1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
27 #include "print-tree.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
44 #include <asm/cpufeature.h>
47 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
54 static const struct extent_io_ops btree_extent_io_ops;
55 static void end_workqueue_fn(struct btrfs_work *work);
56 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
57 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
58 struct btrfs_fs_info *fs_info);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
61 struct extent_io_tree *dirty_pages,
63 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
64 struct extent_io_tree *pinned_extents);
65 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
69 * btrfs_end_io_wq structs are used to do processing in task context when an IO
70 * is complete. This is used during reads to verify checksums, and it is used
71 * by writes to insert metadata for new file extents after IO is complete.
73 struct btrfs_end_io_wq {
77 struct btrfs_fs_info *info;
79 enum btrfs_wq_endio_type metadata;
80 struct btrfs_work work;
83 static struct kmem_cache *btrfs_end_io_wq_cache;
85 int __init btrfs_end_io_wq_init(void)
87 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 sizeof(struct btrfs_end_io_wq),
92 if (!btrfs_end_io_wq_cache)
97 void __cold btrfs_end_io_wq_exit(void)
99 kmem_cache_destroy(btrfs_end_io_wq_cache);
103 * async submit bios are used to offload expensive checksumming
104 * onto the worker threads. They checksum file and metadata bios
105 * just before they are sent down the IO stack.
107 struct async_submit_bio {
110 extent_submit_bio_start_t *submit_bio_start;
113 * bio_offset is optional, can be used if the pages in the bio
114 * can't tell us where in the file the bio should go
117 struct btrfs_work work;
122 * Lockdep class keys for extent_buffer->lock's in this root. For a given
123 * eb, the lockdep key is determined by the btrfs_root it belongs to and
124 * the level the eb occupies in the tree.
126 * Different roots are used for different purposes and may nest inside each
127 * other and they require separate keysets. As lockdep keys should be
128 * static, assign keysets according to the purpose of the root as indicated
129 * by btrfs_root->root_key.objectid. This ensures that all special purpose
130 * roots have separate keysets.
132 * Lock-nesting across peer nodes is always done with the immediate parent
133 * node locked thus preventing deadlock. As lockdep doesn't know this, use
134 * subclass to avoid triggering lockdep warning in such cases.
136 * The key is set by the readpage_end_io_hook after the buffer has passed
137 * csum validation but before the pages are unlocked. It is also set by
138 * btrfs_init_new_buffer on freshly allocated blocks.
140 * We also add a check to make sure the highest level of the tree is the
141 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
142 * needs update as well.
144 #ifdef CONFIG_DEBUG_LOCK_ALLOC
145 # if BTRFS_MAX_LEVEL != 8
149 static struct btrfs_lockdep_keyset {
150 u64 id; /* root objectid */
151 const char *name_stem; /* lock name stem */
152 char names[BTRFS_MAX_LEVEL + 1][20];
153 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
154 } btrfs_lockdep_keysets[] = {
155 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
156 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
157 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
158 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
159 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
160 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
161 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
162 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
163 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
164 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
165 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
166 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
167 { .id = 0, .name_stem = "tree" },
170 void __init btrfs_init_lockdep(void)
174 /* initialize lockdep class names */
175 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
176 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
178 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
179 snprintf(ks->names[j], sizeof(ks->names[j]),
180 "btrfs-%s-%02d", ks->name_stem, j);
184 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
187 struct btrfs_lockdep_keyset *ks;
189 BUG_ON(level >= ARRAY_SIZE(ks->keys));
191 /* find the matching keyset, id 0 is the default entry */
192 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
193 if (ks->id == objectid)
196 lockdep_set_class_and_name(&eb->lock,
197 &ks->keys[level], ks->names[level]);
203 * extents on the btree inode are pretty simple, there's one extent
204 * that covers the entire device
206 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
207 struct page *page, size_t pg_offset, u64 start, u64 len,
210 struct btrfs_fs_info *fs_info = inode->root->fs_info;
211 struct extent_map_tree *em_tree = &inode->extent_tree;
212 struct extent_map *em;
215 read_lock(&em_tree->lock);
216 em = lookup_extent_mapping(em_tree, start, len);
218 em->bdev = fs_info->fs_devices->latest_bdev;
219 read_unlock(&em_tree->lock);
222 read_unlock(&em_tree->lock);
224 em = alloc_extent_map();
226 em = ERR_PTR(-ENOMEM);
231 em->block_len = (u64)-1;
233 em->bdev = fs_info->fs_devices->latest_bdev;
235 write_lock(&em_tree->lock);
236 ret = add_extent_mapping(em_tree, em, 0);
237 if (ret == -EEXIST) {
239 em = lookup_extent_mapping(em_tree, start, len);
246 write_unlock(&em_tree->lock);
252 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
254 return crc32c(seed, data, len);
257 void btrfs_csum_final(u32 crc, u8 *result)
259 put_unaligned_le32(~crc, result);
263 * Compute the csum of a btree block and store the result to provided buffer.
265 * Returns error if the extent buffer cannot be mapped.
267 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
270 unsigned long cur_len;
271 unsigned long offset = BTRFS_CSUM_SIZE;
273 unsigned long map_start;
274 unsigned long map_len;
278 len = buf->len - offset;
281 * Note: we don't need to check for the err == 1 case here, as
282 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
283 * and 'min_len = 32' and the currently implemented mapping
284 * algorithm we cannot cross a page boundary.
286 err = map_private_extent_buffer(buf, offset, 32,
287 &kaddr, &map_start, &map_len);
290 cur_len = min(len, map_len - (offset - map_start));
291 crc = btrfs_csum_data(kaddr + offset - map_start,
296 memset(result, 0, BTRFS_CSUM_SIZE);
298 btrfs_csum_final(crc, result);
304 * we can't consider a given block up to date unless the transid of the
305 * block matches the transid in the parent node's pointer. This is how we
306 * detect blocks that either didn't get written at all or got written
307 * in the wrong place.
309 static int verify_parent_transid(struct extent_io_tree *io_tree,
310 struct extent_buffer *eb, u64 parent_transid,
313 struct extent_state *cached_state = NULL;
315 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
317 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
324 btrfs_tree_read_lock(eb);
325 btrfs_set_lock_blocking_read(eb);
328 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
330 if (extent_buffer_uptodate(eb) &&
331 btrfs_header_generation(eb) == parent_transid) {
335 btrfs_err_rl(eb->fs_info,
336 "parent transid verify failed on %llu wanted %llu found %llu",
338 parent_transid, btrfs_header_generation(eb));
342 * Things reading via commit roots that don't have normal protection,
343 * like send, can have a really old block in cache that may point at a
344 * block that has been freed and re-allocated. So don't clear uptodate
345 * if we find an eb that is under IO (dirty/writeback) because we could
346 * end up reading in the stale data and then writing it back out and
347 * making everybody very sad.
349 if (!extent_buffer_under_io(eb))
350 clear_extent_buffer_uptodate(eb);
352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 btrfs_tree_read_unlock_blocking(eb);
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
363 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
366 struct btrfs_super_block *disk_sb =
367 (struct btrfs_super_block *)raw_disk_sb;
368 u16 csum_type = btrfs_super_csum_type(disk_sb);
371 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
373 char result[sizeof(crc)];
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 * is filled with zeros and is included in the checksum.
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
384 if (memcmp(raw_disk_sb, result, sizeof(result)))
388 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
389 btrfs_err(fs_info, "unsupported checksum algorithm %u",
397 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
398 struct btrfs_key *first_key, u64 parent_transid)
400 struct btrfs_fs_info *fs_info = eb->fs_info;
402 struct btrfs_key found_key;
405 found_level = btrfs_header_level(eb);
406 if (found_level != level) {
407 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
408 KERN_ERR "BTRFS: tree level check failed\n");
410 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
411 eb->start, level, found_level);
419 * For live tree block (new tree blocks in current transaction),
420 * we need proper lock context to avoid race, which is impossible here.
421 * So we only checks tree blocks which is read from disk, whose
422 * generation <= fs_info->last_trans_committed.
424 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
427 btrfs_node_key_to_cpu(eb, &found_key, 0);
429 btrfs_item_key_to_cpu(eb, &found_key, 0);
430 ret = btrfs_comp_cpu_keys(first_key, &found_key);
433 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
434 KERN_ERR "BTRFS: tree first key check failed\n");
436 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
437 eb->start, parent_transid, first_key->objectid,
438 first_key->type, first_key->offset,
439 found_key.objectid, found_key.type,
446 * helper to read a given tree block, doing retries as required when
447 * the checksums don't match and we have alternate mirrors to try.
449 * @parent_transid: expected transid, skip check if 0
450 * @level: expected level, mandatory check
451 * @first_key: expected key of first slot, skip check if NULL
453 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
454 u64 parent_transid, int level,
455 struct btrfs_key *first_key)
457 struct btrfs_fs_info *fs_info = eb->fs_info;
458 struct extent_io_tree *io_tree;
463 int failed_mirror = 0;
465 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
467 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
468 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
471 if (verify_parent_transid(io_tree, eb,
474 else if (btrfs_verify_level_key(eb, level,
475 first_key, parent_transid))
481 num_copies = btrfs_num_copies(fs_info,
486 if (!failed_mirror) {
488 failed_mirror = eb->read_mirror;
492 if (mirror_num == failed_mirror)
495 if (mirror_num > num_copies)
499 if (failed && !ret && failed_mirror)
500 btrfs_repair_eb_io_failure(eb, failed_mirror);
506 * checksum a dirty tree block before IO. This has extra checks to make sure
507 * we only fill in the checksum field in the first page of a multi-page block
510 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
512 u64 start = page_offset(page);
514 u8 result[BTRFS_CSUM_SIZE];
515 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
516 struct extent_buffer *eb;
518 eb = (struct extent_buffer *)page->private;
519 if (page != eb->pages[0])
522 found_start = btrfs_header_bytenr(eb);
524 * Please do not consolidate these warnings into a single if.
525 * It is useful to know what went wrong.
527 if (WARN_ON(found_start != start))
529 if (WARN_ON(!PageUptodate(page)))
532 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
533 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
535 if (csum_tree_block(eb, result))
538 write_extent_buffer(eb, result, 0, csum_size);
542 static int check_tree_block_fsid(struct extent_buffer *eb)
544 struct btrfs_fs_info *fs_info = eb->fs_info;
545 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
546 u8 fsid[BTRFS_FSID_SIZE];
549 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
554 * Checking the incompat flag is only valid for the current
555 * fs. For seed devices it's forbidden to have their uuid
556 * changed so reading ->fsid in this case is fine
558 if (fs_devices == fs_info->fs_devices &&
559 btrfs_fs_incompat(fs_info, METADATA_UUID))
560 metadata_uuid = fs_devices->metadata_uuid;
562 metadata_uuid = fs_devices->fsid;
564 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
568 fs_devices = fs_devices->seed;
573 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
574 u64 phy_offset, struct page *page,
575 u64 start, u64 end, int mirror)
579 struct extent_buffer *eb;
580 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
581 struct btrfs_fs_info *fs_info = root->fs_info;
582 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
584 u8 result[BTRFS_CSUM_SIZE];
590 eb = (struct extent_buffer *)page->private;
592 /* the pending IO might have been the only thing that kept this buffer
593 * in memory. Make sure we have a ref for all this other checks
595 extent_buffer_get(eb);
597 reads_done = atomic_dec_and_test(&eb->io_pages);
601 eb->read_mirror = mirror;
602 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
607 found_start = btrfs_header_bytenr(eb);
608 if (found_start != eb->start) {
609 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
610 eb->start, found_start);
614 if (check_tree_block_fsid(eb)) {
615 btrfs_err_rl(fs_info, "bad fsid on block %llu",
620 found_level = btrfs_header_level(eb);
621 if (found_level >= BTRFS_MAX_LEVEL) {
622 btrfs_err(fs_info, "bad tree block level %d on %llu",
623 (int)btrfs_header_level(eb), eb->start);
628 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
631 ret = csum_tree_block(eb, result);
635 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
639 memcpy(&found, result, csum_size);
641 read_extent_buffer(eb, &val, 0, csum_size);
642 btrfs_warn_rl(fs_info,
643 "%s checksum verify failed on %llu wanted %x found %x level %d",
644 fs_info->sb->s_id, eb->start,
645 val, found, btrfs_header_level(eb));
651 * If this is a leaf block and it is corrupt, set the corrupt bit so
652 * that we don't try and read the other copies of this block, just
655 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
656 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
660 if (found_level > 0 && btrfs_check_node(fs_info, eb))
664 set_extent_buffer_uptodate(eb);
667 "block=%llu read time tree block corruption detected",
671 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
672 btree_readahead_hook(eb, ret);
676 * our io error hook is going to dec the io pages
677 * again, we have to make sure it has something
680 atomic_inc(&eb->io_pages);
681 clear_extent_buffer_uptodate(eb);
683 free_extent_buffer(eb);
688 static void end_workqueue_bio(struct bio *bio)
690 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
691 struct btrfs_fs_info *fs_info;
692 struct btrfs_workqueue *wq;
693 btrfs_work_func_t func;
695 fs_info = end_io_wq->info;
696 end_io_wq->status = bio->bi_status;
698 if (bio_op(bio) == REQ_OP_WRITE) {
699 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
700 wq = fs_info->endio_meta_write_workers;
701 func = btrfs_endio_meta_write_helper;
702 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
703 wq = fs_info->endio_freespace_worker;
704 func = btrfs_freespace_write_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
706 wq = fs_info->endio_raid56_workers;
707 func = btrfs_endio_raid56_helper;
709 wq = fs_info->endio_write_workers;
710 func = btrfs_endio_write_helper;
713 if (unlikely(end_io_wq->metadata ==
714 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
715 wq = fs_info->endio_repair_workers;
716 func = btrfs_endio_repair_helper;
717 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
718 wq = fs_info->endio_raid56_workers;
719 func = btrfs_endio_raid56_helper;
720 } else if (end_io_wq->metadata) {
721 wq = fs_info->endio_meta_workers;
722 func = btrfs_endio_meta_helper;
724 wq = fs_info->endio_workers;
725 func = btrfs_endio_helper;
729 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
730 btrfs_queue_work(wq, &end_io_wq->work);
733 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
734 enum btrfs_wq_endio_type metadata)
736 struct btrfs_end_io_wq *end_io_wq;
738 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
740 return BLK_STS_RESOURCE;
742 end_io_wq->private = bio->bi_private;
743 end_io_wq->end_io = bio->bi_end_io;
744 end_io_wq->info = info;
745 end_io_wq->status = 0;
746 end_io_wq->bio = bio;
747 end_io_wq->metadata = metadata;
749 bio->bi_private = end_io_wq;
750 bio->bi_end_io = end_workqueue_bio;
754 static void run_one_async_start(struct btrfs_work *work)
756 struct async_submit_bio *async;
759 async = container_of(work, struct async_submit_bio, work);
760 ret = async->submit_bio_start(async->private_data, async->bio,
767 * In order to insert checksums into the metadata in large chunks, we wait
768 * until bio submission time. All the pages in the bio are checksummed and
769 * sums are attached onto the ordered extent record.
