
2616 struct ext4_fs_context *ctx = fc->fs_private;
2617 struct ext4_sb_info *sbi = EXT4_SB(sb);
2624 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2625 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2626 if (!(ctx->qname_spec & (1 << i)))
2629 qname = ctx->s_qf_names[i]; /* May be NULL */
2632 ctx->s_qf_names[i] = NULL;
2633 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2634 lockdep_is_held(&sb->s_umount));
2640 if (ctx->spec & EXT4_SPEC_JQFMT)
2641 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2646 * Check quota settings consistency.
2648 static int ext4_check_quota_consistency(struct fs_context *fc,
2649 struct super_block *sb)
2652 struct ext4_fs_context *ctx = fc->fs_private;
2653 struct ext4_sb_info *sbi = EXT4_SB(sb);
2654 bool quota_feature = ext4_has_feature_quota(sb);
2655 bool quota_loaded = sb_any_quota_loaded(sb);
2656 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2660 * We do the test below only for project quotas. 'usrquota' and
2661 * 'grpquota' mount options are allowed even without quota feature
2662 * to support legacy quotas in quota files.
2664 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2665 !ext4_has_feature_project(sb)) {
2666 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2667 "Cannot enable project quota enforcement.");
2671 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2672 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2674 ctx->mask_s_mount_opt & quota_flags &&
2675 !ctx_test_mount_opt(ctx, quota_flags))
2676 goto err_quota_change;
2678 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2680 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2681 if (!(ctx->qname_spec & (1 << i)))
2685 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2686 goto err_jquota_change;
2688 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2689 strcmp(get_qf_name(sb, sbi, i),
2690 ctx->s_qf_names[i]) != 0)
2691 goto err_jquota_specified;
2694 if (quota_feature) {
2695 ext4_msg(NULL, KERN_INFO,
2696 "Journaled quota options ignored when "
2697 "QUOTA feature is enabled");
2702 if (ctx->spec & EXT4_SPEC_JQFMT) {
2703 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2704 goto err_jquota_change;
2705 if (quota_feature) {
2706 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2707 "ignored when QUOTA feature is enabled");
2712 /* Make sure we don't mix old and new quota format */
2713 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2714 ctx->s_qf_names[USRQUOTA]);
2715 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2716 ctx->s_qf_names[GRPQUOTA]);
2718 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2719 test_opt(sb, USRQUOTA));
2721 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2722 test_opt(sb, GRPQUOTA));
2725 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2729 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2733 if (usr_qf_name || grp_qf_name) {
2734 if (usrquota || grpquota) {
2735 ext4_msg(NULL, KERN_ERR, "old and new quota "
2740 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2741 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2750 ext4_msg(NULL, KERN_ERR,
2751 "Cannot change quota options when quota turned on");
2754 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2755 "options when quota turned on");
2757 err_jquota_specified:
2758 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2766 static int ext4_check_opt_consistency(struct fs_context *fc,
2767 struct super_block *sb)
2769 struct ext4_fs_context *ctx = fc->fs_private;
2770 struct ext4_sb_info *sbi = fc->s_fs_info;
2771 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2773 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2774 ext4_msg(NULL, KERN_ERR,
2775 "Mount option(s) incompatible with ext2");
2778 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2779 ext4_msg(NULL, KERN_ERR,
2780 "Mount option(s) incompatible with ext3");
2784 if (ctx->s_want_extra_isize >
2785 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2786 ext4_msg(NULL, KERN_ERR,
2787 "Invalid want_extra_isize %d",
2788 ctx->s_want_extra_isize);
2792 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2794 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2795 if (blocksize < PAGE_SIZE)
2796 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2797 "experimental mount option 'dioread_nolock' "
2798 "for blocksize < PAGE_SIZE");
2801 #ifdef CONFIG_FS_ENCRYPTION
2803 * This mount option is just for testing, and it's not worthwhile to
2804 * implement the extra complexity (e.g. RCU protection) that would be
2805 * needed to allow it to be set or changed during remount. We do allow
2806 * it to be specified during remount, but only if there is no change.
2808 if ((ctx->spec & EXT4_SPEC_DUMMY_ENCRYPTION) &&
2809 is_remount && !sbi->s_dummy_enc_policy.policy) {
2810 ext4_msg(NULL, KERN_WARNING,
2811 "Can't set test_dummy_encryption on remount");
2816 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2817 if (!sbi->s_journal) {
2818 ext4_msg(NULL, KERN_WARNING,
2819 "Remounting file system with no journal "
2820 "so ignoring journalled data option");
2821 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2822 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2823 test_opt(sb, DATA_FLAGS)) {
2824 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2831 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2832 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2833 ext4_msg(NULL, KERN_ERR, "can't mount with "
2834 "both data=journal and dax");
2838 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2839 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2840 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2841 fail_dax_change_remount:
2842 ext4_msg(NULL, KERN_ERR, "can't change "
2843 "dax mount option while remounting");
2845 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2846 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2847 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2848 goto fail_dax_change_remount;
2849 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2850 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2851 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2852 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2853 goto fail_dax_change_remount;
2857 return ext4_check_quota_consistency(fc, sb);
2860 static int ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2862 struct ext4_fs_context *ctx = fc->fs_private;
2863 struct ext4_sb_info *sbi = fc->s_fs_info;
2866 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2867 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2868 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2869 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2870 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags;
2871 sbi->s_mount_flags |= ctx->vals_s_mount_flags;
2872 sb->s_flags &= ~ctx->mask_s_flags;
2873 sb->s_flags |= ctx->vals_s_flags;
2876 * i_version differs from common mount option iversion so we have
2877 * to let vfs know that it was set, otherwise it would get cleared
2880 if (ctx->mask_s_flags & SB_I_VERSION)
2881 fc->sb_flags |= SB_I_VERSION;
2883 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2884 APPLY(s_commit_interval);
2886 APPLY(s_max_batch_time);
2887 APPLY(s_min_batch_time);
2888 APPLY(s_want_extra_isize);
2889 APPLY(s_inode_readahead_blks);
2890 APPLY(s_max_dir_size_kb);
2891 APPLY(s_li_wait_mult);
2895 #ifdef CONFIG_EXT4_DEBUG
2896 APPLY(s_fc_debug_max_replay);
2899 ext4_apply_quota_options(fc, sb);
2901 if (ctx->spec & EXT4_SPEC_DUMMY_ENCRYPTION)
2902 ret = ext4_set_test_dummy_encryption(sb, ctx->test_dummy_enc_arg);
2908 static int ext4_validate_options(struct fs_context *fc)
2911 struct ext4_fs_context *ctx = fc->fs_private;
2912 char *usr_qf_name, *grp_qf_name;
2914 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2915 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2917 if (usr_qf_name || grp_qf_name) {
2918 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2919 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2921 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2922 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2924 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2925 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2926 ext4_msg(NULL, KERN_ERR, "old and new quota "
2935 static inline void ext4_show_quota_options(struct seq_file *seq,
2936 struct super_block *sb)
2938 #if defined(CONFIG_QUOTA)
2939 struct ext4_sb_info *sbi = EXT4_SB(sb);
2940 char *usr_qf_name, *grp_qf_name;
2942 if (sbi->s_jquota_fmt) {
2945 switch (sbi->s_jquota_fmt) {
2956 seq_printf(seq, ",jqfmt=%s", fmtname);
2960 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2961 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2963 seq_show_option(seq, "usrjquota", usr_qf_name);
2965 seq_show_option(seq, "grpjquota", grp_qf_name);
2970 static const char *token2str(int token)
2972 const struct fs_parameter_spec *spec;
2974 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2975 if (spec->opt == token && !spec->type)
2982 * - it's set to a non-default value OR
2983 * - if the per-sb default is different from the global default
2985 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2988 struct ext4_sb_info *sbi = EXT4_SB(sb);
2989 struct ext4_super_block *es = sbi->s_es;
2990 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2991 const struct mount_opts *m;
2992 char sep = nodefs ? '\n' : ',';
2994 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2995 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2997 if (sbi->s_sb_block != 1)
2998 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
3000 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
3001 int want_set = m->flags & MOPT_SET;
3002 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
3003 m->flags & MOPT_SKIP)
3005 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
3006 continue; /* skip if same as the default */
3008 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
3009 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
3010 continue; /* select Opt_noFoo vs Opt_Foo */
3011 SEQ_OPTS_PRINT("%s", token2str(m->token));
3014 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
3015 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
3016 SEQ_OPTS_PRINT("resuid=%u",
3017 from_kuid_munged(&init_user_ns, sbi->s_resuid));
3018 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3019 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3020 SEQ_OPTS_PRINT("resgid=%u",
3021 from_kgid_munged(&init_user_ns, sbi->s_resgid));
3022 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3023 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3024 SEQ_OPTS_PUTS("errors=remount-ro");
3025 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3026 SEQ_OPTS_PUTS("errors=continue");
3027 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3028 SEQ_OPTS_PUTS("errors=panic");
3029 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3030 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3031 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3032 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3033 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3034 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3035 if (sb->s_flags & SB_I_VERSION)
3036 SEQ_OPTS_PUTS("i_version");
3037 if (nodefs || sbi->s_stripe)
3038 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3039 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3040 (sbi->s_mount_opt ^ def_mount_opt)) {
3041 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3042 SEQ_OPTS_PUTS("data=journal");
3043 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3044 SEQ_OPTS_PUTS("data=ordered");
3045 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3046 SEQ_OPTS_PUTS("data=writeback");
3049 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3050 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3051 sbi->s_inode_readahead_blks);
3053 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3054 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3055 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3056 if (nodefs || sbi->s_max_dir_size_kb)
3057 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3058 if (test_opt(sb, DATA_ERR_ABORT))
3059 SEQ_OPTS_PUTS("data_err=abort");
3061 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3063 if (sb->s_flags & SB_INLINECRYPT)
3064 SEQ_OPTS_PUTS("inlinecrypt");
3066 if (test_opt(sb, DAX_ALWAYS)) {
3068 SEQ_OPTS_PUTS("dax");
3070 SEQ_OPTS_PUTS("dax=always");
3071 } else if (test_opt2(sb, DAX_NEVER)) {
3072 SEQ_OPTS_PUTS("dax=never");
3073 } else if (test_opt2(sb, DAX_INODE)) {
3074 SEQ_OPTS_PUTS("dax=inode");
3076 ext4_show_quota_options(seq, sb);
3080 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3082 return _ext4_show_options(seq, root->d_sb, 0);
3085 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3087 struct super_block *sb = seq->private;
3090 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3091 rc = _ext4_show_options(seq, sb, 1);
3092 seq_puts(seq, "\n");
3096 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3099 struct ext4_sb_info *sbi = EXT4_SB(sb);
3102 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3103 ext4_msg(sb, KERN_ERR, "revision level too high, "
3104 "forcing read-only mode");
3110 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3111 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3112 "running e2fsck is recommended");
3113 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3114 ext4_msg(sb, KERN_WARNING,
3115 "warning: mounting fs with errors, "
3116 "running e2fsck is recommended");
3117 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3118 le16_to_cpu(es->s_mnt_count) >=
3119 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3120 ext4_msg(sb, KERN_WARNING,
3121 "warning: maximal mount count reached, "
3122 "running e2fsck is recommended");
3123 else if (le32_to_cpu(es->s_checkinterval) &&
3124 (ext4_get_tstamp(es, s_lastcheck) +
3125 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3126 ext4_msg(sb, KERN_WARNING,
3127 "warning: checktime reached, "
3128 "running e2fsck is recommended");
3129 if (!sbi->s_journal)
3130 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3131 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3132 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3133 le16_add_cpu(&es->s_mnt_count, 1);
3134 ext4_update_tstamp(es, s_mtime);
3135 if (sbi->s_journal) {
3136 ext4_set_feature_journal_needs_recovery(sb);
3137 if (ext4_has_feature_orphan_file(sb))
3138 ext4_set_feature_orphan_present(sb);
3141 err = ext4_commit_super(sb);
3143 if (test_opt(sb, DEBUG))
3144 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3145 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3147 sbi->s_groups_count,
3148 EXT4_BLOCKS_PER_GROUP(sb),
3149 EXT4_INODES_PER_GROUP(sb),
3150 sbi->s_mount_opt, sbi->s_mount_opt2);
3154 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3156 struct ext4_sb_info *sbi = EXT4_SB(sb);
3157 struct flex_groups **old_groups, **new_groups;
3160 if (!sbi->s_log_groups_per_flex)
3163 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3164 if (size <= sbi->s_flex_groups_allocated)
3167 new_groups = kvzalloc(roundup_pow_of_two(size *
3168 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3170 ext4_msg(sb, KERN_ERR,
3171 "not enough memory for %d flex group pointers", size);
3174 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3175 new_groups[i] = kvzalloc(roundup_pow_of_two(
3176 sizeof(struct flex_groups)),
3178 if (!new_groups[i]) {
3179 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3180 kvfree(new_groups[j]);
3182 ext4_msg(sb, KERN_ERR,
3183 "not enough memory for %d flex groups", size);
3188 old_groups = rcu_dereference(sbi->s_flex_groups);
3190 memcpy(new_groups, old_groups,
3191 (sbi->s_flex_groups_allocated *
3192 sizeof(struct flex_groups *)));
3194 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3195 sbi->s_flex_groups_allocated = size;
