]> Git Repo - linux.git/blob - arch/s390/kernel/crash_dump.c
mm/slub.c: add a naive detection of double free or corruption
[linux.git] / arch / s390 / kernel / crash_dump.c
1 /*
2  * S390 kdump implementation
3  *
4  * Copyright IBM Corp. 2011
5  * Author(s): Michael Holzheu <[email protected]>
6  */
7
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/gfp.h>
14 #include <linux/slab.h>
15 #include <linux/bootmem.h>
16 #include <linux/elf.h>
17 #include <asm/asm-offsets.h>
18 #include <linux/memblock.h>
19 #include <asm/os_info.h>
20 #include <asm/elf.h>
21 #include <asm/ipl.h>
22 #include <asm/sclp.h>
23
24 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
25 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
26 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
27
28 static struct memblock_region oldmem_region;
29
30 static struct memblock_type oldmem_type = {
31         .cnt = 1,
32         .max = 1,
33         .total_size = 0,
34         .regions = &oldmem_region,
35         .name = "oldmem",
36 };
37
38 struct save_area {
39         struct list_head list;
40         u64 psw[2];
41         u64 ctrs[16];
42         u64 gprs[16];
43         u32 acrs[16];
44         u64 fprs[16];
45         u32 fpc;
46         u32 prefix;
47         u64 todpreg;
48         u64 timer;
49         u64 todcmp;
50         u64 vxrs_low[16];
51         __vector128 vxrs_high[16];
52 };
53
54 static LIST_HEAD(dump_save_areas);
55
56 /*
57  * Allocate a save area
58  */
59 struct save_area * __init save_area_alloc(bool is_boot_cpu)
60 {
61         struct save_area *sa;
62
63         sa = (void *) memblock_alloc(sizeof(*sa), 8);
64         if (is_boot_cpu)
65                 list_add(&sa->list, &dump_save_areas);
66         else
67                 list_add_tail(&sa->list, &dump_save_areas);
68         return sa;
69 }
70
71 /*
72  * Return the address of the save area for the boot CPU
73  */
74 struct save_area * __init save_area_boot_cpu(void)
75 {
76         return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
77 }
78
79 /*
80  * Copy CPU registers into the save area
81  */
82 void __init save_area_add_regs(struct save_area *sa, void *regs)
83 {
84         struct lowcore *lc;
85
86         lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
87         memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
88         memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
89         memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
90         memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
91         memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
92         memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
93         memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
94         memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
95         memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
96         memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
97 }
98
99 /*
100  * Copy vector registers into the save area
101  */
102 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
103 {
104         int i;
105
106         /* Copy lower halves of vector registers 0-15 */
107         for (i = 0; i < 16; i++)
108                 memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
109         /* Copy vector registers 16-31 */
110         memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
111 }
112
113 /*
114  * Return physical address for virtual address
115  */
116 static inline void *load_real_addr(void *addr)
117 {
118         unsigned long real_addr;
119
120         asm volatile(
121                    "    lra     %0,0(%1)\n"
122                    "    jz      0f\n"
123                    "    la      %0,0\n"
124                    "0:"
125                    : "=a" (real_addr) : "a" (addr) : "cc");
126         return (void *)real_addr;
127 }
128
129 /*
130  * Copy memory of the old, dumped system to a kernel space virtual address
131  */
132 int copy_oldmem_kernel(void *dst, void *src, size_t count)
133 {
134         unsigned long from, len;
135         void *ra;
136         int rc;
137
138         while (count) {
139                 from = __pa(src);
140                 if (!OLDMEM_BASE && from < sclp.hsa_size) {
141                         /* Copy from zfcpdump HSA area */
142                         len = min(count, sclp.hsa_size - from);
143                         rc = memcpy_hsa_kernel(dst, from, len);
144                         if (rc)
145                                 return rc;
146                 } else {
147                         /* Check for swapped kdump oldmem areas */
148                         if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
149                                 from -= OLDMEM_BASE;
150                                 len = min(count, OLDMEM_SIZE - from);
151                         } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
152                                 len = min(count, OLDMEM_SIZE - from);
153                                 from += OLDMEM_BASE;
154                         } else {
155                                 len = count;
156                         }
157                         if (is_vmalloc_or_module_addr(dst)) {
158                                 ra = load_real_addr(dst);
159                                 len = min(PAGE_SIZE - offset_in_page(ra), len);