771 * At IO completion time the csums attached on the ordered extent record are
772 * inserted into the tree.
774 static void run_one_async_done(struct btrfs_work *work)
776 struct async_submit_bio *async;
780 async = container_of(work, struct async_submit_bio, work);
781 inode = async->private_data;
783 /* If an error occurred we just want to clean up the bio and move on */
785 async->bio->bi_status = async->status;
786 bio_endio(async->bio);
790 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
791 async->mirror_num, 1);
793 async->bio->bi_status = ret;
794 bio_endio(async->bio);
798 static void run_one_async_free(struct btrfs_work *work)
800 struct async_submit_bio *async;
802 async = container_of(work, struct async_submit_bio, work);
806 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
807 int mirror_num, unsigned long bio_flags,
808 u64 bio_offset, void *private_data,
809 extent_submit_bio_start_t *submit_bio_start)
811 struct async_submit_bio *async;
813 async = kmalloc(sizeof(*async), GFP_NOFS);
815 return BLK_STS_RESOURCE;
817 async->private_data = private_data;
819 async->mirror_num = mirror_num;
820 async->submit_bio_start = submit_bio_start;
822 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
823 run_one_async_done, run_one_async_free);
825 async->bio_offset = bio_offset;
829 if (op_is_sync(bio->bi_opf))
830 btrfs_set_work_high_priority(&async->work);
832 btrfs_queue_work(fs_info->workers, &async->work);
836 static blk_status_t btree_csum_one_bio(struct bio *bio)
838 struct bio_vec *bvec;
839 struct btrfs_root *root;
841 struct bvec_iter_all iter_all;
843 ASSERT(!bio_flagged(bio, BIO_CLONED));
844 bio_for_each_segment_all(bvec, bio, i, iter_all) {
845 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
846 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
851 return errno_to_blk_status(ret);
854 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
858 * when we're called for a write, we're already in the async
859 * submission context. Just jump into btrfs_map_bio
861 return btree_csum_one_bio(bio);
864 static int check_async_write(struct btrfs_inode *bi)
866 if (atomic_read(&bi->sync_writers))
869 if (static_cpu_has(X86_FEATURE_XMM4_2))
875 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
876 int mirror_num, unsigned long bio_flags,
879 struct inode *inode = private_data;
880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
881 int async = check_async_write(BTRFS_I(inode));
884 if (bio_op(bio) != REQ_OP_WRITE) {
886 * called for a read, do the setup so that checksum validation
887 * can happen in the async kernel threads
889 ret = btrfs_bio_wq_end_io(fs_info, bio,
890 BTRFS_WQ_ENDIO_METADATA);
893 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
895 ret = btree_csum_one_bio(bio);
898 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
901 * kthread helpers are used to submit writes so that
902 * checksumming can happen in parallel across all CPUs
904 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
905 bio_offset, private_data,
906 btree_submit_bio_start);
914 bio->bi_status = ret;
919 #ifdef CONFIG_MIGRATION
920 static int btree_migratepage(struct address_space *mapping,
921 struct page *newpage, struct page *page,
922 enum migrate_mode mode)
925 * we can't safely write a btree page from here,
926 * we haven't done the locking hook
931 * Buffers may be managed in a filesystem specific way.
932 * We must have no buffers or drop them.
934 if (page_has_private(page) &&
935 !try_to_release_page(page, GFP_KERNEL))
937 return migrate_page(mapping, newpage, page, mode);
942 static int btree_writepages(struct address_space *mapping,
943 struct writeback_control *wbc)
945 struct btrfs_fs_info *fs_info;
948 if (wbc->sync_mode == WB_SYNC_NONE) {
950 if (wbc->for_kupdate)
953 fs_info = BTRFS_I(mapping->host)->root->fs_info;
954 /* this is a bit racy, but that's ok */
955 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
956 BTRFS_DIRTY_METADATA_THRESH,
957 fs_info->dirty_metadata_batch);
961 return btree_write_cache_pages(mapping, wbc);
964 static int btree_readpage(struct file *file, struct page *page)
966 struct extent_io_tree *tree;
967 tree = &BTRFS_I(page->mapping->host)->io_tree;
968 return extent_read_full_page(tree, page, btree_get_extent, 0);
971 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
973 if (PageWriteback(page) || PageDirty(page))
976 return try_release_extent_buffer(page);
979 static void btree_invalidatepage(struct page *page, unsigned int offset,
982 struct extent_io_tree *tree;
983 tree = &BTRFS_I(page->mapping->host)->io_tree;
984 extent_invalidatepage(tree, page, offset);
985 btree_releasepage(page, GFP_NOFS);
986 if (PagePrivate(page)) {
987 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
988 "page private not zero on page %llu",
989 (unsigned long long)page_offset(page));
990 ClearPagePrivate(page);
991 set_page_private(page, 0);
996 static int btree_set_page_dirty(struct page *page)
999 struct extent_buffer *eb;
1001 BUG_ON(!PagePrivate(page));
1002 eb = (struct extent_buffer *)page->private;
1004 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1005 BUG_ON(!atomic_read(&eb->refs));
1006 btrfs_assert_tree_locked(eb);
1008 return __set_page_dirty_nobuffers(page);
1011 static const struct address_space_operations btree_aops = {
1012 .readpage = btree_readpage,
1013 .writepages = btree_writepages,
1014 .releasepage = btree_releasepage,
1015 .invalidatepage = btree_invalidatepage,
1016 #ifdef CONFIG_MIGRATION
1017 .migratepage = btree_migratepage,
1019 .set_page_dirty = btree_set_page_dirty,
1022 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1024 struct extent_buffer *buf = NULL;
1025 struct inode *btree_inode = fs_info->btree_inode;
1028 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1032 ret = read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, buf,
1035 free_extent_buffer_stale(buf);
1037 free_extent_buffer(buf);
1040 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1041 int mirror_num, struct extent_buffer **eb)
1043 struct extent_buffer *buf = NULL;
1044 struct inode *btree_inode = fs_info->btree_inode;
1045 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1048 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1052 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1054 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1057 free_extent_buffer_stale(buf);
1061 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1062 free_extent_buffer_stale(buf);
1064 } else if (extent_buffer_uptodate(buf)) {
1067 free_extent_buffer(buf);
1072 struct extent_buffer *btrfs_find_create_tree_block(
1073 struct btrfs_fs_info *fs_info,
1076 if (btrfs_is_testing(fs_info))
1077 return alloc_test_extent_buffer(fs_info, bytenr);
1078 return alloc_extent_buffer(fs_info, bytenr);
1082 * Read tree block at logical address @bytenr and do variant basic but critical
1085 * @parent_transid: expected transid of this tree block, skip check if 0
1086 * @level: expected level, mandatory check
1087 * @first_key: expected key in slot 0, skip check if NULL
1089 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1090 u64 parent_transid, int level,
1091 struct btrfs_key *first_key)
1093 struct extent_buffer *buf = NULL;
1096 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1100 ret = btree_read_extent_buffer_pages(buf, parent_transid,
1103 free_extent_buffer_stale(buf);
1104 return ERR_PTR(ret);
1110 void btrfs_clean_tree_block(struct extent_buffer *buf)
1112 struct btrfs_fs_info *fs_info = buf->fs_info;
1113 if (btrfs_header_generation(buf) ==
1114 fs_info->running_transaction->transid) {
1115 btrfs_assert_tree_locked(buf);
1117 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1118 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1120 fs_info->dirty_metadata_batch);
1121 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1122 btrfs_set_lock_blocking_write(buf);
1123 clear_extent_buffer_dirty(buf);
1128 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1130 struct btrfs_subvolume_writers *writers;
1133 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1135 return ERR_PTR(-ENOMEM);
1137 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1140 return ERR_PTR(ret);
1143 init_waitqueue_head(&writers->wait);
1148 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1150 percpu_counter_destroy(&writers->counter);
1154 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1157 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1159 root->commit_root = NULL;
1161 root->orphan_cleanup_state = 0;
1163 root->last_trans = 0;
1164 root->highest_objectid = 0;
1165 root->nr_delalloc_inodes = 0;
1166 root->nr_ordered_extents = 0;
1167 root->inode_tree = RB_ROOT;
1168 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1169 root->block_rsv = NULL;
1171 INIT_LIST_HEAD(&root->dirty_list);
1172 INIT_LIST_HEAD(&root->root_list);
1173 INIT_LIST_HEAD(&root->delalloc_inodes);
1174 INIT_LIST_HEAD(&root->delalloc_root);
1175 INIT_LIST_HEAD(&root->ordered_extents);
1176 INIT_LIST_HEAD(&root->ordered_root);
1177 INIT_LIST_HEAD(&root->reloc_dirty_list);
1178 INIT_LIST_HEAD(&root->logged_list[0]);
1179 INIT_LIST_HEAD(&root->logged_list[1]);
1180 spin_lock_init(&root->inode_lock);
1181 spin_lock_init(&root->delalloc_lock);
1182 spin_lock_init(&root->ordered_extent_lock);
1183 spin_lock_init(&root->accounting_lock);
1184 spin_lock_init(&root->log_extents_lock[0]);
1185 spin_lock_init(&root->log_extents_lock[1]);
1186 spin_lock_init(&root->qgroup_meta_rsv_lock);
1187 mutex_init(&root->objectid_mutex);
1188 mutex_init(&root->log_mutex);
1189 mutex_init(&root->ordered_extent_mutex);
1190 mutex_init(&root->delalloc_mutex);
1191 init_waitqueue_head(&root->log_writer_wait);
1192 init_waitqueue_head(&root->log_commit_wait[0]);
1193 init_waitqueue_head(&root->log_commit_wait[1]);
1194 INIT_LIST_HEAD(&root->log_ctxs[0]);
1195 INIT_LIST_HEAD(&root->log_ctxs[1]);
1196 atomic_set(&root->log_commit[0], 0);
1197 atomic_set(&root->log_commit[1], 0);
1198 atomic_set(&root->log_writers, 0);
1199 atomic_set(&root->log_batch, 0);
1200 refcount_set(&root->refs, 1);
1201 atomic_set(&root->will_be_snapshotted, 0);
1202 atomic_set(&root->snapshot_force_cow, 0);
1203 atomic_set(&root->nr_swapfiles, 0);
1204 root->log_transid = 0;
1205 root->log_transid_committed = -1;
1206 root->last_log_commit = 0;
1208 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1209 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1211 memset(&root->root_key, 0, sizeof(root->root_key));
1212 memset(&root->root_item, 0, sizeof(root->root_item));
1213 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1215 root->defrag_trans_start = fs_info->generation;
1217 root->defrag_trans_start = 0;
1218 root->root_key.objectid = objectid;
1221 spin_lock_init(&root->root_item_lock);
1222 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1225 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1228 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1230 root->fs_info = fs_info;
1234 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1235 /* Should only be used by the testing infrastructure */
1236 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1238 struct btrfs_root *root;
1241 return ERR_PTR(-EINVAL);
1243 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1245 return ERR_PTR(-ENOMEM);
1247 /* We don't use the stripesize in selftest, set it as sectorsize */
1248 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1249 root->alloc_bytenr = 0;
1255 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1256 struct btrfs_fs_info *fs_info,
1259 struct extent_buffer *leaf;
1260 struct btrfs_root *tree_root = fs_info->tree_root;
1261 struct btrfs_root *root;
1262 struct btrfs_key key;
1263 unsigned int nofs_flag;
1265 uuid_le uuid = NULL_UUID_LE;
1268 * We're holding a transaction handle, so use a NOFS memory allocation
1269 * context to avoid deadlock if reclaim happens.