3197 ext4_kvfree_array_rcu(old_groups);
3201 static int ext4_fill_flex_info(struct super_block *sb)
3203 struct ext4_sb_info *sbi = EXT4_SB(sb);
3204 struct ext4_group_desc *gdp = NULL;
3205 struct flex_groups *fg;
3206 ext4_group_t flex_group;
3209 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3210 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3211 sbi->s_log_groups_per_flex = 0;
3215 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3219 for (i = 0; i < sbi->s_groups_count; i++) {
3220 gdp = ext4_get_group_desc(sb, i, NULL);
3222 flex_group = ext4_flex_group(sbi, i);
3223 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3224 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3225 atomic64_add(ext4_free_group_clusters(sb, gdp),
3226 &fg->free_clusters);
3227 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3235 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3236 struct ext4_group_desc *gdp)
3238 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3240 __le32 le_group = cpu_to_le32(block_group);
3241 struct ext4_sb_info *sbi = EXT4_SB(sb);
3243 if (ext4_has_metadata_csum(sbi->s_sb)) {
3244 /* Use new metadata_csum algorithm */
3246 __u16 dummy_csum = 0;
3248 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3250 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3251 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3252 sizeof(dummy_csum));
3253 offset += sizeof(dummy_csum);
3254 if (offset < sbi->s_desc_size)
3255 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3256 sbi->s_desc_size - offset);
3258 crc = csum32 & 0xFFFF;
3262 /* old crc16 code */
3263 if (!ext4_has_feature_gdt_csum(sb))
3266 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3267 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3268 crc = crc16(crc, (__u8 *)gdp, offset);
3269 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3270 /* for checksum of struct ext4_group_desc do the rest...*/
3271 if (ext4_has_feature_64bit(sb) &&
3272 offset < le16_to_cpu(sbi->s_es->s_desc_size))
3273 crc = crc16(crc, (__u8 *)gdp + offset,
3274 le16_to_cpu(sbi->s_es->s_desc_size) -
3278 return cpu_to_le16(crc);
3281 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3282 struct ext4_group_desc *gdp)
3284 if (ext4_has_group_desc_csum(sb) &&
3285 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3291 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3292 struct ext4_group_desc *gdp)
3294 if (!ext4_has_group_desc_csum(sb))
3296 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3299 /* Called at mount-time, super-block is locked */
3300 static int ext4_check_descriptors(struct super_block *sb,
3301 ext4_fsblk_t sb_block,
3302 ext4_group_t *first_not_zeroed)
3304 struct ext4_sb_info *sbi = EXT4_SB(sb);
3305 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3306 ext4_fsblk_t last_block;
3307 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3308 ext4_fsblk_t block_bitmap;
3309 ext4_fsblk_t inode_bitmap;
3310 ext4_fsblk_t inode_table;
3311 int flexbg_flag = 0;
3312 ext4_group_t i, grp = sbi->s_groups_count;
3314 if (ext4_has_feature_flex_bg(sb))
3317 ext4_debug("Checking group descriptors");
3319 for (i = 0; i < sbi->s_groups_count; i++) {
3320 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3322 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3323 last_block = ext4_blocks_count(sbi->s_es) - 1;
3325 last_block = first_block +
3326 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3328 if ((grp == sbi->s_groups_count) &&
3329 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3332 block_bitmap = ext4_block_bitmap(sb, gdp);
3333 if (block_bitmap == sb_block) {
3334 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3335 "Block bitmap for group %u overlaps "
3340 if (block_bitmap >= sb_block + 1 &&
3341 block_bitmap <= last_bg_block) {
3342 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3343 "Block bitmap for group %u overlaps "
3344 "block group descriptors", i);
3348 if (block_bitmap < first_block || block_bitmap > last_block) {
3349 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3350 "Block bitmap for group %u not in group "
3351 "(block %llu)!", i, block_bitmap);
3354 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3355 if (inode_bitmap == sb_block) {
3356 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3357 "Inode bitmap for group %u overlaps "
3362 if (inode_bitmap >= sb_block + 1 &&
3363 inode_bitmap <= last_bg_block) {
3364 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3365 "Inode bitmap for group %u overlaps "
3366 "block group descriptors", i);
3370 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3371 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3372 "Inode bitmap for group %u not in group "
3373 "(block %llu)!", i, inode_bitmap);
3376 inode_table = ext4_inode_table(sb, gdp);
3377 if (inode_table == sb_block) {
3378 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3379 "Inode table for group %u overlaps "
3384 if (inode_table >= sb_block + 1 &&
3385 inode_table <= last_bg_block) {
3386 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3387 "Inode table for group %u overlaps "
3388 "block group descriptors", i);
3392 if (inode_table < first_block ||
3393 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3394 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3395 "Inode table for group %u not in group "
3396 "(block %llu)!", i, inode_table);
3399 ext4_lock_group(sb, i);
3400 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3401 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3402 "Checksum for group %u failed (%u!=%u)",
3403 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3404 gdp)), le16_to_cpu(gdp->bg_checksum));
3405 if (!sb_rdonly(sb)) {
3406 ext4_unlock_group(sb, i);
3410 ext4_unlock_group(sb, i);
3412 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3414 if (NULL != first_not_zeroed)
3415 *first_not_zeroed = grp;
3420 * Maximal extent format file size.
3421 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3422 * extent format containers, within a sector_t, and within i_blocks
3423 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3424 * so that won't be a limiting factor.
3426 * However there is other limiting factor. We do store extents in the form
3427 * of starting block and length, hence the resulting length of the extent
3428 * covering maximum file size must fit into on-disk format containers as
3429 * well. Given that length is always by 1 unit bigger than max unit (because
3430 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3432 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3434 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3437 loff_t upper_limit = MAX_LFS_FILESIZE;
3439 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3441 if (!has_huge_files) {
3442 upper_limit = (1LL << 32) - 1;
3444 /* total blocks in file system block size */
3445 upper_limit >>= (blkbits - 9);
3446 upper_limit <<= blkbits;
3450 * 32-bit extent-start container, ee_block. We lower the maxbytes
3451 * by one fs block, so ee_len can cover the extent of maximum file
3454 res = (1LL << 32) - 1;
3457 /* Sanity check against vm- & vfs- imposed limits */
3458 if (res > upper_limit)
3465 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3466 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3467 * We need to be 1 filesystem block less than the 2^48 sector limit.
3469 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3471 unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3475 * This is calculated to be the largest file size for a dense, block
3476 * mapped file such that the file's total number of 512-byte sectors,
3477 * including data and all indirect blocks, does not exceed (2^48 - 1).
3479 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3480 * number of 512-byte sectors of the file.
3482 if (!has_huge_files) {
3484 * !has_huge_files or implies that the inode i_block field
3485 * represents total file blocks in 2^32 512-byte sectors ==
3486 * size of vfs inode i_blocks * 8
3488 upper_limit = (1LL << 32) - 1;
3490 /* total blocks in file system block size */
3491 upper_limit >>= (bits - 9);
3495 * We use 48 bit ext4_inode i_blocks
3496 * With EXT4_HUGE_FILE_FL set the i_blocks
3497 * represent total number of blocks in
3498 * file system block size
3500 upper_limit = (1LL << 48) - 1;
3504 /* indirect blocks */
3506 /* double indirect blocks */
3507 meta_blocks += 1 + (1LL << (bits-2));
3508 /* tripple indirect blocks */
3509 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3511 upper_limit -= meta_blocks;
3512 upper_limit <<= bits;
3514 res += 1LL << (bits-2);
3515 res += 1LL << (2*(bits-2));
3516 res += 1LL << (3*(bits-2));
3518 if (res > upper_limit)
3521 if (res > MAX_LFS_FILESIZE)
3522 res = MAX_LFS_FILESIZE;
3527 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3528 ext4_fsblk_t logical_sb_block, int nr)
3530 struct ext4_sb_info *sbi = EXT4_SB(sb);
3531 ext4_group_t bg, first_meta_bg;
3534 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3536 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3537 return logical_sb_block + nr + 1;
3538 bg = sbi->s_desc_per_block * nr;
3539 if (ext4_bg_has_super(sb, bg))
3543 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3544 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3545 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3548 if (sb->s_blocksize == 1024 && nr == 0 &&
3549 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3552 return (has_super + ext4_group_first_block_no(sb, bg));
3556 * ext4_get_stripe_size: Get the stripe size.
3557 * @sbi: In memory super block info
3559 * If we have specified it via mount option, then
3560 * use the mount option value. If the value specified at mount time is
3561 * greater than the blocks per group use the super block value.
3562 * If the super block value is greater than blocks per group return 0.
3563 * Allocator needs it be less than blocks per group.
3566 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3568 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3569 unsigned long stripe_width =
3570 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3573 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3574 ret = sbi->s_stripe;
3575 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3577 else if (stride && stride <= sbi->s_blocks_per_group)
3583 * If the stripe width is 1, this makes no sense and
3584 * we set it to 0 to turn off stripe handling code.
3593 * Check whether this filesystem can be mounted based on
3594 * the features present and the RDONLY/RDWR mount requested.
3595 * Returns 1 if this filesystem can be mounted as requested,
3596 * 0 if it cannot be.
3598 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3600 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3601 ext4_msg(sb, KERN_ERR,
3602 "Couldn't mount because of "
3603 "unsupported optional features (%x)",
3604 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3605 ~EXT4_FEATURE_INCOMPAT_SUPP));
3609 #ifndef CONFIG_UNICODE
3610 if (ext4_has_feature_casefold(sb)) {
3611 ext4_msg(sb, KERN_ERR,
3612 "Filesystem with casefold feature cannot be "
3613 "mounted without CONFIG_UNICODE");
3621 if (ext4_has_feature_readonly(sb)) {
3622 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3623 sb->s_flags |= SB_RDONLY;
3627 /* Check that feature set is OK for a read-write mount */
3628 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3629 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3630 "unsupported optional features (%x)",
3631 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3632 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3635 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3636 ext4_msg(sb, KERN_ERR,
3637 "Can't support bigalloc feature without "
3638 "extents feature\n");
3642 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3643 if (!readonly && (ext4_has_feature_quota(sb) ||
3644 ext4_has_feature_project(sb))) {
3645 ext4_msg(sb, KERN_ERR,
3646 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3649 #endif /* CONFIG_QUOTA */
3654 * This function is called once a day if we have errors logged
3655 * on the file system
3657 static void print_daily_error_info(struct timer_list *t)
3659 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3660 struct super_block *sb = sbi->s_sb;
3661 struct ext4_super_block *es = sbi->s_es;
3663 if (es->s_error_count)
3664 /* fsck newer than v1.41.13 is needed to clean this condition. */
3665 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3666 le32_to_cpu(es->s_error_count));
3667 if (es->s_first_error_time) {
3668 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3670 ext4_get_tstamp(es, s_first_error_time),
3671 (int) sizeof(es->s_first_error_func),
3672 es->s_first_error_func,
3673 le32_to_cpu(es->s_first_error_line));
3674 if (es->s_first_error_ino)
3675 printk(KERN_CONT ": inode %u",
3676 le32_to_cpu(es->s_first_error_ino));
3677 if (es->s_first_error_block)
3678 printk(KERN_CONT ": block %llu", (unsigned long long)
3679 le64_to_cpu(es->s_first_error_block));
3680 printk(KERN_CONT "\n");
3682 if (es->s_last_error_time) {
3683 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3685 ext4_get_tstamp(es, s_last_error_time),
3686 (int) sizeof(es->s_last_error_func),
3687 es->s_last_error_func,
3688 le32_to_cpu(es->s_last_error_line));
3689 if (es->s_last_error_ino)
3690 printk(KERN_CONT ": inode %u",
3691 le32_to_cpu(es->s_last_error_ino));
3692 if (es->s_last_error_block)
3693 printk(KERN_CONT ": block %llu", (unsigned long long)
3694 le64_to_cpu(es->s_last_error_block));
3695 printk(KERN_CONT "\n");
3697 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3700 /* Find next suitable group and run ext4_init_inode_table */
3701 static int ext4_run_li_request(struct ext4_li_request *elr)
3703 struct ext4_group_desc *gdp = NULL;
3704 struct super_block *sb = elr->lr_super;
3705 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3706 ext4_group_t group = elr->lr_next_group;
3707 unsigned int prefetch_ios = 0;
3711 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3712 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3713 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3715 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3717 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3719 if (group >= elr->lr_next_group) {
3721 if (elr->lr_first_not_zeroed != ngroups &&
3722 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3723 elr->lr_next_group = elr->lr_first_not_zeroed;
3724 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3731 for (; group < ngroups; group++) {
3732 gdp = ext4_get_group_desc(sb, group, NULL);
3738 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3742 if (group >= ngroups)
3746 start_time = ktime_get_real_ns();
3747 ret = ext4_init_inode_table(sb, group,
3748 elr->lr_timeout ? 0 : 1);
3749 trace_ext4_lazy_itable_init(sb, group);
3750 if (elr->lr_timeout == 0) {
3751 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3752 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3754 elr->lr_next_sched = jiffies + elr->lr_timeout;
3755 elr->lr_next_group = group + 1;
3761 * Remove lr_request from the list_request and free the
3762 * request structure. Should be called with li_list_mtx held
3764 static void ext4_remove_li_request(struct ext4_li_request *elr)
3769 list_del(&elr->lr_request);
3770 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3774 static void ext4_unregister_li_request(struct super_block *sb)
3776 mutex_lock(&ext4_li_mtx);
3777 if (!ext4_li_info) {
3778 mutex_unlock(&ext4_li_mtx);
3782 mutex_lock(&ext4_li_info->li_list_mtx);
3783 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3784 mutex_unlock(&ext4_li_info->li_list_mtx);
3785 mutex_unlock(&ext4_li_mtx);
3788 static struct task_struct *ext4_lazyinit_task;
3791 * This is the function where ext4lazyinit thread lives. It walks
3792 * through the request list searching for next scheduled filesystem.