160                         } else {
161                                 ra = dst;
162                         }
163                         if (memcpy_real(ra, (void *) from, len))
164                                 return -EFAULT;
165                 }
166                 dst += len;
167                 src += len;
168                 count -= len;
169         }
170         return 0;
171 }
172
173 /*
174  * Copy memory of the old, dumped system to a user space virtual address
175  */
176 static int copy_oldmem_user(void __user *dst, void *src, size_t count)
177 {
178         unsigned long from, len;
179         int rc;
180
181         while (count) {
182                 from = __pa(src);
183                 if (!OLDMEM_BASE && from < sclp.hsa_size) {
184                         /* Copy from zfcpdump HSA area */
185                         len = min(count, sclp.hsa_size - from);
186                         rc = memcpy_hsa_user(dst, from, len);
187                         if (rc)
188                                 return rc;
189                 } else {
190                         /* Check for swapped kdump oldmem areas */
191                         if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
192                                 from -= OLDMEM_BASE;
193                                 len = min(count, OLDMEM_SIZE - from);
194                         } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
195                                 len = min(count, OLDMEM_SIZE - from);
196                                 from += OLDMEM_BASE;
197                         } else {
198                                 len = count;
199                         }
200                         rc = copy_to_user_real(dst, (void *) from, count);
201                         if (rc)
202                                 return rc;
203                 }
204                 dst += len;
205                 src += len;
206                 count -= len;
207         }
208         return 0;
209 }
210
211 /*
212  * Copy one page from "oldmem"
213  */
214 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
215                          unsigned long offset, int userbuf)
216 {
217         void *src;
218         int rc;
219
220         if (!csize)
221                 return 0;
222         src = (void *) (pfn << PAGE_SHIFT) + offset;
223         if (userbuf)
224                 rc = copy_oldmem_user((void __force __user *) buf, src, csize);
225         else
226                 rc = copy_oldmem_kernel((void *) buf, src, csize);
227         return rc;
228 }
229
230 /*
231  * Remap "oldmem" for kdump
232  *
233  * For the kdump reserved memory this functions performs a swap operation:
234  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
235  */
236 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
237                                         unsigned long from, unsigned long pfn,
238                                         unsigned long size, pgprot_t prot)
239 {
240         unsigned long size_old;
241         int rc;
242
243         if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
244                 size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
245                 rc = remap_pfn_range(vma, from,
246                                      pfn + (OLDMEM_BASE >> PAGE_SHIFT),
247                                      size_old, prot);
248                 if (rc || size == size_old)
249                         return rc;
250                 size -= size_old;
251                 from += size_old;
252                 pfn += size_old >> PAGE_SHIFT;
253         }
254         return remap_pfn_range(vma, from, pfn, size, prot);
255 }
256
257 /*
258  * Remap "oldmem" for zfcpdump
259  *
260  * We only map available memory above HSA size. Memory below HSA size
261  * is read on demand using the copy_oldmem_page() function.
262  */
263 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
264                                            unsigned long from,
265                                            unsigned long pfn,
266                                            unsigned long size, pgprot_t prot)
267 {
268         unsigned long hsa_end = sclp.hsa_size;
269         unsigned long size_hsa;
270
271         if (pfn < hsa_end >> PAGE_SHIFT) {
272                 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
273                 if (size == size_hsa)
274                         return 0;
275                 size -= size_hsa;
276                 from += size_hsa;
277                 pfn += size_hsa >> PAGE_SHIFT;
278         }
279         return remap_pfn_range(vma, from, pfn, size, prot);
280 }
281
282 /*
283  * Remap "oldmem" for kdump or zfcpdump
284  */
285 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
286                            unsigned long pfn, unsigned long size, pgprot_t prot)
287 {
288         if (OLDMEM_BASE)
289                 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
290         else
291                 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
292                                                        prot);
293 }
294
295 /*
296  * Alloc memory and panic in case of ENOMEM
297  */
298 static void *kzalloc_panic(int len)
299 {
300         void *rc;
301
302         rc = kzalloc(len, GFP_KERNEL);