1271 nofs_flag = memalloc_nofs_save();
1272 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1273 memalloc_nofs_restore(nofs_flag);
1275 return ERR_PTR(-ENOMEM);
1277 __setup_root(root, fs_info, objectid);
1278 root->root_key.objectid = objectid;
1279 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1280 root->root_key.offset = 0;
1282 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1284 ret = PTR_ERR(leaf);
1290 btrfs_mark_buffer_dirty(leaf);
1292 root->commit_root = btrfs_root_node(root);
1293 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1295 root->root_item.flags = 0;
1296 root->root_item.byte_limit = 0;
1297 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1298 btrfs_set_root_generation(&root->root_item, trans->transid);
1299 btrfs_set_root_level(&root->root_item, 0);
1300 btrfs_set_root_refs(&root->root_item, 1);
1301 btrfs_set_root_used(&root->root_item, leaf->len);
1302 btrfs_set_root_last_snapshot(&root->root_item, 0);
1303 btrfs_set_root_dirid(&root->root_item, 0);
1304 if (is_fstree(objectid))
1306 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1307 root->root_item.drop_level = 0;
1309 key.objectid = objectid;
1310 key.type = BTRFS_ROOT_ITEM_KEY;
1312 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1316 btrfs_tree_unlock(leaf);
1322 btrfs_tree_unlock(leaf);
1323 free_extent_buffer(root->commit_root);
1324 free_extent_buffer(leaf);
1328 return ERR_PTR(ret);
1331 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1332 struct btrfs_fs_info *fs_info)
1334 struct btrfs_root *root;
1335 struct extent_buffer *leaf;
1337 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1339 return ERR_PTR(-ENOMEM);
1341 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1343 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1344 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1345 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1348 * DON'T set REF_COWS for log trees
1350 * log trees do not get reference counted because they go away
1351 * before a real commit is actually done. They do store pointers
1352 * to file data extents, and those reference counts still get
1353 * updated (along with back refs to the log tree).
1356 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1360 return ERR_CAST(leaf);
1365 btrfs_mark_buffer_dirty(root->node);
1366 btrfs_tree_unlock(root->node);
1370 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1371 struct btrfs_fs_info *fs_info)
1373 struct btrfs_root *log_root;
1375 log_root = alloc_log_tree(trans, fs_info);
1376 if (IS_ERR(log_root))
1377 return PTR_ERR(log_root);
1378 WARN_ON(fs_info->log_root_tree);
1379 fs_info->log_root_tree = log_root;
1383 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1384 struct btrfs_root *root)
1386 struct btrfs_fs_info *fs_info = root->fs_info;
1387 struct btrfs_root *log_root;
1388 struct btrfs_inode_item *inode_item;
1390 log_root = alloc_log_tree(trans, fs_info);
1391 if (IS_ERR(log_root))
1392 return PTR_ERR(log_root);
1394 log_root->last_trans = trans->transid;
1395 log_root->root_key.offset = root->root_key.objectid;
1397 inode_item = &log_root->root_item.inode;
1398 btrfs_set_stack_inode_generation(inode_item, 1);
1399 btrfs_set_stack_inode_size(inode_item, 3);
1400 btrfs_set_stack_inode_nlink(inode_item, 1);
1401 btrfs_set_stack_inode_nbytes(inode_item,
1403 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1405 btrfs_set_root_node(&log_root->root_item, log_root->node);
1407 WARN_ON(root->log_root);
1408 root->log_root = log_root;
1409 root->log_transid = 0;
1410 root->log_transid_committed = -1;
1411 root->last_log_commit = 0;
1415 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1416 struct btrfs_key *key)
1418 struct btrfs_root *root;
1419 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1420 struct btrfs_path *path;
1425 path = btrfs_alloc_path();
1427 return ERR_PTR(-ENOMEM);
1429 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1435 __setup_root(root, fs_info, key->objectid);
1437 ret = btrfs_find_root(tree_root, key, path,
1438 &root->root_item, &root->root_key);
1445 generation = btrfs_root_generation(&root->root_item);
1446 level = btrfs_root_level(&root->root_item);
1447 root->node = read_tree_block(fs_info,
1448 btrfs_root_bytenr(&root->root_item),
1449 generation, level, NULL);
1450 if (IS_ERR(root->node)) {
1451 ret = PTR_ERR(root->node);
1453 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1455 free_extent_buffer(root->node);
1458 root->commit_root = btrfs_root_node(root);
1460 btrfs_free_path(path);
1466 root = ERR_PTR(ret);
1470 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1471 struct btrfs_key *location)
1473 struct btrfs_root *root;
1475 root = btrfs_read_tree_root(tree_root, location);
1479 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1480 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1481 btrfs_check_and_init_root_item(&root->root_item);
1487 int btrfs_init_fs_root(struct btrfs_root *root)
1490 struct btrfs_subvolume_writers *writers;
1492 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1493 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1495 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1500 writers = btrfs_alloc_subvolume_writers();
1501 if (IS_ERR(writers)) {
1502 ret = PTR_ERR(writers);
1505 root->subv_writers = writers;
1507 btrfs_init_free_ino_ctl(root);
1508 spin_lock_init(&root->ino_cache_lock);
1509 init_waitqueue_head(&root->ino_cache_wait);
1511 ret = get_anon_bdev(&root->anon_dev);
1515 mutex_lock(&root->objectid_mutex);
1516 ret = btrfs_find_highest_objectid(root,
1517 &root->highest_objectid);
1519 mutex_unlock(&root->objectid_mutex);
1523 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1525 mutex_unlock(&root->objectid_mutex);
1529 /* The caller is responsible to call btrfs_free_fs_root */
1533 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1536 struct btrfs_root *root;
1538 spin_lock(&fs_info->fs_roots_radix_lock);
1539 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1540 (unsigned long)root_id);
1541 spin_unlock(&fs_info->fs_roots_radix_lock);
1545 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1546 struct btrfs_root *root)
1550 ret = radix_tree_preload(GFP_NOFS);
1554 spin_lock(&fs_info->fs_roots_radix_lock);
1555 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1556 (unsigned long)root->root_key.objectid,
1559 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1560 spin_unlock(&fs_info->fs_roots_radix_lock);
1561 radix_tree_preload_end();
1566 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1567 struct btrfs_key *location,
1570 struct btrfs_root *root;
1571 struct btrfs_path *path;
1572 struct btrfs_key key;
1575 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1576 return fs_info->tree_root;
1577 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1578 return fs_info->extent_root;
1579 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1580 return fs_info->chunk_root;
1581 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1582 return fs_info->dev_root;
1583 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1584 return fs_info->csum_root;
1585 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1586 return fs_info->quota_root ? fs_info->quota_root :
1588 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1589 return fs_info->uuid_root ? fs_info->uuid_root :
1591 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1592 return fs_info->free_space_root ? fs_info->free_space_root :
1595 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1597 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1598 return ERR_PTR(-ENOENT);
1602 root = btrfs_read_fs_root(fs_info->tree_root, location);
1606 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1611 ret = btrfs_init_fs_root(root);
1615 path = btrfs_alloc_path();
1620 key.objectid = BTRFS_ORPHAN_OBJECTID;
1621 key.type = BTRFS_ORPHAN_ITEM_KEY;
1622 key.offset = location->objectid;
1624 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1625 btrfs_free_path(path);
1629 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1631 ret = btrfs_insert_fs_root(fs_info, root);
1633 if (ret == -EEXIST) {
1634 btrfs_free_fs_root(root);
1641 btrfs_free_fs_root(root);
1642 return ERR_PTR(ret);
1645 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1647 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1649 struct btrfs_device *device;
1650 struct backing_dev_info *bdi;
1653 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1656 bdi = device->bdev->bd_bdi;
1657 if (bdi_congested(bdi, bdi_bits)) {
1667 * called by the kthread helper functions to finally call the bio end_io
1668 * functions. This is where read checksum verification actually happens
1670 static void end_workqueue_fn(struct btrfs_work *work)
1673 struct btrfs_end_io_wq *end_io_wq;
1675 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1676 bio = end_io_wq->bio;
1678 bio->bi_status = end_io_wq->status;
1679 bio->bi_private = end_io_wq->private;
1680 bio->bi_end_io = end_io_wq->end_io;
1681 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1685 static int cleaner_kthread(void *arg)
1687 struct btrfs_root *root = arg;
1688 struct btrfs_fs_info *fs_info = root->fs_info;
1694 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1696 /* Make the cleaner go to sleep early. */
1697 if (btrfs_need_cleaner_sleep(fs_info))
1701 * Do not do anything if we might cause open_ctree() to block
1702 * before we have finished mounting the filesystem.
1704 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1707 if (!mutex_trylock(&fs_info->cleaner_mutex))
1711 * Avoid the problem that we change the status of the fs
1712 * during the above check and trylock.
1714 if (btrfs_need_cleaner_sleep(fs_info)) {
1715 mutex_unlock(&fs_info->cleaner_mutex);
1719 btrfs_run_delayed_iputs(fs_info);
1721 again = btrfs_clean_one_deleted_snapshot(root);
1722 mutex_unlock(&fs_info->cleaner_mutex);
1725 * The defragger has dealt with the R/O remount and umount,
1726 * needn't do anything special here.
1728 btrfs_run_defrag_inodes(fs_info);
1731 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1732 * with relocation (btrfs_relocate_chunk) and relocation
1733 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1734 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1735 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1736 * unused block groups.
1738 btrfs_delete_unused_bgs(fs_info);
1740 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1741 if (kthread_should_park())
1743 if (kthread_should_stop())
1746 set_current_state(TASK_INTERRUPTIBLE);
1748 __set_current_state(TASK_RUNNING);
1753 static int transaction_kthread(void *arg)
1755 struct btrfs_root *root = arg;
1756 struct btrfs_fs_info *fs_info = root->fs_info;
1757 struct btrfs_trans_handle *trans;
1758 struct btrfs_transaction *cur;
1761 unsigned long delay;
1765 cannot_commit = false;
1766 delay = HZ * fs_info->commit_interval;
1767 mutex_lock(&fs_info->transaction_kthread_mutex);
1769 spin_lock(&fs_info->trans_lock);
1770 cur = fs_info->running_transaction;
1772 spin_unlock(&fs_info->trans_lock);
1776 now = ktime_get_seconds();
1777 if (cur->state < TRANS_STATE_BLOCKED &&
1778 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1779 (now < cur->start_time ||
1780 now - cur->start_time < fs_info->commit_interval)) {
1781 spin_unlock(&fs_info->trans_lock);
1785 transid = cur->transid;
1786 spin_unlock(&fs_info->trans_lock);
1788 /* If the file system is aborted, this will always fail. */
1789 trans = btrfs_attach_transaction(root);
1790 if (IS_ERR(trans)) {
1791 if (PTR_ERR(trans) != -ENOENT)
1792 cannot_commit = true;
1795 if (transid == trans->transid) {
1796 btrfs_commit_transaction(trans);
1798 btrfs_end_transaction(trans);
1801 wake_up_process(fs_info->cleaner_kthread);
1802 mutex_unlock(&fs_info->transaction_kthread_mutex);
1804 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1805 &fs_info->fs_state)))
1806 btrfs_cleanup_transaction(fs_info);
1807 if (!kthread_should_stop() &&
1808 (!btrfs_transaction_blocked(fs_info) ||
1810 schedule_timeout_interruptible(delay);
1811 } while (!kthread_should_stop());
1816 * this will find the highest generation in the array of
1817 * root backups. The index of the highest array is returned,
1818 * or -1 if we can't find anything.
1820 * We check to make sure the array is valid by comparing the
1821 * generation of the latest root in the array with the generation
1822 * in the super block. If they don't match we pitch it.