3793 * When such a fs is found, run the lazy initialization request
3794 * (ext4_rn_li_request) and keep track of the time spend in this
3795 * function. Based on that time we compute next schedule time of
3796 * the request. When walking through the list is complete, compute
3797 * next waking time and put itself into sleep.
3799 static int ext4_lazyinit_thread(void *arg)
3801 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3802 struct list_head *pos, *n;
3803 struct ext4_li_request *elr;
3804 unsigned long next_wakeup, cur;
3806 BUG_ON(NULL == eli);
3810 next_wakeup = MAX_JIFFY_OFFSET;
3812 mutex_lock(&eli->li_list_mtx);
3813 if (list_empty(&eli->li_request_list)) {
3814 mutex_unlock(&eli->li_list_mtx);
3817 list_for_each_safe(pos, n, &eli->li_request_list) {
3820 elr = list_entry(pos, struct ext4_li_request,
3823 if (time_before(jiffies, elr->lr_next_sched)) {
3824 if (time_before(elr->lr_next_sched, next_wakeup))
3825 next_wakeup = elr->lr_next_sched;
3828 if (down_read_trylock(&elr->lr_super->s_umount)) {
3829 if (sb_start_write_trylock(elr->lr_super)) {
3832 * We hold sb->s_umount, sb can not
3833 * be removed from the list, it is
3834 * now safe to drop li_list_mtx
3836 mutex_unlock(&eli->li_list_mtx);
3837 err = ext4_run_li_request(elr);
3838 sb_end_write(elr->lr_super);
3839 mutex_lock(&eli->li_list_mtx);
3842 up_read((&elr->lr_super->s_umount));
3844 /* error, remove the lazy_init job */
3846 ext4_remove_li_request(elr);
3850 elr->lr_next_sched = jiffies +
3852 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3854 if (time_before(elr->lr_next_sched, next_wakeup))
3855 next_wakeup = elr->lr_next_sched;
3857 mutex_unlock(&eli->li_list_mtx);
3862 if ((time_after_eq(cur, next_wakeup)) ||
3863 (MAX_JIFFY_OFFSET == next_wakeup)) {
3868 schedule_timeout_interruptible(next_wakeup - cur);
3870 if (kthread_should_stop()) {
3871 ext4_clear_request_list();
3878 * It looks like the request list is empty, but we need
3879 * to check it under the li_list_mtx lock, to prevent any
3880 * additions into it, and of course we should lock ext4_li_mtx
3881 * to atomically free the list and ext4_li_info, because at
3882 * this point another ext4 filesystem could be registering
3885 mutex_lock(&ext4_li_mtx);
3886 mutex_lock(&eli->li_list_mtx);
3887 if (!list_empty(&eli->li_request_list)) {
3888 mutex_unlock(&eli->li_list_mtx);
3889 mutex_unlock(&ext4_li_mtx);
3892 mutex_unlock(&eli->li_list_mtx);
3893 kfree(ext4_li_info);
3894 ext4_li_info = NULL;
3895 mutex_unlock(&ext4_li_mtx);
3900 static void ext4_clear_request_list(void)
3902 struct list_head *pos, *n;
3903 struct ext4_li_request *elr;
3905 mutex_lock(&ext4_li_info->li_list_mtx);
3906 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3907 elr = list_entry(pos, struct ext4_li_request,
3909 ext4_remove_li_request(elr);
3911 mutex_unlock(&ext4_li_info->li_list_mtx);
3914 static int ext4_run_lazyinit_thread(void)
3916 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3917 ext4_li_info, "ext4lazyinit");
3918 if (IS_ERR(ext4_lazyinit_task)) {
3919 int err = PTR_ERR(ext4_lazyinit_task);
3920 ext4_clear_request_list();
3921 kfree(ext4_li_info);
3922 ext4_li_info = NULL;
3923 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3924 "initialization thread\n",
3928 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3933 * Check whether it make sense to run itable init. thread or not.
3934 * If there is at least one uninitialized inode table, return
3935 * corresponding group number, else the loop goes through all
3936 * groups and return total number of groups.
3938 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3940 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3941 struct ext4_group_desc *gdp = NULL;
3943 if (!ext4_has_group_desc_csum(sb))
3946 for (group = 0; group < ngroups; group++) {
3947 gdp = ext4_get_group_desc(sb, group, NULL);
3951 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3958 static int ext4_li_info_new(void)
3960 struct ext4_lazy_init *eli = NULL;
3962 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3966 INIT_LIST_HEAD(&eli->li_request_list);
3967 mutex_init(&eli->li_list_mtx);
3969 eli->li_state |= EXT4_LAZYINIT_QUIT;
3976 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3979 struct ext4_li_request *elr;
3981 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3986 elr->lr_first_not_zeroed = start;
3987 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3988 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3989 elr->lr_next_group = start;
3991 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3995 * Randomize first schedule time of the request to
3996 * spread the inode table initialization requests
3999 elr->lr_next_sched = jiffies + (prandom_u32() %
4000 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
4004 int ext4_register_li_request(struct super_block *sb,
4005 ext4_group_t first_not_zeroed)
4007 struct ext4_sb_info *sbi = EXT4_SB(sb);
4008 struct ext4_li_request *elr = NULL;
4009 ext4_group_t ngroups = sbi->s_groups_count;
4012 mutex_lock(&ext4_li_mtx);
4013 if (sbi->s_li_request != NULL) {
4015 * Reset timeout so it can be computed again, because
4016 * s_li_wait_mult might have changed.
4018 sbi->s_li_request->lr_timeout = 0;
4022 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4023 (first_not_zeroed == ngroups || sb_rdonly(sb) ||
4024 !test_opt(sb, INIT_INODE_TABLE)))
4027 elr = ext4_li_request_new(sb, first_not_zeroed);
4033 if (NULL == ext4_li_info) {
4034 ret = ext4_li_info_new();
4039 mutex_lock(&ext4_li_info->li_list_mtx);
4040 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4041 mutex_unlock(&ext4_li_info->li_list_mtx);
4043 sbi->s_li_request = elr;
4045 * set elr to NULL here since it has been inserted to
4046 * the request_list and the removal and free of it is
4047 * handled by ext4_clear_request_list from now on.
4051 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4052 ret = ext4_run_lazyinit_thread();
4057 mutex_unlock(&ext4_li_mtx);
4064 * We do not need to lock anything since this is called on
4067 static void ext4_destroy_lazyinit_thread(void)
4070 * If thread exited earlier
4071 * there's nothing to be done.
4073 if (!ext4_li_info || !ext4_lazyinit_task)
4076 kthread_stop(ext4_lazyinit_task);
4079 static int set_journal_csum_feature_set(struct super_block *sb)
4082 int compat, incompat;
4083 struct ext4_sb_info *sbi = EXT4_SB(sb);
4085 if (ext4_has_metadata_csum(sb)) {
4086 /* journal checksum v3 */
4088 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4090 /* journal checksum v1 */
4091 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4095 jbd2_journal_clear_features(sbi->s_journal,
4096 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4097 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4098 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4099 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4100 ret = jbd2_journal_set_features(sbi->s_journal,
4102 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4104 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4105 ret = jbd2_journal_set_features(sbi->s_journal,
4108 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4109 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4111 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4112 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4119 * Note: calculating the overhead so we can be compatible with
4120 * historical BSD practice is quite difficult in the face of
4121 * clusters/bigalloc. This is because multiple metadata blocks from
4122 * different block group can end up in the same allocation cluster.
4123 * Calculating the exact overhead in the face of clustered allocation
4124 * requires either O(all block bitmaps) in memory or O(number of block
4125 * groups**2) in time. We will still calculate the superblock for
4126 * older file systems --- and if we come across with a bigalloc file
4127 * system with zero in s_overhead_clusters the estimate will be close to
4128 * correct especially for very large cluster sizes --- but for newer
4129 * file systems, it's better to calculate this figure once at mkfs
4130 * time, and store it in the superblock. If the superblock value is
4131 * present (even for non-bigalloc file systems), we will use it.
4133 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4136 struct ext4_sb_info *sbi = EXT4_SB(sb);
4137 struct ext4_group_desc *gdp;
4138 ext4_fsblk_t first_block, last_block, b;
4139 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4140 int s, j, count = 0;
4142 if (!ext4_has_feature_bigalloc(sb))
4143 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
4144 sbi->s_itb_per_group + 2);
4146 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4147 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4148 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4149 for (i = 0; i < ngroups; i++) {
4150 gdp = ext4_get_group_desc(sb, i, NULL);
4151 b = ext4_block_bitmap(sb, gdp);
4152 if (b >= first_block && b <= last_block) {
4153 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4156 b = ext4_inode_bitmap(sb, gdp);
4157 if (b >= first_block && b <= last_block) {
4158 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4161 b = ext4_inode_table(sb, gdp);
4162 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4163 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4164 int c = EXT4_B2C(sbi, b - first_block);
4165 ext4_set_bit(c, buf);
4171 if (ext4_bg_has_super(sb, grp)) {
4172 ext4_set_bit(s++, buf);
4175 j = ext4_bg_num_gdb(sb, grp);
4176 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4177 ext4_error(sb, "Invalid number of block group "
4178 "descriptor blocks: %d", j);
4179 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4183 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4187 return EXT4_CLUSTERS_PER_GROUP(sb) -
4188 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4192 * Compute the overhead and stash it in sbi->s_overhead
4194 int ext4_calculate_overhead(struct super_block *sb)
4196 struct ext4_sb_info *sbi = EXT4_SB(sb);
4197 struct ext4_super_block *es = sbi->s_es;
4198 struct inode *j_inode;
4199 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4200 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4201 ext4_fsblk_t overhead = 0;
4202 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4208 * Compute the overhead (FS structures). This is constant
4209 * for a given filesystem unless the number of block groups
4210 * changes so we cache the previous value until it does.
4214 * All of the blocks before first_data_block are overhead
4216 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4219 * Add the overhead found in each block group
4221 for (i = 0; i < ngroups; i++) {
4224 blks = count_overhead(sb, i, buf);
4227 memset(buf, 0, PAGE_SIZE);
4232 * Add the internal journal blocks whether the journal has been
4235 if (sbi->s_journal && !sbi->s_journal_bdev)
4236 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4237 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4238 /* j_inum for internal journal is non-zero */
4239 j_inode = ext4_get_journal_inode(sb, j_inum);
4241 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4242 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4245 ext4_msg(sb, KERN_ERR, "can't get journal size");
4248 sbi->s_overhead = overhead;
4250 free_page((unsigned long) buf);
4254 static void ext4_set_resv_clusters(struct super_block *sb)
4256 ext4_fsblk_t resv_clusters;
4257 struct ext4_sb_info *sbi = EXT4_SB(sb);
4260 * There's no need to reserve anything when we aren't using extents.
4261 * The space estimates are exact, there are no unwritten extents,
4262 * hole punching doesn't need new metadata... This is needed especially
4263 * to keep ext2/3 backward compatibility.
4265 if (!ext4_has_feature_extents(sb))
4268 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4269 * This should cover the situations where we can not afford to run
4270 * out of space like for example punch hole, or converting
4271 * unwritten extents in delalloc path. In most cases such
4272 * allocation would require 1, or 2 blocks, higher numbers are
4275 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4276 sbi->s_cluster_bits);
4278 do_div(resv_clusters, 50);
4279 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4281 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4284 static const char *ext4_quota_mode(struct super_block *sb)
4287 if (!ext4_quota_capable(sb))
4290 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4291 return "journalled";
4299 static void ext4_setup_csum_trigger(struct super_block *sb,
4300 enum ext4_journal_trigger_type type,
4302 struct jbd2_buffer_trigger_type *type,
4303 struct buffer_head *bh,
4307 struct ext4_sb_info *sbi = EXT4_SB(sb);
4309 sbi->s_journal_triggers[type].sb = sb;
4310 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4313 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4318 kfree(sbi->s_blockgroup_lock);
4319 fs_put_dax(sbi->s_daxdev);
4323 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4325 struct ext4_sb_info *sbi;
4327 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4331 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off);
4333 sbi->s_blockgroup_lock =
4334 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4336 if (!sbi->s_blockgroup_lock)
4339 sb->s_fs_info = sbi;
4343 fs_put_dax(sbi->s_daxdev);
4348 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
4350 struct buffer_head *bh, **group_desc;
4351 struct ext4_super_block *es = NULL;
4352 struct ext4_sb_info *sbi = EXT4_SB(sb);
4353 struct flex_groups **flex_groups;
4355 ext4_fsblk_t logical_sb_block;
4356 unsigned long offset = 0;
4357 unsigned long def_mount_opts;
4360 int blocksize, clustersize;
4361 unsigned int db_count;
4363 int needs_recovery, has_huge_files;
4366 ext4_group_t first_not_zeroed;
4367 struct ext4_fs_context *ctx = fc->fs_private;
4368 int silent = fc->sb_flags & SB_SILENT;
4370 /* Set defaults for the variables that will be set during parsing */
4371 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4372 ctx->mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN;
4374 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4375 sbi->s_sectors_written_start =
4376 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
4378 /* -EINVAL is default */
4380 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4382 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4387 * The ext4 superblock will not be buffer aligned for other than 1kB
4388 * block sizes. We need to calculate the offset from buffer start.