303         if (!rc)
304                 panic("s390 kdump kzalloc (%d) failed", len);
305         return rc;
306 }
307
308 /*
309  * Initialize ELF note
310  */
311 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
312                           const char *name)
313 {
314         Elf64_Nhdr *note;
315         u64 len;
316
317         note = (Elf64_Nhdr *)buf;
318         note->n_namesz = strlen(name) + 1;
319         note->n_descsz = d_len;
320         note->n_type = type;
321         len = sizeof(Elf64_Nhdr);
322
323         memcpy(buf + len, name, note->n_namesz);
324         len = roundup(len + note->n_namesz, 4);
325
326         memcpy(buf + len, desc, note->n_descsz);
327         len = roundup(len + note->n_descsz, 4);
328
329         return PTR_ADD(buf, len);
330 }
331
332 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
333 {
334         const char *note_name = "LINUX";
335
336         if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
337                 note_name = KEXEC_CORE_NOTE_NAME;
338         return nt_init_name(buf, type, desc, d_len, note_name);
339 }
340
341 /*
342  * Fill ELF notes for one CPU with save area registers
343  */
344 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
345 {
346         struct elf_prstatus nt_prstatus;
347         elf_fpregset_t nt_fpregset;
348
349         /* Prepare prstatus note */
350         memset(&nt_prstatus, 0, sizeof(nt_prstatus));
351         memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
352         memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
353         memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
354         nt_prstatus.pr_pid = cpu;
355         /* Prepare fpregset (floating point) note */
356         memset(&nt_fpregset, 0, sizeof(nt_fpregset));
357         memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
358         memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
359         /* Create ELF notes for the CPU */
360         ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
361         ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
362         ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
363         ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
364         ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
365         ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
366         ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
367         if (MACHINE_HAS_VX) {
368                 ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
369                               &sa->vxrs_high, sizeof(sa->vxrs_high));
370                 ptr = nt_init(ptr, NT_S390_VXRS_LOW,
371                               &sa->vxrs_low, sizeof(sa->vxrs_low));
372         }
373         return ptr;
374 }
375
376 /*
377  * Initialize prpsinfo note (new kernel)
378  */
379 static void *nt_prpsinfo(void *ptr)
380 {
381         struct elf_prpsinfo prpsinfo;
382
383         memset(&prpsinfo, 0, sizeof(prpsinfo));
384         prpsinfo.pr_sname = 'R';
385         strcpy(prpsinfo.pr_fname, "vmlinux");
386         return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
387 }
388
389 /*
390  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
391  */
392 static void *get_vmcoreinfo_old(unsigned long *size)
393 {
394         char nt_name[11], *vmcoreinfo;
395         Elf64_Nhdr note;
396         void *addr;
397
398         if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
399                 return NULL;
400         memset(nt_name, 0, sizeof(nt_name));
401         if (copy_oldmem_kernel(&note, addr, sizeof(note)))
402                 return NULL;
403         if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
404                                sizeof(nt_name) - 1))
405                 return NULL;
406         if (strcmp(nt_name, "VMCOREINFO") != 0)
407                 return NULL;
408         vmcoreinfo = kzalloc_panic(note.n_descsz);
409         if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz))
410                 return NULL;
411         *size = note.n_descsz;
412         return vmcoreinfo;
413 }
414
415 /*
416  * Initialize vmcoreinfo note (new kernel)
417  */
418 static void *nt_vmcoreinfo(void *ptr)
419 {
420         unsigned long size;
421         void *vmcoreinfo;
422
423         vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
424         if (!vmcoreinfo)
425                 vmcoreinfo = get_vmcoreinfo_old(&size);
426         if (!vmcoreinfo)
427                 return ptr;
428         return nt_init_name(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
429 }
430
431 /*
432  * Initialize final note (needed for /proc/vmcore code)
433  */
434 static void *nt_final(void *ptr)
435 {
436         Elf64_Nhdr *note;
437
438         note = (Elf64_Nhdr *) ptr;
439         note->n_namesz = 0;
440         note->n_descsz = 0;
441         note->n_type = 0;
442         return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
443 }
444
445 /*
446  * Initialize ELF header (new kernel)
447  */
448 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
449 {
450         memset(ehdr, 0, sizeof(*ehdr));
451         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
452         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
453         ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