1824 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1827 int newest_index = -1;
1828 struct btrfs_root_backup *root_backup;
1831 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1832 root_backup = info->super_copy->super_roots + i;
1833 cur = btrfs_backup_tree_root_gen(root_backup);
1834 if (cur == newest_gen)
1838 /* check to see if we actually wrapped around */
1839 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1840 root_backup = info->super_copy->super_roots;
1841 cur = btrfs_backup_tree_root_gen(root_backup);
1842 if (cur == newest_gen)
1845 return newest_index;
1850 * find the oldest backup so we know where to store new entries
1851 * in the backup array. This will set the backup_root_index
1852 * field in the fs_info struct
1854 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1857 int newest_index = -1;
1859 newest_index = find_newest_super_backup(info, newest_gen);
1860 /* if there was garbage in there, just move along */
1861 if (newest_index == -1) {
1862 info->backup_root_index = 0;
1864 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1869 * copy all the root pointers into the super backup array.
1870 * this will bump the backup pointer by one when it is
1873 static void backup_super_roots(struct btrfs_fs_info *info)
1876 struct btrfs_root_backup *root_backup;
1879 next_backup = info->backup_root_index;
1880 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1881 BTRFS_NUM_BACKUP_ROOTS;
1884 * just overwrite the last backup if we're at the same generation
1885 * this happens only at umount
1887 root_backup = info->super_for_commit->super_roots + last_backup;
1888 if (btrfs_backup_tree_root_gen(root_backup) ==
1889 btrfs_header_generation(info->tree_root->node))
1890 next_backup = last_backup;
1892 root_backup = info->super_for_commit->super_roots + next_backup;
1895 * make sure all of our padding and empty slots get zero filled
1896 * regardless of which ones we use today
1898 memset(root_backup, 0, sizeof(*root_backup));
1900 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1902 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1903 btrfs_set_backup_tree_root_gen(root_backup,
1904 btrfs_header_generation(info->tree_root->node));
1906 btrfs_set_backup_tree_root_level(root_backup,
1907 btrfs_header_level(info->tree_root->node));
1909 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1910 btrfs_set_backup_chunk_root_gen(root_backup,
1911 btrfs_header_generation(info->chunk_root->node));
1912 btrfs_set_backup_chunk_root_level(root_backup,
1913 btrfs_header_level(info->chunk_root->node));
1915 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1916 btrfs_set_backup_extent_root_gen(root_backup,
1917 btrfs_header_generation(info->extent_root->node));
1918 btrfs_set_backup_extent_root_level(root_backup,
1919 btrfs_header_level(info->extent_root->node));
1922 * we might commit during log recovery, which happens before we set
1923 * the fs_root. Make sure it is valid before we fill it in.
1925 if (info->fs_root && info->fs_root->node) {
1926 btrfs_set_backup_fs_root(root_backup,
1927 info->fs_root->node->start);
1928 btrfs_set_backup_fs_root_gen(root_backup,
1929 btrfs_header_generation(info->fs_root->node));
1930 btrfs_set_backup_fs_root_level(root_backup,
1931 btrfs_header_level(info->fs_root->node));
1934 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1935 btrfs_set_backup_dev_root_gen(root_backup,
1936 btrfs_header_generation(info->dev_root->node));
1937 btrfs_set_backup_dev_root_level(root_backup,
1938 btrfs_header_level(info->dev_root->node));
1940 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1941 btrfs_set_backup_csum_root_gen(root_backup,
1942 btrfs_header_generation(info->csum_root->node));
1943 btrfs_set_backup_csum_root_level(root_backup,
1944 btrfs_header_level(info->csum_root->node));
1946 btrfs_set_backup_total_bytes(root_backup,
1947 btrfs_super_total_bytes(info->super_copy));
1948 btrfs_set_backup_bytes_used(root_backup,
1949 btrfs_super_bytes_used(info->super_copy));
1950 btrfs_set_backup_num_devices(root_backup,
1951 btrfs_super_num_devices(info->super_copy));
1954 * if we don't copy this out to the super_copy, it won't get remembered
1955 * for the next commit
1957 memcpy(&info->super_copy->super_roots,
1958 &info->super_for_commit->super_roots,
1959 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1963 * this copies info out of the root backup array and back into
1964 * the in-memory super block. It is meant to help iterate through
1965 * the array, so you send it the number of backups you've already
1966 * tried and the last backup index you used.
1968 * this returns -1 when it has tried all the backups
1970 static noinline int next_root_backup(struct btrfs_fs_info *info,
1971 struct btrfs_super_block *super,
1972 int *num_backups_tried, int *backup_index)
1974 struct btrfs_root_backup *root_backup;
1975 int newest = *backup_index;
1977 if (*num_backups_tried == 0) {
1978 u64 gen = btrfs_super_generation(super);
1980 newest = find_newest_super_backup(info, gen);
1984 *backup_index = newest;
1985 *num_backups_tried = 1;
1986 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1987 /* we've tried all the backups, all done */
1990 /* jump to the next oldest backup */
1991 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1992 BTRFS_NUM_BACKUP_ROOTS;
1993 *backup_index = newest;
1994 *num_backups_tried += 1;
1996 root_backup = super->super_roots + newest;
1998 btrfs_set_super_generation(super,
1999 btrfs_backup_tree_root_gen(root_backup));
2000 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2001 btrfs_set_super_root_level(super,
2002 btrfs_backup_tree_root_level(root_backup));
2003 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2006 * fixme: the total bytes and num_devices need to match or we should
2009 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2010 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2014 /* helper to cleanup workers */
2015 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2017 btrfs_destroy_workqueue(fs_info->fixup_workers);
2018 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2019 btrfs_destroy_workqueue(fs_info->workers);
2020 btrfs_destroy_workqueue(fs_info->endio_workers);
2021 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2022 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2023 btrfs_destroy_workqueue(fs_info->rmw_workers);
2024 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2025 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2026 btrfs_destroy_workqueue(fs_info->submit_workers);
2027 btrfs_destroy_workqueue(fs_info->delayed_workers);
2028 btrfs_destroy_workqueue(fs_info->caching_workers);
2029 btrfs_destroy_workqueue(fs_info->readahead_workers);
2030 btrfs_destroy_workqueue(fs_info->flush_workers);
2031 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2032 btrfs_destroy_workqueue(fs_info->extent_workers);
2034 * Now that all other work queues are destroyed, we can safely destroy
2035 * the queues used for metadata I/O, since tasks from those other work
2036 * queues can do metadata I/O operations.
2038 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2039 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2042 static void free_root_extent_buffers(struct btrfs_root *root)
2045 free_extent_buffer(root->node);
2046 free_extent_buffer(root->commit_root);
2048 root->commit_root = NULL;
2052 /* helper to cleanup tree roots */
2053 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2055 free_root_extent_buffers(info->tree_root);
2057 free_root_extent_buffers(info->dev_root);
2058 free_root_extent_buffers(info->extent_root);
2059 free_root_extent_buffers(info->csum_root);
2060 free_root_extent_buffers(info->quota_root);
2061 free_root_extent_buffers(info->uuid_root);
2063 free_root_extent_buffers(info->chunk_root);
2064 free_root_extent_buffers(info->free_space_root);
2067 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2070 struct btrfs_root *gang[8];
2073 while (!list_empty(&fs_info->dead_roots)) {
2074 gang[0] = list_entry(fs_info->dead_roots.next,
2075 struct btrfs_root, root_list);
2076 list_del(&gang[0]->root_list);
2078 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2079 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2081 free_extent_buffer(gang[0]->node);
2082 free_extent_buffer(gang[0]->commit_root);
2083 btrfs_put_fs_root(gang[0]);
2088 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2093 for (i = 0; i < ret; i++)
2094 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2097 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2098 btrfs_free_log_root_tree(NULL, fs_info);
2099 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2103 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2105 mutex_init(&fs_info->scrub_lock);
2106 atomic_set(&fs_info->scrubs_running, 0);
2107 atomic_set(&fs_info->scrub_pause_req, 0);
2108 atomic_set(&fs_info->scrubs_paused, 0);
2109 atomic_set(&fs_info->scrub_cancel_req, 0);
2110 init_waitqueue_head(&fs_info->scrub_pause_wait);
2111 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2114 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2116 spin_lock_init(&fs_info->balance_lock);
2117 mutex_init(&fs_info->balance_mutex);
2118 atomic_set(&fs_info->balance_pause_req, 0);
2119 atomic_set(&fs_info->balance_cancel_req, 0);
2120 fs_info->balance_ctl = NULL;
2121 init_waitqueue_head(&fs_info->balance_wait_q);
2124 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2126 struct inode *inode = fs_info->btree_inode;
2128 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2129 set_nlink(inode, 1);
2131 * we set the i_size on the btree inode to the max possible int.
2132 * the real end of the address space is determined by all of
2133 * the devices in the system
2135 inode->i_size = OFFSET_MAX;
2136 inode->i_mapping->a_ops = &btree_aops;
2138 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2139 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2140 IO_TREE_INODE_IO, inode);
2141 BTRFS_I(inode)->io_tree.track_uptodate = false;
2142 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2144 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2146 BTRFS_I(inode)->root = fs_info->tree_root;
2147 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2148 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2149 btrfs_insert_inode_hash(inode);
2152 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2154 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2155 init_rwsem(&fs_info->dev_replace.rwsem);
2156 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2159 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2161 spin_lock_init(&fs_info->qgroup_lock);
2162 mutex_init(&fs_info->qgroup_ioctl_lock);
2163 fs_info->qgroup_tree = RB_ROOT;
2164 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2165 fs_info->qgroup_seq = 1;
2166 fs_info->qgroup_ulist = NULL;
2167 fs_info->qgroup_rescan_running = false;
2168 mutex_init(&fs_info->qgroup_rescan_lock);
2171 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2172 struct btrfs_fs_devices *fs_devices)
2174 u32 max_active = fs_info->thread_pool_size;
2175 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2178 btrfs_alloc_workqueue(fs_info, "worker",
2179 flags | WQ_HIGHPRI, max_active, 16);
2181 fs_info->delalloc_workers =
2182 btrfs_alloc_workqueue(fs_info, "delalloc",
2183 flags, max_active, 2);
2185 fs_info->flush_workers =
2186 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2187 flags, max_active, 0);
2189 fs_info->caching_workers =
2190 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2193 * a higher idle thresh on the submit workers makes it much more
2194 * likely that bios will be send down in a sane order to the
2197 fs_info->submit_workers =
2198 btrfs_alloc_workqueue(fs_info, "submit", flags,
2199 min_t(u64, fs_devices->num_devices,
2202 fs_info->fixup_workers =
2203 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2206 * endios are largely parallel and should have a very
2209 fs_info->endio_workers =
2210 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2211 fs_info->endio_meta_workers =
2212 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2214 fs_info->endio_meta_write_workers =
2215 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2217 fs_info->endio_raid56_workers =
2218 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2220 fs_info->endio_repair_workers =
2221 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2222 fs_info->rmw_workers =
2223 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2224 fs_info->endio_write_workers =
2225 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2227 fs_info->endio_freespace_worker =
2228 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2230 fs_info->delayed_workers =
2231 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2233 fs_info->readahead_workers =
2234 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2236 fs_info->qgroup_rescan_workers =
2237 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2238 fs_info->extent_workers =
2239 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2240 min_t(u64, fs_devices->num_devices,
2243 if (!(fs_info->workers && fs_info->delalloc_workers &&
2244 fs_info->submit_workers && fs_info->flush_workers &&
2245 fs_info->endio_workers && fs_info->endio_meta_workers &&
2246 fs_info->endio_meta_write_workers &&
2247 fs_info->endio_repair_workers &&
2248 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2249 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2250 fs_info->caching_workers && fs_info->readahead_workers &&
2251 fs_info->fixup_workers && fs_info->delayed_workers &&
2252 fs_info->extent_workers &&
2253 fs_info->qgroup_rescan_workers)) {
2260 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2261 struct btrfs_fs_devices *fs_devices)
2264 struct btrfs_root *log_tree_root;
2265 struct btrfs_super_block *disk_super = fs_info->super_copy;
2266 u64 bytenr = btrfs_super_log_root(disk_super);
2267 int level = btrfs_super_log_root_level(disk_super);
2269 if (fs_devices->rw_devices == 0) {
2270 btrfs_warn(fs_info, "log replay required on RO media");
2274 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2278 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2280 log_tree_root->node = read_tree_block(fs_info, bytenr,
2281 fs_info->generation + 1,
2283 if (IS_ERR(log_tree_root->node)) {
2284 btrfs_warn(fs_info, "failed to read log tree");
2285 ret = PTR_ERR(log_tree_root->node);
2286 kfree(log_tree_root);
2288 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2289 btrfs_err(fs_info, "failed to read log tree");
2290 free_extent_buffer(log_tree_root->node);
2291 kfree(log_tree_root);
2294 /* returns with log_tree_root freed on success */
2295 ret = btrfs_recover_log_trees(log_tree_root);
2297 btrfs_handle_fs_error(fs_info, ret,
2298 "Failed to recover log tree");
2299 free_extent_buffer(log_tree_root->node);
2300 kfree(log_tree_root);
2304 if (sb_rdonly(fs_info->sb)) {
2305 ret = btrfs_commit_super(fs_info);
2313 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2315 struct btrfs_root *tree_root = fs_info->tree_root;
2316 struct btrfs_root *root;
2317 struct btrfs_key location;
2320 BUG_ON(!fs_info->tree_root);
2322 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2323 location.type = BTRFS_ROOT_ITEM_KEY;
2324 location.offset = 0;
2326 root = btrfs_read_tree_root(tree_root, &location);
2328 ret = PTR_ERR(root);
2331 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2332 fs_info->extent_root = root;
2334 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2335 root = btrfs_read_tree_root(tree_root, &location);
2337 ret = PTR_ERR(root);
2340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341 fs_info->dev_root = root;
2342 btrfs_init_devices_late(fs_info);
2344 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2345 root = btrfs_read_tree_root(tree_root, &location);
2347 ret = PTR_ERR(root);
2350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351 fs_info->csum_root = root;
2353 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2354 root = btrfs_read_tree_root(tree_root, &location);
2355 if (!IS_ERR(root)) {
2356 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2357 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2358 fs_info->quota_root = root;
2361 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2362 root = btrfs_read_tree_root(tree_root, &location);
2364 ret = PTR_ERR(root);
2368 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2369 fs_info->uuid_root = root;
2372 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2373 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2374 root = btrfs_read_tree_root(tree_root, &location);
2376 ret = PTR_ERR(root);
2379 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2380 fs_info->free_space_root = root;
2385 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2386 location.objectid, ret);
2391 * Real super block validation
2392 * NOTE: super csum type and incompat features will not be checked here.