4390 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4391 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
4392 offset = do_div(logical_sb_block, blocksize);
4394 logical_sb_block = sbi->s_sb_block;
4397 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4399 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4404 * Note: s_es must be initialized as soon as possible because
4405 * some ext4 macro-instructions depend on its value
4407 es = (struct ext4_super_block *) (bh->b_data + offset);
4409 sb->s_magic = le16_to_cpu(es->s_magic);
4410 if (sb->s_magic != EXT4_SUPER_MAGIC)
4412 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4414 /* Warn if metadata_csum and gdt_csum are both set. */
4415 if (ext4_has_feature_metadata_csum(sb) &&
4416 ext4_has_feature_gdt_csum(sb))
4417 ext4_warning(sb, "metadata_csum and uninit_bg are "
4418 "redundant flags; please run fsck.");
4420 /* Check for a known checksum algorithm */
4421 if (!ext4_verify_csum_type(sb, es)) {
4422 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4423 "unknown checksum algorithm.");
4427 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4428 ext4_orphan_file_block_trigger);
4430 /* Load the checksum driver */
4431 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4432 if (IS_ERR(sbi->s_chksum_driver)) {
4433 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4434 ret = PTR_ERR(sbi->s_chksum_driver);
4435 sbi->s_chksum_driver = NULL;
4439 /* Check superblock checksum */
4440 if (!ext4_superblock_csum_verify(sb, es)) {
4441 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4442 "invalid superblock checksum. Run e2fsck?");
4448 /* Precompute checksum seed for all metadata */
4449 if (ext4_has_feature_csum_seed(sb))
4450 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4451 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4452 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4453 sizeof(es->s_uuid));
4455 /* Set defaults before we parse the mount options */
4456 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4457 set_opt(sb, INIT_INODE_TABLE);
4458 if (def_mount_opts & EXT4_DEFM_DEBUG)
4460 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4462 if (def_mount_opts & EXT4_DEFM_UID16)
4463 set_opt(sb, NO_UID32);
4464 /* xattr user namespace & acls are now defaulted on */
4465 set_opt(sb, XATTR_USER);
4466 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4467 set_opt(sb, POSIX_ACL);
4469 if (ext4_has_feature_fast_commit(sb))
4470 set_opt2(sb, JOURNAL_FAST_COMMIT);
4471 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4472 if (ext4_has_metadata_csum(sb))
4473 set_opt(sb, JOURNAL_CHECKSUM);
4475 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4476 set_opt(sb, JOURNAL_DATA);
4477 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4478 set_opt(sb, ORDERED_DATA);
4479 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4480 set_opt(sb, WRITEBACK_DATA);
4482 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4483 set_opt(sb, ERRORS_PANIC);
4484 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4485 set_opt(sb, ERRORS_CONT);
4487 set_opt(sb, ERRORS_RO);
4488 /* block_validity enabled by default; disable with noblock_validity */
4489 set_opt(sb, BLOCK_VALIDITY);
4490 if (def_mount_opts & EXT4_DEFM_DISCARD)
4491 set_opt(sb, DISCARD);
4493 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4494 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4495 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4496 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4497 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4499 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4500 set_opt(sb, BARRIER);
4503 * enable delayed allocation by default
4504 * Use -o nodelalloc to turn it off
4506 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4507 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4508 set_opt(sb, DELALLOC);
4511 * set default s_li_wait_mult for lazyinit, for the case there is
4512 * no mount option specified.
4514 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4516 if (le32_to_cpu(es->s_log_block_size) >
4517 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4518 ext4_msg(sb, KERN_ERR,
4519 "Invalid log block size: %u",
4520 le32_to_cpu(es->s_log_block_size));
4523 if (le32_to_cpu(es->s_log_cluster_size) >
4524 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4525 ext4_msg(sb, KERN_ERR,
4526 "Invalid log cluster size: %u",
4527 le32_to_cpu(es->s_log_cluster_size));
4531 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4533 if (blocksize == PAGE_SIZE)
4534 set_opt(sb, DIOREAD_NOLOCK);
4536 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4537 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4538 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4540 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4541 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4542 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4543 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4547 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4548 (!is_power_of_2(sbi->s_inode_size)) ||
4549 (sbi->s_inode_size > blocksize)) {
4550 ext4_msg(sb, KERN_ERR,
4551 "unsupported inode size: %d",
4553 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4557 * i_atime_extra is the last extra field available for
4558 * [acm]times in struct ext4_inode. Checking for that
4559 * field should suffice to ensure we have extra space
4562 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4563 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4564 sb->s_time_gran = 1;
4565 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4567 sb->s_time_gran = NSEC_PER_SEC;
4568 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4570 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4572 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4573 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4574 EXT4_GOOD_OLD_INODE_SIZE;
4575 if (ext4_has_feature_extra_isize(sb)) {
4576 unsigned v, max = (sbi->s_inode_size -
4577 EXT4_GOOD_OLD_INODE_SIZE);
4579 v = le16_to_cpu(es->s_want_extra_isize);
4581 ext4_msg(sb, KERN_ERR,
4582 "bad s_want_extra_isize: %d", v);
4585 if (sbi->s_want_extra_isize < v)
4586 sbi->s_want_extra_isize = v;
4588 v = le16_to_cpu(es->s_min_extra_isize);
4590 ext4_msg(sb, KERN_ERR,
4591 "bad s_min_extra_isize: %d", v);
4594 if (sbi->s_want_extra_isize < v)
4595 sbi->s_want_extra_isize = v;
4599 err = parse_apply_sb_mount_options(sb, ctx);
4603 sbi->s_def_mount_opt = sbi->s_mount_opt;
4605 err = ext4_check_opt_consistency(fc, sb);
4609 err = ext4_apply_options(fc, sb);
4613 #ifdef CONFIG_UNICODE
4614 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4615 const struct ext4_sb_encodings *encoding_info;
4616 struct unicode_map *encoding;
4617 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4619 encoding_info = ext4_sb_read_encoding(es);
4620 if (!encoding_info) {
4621 ext4_msg(sb, KERN_ERR,
4622 "Encoding requested by superblock is unknown");
4626 encoding = utf8_load(encoding_info->version);
4627 if (IS_ERR(encoding)) {
4628 ext4_msg(sb, KERN_ERR,
4629 "can't mount with superblock charset: %s-%u.%u.%u "
4630 "not supported by the kernel. flags: 0x%x.",
4631 encoding_info->name,
4632 unicode_major(encoding_info->version),
4633 unicode_minor(encoding_info->version),
4634 unicode_rev(encoding_info->version),
4638 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4639 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4640 unicode_major(encoding_info->version),
4641 unicode_minor(encoding_info->version),
4642 unicode_rev(encoding_info->version),
4645 sb->s_encoding = encoding;
4646 sb->s_encoding_flags = encoding_flags;
4650 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4651 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4652 /* can't mount with both data=journal and dioread_nolock. */
4653 clear_opt(sb, DIOREAD_NOLOCK);
4654 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4655 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4656 ext4_msg(sb, KERN_ERR, "can't mount with "
4657 "both data=journal and delalloc");
4660 if (test_opt(sb, DAX_ALWAYS)) {
4661 ext4_msg(sb, KERN_ERR, "can't mount with "
4662 "both data=journal and dax");
4665 if (ext4_has_feature_encrypt(sb)) {
4666 ext4_msg(sb, KERN_WARNING,
4667 "encrypted files will use data=ordered "
4668 "instead of data journaling mode");
4670 if (test_opt(sb, DELALLOC))
4671 clear_opt(sb, DELALLOC);
4673 sb->s_iflags |= SB_I_CGROUPWB;
4676 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4677 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4679 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4680 (ext4_has_compat_features(sb) ||
4681 ext4_has_ro_compat_features(sb) ||
4682 ext4_has_incompat_features(sb)))
4683 ext4_msg(sb, KERN_WARNING,
4684 "feature flags set on rev 0 fs, "
4685 "running e2fsck is recommended");
4687 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4688 set_opt2(sb, HURD_COMPAT);
4689 if (ext4_has_feature_64bit(sb)) {
4690 ext4_msg(sb, KERN_ERR,
4691 "The Hurd can't support 64-bit file systems");
4696 * ea_inode feature uses l_i_version field which is not
4697 * available in HURD_COMPAT mode.
4699 if (ext4_has_feature_ea_inode(sb)) {
4700 ext4_msg(sb, KERN_ERR,
4701 "ea_inode feature is not supported for Hurd");
4706 if (IS_EXT2_SB(sb)) {
4707 if (ext2_feature_set_ok(sb))
4708 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4709 "using the ext4 subsystem");
4712 * If we're probing be silent, if this looks like
4713 * it's actually an ext[34] filesystem.
4715 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4717 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4718 "to feature incompatibilities");
4723 if (IS_EXT3_SB(sb)) {
4724 if (ext3_feature_set_ok(sb))
4725 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4726 "using the ext4 subsystem");
4729 * If we're probing be silent, if this looks like
4730 * it's actually an ext4 filesystem.
4732 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4734 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4735 "to feature incompatibilities");
4741 * Check feature flags regardless of the revision level, since we
4742 * previously didn't change the revision level when setting the flags,
4743 * so there is a chance incompat flags are set on a rev 0 filesystem.
4745 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4748 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4749 ext4_msg(sb, KERN_ERR,
4750 "Number of reserved GDT blocks insanely large: %d",
4751 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4755 if (sbi->s_daxdev) {
4756 if (blocksize == PAGE_SIZE)
4757 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4759 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4762 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4763 if (ext4_has_feature_inline_data(sb)) {
4764 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4765 " that may contain inline data");
4768 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4769 ext4_msg(sb, KERN_ERR,
4770 "DAX unsupported by block device.");
4775 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4776 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4777 es->s_encryption_level);
4781 if (sb->s_blocksize != blocksize) {
4783 * bh must be released before kill_bdev(), otherwise
4784 * it won't be freed and its page also. kill_bdev()
4785 * is called by sb_set_blocksize().
4788 /* Validate the filesystem blocksize */
4789 if (!sb_set_blocksize(sb, blocksize)) {
4790 ext4_msg(sb, KERN_ERR, "bad block size %d",
4796 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
4797 offset = do_div(logical_sb_block, blocksize);
4798 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4800 ext4_msg(sb, KERN_ERR,
4801 "Can't read superblock on 2nd try");
4806 es = (struct ext4_super_block *)(bh->b_data + offset);
4808 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4809 ext4_msg(sb, KERN_ERR,
4810 "Magic mismatch, very weird!");
4815 has_huge_files = ext4_has_feature_huge_file(sb);
4816 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4818 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4820 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4821 if (ext4_has_feature_64bit(sb)) {
4822 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4823 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4824 !is_power_of_2(sbi->s_desc_size)) {
4825 ext4_msg(sb, KERN_ERR,
4826 "unsupported descriptor size %lu",
4831 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4833 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4834 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4836 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4837 if (sbi->s_inodes_per_block == 0)
4839 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4840 sbi->s_inodes_per_group > blocksize * 8) {
4841 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4842 sbi->s_inodes_per_group);
4845 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4846 sbi->s_inodes_per_block;
4847 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4849 sbi->s_mount_state = le16_to_cpu(es->s_state);
4850 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4851 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4853 for (i = 0; i < 4; i++)
4854 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4855 sbi->s_def_hash_version = es->s_def_hash_version;
4856 if (ext4_has_feature_dir_index(sb)) {
4857 i = le32_to_cpu(es->s_flags);
4858 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4859 sbi->s_hash_unsigned = 3;
4860 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4861 #ifdef __CHAR_UNSIGNED__
4864 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4865 sbi->s_hash_unsigned = 3;
4869 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4874 /* Handle clustersize */
4875 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4876 if (ext4_has_feature_bigalloc(sb)) {
4877 if (clustersize < blocksize) {
4878 ext4_msg(sb, KERN_ERR,
4879 "cluster size (%d) smaller than "
4880 "block size (%d)", clustersize, blocksize);
4883 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4884 le32_to_cpu(es->s_log_block_size);
4885 sbi->s_clusters_per_group =
4886 le32_to_cpu(es->s_clusters_per_group);
4887 if (sbi->s_clusters_per_group > blocksize * 8) {
4888 ext4_msg(sb, KERN_ERR,
4889 "#clusters per group too big: %lu",
4890 sbi->s_clusters_per_group);
4893 if (sbi->s_blocks_per_group !=
4894 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4895 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4896 "clusters per group (%lu) inconsistent",
4897 sbi->s_blocks_per_group,
4898 sbi->s_clusters_per_group);
4902 if (clustersize != blocksize) {
4903 ext4_msg(sb, KERN_ERR,
4904 "fragment/cluster size (%d) != "
4905 "block size (%d)", clustersize, blocksize);
4908 if (sbi->s_blocks_per_group > blocksize * 8) {
4909 ext4_msg(sb, KERN_ERR,
4910 "#blocks per group too big: %lu",
4911 sbi->s_blocks_per_group);
4914 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4915 sbi->s_cluster_bits = 0;
4917 sbi->s_cluster_ratio = clustersize / blocksize;
4919 /* Do we have standard group size of clustersize * 8 blocks ? */
4920 if (sbi->s_blocks_per_group == clustersize << 3)
4921 set_opt2(sb, STD_GROUP_SIZE);
4924 * Test whether we have more sectors than will fit in sector_t,
4925 * and whether the max offset is addressable by the page cache.