454         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
455         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
456         ehdr->e_type = ET_CORE;
457         ehdr->e_machine = EM_S390;
458         ehdr->e_version = EV_CURRENT;
459         ehdr->e_phoff = sizeof(Elf64_Ehdr);
460         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
461         ehdr->e_phentsize = sizeof(Elf64_Phdr);
462         ehdr->e_phnum = mem_chunk_cnt + 1;
463         return ehdr + 1;
464 }
465
466 /*
467  * Return CPU count for ELF header (new kernel)
468  */
469 static int get_cpu_cnt(void)
470 {
471         struct save_area *sa;
472         int cpus = 0;
473
474         list_for_each_entry(sa, &dump_save_areas, list)
475                 if (sa->prefix != 0)
476                         cpus++;
477         return cpus;
478 }
479
480 /*
481  * Return memory chunk count for ELF header (new kernel)
482  */
483 static int get_mem_chunk_cnt(void)
484 {
485         int cnt = 0;
486         u64 idx;
487
488         for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
489                            MEMBLOCK_NONE, NULL, NULL, NULL)
490                 cnt++;
491         return cnt;
492 }
493
494 /*
495  * Initialize ELF loads (new kernel)
496  */
497 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
498 {
499         phys_addr_t start, end;
500         u64 idx;
501
502         for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
503                            MEMBLOCK_NONE, &start, &end, NULL) {
504                 phdr->p_filesz = end - start;
505                 phdr->p_type = PT_LOAD;
506                 phdr->p_offset = start;
507                 phdr->p_vaddr = start;
508                 phdr->p_paddr = start;
509                 phdr->p_memsz = end - start;
510                 phdr->p_flags = PF_R | PF_W | PF_X;
511                 phdr->p_align = PAGE_SIZE;
512                 phdr++;
513         }
514 }
515
516 /*
517  * Initialize notes (new kernel)
518  */
519 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
520 {
521         struct save_area *sa;
522         void *ptr_start = ptr;
523         int cpu;
524
525         ptr = nt_prpsinfo(ptr);
526
527         cpu = 1;
528         list_for_each_entry(sa, &dump_save_areas, list)
529                 if (sa->prefix != 0)
530                         ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
531         ptr = nt_vmcoreinfo(ptr);
532         ptr = nt_final(ptr);
533         memset(phdr, 0, sizeof(*phdr));
534         phdr->p_type = PT_NOTE;
535         phdr->p_offset = notes_offset;
536         phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
537         phdr->p_memsz = phdr->p_filesz;
538         return ptr;
539 }
540
541 /*
542  * Create ELF core header (new kernel)
543  */
544 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
545 {
546         Elf64_Phdr *phdr_notes, *phdr_loads;
547         int mem_chunk_cnt;
548         void *ptr, *hdr;
549         u32 alloc_size;
550         u64 hdr_off;
551
552         /* If we are not in kdump or zfcpdump mode return */
553         if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
554                 return 0;
555         /* If we cannot get HSA size for zfcpdump return error */
556         if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
557                 return -ENODEV;
558
559         /* For kdump, exclude previous crashkernel memory */
560         if (OLDMEM_BASE) {
561                 oldmem_region.base = OLDMEM_BASE;
562                 oldmem_region.size = OLDMEM_SIZE;
563                 oldmem_type.total_size = OLDMEM_SIZE;
564         }
565
566         mem_chunk_cnt = get_mem_chunk_cnt();
567
568         alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
569                 mem_chunk_cnt * sizeof(Elf64_Phdr);
570         hdr = kzalloc_panic(alloc_size);
571         /* Init elf header */
572         ptr = ehdr_init(hdr, mem_chunk_cnt);
573         /* Init program headers */
574         phdr_notes = ptr;
575         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
576         phdr_loads = ptr;
577         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
578         /* Init notes */
579         hdr_off = PTR_DIFF(ptr, hdr);
580         ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
581         /* Init loads */
582         hdr_off = PTR_DIFF(ptr, hdr);
583         loads_init(phdr_loads, hdr_off);
584         *addr = (unsigned long long) hdr;
585         *size = (unsigned long long) hdr_off;
586         BUG_ON(elfcorehdr_size > alloc_size);
587         return 0;
588 }
589
590 /*
591  * Free ELF core header (new kernel)
592  */
593 void elfcorehdr_free(unsigned long long addr)
594 {
595         kfree((void *)(unsigned long)addr);
596 }
597
598 /*
599  * Read from ELF header
600  */
601 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
602 {
603         void *src = (void *)(unsigned long)*ppos;
604
605         memcpy(buf, src, count);
606         *ppos += count;
607         return count;
608 }
609
610 /*
611  * Read from ELF notes data
612  */
613 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
614 {
615         void *src = (void *)(unsigned long)*ppos;
616
617         memcpy(buf, src, count);
618         *ppos += count;
619         return count;
620 }
This page took 0.068597 seconds and 4 git commands to generate.