2394 * @sb: super block to check
2395 * @mirror_num: the super block number to check its bytenr:
2396 * 0 the primary (1st) sb
2397 * 1, 2 2nd and 3rd backup copy
2398 * -1 skip bytenr check
2400 static int validate_super(struct btrfs_fs_info *fs_info,
2401 struct btrfs_super_block *sb, int mirror_num)
2403 u64 nodesize = btrfs_super_nodesize(sb);
2404 u64 sectorsize = btrfs_super_sectorsize(sb);
2407 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2408 btrfs_err(fs_info, "no valid FS found");
2411 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2412 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2413 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2416 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2417 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2418 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2421 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2422 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2423 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2426 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2427 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2428 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2433 * Check sectorsize and nodesize first, other check will need it.
2434 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2436 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2437 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2438 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2441 /* Only PAGE SIZE is supported yet */
2442 if (sectorsize != PAGE_SIZE) {
2444 "sectorsize %llu not supported yet, only support %lu",
2445 sectorsize, PAGE_SIZE);
2448 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2449 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2450 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2453 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2454 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2455 le32_to_cpu(sb->__unused_leafsize), nodesize);
2459 /* Root alignment check */
2460 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2461 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2462 btrfs_super_root(sb));
2465 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2466 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2467 btrfs_super_chunk_root(sb));
2470 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2471 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2472 btrfs_super_log_root(sb));
2476 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2477 BTRFS_FSID_SIZE) != 0) {
2479 "dev_item UUID does not match metadata fsid: %pU != %pU",
2480 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2485 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2488 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2489 btrfs_err(fs_info, "bytes_used is too small %llu",
2490 btrfs_super_bytes_used(sb));
2493 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2494 btrfs_err(fs_info, "invalid stripesize %u",
2495 btrfs_super_stripesize(sb));
2498 if (btrfs_super_num_devices(sb) > (1UL << 31))
2499 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2500 btrfs_super_num_devices(sb));
2501 if (btrfs_super_num_devices(sb) == 0) {
2502 btrfs_err(fs_info, "number of devices is 0");
2506 if (mirror_num >= 0 &&
2507 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2508 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2509 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2514 * Obvious sys_chunk_array corruptions, it must hold at least one key
2517 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2518 btrfs_err(fs_info, "system chunk array too big %u > %u",
2519 btrfs_super_sys_array_size(sb),
2520 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2523 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2524 + sizeof(struct btrfs_chunk)) {
2525 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2526 btrfs_super_sys_array_size(sb),
2527 sizeof(struct btrfs_disk_key)
2528 + sizeof(struct btrfs_chunk));
2533 * The generation is a global counter, we'll trust it more than the others
2534 * but it's still possible that it's the one that's wrong.
2536 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2538 "suspicious: generation < chunk_root_generation: %llu < %llu",
2539 btrfs_super_generation(sb),
2540 btrfs_super_chunk_root_generation(sb));
2541 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2542 && btrfs_super_cache_generation(sb) != (u64)-1)
2544 "suspicious: generation < cache_generation: %llu < %llu",
2545 btrfs_super_generation(sb),
2546 btrfs_super_cache_generation(sb));
2552 * Validation of super block at mount time.
2553 * Some checks already done early at mount time, like csum type and incompat
2554 * flags will be skipped.
2556 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2558 return validate_super(fs_info, fs_info->super_copy, 0);
2562 * Validation of super block at write time.
2563 * Some checks like bytenr check will be skipped as their values will be
2565 * Extra checks like csum type and incompat flags will be done here.
2567 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2568 struct btrfs_super_block *sb)
2572 ret = validate_super(fs_info, sb, -1);
2575 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2577 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2578 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2581 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2584 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2585 btrfs_super_incompat_flags(sb),
2586 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2592 "super block corruption detected before writing it to disk");
2596 int open_ctree(struct super_block *sb,
2597 struct btrfs_fs_devices *fs_devices,
2605 struct btrfs_key location;
2606 struct buffer_head *bh;
2607 struct btrfs_super_block *disk_super;
2608 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2609 struct btrfs_root *tree_root;
2610 struct btrfs_root *chunk_root;
2613 int num_backups_tried = 0;
2614 int backup_index = 0;
2615 int clear_free_space_tree = 0;
2618 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2619 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2620 if (!tree_root || !chunk_root) {
2625 ret = init_srcu_struct(&fs_info->subvol_srcu);
2631 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2636 fs_info->dirty_metadata_batch = PAGE_SIZE *
2637 (1 + ilog2(nr_cpu_ids));
2639 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2642 goto fail_dirty_metadata_bytes;
2645 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2649 goto fail_delalloc_bytes;
2652 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2653 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2654 INIT_LIST_HEAD(&fs_info->trans_list);
2655 INIT_LIST_HEAD(&fs_info->dead_roots);
2656 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2657 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2658 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2659 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2660 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2661 spin_lock_init(&fs_info->delalloc_root_lock);
2662 spin_lock_init(&fs_info->trans_lock);
2663 spin_lock_init(&fs_info->fs_roots_radix_lock);
2664 spin_lock_init(&fs_info->delayed_iput_lock);
2665 spin_lock_init(&fs_info->defrag_inodes_lock);
2666 spin_lock_init(&fs_info->tree_mod_seq_lock);
2667 spin_lock_init(&fs_info->super_lock);
2668 spin_lock_init(&fs_info->buffer_lock);
2669 spin_lock_init(&fs_info->unused_bgs_lock);
2670 rwlock_init(&fs_info->tree_mod_log_lock);
2671 mutex_init(&fs_info->unused_bg_unpin_mutex);
2672 mutex_init(&fs_info->delete_unused_bgs_mutex);
2673 mutex_init(&fs_info->reloc_mutex);
2674 mutex_init(&fs_info->delalloc_root_mutex);
2675 seqlock_init(&fs_info->profiles_lock);
2677 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2678 INIT_LIST_HEAD(&fs_info->space_info);
2679 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2680 INIT_LIST_HEAD(&fs_info->unused_bgs);
2681 btrfs_mapping_init(&fs_info->mapping_tree);
2682 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2683 BTRFS_BLOCK_RSV_GLOBAL);
2684 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2685 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2686 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2687 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2688 BTRFS_BLOCK_RSV_DELOPS);
2689 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2690 BTRFS_BLOCK_RSV_DELREFS);
2692 atomic_set(&fs_info->async_delalloc_pages, 0);
2693 atomic_set(&fs_info->defrag_running, 0);
2694 atomic_set(&fs_info->reada_works_cnt, 0);
2695 atomic_set(&fs_info->nr_delayed_iputs, 0);
2696 atomic64_set(&fs_info->tree_mod_seq, 0);
2698 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2699 fs_info->metadata_ratio = 0;
2700 fs_info->defrag_inodes = RB_ROOT;
2701 atomic64_set(&fs_info->free_chunk_space, 0);
2702 fs_info->tree_mod_log = RB_ROOT;
2703 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2704 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2705 /* readahead state */
2706 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2707 spin_lock_init(&fs_info->reada_lock);
2708 btrfs_init_ref_verify(fs_info);
2710 fs_info->thread_pool_size = min_t(unsigned long,
2711 num_online_cpus() + 2, 8);
2713 INIT_LIST_HEAD(&fs_info->ordered_roots);
2714 spin_lock_init(&fs_info->ordered_root_lock);
2716 fs_info->btree_inode = new_inode(sb);
2717 if (!fs_info->btree_inode) {
2719 goto fail_bio_counter;
2721 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2723 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2725 if (!fs_info->delayed_root) {
2729 btrfs_init_delayed_root(fs_info->delayed_root);
2731 btrfs_init_scrub(fs_info);
2732 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2733 fs_info->check_integrity_print_mask = 0;
2735 btrfs_init_balance(fs_info);
2736 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2738 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2739 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2741 btrfs_init_btree_inode(fs_info);
2743 spin_lock_init(&fs_info->block_group_cache_lock);
2744 fs_info->block_group_cache_tree = RB_ROOT;
2745 fs_info->first_logical_byte = (u64)-1;
2747 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2748 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2749 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2750 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2751 fs_info->pinned_extents = &fs_info->freed_extents[0];
2752 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2754 mutex_init(&fs_info->ordered_operations_mutex);
2755 mutex_init(&fs_info->tree_log_mutex);
2756 mutex_init(&fs_info->chunk_mutex);
2757 mutex_init(&fs_info->transaction_kthread_mutex);
2758 mutex_init(&fs_info->cleaner_mutex);
2759 mutex_init(&fs_info->ro_block_group_mutex);
2760 init_rwsem(&fs_info->commit_root_sem);
2761 init_rwsem(&fs_info->cleanup_work_sem);
2762 init_rwsem(&fs_info->subvol_sem);
2763 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2765 btrfs_init_dev_replace_locks(fs_info);
2766 btrfs_init_qgroup(fs_info);
2768 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2769 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2771 init_waitqueue_head(&fs_info->transaction_throttle);
2772 init_waitqueue_head(&fs_info->transaction_wait);
2773 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2774 init_waitqueue_head(&fs_info->async_submit_wait);
2775 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2777 /* Usable values until the real ones are cached from the superblock */
2778 fs_info->nodesize = 4096;
2779 fs_info->sectorsize = 4096;
2780 fs_info->stripesize = 4096;
2782 spin_lock_init(&fs_info->swapfile_pins_lock);
2783 fs_info->swapfile_pins = RB_ROOT;
2785 ret = btrfs_alloc_stripe_hash_table(fs_info);
2791 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2793 invalidate_bdev(fs_devices->latest_bdev);
2796 * Read super block and check the signature bytes only
2798 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2805 * We want to check superblock checksum, the type is stored inside.
2806 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2808 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2809 btrfs_err(fs_info, "superblock checksum mismatch");
2816 * super_copy is zeroed at allocation time and we never touch the
2817 * following bytes up to INFO_SIZE, the checksum is calculated from
2818 * the whole block of INFO_SIZE
2820 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2823 disk_super = fs_info->super_copy;
2825 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2828 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2829 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2830 fs_info->super_copy->metadata_uuid,
2834 features = btrfs_super_flags(disk_super);
2835 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2836 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2837 btrfs_set_super_flags(disk_super, features);
2839 "found metadata UUID change in progress flag, clearing");
2842 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2843 sizeof(*fs_info->super_for_commit));
2845 ret = btrfs_validate_mount_super(fs_info);
2847 btrfs_err(fs_info, "superblock contains fatal errors");
2852 if (!btrfs_super_root(disk_super))
2855 /* check FS state, whether FS is broken. */
2856 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2857 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2860 * run through our array of backup supers and setup
2861 * our ring pointer to the oldest one
2863 generation = btrfs_super_generation(disk_super);
2864 find_oldest_super_backup(fs_info, generation);
2867 * In the long term, we'll store the compression type in the super
2868 * block, and it'll be used for per file compression control.