4927 err = generic_check_addressable(sb->s_blocksize_bits,
4928 ext4_blocks_count(es));
4930 ext4_msg(sb, KERN_ERR, "filesystem"
4931 " too large to mount safely on this system");
4935 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4938 /* check blocks count against device size */
4939 blocks_count = sb_bdev_nr_blocks(sb);
4940 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4941 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4942 "exceeds size of device (%llu blocks)",
4943 ext4_blocks_count(es), blocks_count);
4948 * It makes no sense for the first data block to be beyond the end
4949 * of the filesystem.
4951 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4952 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4953 "block %u is beyond end of filesystem (%llu)",
4954 le32_to_cpu(es->s_first_data_block),
4955 ext4_blocks_count(es));
4958 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4959 (sbi->s_cluster_ratio == 1)) {
4960 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4961 "block is 0 with a 1k block and cluster size");
4965 blocks_count = (ext4_blocks_count(es) -
4966 le32_to_cpu(es->s_first_data_block) +
4967 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4968 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4969 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4970 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4971 "(block count %llu, first data block %u, "
4972 "blocks per group %lu)", blocks_count,
4973 ext4_blocks_count(es),
4974 le32_to_cpu(es->s_first_data_block),
4975 EXT4_BLOCKS_PER_GROUP(sb));
4978 sbi->s_groups_count = blocks_count;
4979 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4980 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4981 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4982 le32_to_cpu(es->s_inodes_count)) {
4983 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4984 le32_to_cpu(es->s_inodes_count),
4985 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4989 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4990 EXT4_DESC_PER_BLOCK(sb);
4991 if (ext4_has_feature_meta_bg(sb)) {
4992 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4993 ext4_msg(sb, KERN_WARNING,
4994 "first meta block group too large: %u "
4995 "(group descriptor block count %u)",
4996 le32_to_cpu(es->s_first_meta_bg), db_count);
5000 rcu_assign_pointer(sbi->s_group_desc,
5001 kvmalloc_array(db_count,
5002 sizeof(struct buffer_head *),
5004 if (sbi->s_group_desc == NULL) {
5005 ext4_msg(sb, KERN_ERR, "not enough memory");
5010 bgl_lock_init(sbi->s_blockgroup_lock);
5012 /* Pre-read the descriptors into the buffer cache */
5013 for (i = 0; i < db_count; i++) {
5014 block = descriptor_loc(sb, logical_sb_block, i);
5015 ext4_sb_breadahead_unmovable(sb, block);
5018 for (i = 0; i < db_count; i++) {
5019 struct buffer_head *bh;
5021 block = descriptor_loc(sb, logical_sb_block, i);
5022 bh = ext4_sb_bread_unmovable(sb, block);
5024 ext4_msg(sb, KERN_ERR,
5025 "can't read group descriptor %d", i);
5031 rcu_dereference(sbi->s_group_desc)[i] = bh;
5034 sbi->s_gdb_count = db_count;
5035 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
5036 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
5037 ret = -EFSCORRUPTED;
5041 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5042 spin_lock_init(&sbi->s_error_lock);
5043 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
5045 /* Register extent status tree shrinker */
5046 if (ext4_es_register_shrinker(sbi))
5049 sbi->s_stripe = ext4_get_stripe_size(sbi);
5050 sbi->s_extent_max_zeroout_kb = 32;
5053 * set up enough so that it can read an inode
5055 sb->s_op = &ext4_sops;
5056 sb->s_export_op = &ext4_export_ops;
5057 sb->s_xattr = ext4_xattr_handlers;
5058 #ifdef CONFIG_FS_ENCRYPTION
5059 sb->s_cop = &ext4_cryptops;
5061 #ifdef CONFIG_FS_VERITY
5062 sb->s_vop = &ext4_verityops;
5065 sb->dq_op = &ext4_quota_operations;
5066 if (ext4_has_feature_quota(sb))
5067 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5069 sb->s_qcop = &ext4_qctl_operations;
5070 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5072 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5074 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5075 mutex_init(&sbi->s_orphan_lock);
5077 /* Initialize fast commit stuff */
5078 atomic_set(&sbi->s_fc_subtid, 0);
5079 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
5080 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
5081 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
5082 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
5083 sbi->s_fc_bytes = 0;
5084 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
5085 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
5086 spin_lock_init(&sbi->s_fc_lock);
5087 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
5088 sbi->s_fc_replay_state.fc_regions = NULL;
5089 sbi->s_fc_replay_state.fc_regions_size = 0;
5090 sbi->s_fc_replay_state.fc_regions_used = 0;
5091 sbi->s_fc_replay_state.fc_regions_valid = 0;
5092 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
5093 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
5094 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
5098 needs_recovery = (es->s_last_orphan != 0 ||
5099 ext4_has_feature_orphan_present(sb) ||
5100 ext4_has_feature_journal_needs_recovery(sb));
5102 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
5103 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
5104 goto failed_mount3a;
5107 * The first inode we look at is the journal inode. Don't try
5108 * root first: it may be modified in the journal!
5110 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5111 err = ext4_load_journal(sb, es, ctx->journal_devnum);
5113 goto failed_mount3a;
5114 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5115 ext4_has_feature_journal_needs_recovery(sb)) {
5116 ext4_msg(sb, KERN_ERR, "required journal recovery "
5117 "suppressed and not mounted read-only");
5118 goto failed_mount_wq;
5120 /* Nojournal mode, all journal mount options are illegal */
5121 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5122 ext4_msg(sb, KERN_ERR, "can't mount with "
5123 "journal_checksum, fs mounted w/o journal");
5124 goto failed_mount_wq;
5126 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5127 ext4_msg(sb, KERN_ERR, "can't mount with "
5128 "journal_async_commit, fs mounted w/o journal");
5129 goto failed_mount_wq;
5131 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5132 ext4_msg(sb, KERN_ERR, "can't mount with "
5133 "commit=%lu, fs mounted w/o journal",
5134 sbi->s_commit_interval / HZ);
5135 goto failed_mount_wq;
5137 if (EXT4_MOUNT_DATA_FLAGS &
5138 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5139 ext4_msg(sb, KERN_ERR, "can't mount with "
5140 "data=, fs mounted w/o journal");
5141 goto failed_mount_wq;
5143 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5144 clear_opt(sb, JOURNAL_CHECKSUM);
5145 clear_opt(sb, DATA_FLAGS);
5146 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5147 sbi->s_journal = NULL;
5152 if (ext4_has_feature_64bit(sb) &&
5153 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
5154 JBD2_FEATURE_INCOMPAT_64BIT)) {
5155 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
5156 goto failed_mount_wq;
5159 if (!set_journal_csum_feature_set(sb)) {
5160 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
5162 goto failed_mount_wq;
5165 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
5166 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
5167 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
5168 ext4_msg(sb, KERN_ERR,
5169 "Failed to set fast commit journal feature");
5170 goto failed_mount_wq;
5173 /* We have now updated the journal if required, so we can
5174 * validate the data journaling mode. */
5175 switch (test_opt(sb, DATA_FLAGS)) {
5177 /* No mode set, assume a default based on the journal
5178 * capabilities: ORDERED_DATA if the journal can
5179 * cope, else JOURNAL_DATA
5181 if (jbd2_journal_check_available_features
5182 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
5183 set_opt(sb, ORDERED_DATA);
5184 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
5186 set_opt(sb, JOURNAL_DATA);
5187 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
5191 case EXT4_MOUNT_ORDERED_DATA:
5192 case EXT4_MOUNT_WRITEBACK_DATA:
5193 if (!jbd2_journal_check_available_features
5194 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
5195 ext4_msg(sb, KERN_ERR, "Journal does not support "
5196 "requested data journaling mode");
5197 goto failed_mount_wq;
5204 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
5205 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5206 ext4_msg(sb, KERN_ERR, "can't mount with "
5207 "journal_async_commit in data=ordered mode");
5208 goto failed_mount_wq;
5211 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
5213 sbi->s_journal->j_submit_inode_data_buffers =
5214 ext4_journal_submit_inode_data_buffers;
5215 sbi->s_journal->j_finish_inode_data_buffers =
5216 ext4_journal_finish_inode_data_buffers;
5219 if (!test_opt(sb, NO_MBCACHE)) {
5220 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5221 if (!sbi->s_ea_block_cache) {
5222 ext4_msg(sb, KERN_ERR,
5223 "Failed to create ea_block_cache");
5224 goto failed_mount_wq;
5227 if (ext4_has_feature_ea_inode(sb)) {
5228 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5229 if (!sbi->s_ea_inode_cache) {
5230 ext4_msg(sb, KERN_ERR,
5231 "Failed to create ea_inode_cache");
5232 goto failed_mount_wq;
5237 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
5238 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
5239 goto failed_mount_wq;
5242 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
5243 !ext4_has_feature_encrypt(sb)) {
5244 ext4_set_feature_encrypt(sb);
5245 ext4_commit_super(sb);
5249 * Get the # of file system overhead blocks from the
5250 * superblock if present.
5252 if (es->s_overhead_clusters)
5253 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5255 err = ext4_calculate_overhead(sb);
5257 goto failed_mount_wq;
5261 * The maximum number of concurrent works can be high and
5262 * concurrency isn't really necessary. Limit it to 1.
5264 EXT4_SB(sb)->rsv_conversion_wq =
5265 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5266 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5267 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5273 * The jbd2_journal_load will have done any necessary log recovery,
5274 * so we can safely mount the rest of the filesystem now.
5277 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5279 ext4_msg(sb, KERN_ERR, "get root inode failed");
5280 ret = PTR_ERR(root);
5284 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5285 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5290 sb->s_root = d_make_root(root);
5292 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5297 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
5298 if (ret == -EROFS) {
5299 sb->s_flags |= SB_RDONLY;
5302 goto failed_mount4a;
5304 ext4_set_resv_clusters(sb);
5306 if (test_opt(sb, BLOCK_VALIDITY)) {
5307 err = ext4_setup_system_zone(sb);
5309 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5311 goto failed_mount4a;
5314 ext4_fc_replay_cleanup(sb);
5319 * Enable optimize_scan if number of groups is > threshold. This can be
5320 * turned off by passing "mb_optimize_scan=0". This can also be
5321 * turned on forcefully by passing "mb_optimize_scan=1".
5323 if (ctx->mb_optimize_scan == 1)
5324 set_opt2(sb, MB_OPTIMIZE_SCAN);
5325 else if (ctx->mb_optimize_scan == 0)
5326 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5327 else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5328 set_opt2(sb, MB_OPTIMIZE_SCAN);
5330 err = ext4_mb_init(sb);
5332 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5338 * We can only set up the journal commit callback once
5339 * mballoc is initialized
5342 sbi->s_journal->j_commit_callback =
5343 ext4_journal_commit_callback;
5345 block = ext4_count_free_clusters(sb);
5346 ext4_free_blocks_count_set(sbi->s_es,
5347 EXT4_C2B(sbi, block));
5348 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5351 unsigned long freei = ext4_count_free_inodes(sb);
5352 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5353 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5357 * Update the checksum after updating free space/inode
5358 * counters. Otherwise the superblock can have an incorrect
5359 * checksum in the buffer cache until it is written out and
5360 * e2fsprogs programs trying to open a file system immediately
5361 * after it is mounted can fail.
5363 ext4_superblock_csum_set(sb);
5365 err = percpu_counter_init(&sbi->s_dirs_counter,
5366 ext4_count_dirs(sb), GFP_KERNEL);
5368 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5371 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5374 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5377 ext4_msg(sb, KERN_ERR, "insufficient memory");
5381 if (ext4_has_feature_flex_bg(sb))
5382 if (!ext4_fill_flex_info(sb)) {
5383 ext4_msg(sb, KERN_ERR,
5384 "unable to initialize "
5385 "flex_bg meta info!");
5390 err = ext4_register_li_request(sb, first_not_zeroed);
5394 err = ext4_register_sysfs(sb);
5398 err = ext4_init_orphan_info(sb);
5402 /* Enable quota usage during mount. */
5403 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5404 err = ext4_enable_quotas(sb);
5408 #endif /* CONFIG_QUOTA */
5411 * Save the original bdev mapping's wb_err value which could be
5412 * used to detect the metadata async write error.
5414 spin_lock_init(&sbi->s_bdev_wb_lock);
5415 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5416 &sbi->s_bdev_wb_err);
5417 sb->s_bdev->bd_super = sb;
5418 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5419 ext4_orphan_cleanup(sb, es);
5420 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5421 if (needs_recovery) {
5422 ext4_msg(sb, KERN_INFO, "recovery complete");
5423 err = ext4_mark_recovery_complete(sb, es);
5428 if (test_opt(sb, DISCARD)) {
5429 struct request_queue *q = bdev_get_queue(sb->s_bdev);
5430 if (!blk_queue_discard(q))
5431 ext4_msg(sb, KERN_WARNING,
5432 "mounting with \"discard\" option, but "
5433 "the device does not support discard");
5436 if (es->s_error_count)
5437 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5439 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5440 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5441 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5442 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5443 atomic_set(&sbi->s_warning_count, 0);
5444 atomic_set(&sbi->s_msg_count, 0);
5450 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5454 ext4_release_orphan_info(sb);
5456 ext4_unregister_sysfs(sb);
5457 kobject_put(&sbi->s_kobj);
5459 ext4_unregister_li_request(sb);
5461 ext4_mb_release(sb);
5463 flex_groups = rcu_dereference(sbi->s_flex_groups);
5465 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5466 kvfree(flex_groups[i]);
5467 kvfree(flex_groups);
5470 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5471 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5472 percpu_counter_destroy(&sbi->s_dirs_counter);
5473 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5474 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5475 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5477 ext4_ext_release(sb);
5478 ext4_release_system_zone(sb);
5483 ext4_msg(sb, KERN_ERR, "mount failed");
5484 if (EXT4_SB(sb)->rsv_conversion_wq)
5485 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5487 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5488 sbi->s_ea_inode_cache = NULL;
5490 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5491 sbi->s_ea_block_cache = NULL;
5493 if (sbi->s_journal) {
5494 /* flush s_error_work before journal destroy. */
5495 flush_work(&sbi->s_error_work);
5496 jbd2_journal_destroy(sbi->s_journal);
5497 sbi->s_journal = NULL;
5500 ext4_es_unregister_shrinker(sbi);
5502 /* flush s_error_work before sbi destroy */
5503 flush_work(&sbi->s_error_work);
5504 del_timer_sync(&sbi->s_err_report);
5505 ext4_stop_mmpd(sbi);
5508 group_desc = rcu_dereference(sbi->s_group_desc);
5509 for (i = 0; i < db_count; i++)
5510 brelse(group_desc[i]);
5514 if (sbi->s_chksum_driver)
5515 crypto_free_shash(sbi->s_chksum_driver);
5517 #ifdef CONFIG_UNICODE
5518 utf8_unload(sb->s_encoding);
5522 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5523 kfree(get_qf_name(sb, sbi, i));
5525 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5526 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5528 ext4_blkdev_remove(sbi);
5530 sb->s_fs_info = NULL;
5531 return err ? err : ret;
5534 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5536 struct ext4_fs_context *ctx = fc->fs_private;
5537 struct ext4_sb_info *sbi;
5541 sbi = ext4_alloc_sbi(sb);
5545 fc->s_fs_info = sbi;
5547 /* Cleanup superblock name */
5548 strreplace(sb->s_id, '/', '!');
5550 sbi->s_sb_block = 1; /* Default super block location */
5551 if (ctx->spec & EXT4_SPEC_s_sb_block)
5552 sbi->s_sb_block = ctx->s_sb_block;
5554 ret = __ext4_fill_super(fc, sb);
5558 if (sbi->s_journal) {
5559 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5560 descr = " journalled data mode";
5561 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5562 descr = " ordered data mode";
5564 descr = " writeback data mode";
5566 descr = "out journal";
5568 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5569 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5570 "Quota mode: %s.", descr, ext4_quota_mode(sb));
5576 fc->s_fs_info = NULL;
5580 static int ext4_get_tree(struct fs_context *fc)
5582 return get_tree_bdev(fc, ext4_fill_super);
5586 * Setup any per-fs journal parameters now. We'll do this both on
5587 * initial mount, once the journal has been initialised but before we've
5588 * done any recovery; and again on any subsequent remount.
5590 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5592 struct ext4_sb_info *sbi = EXT4_SB(sb);
5594 journal->j_commit_interval = sbi->s_commit_interval;
5595 journal->j_min_batch_time = sbi->s_min_batch_time;
5596 journal->j_max_batch_time = sbi->s_max_batch_time;
5597 ext4_fc_init(sb, journal);
5599 write_lock(&journal->j_state_lock);
5600 if (test_opt(sb, BARRIER))
5601 journal->j_flags |= JBD2_BARRIER;
5603 journal->j_flags &= ~JBD2_BARRIER;
5604 if (test_opt(sb, DATA_ERR_ABORT))
5605 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5607 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5608 write_unlock(&journal->j_state_lock);
5611 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5612 unsigned int journal_inum)
5614 struct inode *journal_inode;
5617 * Test for the existence of a valid inode on disk. Bad things
5618 * happen if we iget() an unused inode, as the subsequent iput()
5619 * will try to delete it.
5621 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5622 if (IS_ERR(journal_inode)) {
5623 ext4_msg(sb, KERN_ERR, "no journal found");
5626 if (!journal_inode->i_nlink) {
5627 make_bad_inode(journal_inode);
5628 iput(journal_inode);
5629 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5633 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5634 journal_inode, journal_inode->i_size);
5635 if (!S_ISREG(journal_inode->i_mode)) {
5636 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5637 iput(journal_inode);
5640 return journal_inode;
5643 static journal_t *ext4_get_journal(struct super_block *sb,
5644 unsigned int journal_inum)
5646 struct inode *journal_inode;
5649 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5652 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5656 journal = jbd2_journal_init_inode(journal_inode);
5658 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5659 iput(journal_inode);
5662 journal->j_private = sb;
5663 ext4_init_journal_params(sb, journal);
5667 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5670 struct buffer_head *bh;
5674 int hblock, blocksize;
5675 ext4_fsblk_t sb_block;
5676 unsigned long offset;
5677 struct ext4_super_block *es;
5678 struct block_device *bdev;
5680 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5683 bdev = ext4_blkdev_get(j_dev, sb);
5687 blocksize = sb->s_blocksize;
5688 hblock = bdev_logical_block_size(bdev);
5689 if (blocksize < hblock) {
5690 ext4_msg(sb, KERN_ERR,
5691 "blocksize too small for journal device");
5695 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5696 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5697 set_blocksize(bdev, blocksize);
5698 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5699 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5700 "external journal");
5704 es = (struct ext4_super_block *) (bh->b_data + offset);
5705 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5706 !(le32_to_cpu(es->s_feature_incompat) &
5707 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5708 ext4_msg(sb, KERN_ERR, "external journal has "
5714 if ((le32_to_cpu(es->s_feature_ro_compat) &
5715 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5716 es->s_checksum != ext4_superblock_csum(sb, es)) {
5717 ext4_msg(sb, KERN_ERR, "external journal has "
5718 "corrupt superblock");
5723 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5724 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5729 len = ext4_blocks_count(es);
5730 start = sb_block + 1;
5731 brelse(bh); /* we're done with the superblock */
5733 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5734 start, len, blocksize);
5736 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5739 journal->j_private = sb;
5740 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5741 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5744 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5745 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5746 "user (unsupported) - %d",
5747 be32_to_cpu(journal->j_superblock->s_nr_users));
5750 EXT4_SB(sb)->s_journal_bdev = bdev;
5751 ext4_init_journal_params(sb, journal);
5755 jbd2_journal_destroy(journal);
5757 ext4_blkdev_put(bdev);
5761 static int ext4_load_journal(struct super_block *sb,
5762 struct ext4_super_block *es,
5763 unsigned long journal_devnum)
5766 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5769 int really_read_only;
5772 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5773 return -EFSCORRUPTED;
5775 if (journal_devnum &&
5776 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5777 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5778 "numbers have changed");
5779 journal_dev = new_decode_dev(journal_devnum);
5781 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5783 if (journal_inum && journal_dev) {
5784 ext4_msg(sb, KERN_ERR,
5785 "filesystem has both journal inode and journal device!");
5790 journal = ext4_get_journal(sb, journal_inum);
5794 journal = ext4_get_dev_journal(sb, journal_dev);
5799 journal_dev_ro = bdev_read_only(journal->j_dev);
5800 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5802 if (journal_dev_ro && !sb_rdonly(sb)) {
5803 ext4_msg(sb, KERN_ERR,
5804 "journal device read-only, try mounting with '-o ro'");
5810 * Are we loading a blank journal or performing recovery after a
5811 * crash? For recovery, we need to check in advance whether we
5812 * can get read-write access to the device.
5814 if (ext4_has_feature_journal_needs_recovery(sb)) {
5815 if (sb_rdonly(sb)) {
5816 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5817 "required on readonly filesystem");
5818 if (really_read_only) {
5819 ext4_msg(sb, KERN_ERR, "write access "
5820 "unavailable, cannot proceed "
5821 "(try mounting with noload)");
5825 ext4_msg(sb, KERN_INFO, "write access will "
5826 "be enabled during recovery");
5830 if (!(journal->j_flags & JBD2_BARRIER))
5831 ext4_msg(sb, KERN_INFO, "barriers disabled");
5833 if (!ext4_has_feature_journal_needs_recovery(sb))
5834 err = jbd2_journal_wipe(journal, !really_read_only);
5836 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5838 memcpy(save, ((char *) es) +
5839 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5840 err = jbd2_journal_load(journal);
5842 memcpy(((char *) es) + EXT4_S_ERR_START,
5843 save, EXT4_S_ERR_LEN);
5848 ext4_msg(sb, KERN_ERR, "error loading journal");
5852 EXT4_SB(sb)->s_journal = journal;
5853 err = ext4_clear_journal_err(sb, es);
5855 EXT4_SB(sb)->s_journal = NULL;
5856 jbd2_journal_destroy(journal);
5860 if (!really_read_only && journal_devnum &&
5861 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5862 es->s_journal_dev = cpu_to_le32(journal_devnum);
5864 /* Make sure we flush the recovery flag to disk. */
5865 ext4_commit_super(sb);
5871 jbd2_journal_destroy(journal);
5875 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5876 static void ext4_update_super(struct super_block *sb)
5878 struct ext4_sb_info *sbi = EXT4_SB(sb);
5879 struct ext4_super_block *es = sbi->s_es;
5880 struct buffer_head *sbh = sbi->s_sbh;
5884 * If the file system is mounted read-only, don't update the
5885 * superblock write time. This avoids updating the superblock
5886 * write time when we are mounting the root file system
5887 * read/only but we need to replay the journal; at that point,
5888 * for people who are east of GMT and who make their clock
5889 * tick in localtime for Windows bug-for-bug compatibility,
5890 * the clock is set in the future, and this will cause e2fsck
5891 * to complain and force a full file system check.
5893 if (!(sb->s_flags & SB_RDONLY))
5894 ext4_update_tstamp(es, s_wtime);
5895 es->s_kbytes_written =
5896 cpu_to_le64(sbi->s_kbytes_written +
5897 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5898 sbi->s_sectors_written_start) >> 1));
5899 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5900 ext4_free_blocks_count_set(es,
5901 EXT4_C2B(sbi, percpu_counter_sum_positive(
5902 &sbi->s_freeclusters_counter)));
5903 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5904 es->s_free_inodes_count =
5905 cpu_to_le32(percpu_counter_sum_positive(
5906 &sbi->s_freeinodes_counter));
5907 /* Copy error information to the on-disk superblock */
5908 spin_lock(&sbi->s_error_lock);
5909 if (sbi->s_add_error_count > 0) {
5910 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5911 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5912 __ext4_update_tstamp(&es->s_first_error_time,
5913 &es->s_first_error_time_hi,
5914 sbi->s_first_error_time);
5915 strncpy(es->s_first_error_func, sbi->s_first_error_func,
5916 sizeof(es->s_first_error_func));
5917 es->s_first_error_line =
5918 cpu_to_le32(sbi->s_first_error_line);
5919 es->s_first_error_ino =
5920 cpu_to_le32(sbi->s_first_error_ino);
5921 es->s_first_error_block =
5922 cpu_to_le64(sbi->s_first_error_block);
5923 es->s_first_error_errcode =
5924 ext4_errno_to_code(sbi->s_first_error_code);
5926 __ext4_update_tstamp(&es->s_last_error_time,
5927 &es->s_last_error_time_hi,
5928 sbi->s_last_error_time);
5929 strncpy(es->s_last_error_func, sbi->s_last_error_func,
5930 sizeof(es->s_last_error_func));
5931 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5932 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5933 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5934 es->s_last_error_errcode =
5935 ext4_errno_to_code(sbi->s_last_error_code);
5937 * Start the daily error reporting function if it hasn't been
5940 if (!es->s_error_count)
5941 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5942 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5943 sbi->s_add_error_count = 0;
5945 spin_unlock(&sbi->s_error_lock);
5947 ext4_superblock_csum_set(sb);
5951 static int ext4_commit_super(struct super_block *sb)
5953 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5958 if (block_device_ejected(sb))
5961 ext4_update_super(sb);
5963 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5965 * Oh, dear. A previous attempt to write the
5966 * superblock failed. This could happen because the
5967 * USB device was yanked out. Or it could happen to
5968 * be a transient write error and maybe the block will
5969 * be remapped. Nothing we can do but to retry the
5970 * write and hope for the best.