2870 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2872 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2878 features = btrfs_super_incompat_flags(disk_super) &
2879 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2882 "cannot mount because of unsupported optional features (%llx)",
2888 features = btrfs_super_incompat_flags(disk_super);
2889 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2890 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2891 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2892 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2893 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2895 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2896 btrfs_info(fs_info, "has skinny extents");
2899 * flag our filesystem as having big metadata blocks if
2900 * they are bigger than the page size
2902 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2903 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2905 "flagging fs with big metadata feature");
2906 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2909 nodesize = btrfs_super_nodesize(disk_super);
2910 sectorsize = btrfs_super_sectorsize(disk_super);
2911 stripesize = sectorsize;
2912 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2913 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2915 /* Cache block sizes */
2916 fs_info->nodesize = nodesize;
2917 fs_info->sectorsize = sectorsize;
2918 fs_info->stripesize = stripesize;
2921 * mixed block groups end up with duplicate but slightly offset
2922 * extent buffers for the same range. It leads to corruptions
2924 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2925 (sectorsize != nodesize)) {
2927 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2928 nodesize, sectorsize);
2933 * Needn't use the lock because there is no other task which will
2936 btrfs_set_super_incompat_flags(disk_super, features);
2938 features = btrfs_super_compat_ro_flags(disk_super) &
2939 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2940 if (!sb_rdonly(sb) && features) {
2942 "cannot mount read-write because of unsupported optional features (%llx)",
2948 ret = btrfs_init_workqueues(fs_info, fs_devices);
2951 goto fail_sb_buffer;
2954 sb->s_bdi->congested_fn = btrfs_congested_fn;
2955 sb->s_bdi->congested_data = fs_info;
2956 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2957 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2958 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2959 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2961 sb->s_blocksize = sectorsize;
2962 sb->s_blocksize_bits = blksize_bits(sectorsize);
2963 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2965 mutex_lock(&fs_info->chunk_mutex);
2966 ret = btrfs_read_sys_array(fs_info);
2967 mutex_unlock(&fs_info->chunk_mutex);
2969 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2970 goto fail_sb_buffer;
2973 generation = btrfs_super_chunk_root_generation(disk_super);
2974 level = btrfs_super_chunk_root_level(disk_super);
2976 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2978 chunk_root->node = read_tree_block(fs_info,
2979 btrfs_super_chunk_root(disk_super),
2980 generation, level, NULL);
2981 if (IS_ERR(chunk_root->node) ||
2982 !extent_buffer_uptodate(chunk_root->node)) {
2983 btrfs_err(fs_info, "failed to read chunk root");
2984 if (!IS_ERR(chunk_root->node))
2985 free_extent_buffer(chunk_root->node);
2986 chunk_root->node = NULL;
2987 goto fail_tree_roots;
2989 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2990 chunk_root->commit_root = btrfs_root_node(chunk_root);
2992 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2993 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2995 ret = btrfs_read_chunk_tree(fs_info);
2997 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2998 goto fail_tree_roots;
3002 * Keep the devid that is marked to be the target device for the
3003 * device replace procedure
3005 btrfs_free_extra_devids(fs_devices, 0);
3007 if (!fs_devices->latest_bdev) {
3008 btrfs_err(fs_info, "failed to read devices");
3009 goto fail_tree_roots;
3013 generation = btrfs_super_generation(disk_super);
3014 level = btrfs_super_root_level(disk_super);
3016 tree_root->node = read_tree_block(fs_info,
3017 btrfs_super_root(disk_super),
3018 generation, level, NULL);
3019 if (IS_ERR(tree_root->node) ||
3020 !extent_buffer_uptodate(tree_root->node)) {
3021 btrfs_warn(fs_info, "failed to read tree root");
3022 if (!IS_ERR(tree_root->node))
3023 free_extent_buffer(tree_root->node);
3024 tree_root->node = NULL;
3025 goto recovery_tree_root;
3028 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3029 tree_root->commit_root = btrfs_root_node(tree_root);
3030 btrfs_set_root_refs(&tree_root->root_item, 1);
3032 mutex_lock(&tree_root->objectid_mutex);
3033 ret = btrfs_find_highest_objectid(tree_root,
3034 &tree_root->highest_objectid);
3036 mutex_unlock(&tree_root->objectid_mutex);
3037 goto recovery_tree_root;
3040 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3042 mutex_unlock(&tree_root->objectid_mutex);
3044 ret = btrfs_read_roots(fs_info);
3046 goto recovery_tree_root;
3048 fs_info->generation = generation;
3049 fs_info->last_trans_committed = generation;
3051 ret = btrfs_verify_dev_extents(fs_info);
3054 "failed to verify dev extents against chunks: %d",
3056 goto fail_block_groups;
3058 ret = btrfs_recover_balance(fs_info);
3060 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3061 goto fail_block_groups;
3064 ret = btrfs_init_dev_stats(fs_info);
3066 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3067 goto fail_block_groups;
3070 ret = btrfs_init_dev_replace(fs_info);
3072 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3073 goto fail_block_groups;
3076 btrfs_free_extra_devids(fs_devices, 1);
3078 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3080 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3082 goto fail_block_groups;
3085 ret = btrfs_sysfs_add_device(fs_devices);
3087 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3089 goto fail_fsdev_sysfs;
3092 ret = btrfs_sysfs_add_mounted(fs_info);
3094 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3095 goto fail_fsdev_sysfs;
3098 ret = btrfs_init_space_info(fs_info);
3100 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3104 ret = btrfs_read_block_groups(fs_info);
3106 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3110 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3112 "writable mount is not allowed due to too many missing devices");
3116 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3118 if (IS_ERR(fs_info->cleaner_kthread))
3121 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3123 "btrfs-transaction");
3124 if (IS_ERR(fs_info->transaction_kthread))
3127 if (!btrfs_test_opt(fs_info, NOSSD) &&
3128 !fs_info->fs_devices->rotating) {
3129 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3133 * Mount does not set all options immediately, we can do it now and do
3134 * not have to wait for transaction commit
3136 btrfs_apply_pending_changes(fs_info);
3138 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3139 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3140 ret = btrfsic_mount(fs_info, fs_devices,
3141 btrfs_test_opt(fs_info,
3142 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3144 fs_info->check_integrity_print_mask);
3147 "failed to initialize integrity check module: %d",
3151 ret = btrfs_read_qgroup_config(fs_info);
3153 goto fail_trans_kthread;
3155 if (btrfs_build_ref_tree(fs_info))
3156 btrfs_err(fs_info, "couldn't build ref tree");
3158 /* do not make disk changes in broken FS or nologreplay is given */
3159 if (btrfs_super_log_root(disk_super) != 0 &&
3160 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3161 ret = btrfs_replay_log(fs_info, fs_devices);
3168 ret = btrfs_find_orphan_roots(fs_info);
3172 if (!sb_rdonly(sb)) {
3173 ret = btrfs_cleanup_fs_roots(fs_info);
3177 mutex_lock(&fs_info->cleaner_mutex);
3178 ret = btrfs_recover_relocation(tree_root);
3179 mutex_unlock(&fs_info->cleaner_mutex);
3181 btrfs_warn(fs_info, "failed to recover relocation: %d",
3188 location.objectid = BTRFS_FS_TREE_OBJECTID;
3189 location.type = BTRFS_ROOT_ITEM_KEY;
3190 location.offset = 0;
3192 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3193 if (IS_ERR(fs_info->fs_root)) {
3194 err = PTR_ERR(fs_info->fs_root);
3195 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3202 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3203 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3204 clear_free_space_tree = 1;
3205 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3206 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3207 btrfs_warn(fs_info, "free space tree is invalid");
3208 clear_free_space_tree = 1;
3211 if (clear_free_space_tree) {
3212 btrfs_info(fs_info, "clearing free space tree");
3213 ret = btrfs_clear_free_space_tree(fs_info);
3216 "failed to clear free space tree: %d", ret);
3217 close_ctree(fs_info);
3222 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3223 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3224 btrfs_info(fs_info, "creating free space tree");
3225 ret = btrfs_create_free_space_tree(fs_info);
3228 "failed to create free space tree: %d", ret);
3229 close_ctree(fs_info);
3234 down_read(&fs_info->cleanup_work_sem);
3235 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3236 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3237 up_read(&fs_info->cleanup_work_sem);
3238 close_ctree(fs_info);
3241 up_read(&fs_info->cleanup_work_sem);
3243 ret = btrfs_resume_balance_async(fs_info);
3245 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3246 close_ctree(fs_info);
3250 ret = btrfs_resume_dev_replace_async(fs_info);
3252 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3253 close_ctree(fs_info);
3257 btrfs_qgroup_rescan_resume(fs_info);
3259 if (!fs_info->uuid_root) {
3260 btrfs_info(fs_info, "creating UUID tree");
3261 ret = btrfs_create_uuid_tree(fs_info);
3264 "failed to create the UUID tree: %d", ret);
3265 close_ctree(fs_info);
3268 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3269 fs_info->generation !=
3270 btrfs_super_uuid_tree_generation(disk_super)) {
3271 btrfs_info(fs_info, "checking UUID tree");
3272 ret = btrfs_check_uuid_tree(fs_info);
3275 "failed to check the UUID tree: %d", ret);
3276 close_ctree(fs_info);
3280 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3282 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3285 * backuproot only affect mount behavior, and if open_ctree succeeded,
3286 * no need to keep the flag
3288 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3293 btrfs_free_qgroup_config(fs_info);
3295 kthread_stop(fs_info->transaction_kthread);
3296 btrfs_cleanup_transaction(fs_info);
3297 btrfs_free_fs_roots(fs_info);
3299 kthread_stop(fs_info->cleaner_kthread);
3302 * make sure we're done with the btree inode before we stop our
3305 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3308 btrfs_sysfs_remove_mounted(fs_info);
3311 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3314 btrfs_put_block_group_cache(fs_info);
3317 free_root_pointers(fs_info, 1);
3318 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3321 btrfs_stop_all_workers(fs_info);
3322 btrfs_free_block_groups(fs_info);
3325 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3327 iput(fs_info->btree_inode);
3329 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3330 fail_delalloc_bytes:
3331 percpu_counter_destroy(&fs_info->delalloc_bytes);
3332 fail_dirty_metadata_bytes:
3333 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3335 cleanup_srcu_struct(&fs_info->subvol_srcu);
3337 btrfs_free_stripe_hash_table(fs_info);
3338 btrfs_close_devices(fs_info->fs_devices);
3342 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3343 goto fail_tree_roots;
3345 free_root_pointers(fs_info, 0);
3347 /* don't use the log in recovery mode, it won't be valid */
3348 btrfs_set_super_log_root(disk_super, 0);
3350 /* we can't trust the free space cache either */
3351 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3353 ret = next_root_backup(fs_info, fs_info->super_copy,
3354 &num_backups_tried, &backup_index);
3356 goto fail_block_groups;
3357 goto retry_root_backup;
3359 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3361 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3364 set_buffer_uptodate(bh);
3366 struct btrfs_device *device = (struct btrfs_device *)
3369 btrfs_warn_rl_in_rcu(device->fs_info,
3370 "lost page write due to IO error on %s",
3371 rcu_str_deref(device->name));
3372 /* note, we don't set_buffer_write_io_error because we have
3373 * our own ways of dealing with the IO errors
3375 clear_buffer_uptodate(bh);
3376 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3382 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3383 struct buffer_head **bh_ret)
3385 struct buffer_head *bh;
3386 struct btrfs_super_block *super;
3389 bytenr = btrfs_sb_offset(copy_num);
3390 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3393 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3395 * If we fail to read from the underlying devices, as of now
3396 * the best option we have is to mark it EIO.
3401 super = (struct btrfs_super_block *)bh->b_data;
3402 if (btrfs_super_bytenr(super) != bytenr ||
3403 btrfs_super_magic(super) != BTRFS_MAGIC) {
3413 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3415 struct buffer_head *bh;
3416 struct buffer_head *latest = NULL;
3417 struct btrfs_super_block *super;
3422 /* we would like to check all the supers, but that would make
3423 * a btrfs mount succeed after a mkfs from a different FS.
3424 * So, we need to add a special mount option to scan for
3425 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3427 for (i = 0; i < 1; i++) {
3428 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3432 super = (struct btrfs_super_block *)bh->b_data;
3434 if (!latest || btrfs_super_generation(super) > transid) {
3437 transid = btrfs_super_generation(super);
3444 return ERR_PTR(ret);
3450 * Write superblock @sb to the @device. Do not wait for completion, all the
3451 * buffer heads we write are pinned.
3453 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3454 * the expected device size at commit time. Note that max_mirrors must be
3455 * same for write and wait phases.
3457 * Return number of errors when buffer head is not found or submission fails.