5972 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5973 "superblock detected");
5974 clear_buffer_write_io_error(sbh);
5975 set_buffer_uptodate(sbh);
5977 BUFFER_TRACE(sbh, "marking dirty");
5978 mark_buffer_dirty(sbh);
5979 error = __sync_dirty_buffer(sbh,
5980 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5981 if (buffer_write_io_error(sbh)) {
5982 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5984 clear_buffer_write_io_error(sbh);
5985 set_buffer_uptodate(sbh);
5991 * Have we just finished recovery? If so, and if we are mounting (or
5992 * remounting) the filesystem readonly, then we will end up with a
5993 * consistent fs on disk. Record that fact.
5995 static int ext4_mark_recovery_complete(struct super_block *sb,
5996 struct ext4_super_block *es)
5999 journal_t *journal = EXT4_SB(sb)->s_journal;
6001 if (!ext4_has_feature_journal(sb)) {
6002 if (journal != NULL) {
6003 ext4_error(sb, "Journal got removed while the fs was "
6005 return -EFSCORRUPTED;
6009 jbd2_journal_lock_updates(journal);
6010 err = jbd2_journal_flush(journal, 0);
6014 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6015 ext4_has_feature_orphan_present(sb))) {
6016 if (!ext4_orphan_file_empty(sb)) {
6017 ext4_error(sb, "Orphan file not empty on read-only fs.");
6018 err = -EFSCORRUPTED;
6021 ext4_clear_feature_journal_needs_recovery(sb);
6022 ext4_clear_feature_orphan_present(sb);
6023 ext4_commit_super(sb);
6026 jbd2_journal_unlock_updates(journal);
6031 * If we are mounting (or read-write remounting) a filesystem whose journal
6032 * has recorded an error from a previous lifetime, move that error to the
6033 * main filesystem now.
6035 static int ext4_clear_journal_err(struct super_block *sb,
6036 struct ext4_super_block *es)
6042 if (!ext4_has_feature_journal(sb)) {
6043 ext4_error(sb, "Journal got removed while the fs was mounted!");
6044 return -EFSCORRUPTED;
6047 journal = EXT4_SB(sb)->s_journal;
6050 * Now check for any error status which may have been recorded in the
6051 * journal by a prior ext4_error() or ext4_abort()
6054 j_errno = jbd2_journal_errno(journal);
6058 errstr = ext4_decode_error(sb, j_errno, nbuf);
6059 ext4_warning(sb, "Filesystem error recorded "
6060 "from previous mount: %s", errstr);
6061 ext4_warning(sb, "Marking fs in need of filesystem check.");
6063 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6064 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6065 ext4_commit_super(sb);
6067 jbd2_journal_clear_err(journal);
6068 jbd2_journal_update_sb_errno(journal);
6074 * Force the running and committing transactions to commit,
6075 * and wait on the commit.
6077 int ext4_force_commit(struct super_block *sb)
6084 journal = EXT4_SB(sb)->s_journal;
6085 return ext4_journal_force_commit(journal);
6088 static int ext4_sync_fs(struct super_block *sb, int wait)
6092 bool needs_barrier = false;
6093 struct ext4_sb_info *sbi = EXT4_SB(sb);
6095 if (unlikely(ext4_forced_shutdown(sbi)))
6098 trace_ext4_sync_fs(sb, wait);
6099 flush_workqueue(sbi->rsv_conversion_wq);
6101 * Writeback quota in non-journalled quota case - journalled quota has
6104 dquot_writeback_dquots(sb, -1);
6106 * Data writeback is possible w/o journal transaction, so barrier must
6107 * being sent at the end of the function. But we can skip it if
6108 * transaction_commit will do it for us.
6110 if (sbi->s_journal) {
6111 target = jbd2_get_latest_transaction(sbi->s_journal);
6112 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6113 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6114 needs_barrier = true;
6116 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6118 ret = jbd2_log_wait_commit(sbi->s_journal,
6121 } else if (wait && test_opt(sb, BARRIER))
6122 needs_barrier = true;
6123 if (needs_barrier) {
6125 err = blkdev_issue_flush(sb->s_bdev);
6134 * LVM calls this function before a (read-only) snapshot is created. This
6135 * gives us a chance to flush the journal completely and mark the fs clean.
6137 * Note that only this function cannot bring a filesystem to be in a clean
6138 * state independently. It relies on upper layer to stop all data & metadata
6141 static int ext4_freeze(struct super_block *sb)
6149 journal = EXT4_SB(sb)->s_journal;
6152 /* Now we set up the journal barrier. */
6153 jbd2_journal_lock_updates(journal);
6156 * Don't clear the needs_recovery flag if we failed to
6157 * flush the journal.
6159 error = jbd2_journal_flush(journal, 0);
6163 /* Journal blocked and flushed, clear needs_recovery flag. */
6164 ext4_clear_feature_journal_needs_recovery(sb);
6165 if (ext4_orphan_file_empty(sb))
6166 ext4_clear_feature_orphan_present(sb);
6169 error = ext4_commit_super(sb);
6172 /* we rely on upper layer to stop further updates */
6173 jbd2_journal_unlock_updates(journal);
6178 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6179 * flag here, even though the filesystem is not technically dirty yet.
6181 static int ext4_unfreeze(struct super_block *sb)
6183 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
6186 if (EXT4_SB(sb)->s_journal) {
6187 /* Reset the needs_recovery flag before the fs is unlocked. */
6188 ext4_set_feature_journal_needs_recovery(sb);
6189 if (ext4_has_feature_orphan_file(sb))
6190 ext4_set_feature_orphan_present(sb);
6193 ext4_commit_super(sb);
6198 * Structure to save mount options for ext4_remount's benefit
6200 struct ext4_mount_options {
6201 unsigned long s_mount_opt;
6202 unsigned long s_mount_opt2;
6205 unsigned long s_commit_interval;
6206 u32 s_min_batch_time, s_max_batch_time;
6209 char *s_qf_names[EXT4_MAXQUOTAS];
6213 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6215 struct ext4_fs_context *ctx = fc->fs_private;
6216 struct ext4_super_block *es;
6217 struct ext4_sb_info *sbi = EXT4_SB(sb);
6218 unsigned long old_sb_flags;
6219 struct ext4_mount_options old_opts;
6223 int enable_quota = 0;
6225 char *to_free[EXT4_MAXQUOTAS];
6228 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6230 /* Store the original options */
6231 old_sb_flags = sb->s_flags;
6232 old_opts.s_mount_opt = sbi->s_mount_opt;
6233 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6234 old_opts.s_resuid = sbi->s_resuid;
6235 old_opts.s_resgid = sbi->s_resgid;
6236 old_opts.s_commit_interval = sbi->s_commit_interval;
6237 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6238 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6240 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6241 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6242 if (sbi->s_qf_names[i]) {
6243 char *qf_name = get_qf_name(sb, sbi, i);
6245 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6246 if (!old_opts.s_qf_names[i]) {
6247 for (j = 0; j < i; j++)
6248 kfree(old_opts.s_qf_names[j]);
6252 old_opts.s_qf_names[i] = NULL;
6254 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6255 ctx->journal_ioprio =
6256 sbi->s_journal->j_task->io_context->ioprio;
6258 ext4_apply_options(fc, sb);
6260 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6261 test_opt(sb, JOURNAL_CHECKSUM)) {
6262 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6263 "during remount not supported; ignoring");
6264 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6267 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6268 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6269 ext4_msg(sb, KERN_ERR, "can't mount with "
6270 "both data=journal and delalloc");
6274 if (test_opt(sb, DIOREAD_NOLOCK)) {
6275 ext4_msg(sb, KERN_ERR, "can't mount with "
6276 "both data=journal and dioread_nolock");
6280 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6281 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6282 ext4_msg(sb, KERN_ERR, "can't mount with "
6283 "journal_async_commit in data=ordered mode");
6289 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6290 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6295 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
6296 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6298 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6299 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6303 if (sbi->s_journal) {
6304 ext4_init_journal_params(sb, sbi->s_journal);
6305 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6308 /* Flush outstanding errors before changing fs state */
6309 flush_work(&sbi->s_error_work);
6311 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6312 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
6317 if (fc->sb_flags & SB_RDONLY) {
6318 err = sync_filesystem(sb);
6321 err = dquot_suspend(sb, -1);
6326 * First of all, the unconditional stuff we have to do
6327 * to disable replay of the journal when we next remount
6329 sb->s_flags |= SB_RDONLY;
6332 * OK, test if we are remounting a valid rw partition
6333 * readonly, and if so set the rdonly flag and then
6334 * mark the partition as valid again.
6336 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6337 (sbi->s_mount_state & EXT4_VALID_FS))
6338 es->s_state = cpu_to_le16(sbi->s_mount_state);
6340 if (sbi->s_journal) {
6342 * We let remount-ro finish even if marking fs
6343 * as clean failed...
6345 ext4_mark_recovery_complete(sb, es);
6348 /* Make sure we can mount this feature set readwrite */
6349 if (ext4_has_feature_readonly(sb) ||
6350 !ext4_feature_set_ok(sb, 0)) {
6355 * Make sure the group descriptor checksums
6356 * are sane. If they aren't, refuse to remount r/w.
6358 for (g = 0; g < sbi->s_groups_count; g++) {
6359 struct ext4_group_desc *gdp =
6360 ext4_get_group_desc(sb, g, NULL);
6362 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6363 ext4_msg(sb, KERN_ERR,
6364 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6365 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6366 le16_to_cpu(gdp->bg_checksum));
6373 * If we have an unprocessed orphan list hanging
6374 * around from a previously readonly bdev mount,
6375 * require a full umount/remount for now.
6377 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6378 ext4_msg(sb, KERN_WARNING, "Couldn't "
6379 "remount RDWR because of unprocessed "
6380 "orphan inode list. Please "
6381 "umount/remount instead");
6387 * Mounting a RDONLY partition read-write, so reread
6388 * and store the current valid flag. (It may have
6389 * been changed by e2fsck since we originally mounted
6392 if (sbi->s_journal) {
6393 err = ext4_clear_journal_err(sb, es);
6397 sbi->s_mount_state = le16_to_cpu(es->s_state);
6399 err = ext4_setup_super(sb, es, 0);
6403 sb->s_flags &= ~SB_RDONLY;
6404 if (ext4_has_feature_mmp(sb))
6405 if (ext4_multi_mount_protect(sb,
6406 le64_to_cpu(es->s_mmp_block))) {
6417 * Reinitialize lazy itable initialization thread based on
6420 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6421 ext4_unregister_li_request(sb);
6423 ext4_group_t first_not_zeroed;
6424 first_not_zeroed = ext4_has_uninit_itable(sb);
6425 ext4_register_li_request(sb, first_not_zeroed);
6429 * Handle creation of system zone data early because it can fail.
6430 * Releasing of existing data is done when we are sure remount will
6433 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6434 err = ext4_setup_system_zone(sb);
6439 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6440 err = ext4_commit_super(sb);
6446 /* Release old quota file names */
6447 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6448 kfree(old_opts.s_qf_names[i]);
6450 if (sb_any_quota_suspended(sb))
6451 dquot_resume(sb, -1);
6452 else if (ext4_has_feature_quota(sb)) {
6453 err = ext4_enable_quotas(sb);
6459 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6460 ext4_release_system_zone(sb);
6462 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6463 ext4_stop_mmpd(sbi);
6468 sb->s_flags = old_sb_flags;
6469 sbi->s_mount_opt = old_opts.s_mount_opt;
6470 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6471 sbi->s_resuid = old_opts.s_resuid;
6472 sbi->s_resgid = old_opts.s_resgid;
6473 sbi->s_commit_interval = old_opts.s_commit_interval;
6474 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6475 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6476 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6477 ext4_release_system_zone(sb);
6479 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6480 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6481 to_free[i] = get_qf_name(sb, sbi, i);
6482 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6485 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6488 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6489 ext4_stop_mmpd(sbi);
6493 static int ext4_reconfigure(struct fs_context *fc)
6495 struct super_block *sb = fc->root->d_sb;
6498 fc->s_fs_info = EXT4_SB(sb);
6500 ret = ext4_check_opt_consistency(fc, sb);
6504 ret = __ext4_remount(fc, sb);
6508 ext4_msg(sb, KERN_INFO, "re-mounted. Quota mode: %s.",
6509 ext4_quota_mode(sb));
6515 static int ext4_statfs_project(struct super_block *sb,
6516 kprojid_t projid, struct kstatfs *buf)
6519 struct dquot *dquot;
6523 qid = make_kqid_projid(projid);
6524 dquot = dqget(sb, qid);
6526 return PTR_ERR(dquot);
6527 spin_lock(&dquot->dq_dqb_lock);
6529 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6530 dquot->dq_dqb.dqb_bhardlimit);
6531 limit >>= sb->s_blocksize_bits;
6533 if (limit && buf->f_blocks > limit) {
6534 curblock = (dquot->dq_dqb.dqb_curspace +
6535 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6536 buf->f_blocks = limit;
6537 buf->f_bfree = buf->f_bavail =
6538 (buf->f_blocks > curblock) ?
6539 (buf->f_blocks - curblock) : 0;
6542 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6543 dquot->dq_dqb.dqb_ihardlimit);
6544 if (limit && buf->f_files > limit) {
6545 buf->f_files = limit;
6547 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6548 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6551 spin_unlock(&dquot->dq_dqb_lock);
6557 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6559 struct super_block *sb = dentry->d_sb;
6560 struct ext4_sb_info *sbi = EXT4_SB(sb);
6561 struct ext4_super_block *es = sbi->s_es;
6562 ext4_fsblk_t overhead = 0, resv_blocks;
6564 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6566 if (!test_opt(sb, MINIX_DF))
6567 overhead = sbi->s_overhead;
6569 buf->f_type = EXT4_SUPER_MAGIC;
6570 buf->f_bsize = sb->s_blocksize;
6571 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6572 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6573 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6574 /* prevent underflow in case that few free space is available */
6575 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6576 buf->f_bavail = buf->f_bfree -
6577 (ext4_r_blocks_count(es) + resv_blocks);
6578 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6580 buf->f_files = le32_to_cpu(es->s_inodes_count);
6581 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6582 buf->f_namelen = EXT4_NAME_LEN;
6583 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6586 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6587 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6588 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6597 * Helper functions so that transaction is started before we acquire dqio_sem
6598 * to keep correct lock ordering of transaction > dqio_sem
6600 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6602 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6605 static int ext4_write_dquot(struct dquot *dquot)
6609 struct inode *inode;
6611 inode = dquot_to_inode(dquot);
6612 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6613 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6615 return PTR_ERR(handle);
6616 ret = dquot_commit(dquot);
6617 err = ext4_journal_stop(handle);
6623 static int ext4_acquire_dquot(struct dquot *dquot)
6628 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6629 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6631 return PTR_ERR(handle);
6632 ret = dquot_acquire(dquot);
6633 err = ext4_journal_stop(handle);
6639 static int ext4_release_dquot(struct dquot *dquot)
6644 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6645 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6646 if (IS_ERR(handle)) {
6647 /* Release dquot anyway to avoid endless cycle in dqput() */
6648 dquot_release(dquot);
6649 return PTR_ERR(handle);
6651 ret = dquot_release(dquot);
6652 err = ext4_journal_stop(handle);
6658 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6660 struct super_block *sb = dquot->dq_sb;
6662 if (ext4_is_quota_journalled(sb)) {
6663 dquot_mark_dquot_dirty(dquot);
6664 return ext4_write_dquot(dquot);
6666 return dquot_mark_dquot_dirty(dquot);
6670 static int ext4_write_info(struct super_block *sb, int type)
6675 /* Data block + inode block */
6676 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6678 return PTR_ERR(handle);
6679 ret = dquot_commit_info(sb, type);
6680 err = ext4_journal_stop(handle);
6686 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6688 struct ext4_inode_info *ei = EXT4_I(inode);
6690 /* The first argument of lockdep_set_subclass has to be
6691 * *exactly* the same as the argument to init_rwsem() --- in
6692 * this case, in init_once() --- or lockdep gets unhappy
6693 * because the name of the lock is set using the
6694 * stringification of the argument to init_rwsem().
6696 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6697 lockdep_set_subclass(&ei->i_data_sem, subclass);
6701 * Standard function to be called on quota_on
6703 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6704 const struct path *path)
6708 if (!test_opt(sb, QUOTA))
6711 /* Quotafile not on the same filesystem? */
6712 if (path->dentry->d_sb != sb)
6715 /* Quota already enabled for this file? */
6716 if (IS_NOQUOTA(d_inode(path->dentry)))
6719 /* Journaling quota? */
6720 if (EXT4_SB(sb)->s_qf_names[type]) {
6721 /* Quotafile not in fs root? */
6722 if (path->dentry->d_parent != sb->s_root)
6723 ext4_msg(sb, KERN_WARNING,
6724 "Quota file not on filesystem root. "
6725 "Journaled quota will not work");
6726 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6729 * Clear the flag just in case mount options changed since
6732 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6736 * When we journal data on quota file, we have to flush journal to see
6737 * all updates to the file when we bypass pagecache...
6739 if (EXT4_SB(sb)->s_journal &&
6740 ext4_should_journal_data(d_inode(path->dentry))) {
6742 * We don't need to lock updates but journal_flush() could
6743 * otherwise be livelocked...
6745 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6746 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6747 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6752 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6753 err = dquot_quota_on(sb, type, format_id, path);
6755 struct inode *inode = d_inode(path->dentry);
6759 * Set inode flags to prevent userspace from messing with quota
6760 * files. If this fails, we return success anyway since quotas
6761 * are already enabled and this is not a hard failure.
6764 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6767 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6768 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6769 S_NOATIME | S_IMMUTABLE);
6770 err = ext4_mark_inode_dirty(handle, inode);
6771 ext4_journal_stop(handle);
6773 inode_unlock(inode);
6775 dquot_quota_off(sb, type);
6778 lockdep_set_quota_inode(path->dentry->d_inode,
6783 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6787 struct inode *qf_inode;
6788 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6789 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6790 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6791 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6794 BUG_ON(!ext4_has_feature_quota(sb));
6796 if (!qf_inums[type])
6799 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6800 if (IS_ERR(qf_inode)) {
6801 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6802 return PTR_ERR(qf_inode);
6805 /* Don't account quota for quota files to avoid recursion */
6806 qf_inode->i_flags |= S_NOQUOTA;
6807 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6808 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6810 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6816 /* Enable usage tracking for all quota types. */
6817 int ext4_enable_quotas(struct super_block *sb)
6820 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6821 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6822 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6823 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6825 bool quota_mopt[EXT4_MAXQUOTAS] = {
6826 test_opt(sb, USRQUOTA),
6827 test_opt(sb, GRPQUOTA),
6828 test_opt(sb, PRJQUOTA),
6831 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6832 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6833 if (qf_inums[type]) {
6834 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6835 DQUOT_USAGE_ENABLED |
6836 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6839 "Failed to enable quota tracking "
6840 "(type=%d, err=%d). Please run "
6841 "e2fsck to fix.", type, err);
6842 for (type--; type >= 0; type--) {
6843 struct inode *inode;
6845 inode = sb_dqopt(sb)->files[type];
6847 inode = igrab(inode);
6848 dquot_quota_off(sb, type);
6850 lockdep_set_quota_inode(inode,
6863 static int ext4_quota_off(struct super_block *sb, int type)
6865 struct inode *inode = sb_dqopt(sb)->files[type];
6869 /* Force all delayed allocation blocks to be allocated.
6870 * Caller already holds s_umount sem */
6871 if (test_opt(sb, DELALLOC))
6872 sync_filesystem(sb);
6874 if (!inode || !igrab(inode))
6877 err = dquot_quota_off(sb, type);
6878 if (err || ext4_has_feature_quota(sb))
6883 * Update modification times of quota files when userspace can
6884 * start looking at them. If we fail, we return success anyway since
6885 * this is not a hard failure and quotas are already disabled.
6887 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6888 if (IS_ERR(handle)) {
6889 err = PTR_ERR(handle);
6892 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6893 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6894 inode->i_mtime = inode->i_ctime = current_time(inode);
6895 err = ext4_mark_inode_dirty(handle, inode);
6896 ext4_journal_stop(handle);
6898 inode_unlock(inode);
6900 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6904 return dquot_quota_off(sb, type);
6907 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6908 * acquiring the locks... As quota files are never truncated and quota code
6909 * itself serializes the operations (and no one else should touch the files)
6910 * we don't have to be afraid of races */
6911 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6912 size_t len, loff_t off)
6914 struct inode *inode = sb_dqopt(sb)->files[type];
6915 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6916 int offset = off & (sb->s_blocksize - 1);
6919 struct buffer_head *bh;
6920 loff_t i_size = i_size_read(inode);
6924 if (off+len > i_size)
6927 while (toread > 0) {
6928 tocopy = sb->s_blocksize - offset < toread ?
6929 sb->s_blocksize - offset : toread;
6930 bh = ext4_bread(NULL, inode, blk, 0);
6933 if (!bh) /* A hole? */
6934 memset(data, 0, tocopy);
6936 memcpy(data, bh->b_data+offset, tocopy);
6946 /* Write to quotafile (we know the transaction is already started and has
6947 * enough credits) */
6948 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6949 const char *data, size_t len, loff_t off)
6951 struct inode *inode = sb_dqopt(sb)->files[type];
6952 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6953 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6955 struct buffer_head *bh;
6956 handle_t *handle = journal_current_handle();
6959 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6960 " cancelled because transaction is not started",
6961 (unsigned long long)off, (unsigned long long)len);
6965 * Since we account only one data block in transaction credits,
6966 * then it is impossible to cross a block boundary.
6968 if (sb->s_blocksize - offset < len) {
6969 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6970 " cancelled because not block aligned",
6971 (unsigned long long)off, (unsigned long long)len);
6976 bh = ext4_bread(handle, inode, blk,
6977 EXT4_GET_BLOCKS_CREATE |
6978 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6979 } while (PTR_ERR(bh) == -ENOSPC &&
6980 ext4_should_retry_alloc(inode->i_sb, &retries));
6985 BUFFER_TRACE(bh, "get write access");
6986 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
6992 memcpy(bh->b_data+offset, data, len);
6993 flush_dcache_page(bh->b_page);
6995 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6998 if (inode->i_size < off + len) {
6999 i_size_write(inode, off + len);
7000 EXT4_I(inode)->i_disksize = inode->i_size;
7001 err2 = ext4_mark_inode_dirty(handle, inode);
7002 if (unlikely(err2 && !err))
7005 return err ? err : len;
7009 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7010 static inline void register_as_ext2(void)
7012 int err = register_filesystem(&ext2_fs_type);
7015 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7018 static inline void unregister_as_ext2(void)
7020 unregister_filesystem(&ext2_fs_type);
7023 static inline int ext2_feature_set_ok(struct super_block *sb)
7025 if (ext4_has_unknown_ext2_incompat_features(sb))
7029 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7034 static inline void register_as_ext2(void) { }
7035 static inline void unregister_as_ext2(void) { }
7036 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7039 static inline void register_as_ext3(void)
7041 int err = register_filesystem(&ext3_fs_type);
7044 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7047 static inline void unregister_as_ext3(void)
7049 unregister_filesystem(&ext3_fs_type);
7052 static inline int ext3_feature_set_ok(struct super_block *sb)
7054 if (ext4_has_unknown_ext3_incompat_features(sb))
7056 if (!ext4_has_feature_journal(sb))
7060 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7065 static struct file_system_type ext4_fs_type = {
7066 .owner = THIS_MODULE,
7068 .init_fs_context = ext4_init_fs_context,
7069 .parameters = ext4_param_specs,
7070 .kill_sb = kill_block_super,
7071 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7073 MODULE_ALIAS_FS("ext4");
7075 /* Shared across all ext4 file systems */
7076 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7078 static int __init ext4_init_fs(void)
7082 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7083 ext4_li_info = NULL;
7085 /* Build-time check for flags consistency */
7086 ext4_check_flag_values();
7088 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7089 init_waitqueue_head(&ext4__ioend_wq[i]);
7091 err = ext4_init_es();
7095 err = ext4_init_pending();
7099 err = ext4_init_post_read_processing();
7103 err = ext4_init_pageio();
7107 err = ext4_init_system_zone();
7111 err = ext4_init_sysfs();
7115 err = ext4_init_mballoc();
7118 err = init_inodecache();
7122 err = ext4_fc_init_dentry_cache();
7128 err = register_filesystem(&ext4_fs_type);
7134 unregister_as_ext2();
7135 unregister_as_ext3();
7136 ext4_fc_destroy_dentry_cache();
7138 destroy_inodecache();
7140 ext4_exit_mballoc();
7144 ext4_exit_system_zone();
7148 ext4_exit_post_read_processing();
7150 ext4_exit_pending();
7157 static void __exit ext4_exit_fs(void)
7159 ext4_destroy_lazyinit_thread();
7160 unregister_as_ext2();
7161 unregister_as_ext3();
7162 unregister_filesystem(&ext4_fs_type);
7163 ext4_fc_destroy_dentry_cache();
7164 destroy_inodecache();
7165 ext4_exit_mballoc();
7167 ext4_exit_system_zone();
7169 ext4_exit_post_read_processing();
7171 ext4_exit_pending();
7174 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7175 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7176 MODULE_LICENSE("GPL");
7177 MODULE_SOFTDEP("pre: crc32c");
7178 module_init(ext4_init_fs)
7179 module_exit(ext4_exit_fs)