3459 static int write_dev_supers(struct btrfs_device *device,
3460 struct btrfs_super_block *sb, int max_mirrors)
3462 struct buffer_head *bh;
3470 if (max_mirrors == 0)
3471 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3473 for (i = 0; i < max_mirrors; i++) {
3474 bytenr = btrfs_sb_offset(i);
3475 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3476 device->commit_total_bytes)
3479 btrfs_set_super_bytenr(sb, bytenr);
3482 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3483 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3484 btrfs_csum_final(crc, sb->csum);
3486 /* One reference for us, and we leave it for the caller */
3487 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3488 BTRFS_SUPER_INFO_SIZE);
3490 btrfs_err(device->fs_info,
3491 "couldn't get super buffer head for bytenr %llu",
3497 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3499 /* one reference for submit_bh */
3502 set_buffer_uptodate(bh);
3504 bh->b_end_io = btrfs_end_buffer_write_sync;
3505 bh->b_private = device;
3508 * we fua the first super. The others we allow
3511 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3512 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3513 op_flags |= REQ_FUA;
3514 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3518 return errors < i ? 0 : -1;
3522 * Wait for write completion of superblocks done by write_dev_supers,
3523 * @max_mirrors same for write and wait phases.
3525 * Return number of errors when buffer head is not found or not marked up to
3528 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3530 struct buffer_head *bh;
3533 bool primary_failed = false;
3536 if (max_mirrors == 0)
3537 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3539 for (i = 0; i < max_mirrors; i++) {
3540 bytenr = btrfs_sb_offset(i);
3541 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3542 device->commit_total_bytes)
3545 bh = __find_get_block(device->bdev,
3546 bytenr / BTRFS_BDEV_BLOCKSIZE,
3547 BTRFS_SUPER_INFO_SIZE);
3551 primary_failed = true;
3555 if (!buffer_uptodate(bh)) {
3558 primary_failed = true;
3561 /* drop our reference */
3564 /* drop the reference from the writing run */
3568 /* log error, force error return */
3569 if (primary_failed) {
3570 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3575 return errors < i ? 0 : -1;
3579 * endio for the write_dev_flush, this will wake anyone waiting
3580 * for the barrier when it is done
3582 static void btrfs_end_empty_barrier(struct bio *bio)
3584 complete(bio->bi_private);
3588 * Submit a flush request to the device if it supports it. Error handling is
3589 * done in the waiting counterpart.
3591 static void write_dev_flush(struct btrfs_device *device)
3593 struct request_queue *q = bdev_get_queue(device->bdev);
3594 struct bio *bio = device->flush_bio;
3596 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3600 bio->bi_end_io = btrfs_end_empty_barrier;
3601 bio_set_dev(bio, device->bdev);
3602 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3603 init_completion(&device->flush_wait);
3604 bio->bi_private = &device->flush_wait;
3606 btrfsic_submit_bio(bio);
3607 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3611 * If the flush bio has been submitted by write_dev_flush, wait for it.
3613 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3615 struct bio *bio = device->flush_bio;
3617 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3620 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3621 wait_for_completion_io(&device->flush_wait);
3623 return bio->bi_status;
3626 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3628 if (!btrfs_check_rw_degradable(fs_info, NULL))
3634 * send an empty flush down to each device in parallel,
3635 * then wait for them
3637 static int barrier_all_devices(struct btrfs_fs_info *info)
3639 struct list_head *head;
3640 struct btrfs_device *dev;
3641 int errors_wait = 0;
3644 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3645 /* send down all the barriers */
3646 head = &info->fs_devices->devices;
3647 list_for_each_entry(dev, head, dev_list) {
3648 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3652 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3653 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3656 write_dev_flush(dev);
3657 dev->last_flush_error = BLK_STS_OK;
3660 /* wait for all the barriers */
3661 list_for_each_entry(dev, head, dev_list) {
3662 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3668 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3669 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3672 ret = wait_dev_flush(dev);
3674 dev->last_flush_error = ret;
3675 btrfs_dev_stat_inc_and_print(dev,
3676 BTRFS_DEV_STAT_FLUSH_ERRS);
3683 * At some point we need the status of all disks
3684 * to arrive at the volume status. So error checking
3685 * is being pushed to a separate loop.
3687 return check_barrier_error(info);
3692 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3695 int min_tolerated = INT_MAX;
3697 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3698 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3699 min_tolerated = min(min_tolerated,
3700 btrfs_raid_array[BTRFS_RAID_SINGLE].
3701 tolerated_failures);
3703 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3704 if (raid_type == BTRFS_RAID_SINGLE)
3706 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3708 min_tolerated = min(min_tolerated,
3709 btrfs_raid_array[raid_type].
3710 tolerated_failures);
3713 if (min_tolerated == INT_MAX) {
3714 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3718 return min_tolerated;
3721 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3723 struct list_head *head;
3724 struct btrfs_device *dev;
3725 struct btrfs_super_block *sb;
3726 struct btrfs_dev_item *dev_item;
3730 int total_errors = 0;
3733 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3736 * max_mirrors == 0 indicates we're from commit_transaction,
3737 * not from fsync where the tree roots in fs_info have not
3738 * been consistent on disk.
3740 if (max_mirrors == 0)
3741 backup_super_roots(fs_info);
3743 sb = fs_info->super_for_commit;
3744 dev_item = &sb->dev_item;
3746 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3747 head = &fs_info->fs_devices->devices;
3748 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3751 ret = barrier_all_devices(fs_info);
3754 &fs_info->fs_devices->device_list_mutex);
3755 btrfs_handle_fs_error(fs_info, ret,
3756 "errors while submitting device barriers.");
3761 list_for_each_entry(dev, head, dev_list) {
3766 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3767 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3770 btrfs_set_stack_device_generation(dev_item, 0);
3771 btrfs_set_stack_device_type(dev_item, dev->type);
3772 btrfs_set_stack_device_id(dev_item, dev->devid);
3773 btrfs_set_stack_device_total_bytes(dev_item,
3774 dev->commit_total_bytes);
3775 btrfs_set_stack_device_bytes_used(dev_item,
3776 dev->commit_bytes_used);
3777 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3778 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3779 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3780 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3781 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3784 flags = btrfs_super_flags(sb);
3785 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3787 ret = btrfs_validate_write_super(fs_info, sb);
3789 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3790 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3791 "unexpected superblock corruption detected");
3795 ret = write_dev_supers(dev, sb, max_mirrors);
3799 if (total_errors > max_errors) {
3800 btrfs_err(fs_info, "%d errors while writing supers",
3802 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3804 /* FUA is masked off if unsupported and can't be the reason */
3805 btrfs_handle_fs_error(fs_info, -EIO,
3806 "%d errors while writing supers",
3812 list_for_each_entry(dev, head, dev_list) {
3815 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3816 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3819 ret = wait_dev_supers(dev, max_mirrors);
3823 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3824 if (total_errors > max_errors) {
3825 btrfs_handle_fs_error(fs_info, -EIO,
3826 "%d errors while writing supers",
3833 /* Drop a fs root from the radix tree and free it. */
3834 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3835 struct btrfs_root *root)
3837 spin_lock(&fs_info->fs_roots_radix_lock);
3838 radix_tree_delete(&fs_info->fs_roots_radix,
3839 (unsigned long)root->root_key.objectid);
3840 spin_unlock(&fs_info->fs_roots_radix_lock);
3842 if (btrfs_root_refs(&root->root_item) == 0)
3843 synchronize_srcu(&fs_info->subvol_srcu);
3845 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3846 btrfs_free_log(NULL, root);
3847 if (root->reloc_root) {
3848 free_extent_buffer(root->reloc_root->node);
3849 free_extent_buffer(root->reloc_root->commit_root);
3850 btrfs_put_fs_root(root->reloc_root);
3851 root->reloc_root = NULL;
3855 if (root->free_ino_pinned)
3856 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3857 if (root->free_ino_ctl)
3858 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3859 btrfs_free_fs_root(root);
3862 void btrfs_free_fs_root(struct btrfs_root *root)
3864 iput(root->ino_cache_inode);
3865 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3867 free_anon_bdev(root->anon_dev);
3868 if (root->subv_writers)
3869 btrfs_free_subvolume_writers(root->subv_writers);
3870 free_extent_buffer(root->node);
3871 free_extent_buffer(root->commit_root);
3872 kfree(root->free_ino_ctl);
3873 kfree(root->free_ino_pinned);
3874 btrfs_put_fs_root(root);
3877 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3879 u64 root_objectid = 0;
3880 struct btrfs_root *gang[8];
3883 unsigned int ret = 0;
3887 index = srcu_read_lock(&fs_info->subvol_srcu);
3888 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3889 (void **)gang, root_objectid,
3892 srcu_read_unlock(&fs_info->subvol_srcu, index);
3895 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3897 for (i = 0; i < ret; i++) {
3898 /* Avoid to grab roots in dead_roots */
3899 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3903 /* grab all the search result for later use */
3904 gang[i] = btrfs_grab_fs_root(gang[i]);
3906 srcu_read_unlock(&fs_info->subvol_srcu, index);
3908 for (i = 0; i < ret; i++) {
3911 root_objectid = gang[i]->root_key.objectid;
3912 err = btrfs_orphan_cleanup(gang[i]);
3915 btrfs_put_fs_root(gang[i]);
3920 /* release the uncleaned roots due to error */
3921 for (; i < ret; i++) {
3923 btrfs_put_fs_root(gang[i]);
3928 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3930 struct btrfs_root *root = fs_info->tree_root;
3931 struct btrfs_trans_handle *trans;
3933 mutex_lock(&fs_info->cleaner_mutex);
3934 btrfs_run_delayed_iputs(fs_info);
3935 mutex_unlock(&fs_info->cleaner_mutex);
3936 wake_up_process(fs_info->cleaner_kthread);
3938 /* wait until ongoing cleanup work done */
3939 down_write(&fs_info->cleanup_work_sem);
3940 up_write(&fs_info->cleanup_work_sem);
3942 trans = btrfs_join_transaction(root);
3944 return PTR_ERR(trans);
3945 return btrfs_commit_transaction(trans);
3948 void close_ctree(struct btrfs_fs_info *fs_info)
3952 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3954 * We don't want the cleaner to start new transactions, add more delayed
3955 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3956 * because that frees the task_struct, and the transaction kthread might
3957 * still try to wake up the cleaner.
3959 kthread_park(fs_info->cleaner_kthread);
3961 /* wait for the qgroup rescan worker to stop */
3962 btrfs_qgroup_wait_for_completion(fs_info, false);
3964 /* wait for the uuid_scan task to finish */
3965 down(&fs_info->uuid_tree_rescan_sem);
3966 /* avoid complains from lockdep et al., set sem back to initial state */
3967 up(&fs_info->uuid_tree_rescan_sem);
3969 /* pause restriper - we want to resume on mount */
3970 btrfs_pause_balance(fs_info);
3972 btrfs_dev_replace_suspend_for_unmount(fs_info);
3974 btrfs_scrub_cancel(fs_info);
3976 /* wait for any defraggers to finish */
3977 wait_event(fs_info->transaction_wait,
3978 (atomic_read(&fs_info->defrag_running) == 0));
3980 /* clear out the rbtree of defraggable inodes */
3981 btrfs_cleanup_defrag_inodes(fs_info);
3983 cancel_work_sync(&fs_info->async_reclaim_work);
3985 if (!sb_rdonly(fs_info->sb)) {
3987 * The cleaner kthread is stopped, so do one final pass over
3988 * unused block groups.
3990 btrfs_delete_unused_bgs(fs_info);
3992 ret = btrfs_commit_super(fs_info);
3994 btrfs_err(fs_info, "commit super ret %d", ret);
3997 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3998 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3999 btrfs_error_commit_super(fs_info);
4001 kthread_stop(fs_info->transaction_kthread);
4002 kthread_stop(fs_info->cleaner_kthread);
4004 ASSERT(list_empty(&fs_info->delayed_iputs));
4005 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4007 btrfs_free_qgroup_config(fs_info);
4008 ASSERT(list_empty(&fs_info->delalloc_roots));
4010 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4011 btrfs_info(fs_info, "at unmount delalloc count %lld",
4012 percpu_counter_sum(&fs_info->delalloc_bytes));
4015 btrfs_sysfs_remove_mounted(fs_info);
4016 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4018 btrfs_free_fs_roots(fs_info);
4020 btrfs_put_block_group_cache(fs_info);
4023 * we must make sure there is not any read request to
4024 * submit after we stopping all workers.
4026 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4027 btrfs_stop_all_workers(fs_info);
4029 btrfs_free_block_groups(fs_info);
4031 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4032 free_root_pointers(fs_info, 1);
4034 iput(fs_info->btree_inode);
4036 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4037 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4038 btrfsic_unmount(fs_info->fs_devices);
4041 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4042 btrfs_close_devices(fs_info->fs_devices);
4044 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4045 percpu_counter_destroy(&fs_info->delalloc_bytes);
4046 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4047 cleanup_srcu_struct(&fs_info->subvol_srcu);
4049 btrfs_free_stripe_hash_table(fs_info);
4050 btrfs_free_ref_cache(fs_info);
4053 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4057 struct inode *btree_inode = buf->pages[0]->mapping->host;
4059 ret = extent_buffer_uptodate(buf);
4063 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4064 parent_transid, atomic);
4070 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4072 struct btrfs_fs_info *fs_info;
4073 struct btrfs_root *root;
4074 u64 transid = btrfs_header_generation(buf);
4077 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4079 * This is a fast path so only do this check if we have sanity tests
4080 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4081 * outside of the sanity tests.
4083 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4086 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4087 fs_info = root->fs_info;
4088 btrfs_assert_tree_locked(buf);
4089 if (transid != fs_info->generation)
4090 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4091 buf->start, transid, fs_info->generation);
4092 was_dirty = set_extent_buffer_dirty(buf);
4094 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4096 fs_info->dirty_metadata_batch);
4097 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4099 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4100 * but item data not updated.
4101 * So here we should only check item pointers, not item data.
4103 if (btrfs_header_level(buf) == 0 &&
4104 btrfs_check_leaf_relaxed(buf)) {
4105 btrfs_print_leaf(buf);
4111 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4115 * looks as though older kernels can get into trouble with
4116 * this code, they end up stuck in balance_dirty_pages forever
4120 if (current->flags & PF_MEMALLOC)
4124 btrfs_balance_delayed_items(fs_info);
4126 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4127 BTRFS_DIRTY_METADATA_THRESH,
4128 fs_info->dirty_metadata_batch);
4130 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4134 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4136 __btrfs_btree_balance_dirty(fs_info, 1);
4139 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4141 __btrfs_btree_balance_dirty(fs_info, 0);
4144 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4145 struct btrfs_key *first_key)
4147 return btree_read_extent_buffer_pages(buf, parent_transid,
4151 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4153 /* cleanup FS via transaction */
4154 btrfs_cleanup_transaction(fs_info);
4156 mutex_lock(&fs_info->cleaner_mutex);
4157 btrfs_run_delayed_iputs(fs_info);
4158 mutex_unlock(&fs_info->cleaner_mutex);
4160 down_write(&fs_info->cleanup_work_sem);
4161 up_write(&fs_info->cleanup_work_sem);
4164 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4166 struct btrfs_ordered_extent *ordered;
4168 spin_lock(&root->ordered_extent_lock);
4170 * This will just short circuit the ordered completion stuff which will
4171 * make sure the ordered extent gets properly cleaned up.
4173 list_for_each_entry(ordered, &root->ordered_extents,
4175 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4176 spin_unlock(&root->ordered_extent_lock);
4179 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4181 struct btrfs_root *root;
4182 struct list_head splice;
4184 INIT_LIST_HEAD(&splice);
4186 spin_lock(&fs_info->ordered_root_lock);
4187 list_splice_init(&fs_info->ordered_roots, &splice);
4188 while (!list_empty(&splice)) {
4189 root = list_first_entry(&splice, struct btrfs_root,
4191 list_move_tail(&root->ordered_root,
4192 &fs_info->ordered_roots);
4194 spin_unlock(&fs_info->ordered_root_lock);
4195 btrfs_destroy_ordered_extents(root);
4198 spin_lock(&fs_info->ordered_root_lock);
4200 spin_unlock(&fs_info->ordered_root_lock);
4203 * We need this here because if we've been flipped read-only we won't
4204 * get sync() from the umount, so we need to make sure any ordered
4205 * extents that haven't had their dirty pages IO start writeout yet
4206 * actually get run and error out properly.
4208 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4211 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4212 struct btrfs_fs_info *fs_info)
4214 struct rb_node *node;
4215 struct btrfs_delayed_ref_root *delayed_refs;
4216 struct btrfs_delayed_ref_node *ref;
4219 delayed_refs = &trans->delayed_refs;
4221 spin_lock(&delayed_refs->lock);
4222 if (atomic_read(&delayed_refs->num_entries) == 0) {
4223 spin_unlock(&delayed_refs->lock);
4224 btrfs_info(fs_info, "delayed_refs has NO entry");
4228 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4229 struct btrfs_delayed_ref_head *head;
4231 bool pin_bytes = false;
4233 head = rb_entry(node, struct btrfs_delayed_ref_head,
4235 if (btrfs_delayed_ref_lock(delayed_refs, head))
4238 spin_lock(&head->lock);
4239 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4240 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4243 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4244 RB_CLEAR_NODE(&ref->ref_node);
4245 if (!list_empty(&ref->add_list))
4246 list_del(&ref->add_list);
4247 atomic_dec(&delayed_refs->num_entries);
4248 btrfs_put_delayed_ref(ref);
4250 if (head->must_insert_reserved)
4252 btrfs_free_delayed_extent_op(head->extent_op);
4253 btrfs_delete_ref_head(delayed_refs, head);
4254 spin_unlock(&head->lock);
4255 spin_unlock(&delayed_refs->lock);
4256 mutex_unlock(&head->mutex);
4259 btrfs_pin_extent(fs_info, head->bytenr,
4260 head->num_bytes, 1);
4261 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4262 btrfs_put_delayed_ref_head(head);
4264 spin_lock(&delayed_refs->lock);
4267 spin_unlock(&delayed_refs->lock);
4272 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4274 struct btrfs_inode *btrfs_inode;
4275 struct list_head splice;
4277 INIT_LIST_HEAD(&splice);
4279 spin_lock(&root->delalloc_lock);
4280 list_splice_init(&root->delalloc_inodes, &splice);
4282 while (!list_empty(&splice)) {
4283 struct inode *inode = NULL;
4284 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4286 __btrfs_del_delalloc_inode(root, btrfs_inode);
4287 spin_unlock(&root->delalloc_lock);
4290 * Make sure we get a live inode and that it'll not disappear
4293 inode = igrab(&btrfs_inode->vfs_inode);
4295 invalidate_inode_pages2(inode->i_mapping);
4298 spin_lock(&root->delalloc_lock);
4300 spin_unlock(&root->delalloc_lock);
4303 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4305 struct btrfs_root *root;
4306 struct list_head splice;
4308 INIT_LIST_HEAD(&splice);
4310 spin_lock(&fs_info->delalloc_root_lock);
4311 list_splice_init(&fs_info->delalloc_roots, &splice);
4312 while (!list_empty(&splice)) {
4313 root = list_first_entry(&splice, struct btrfs_root,
4315 root = btrfs_grab_fs_root(root);
4317 spin_unlock(&fs_info->delalloc_root_lock);
4319 btrfs_destroy_delalloc_inodes(root);
4320 btrfs_put_fs_root(root);
4322 spin_lock(&fs_info->delalloc_root_lock);
4324 spin_unlock(&fs_info->delalloc_root_lock);
4327 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4328 struct extent_io_tree *dirty_pages,
4332 struct extent_buffer *eb;
4337 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4342 clear_extent_bits(dirty_pages, start, end, mark);
4343 while (start <= end) {
4344 eb = find_extent_buffer(fs_info, start);
4345 start += fs_info->nodesize;
4348 wait_on_extent_buffer_writeback(eb);
4350 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4352 clear_extent_buffer_dirty(eb);
4353 free_extent_buffer_stale(eb);
4360 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4361 struct extent_io_tree *pinned_extents)
4363 struct extent_io_tree *unpin;
4369 unpin = pinned_extents;
4372 struct extent_state *cached_state = NULL;
4375 * The btrfs_finish_extent_commit() may get the same range as
4376 * ours between find_first_extent_bit and clear_extent_dirty.
4377 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4378 * the same extent range.
4380 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4381 ret = find_first_extent_bit(unpin, 0, &start, &end,
4382 EXTENT_DIRTY, &cached_state);
4384 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4388 clear_extent_dirty(unpin, start, end, &cached_state);
4389 free_extent_state(cached_state);
4390 btrfs_error_unpin_extent_range(fs_info, start, end);
4391 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4396 if (unpin == &fs_info->freed_extents[0])
4397 unpin = &fs_info->freed_extents[1];
4399 unpin = &fs_info->freed_extents[0];
4407 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4409 struct inode *inode;
4411 inode = cache->io_ctl.inode;
4413 invalidate_inode_pages2(inode->i_mapping);
4414 BTRFS_I(inode)->generation = 0;
4415 cache->io_ctl.inode = NULL;
4418 btrfs_put_block_group(cache);
4421 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4422 struct btrfs_fs_info *fs_info)
4424 struct btrfs_block_group_cache *cache;
4426 spin_lock(&cur_trans->dirty_bgs_lock);
4427 while (!list_empty(&cur_trans->dirty_bgs)) {
4428 cache = list_first_entry(&cur_trans->dirty_bgs,
4429 struct btrfs_block_group_cache,
4432 if (!list_empty(&cache->io_list)) {
4433 spin_unlock(&cur_trans->dirty_bgs_lock);
4434 list_del_init(&cache->io_list);
4435 btrfs_cleanup_bg_io(cache);
4436 spin_lock(&cur_trans->dirty_bgs_lock);
4439 list_del_init(&cache->dirty_list);
4440 spin_lock(&cache->lock);
4441 cache->disk_cache_state = BTRFS_DC_ERROR;
4442 spin_unlock(&cache->lock);
4444 spin_unlock(&cur_trans->dirty_bgs_lock);
4445 btrfs_put_block_group(cache);
4446 btrfs_delayed_refs_rsv_release(fs_info, 1);
4447 spin_lock(&cur_trans->dirty_bgs_lock);
4449 spin_unlock(&cur_trans->dirty_bgs_lock);
4452 * Refer to the definition of io_bgs member for details why it's safe
4453 * to use it without any locking
4455 while (!list_empty(&cur_trans->io_bgs)) {
4456 cache = list_first_entry(&cur_trans->io_bgs,
4457 struct btrfs_block_group_cache,
4460 list_del_init(&cache->io_list);
4461 spin_lock(&cache->lock);
4462 cache->disk_cache_state = BTRFS_DC_ERROR;
4463 spin_unlock(&cache->lock);
4464 btrfs_cleanup_bg_io(cache);
4468 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4469 struct btrfs_fs_info *fs_info)
4471 struct btrfs_device *dev, *tmp;
4473 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4474 ASSERT(list_empty(&cur_trans->dirty_bgs));
4475 ASSERT(list_empty(&cur_trans->io_bgs));
4477 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4479 list_del_init(&dev->post_commit_list);
4482 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4484 cur_trans->state = TRANS_STATE_COMMIT_START;
4485 wake_up(&fs_info->transaction_blocked_wait);
4487 cur_trans->state = TRANS_STATE_UNBLOCKED;
4488 wake_up(&fs_info->transaction_wait);
4490 btrfs_destroy_delayed_inodes(fs_info);
4491 btrfs_assert_delayed_root_empty(fs_info);
4493 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4495 btrfs_destroy_pinned_extent(fs_info,
4496 fs_info->pinned_extents);
4498 cur_trans->state =TRANS_STATE_COMPLETED;
4499 wake_up(&cur_trans->commit_wait);
4502 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4504 struct btrfs_transaction *t;
4506 mutex_lock(&fs_info->transaction_kthread_mutex);
4508 spin_lock(&fs_info->trans_lock);
4509 while (!list_empty(&fs_info->trans_list)) {
4510 t = list_first_entry(&fs_info->trans_list,
4511 struct btrfs_transaction, list);
4512 if (t->state >= TRANS_STATE_COMMIT_START) {
4513 refcount_inc(&t->use_count);
4514 spin_unlock(&fs_info->trans_lock);
4515 btrfs_wait_for_commit(fs_info, t->transid);
4516 btrfs_put_transaction(t);
4517 spin_lock(&fs_info->trans_lock);
4520 if (t == fs_info->running_transaction) {
4521 t->state = TRANS_STATE_COMMIT_DOING;
4522 spin_unlock(&fs_info->trans_lock);
4524 * We wait for 0 num_writers since we don't hold a trans
4525 * handle open currently for this transaction.
4527 wait_event(t->writer_wait,
4528 atomic_read(&t->num_writers) == 0);
4530 spin_unlock(&fs_info->trans_lock);
4532 btrfs_cleanup_one_transaction(t, fs_info);
4534 spin_lock(&fs_info->trans_lock);
4535 if (t == fs_info->running_transaction)
4536 fs_info->running_transaction = NULL;
4537 list_del_init(&t->list);
4538 spin_unlock(&fs_info->trans_lock);
4540 btrfs_put_transaction(t);
4541 trace_btrfs_transaction_commit(fs_info->tree_root);
4542 spin_lock(&fs_info->trans_lock);
4544 spin_unlock(&fs_info->trans_lock);
4545 btrfs_destroy_all_ordered_extents(fs_info);
4546 btrfs_destroy_delayed_inodes(fs_info);
4547 btrfs_assert_delayed_root_empty(fs_info);
4548 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4549 btrfs_destroy_all_delalloc_inodes(fs_info);
4550 mutex_unlock(&fs_info->transaction_kthread_mutex);
4555 static const struct extent_io_ops btree_extent_io_ops = {
4556 /* mandatory callbacks */
4557 .submit_bio_hook = btree_submit_bio_hook,
4558 .readpage_end_io_hook = btree_readpage_end_io_hook,