5 * Copyright 2006-2008, 2011-2012, 2015 Freescale Semiconductor Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2 of the License, or (at your
10 * option) any later version.
13 #include <linux/stddef.h>
14 #include <linux/kernel.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
19 #include <linux/kexec.h>
20 #include <linux/highmem.h>
21 #include <linux/cpu.h>
22 #include <linux/fsl/guts.h>
24 #include <asm/machdep.h>
25 #include <asm/pgtable.h>
28 #include <asm/cacheflush.h>
29 #include <asm/dbell.h>
30 #include <asm/code-patching.h>
31 #include <asm/cputhreads.h>
32 #include <asm/fsl_pm.h>
34 #include <sysdev/fsl_soc.h>
35 #include <sysdev/mpic.h>
38 struct epapr_spin_table {
47 #ifdef CONFIG_HOTPLUG_CPU
52 static void mpc85xx_give_timebase(void)
56 local_irq_save(flags);
63 qoriq_pm_ops->freeze_time_base(true);
66 * e5500/e6500 have a workaround for erratum A-006958 in place
67 * that will reread the timebase until TBL is non-zero.
68 * That would be a bad thing when the timebase is frozen.
70 * Thus, we read it manually, and instead of checking that
71 * TBL is non-zero, we ensure that TB does not change. We don't
72 * do that for the main mftb implementation, because it requires
78 asm volatile("mfspr %0, %1" : "=r" (timebase) :
83 asm volatile("mfspr %0, %1" : "=r" (timebase) :
85 } while (prev != timebase);
96 qoriq_pm_ops->freeze_time_base(false);
98 local_irq_restore(flags);
101 static void mpc85xx_take_timebase(void)
105 local_irq_save(flags);
112 set_tb(timebase >> 32, timebase & 0xffffffff);
116 local_irq_restore(flags);
119 static void smp_85xx_mach_cpu_die(void)
121 unsigned int cpu = smp_processor_id();
125 /* mask all irqs to prevent cpu wakeup */
126 qoriq_pm_ops->irq_mask(cpu);
131 mtspr(SPRN_TSR, mfspr(SPRN_TSR));
133 generic_set_cpu_dead(cpu);
135 cur_cpu_spec->cpu_down_flush();
137 qoriq_pm_ops->cpu_die(cpu);
143 static void qoriq_cpu_kill(unsigned int cpu)
147 for (i = 0; i < 500; i++) {
148 if (is_cpu_dead(cpu)) {
150 paca[cpu].cpu_start = 0;
156 pr_err("CPU%d didn't die...\n", cpu);
161 * To keep it compatible with old boot program which uses
162 * cache-inhibit spin table, we need to flush the cache
163 * before accessing spin table to invalidate any staled data.
164 * We also need to flush the cache after writing to spin
165 * table to push data out.
167 static inline void flush_spin_table(void *spin_table)
169 flush_dcache_range((ulong)spin_table,
170 (ulong)spin_table + sizeof(struct epapr_spin_table));
173 static inline u32 read_spin_table_addr_l(void *spin_table)
175 flush_dcache_range((ulong)spin_table,
176 (ulong)spin_table + sizeof(struct epapr_spin_table));
177 return in_be32(&((struct epapr_spin_table *)spin_table)->addr_l);
181 static void wake_hw_thread(void *info)
183 void fsl_secondary_thread_init(void);
185 int cpu = *(const int *)info;
187 inia = *(unsigned long *)fsl_secondary_thread_init;
188 book3e_start_thread(cpu_thread_in_core(cpu), inia);
192 static int smp_85xx_start_cpu(int cpu)
195 struct device_node *np;
196 const u64 *cpu_rel_addr;
199 int hw_cpu = get_hard_smp_processor_id(cpu);
200 struct epapr_spin_table __iomem *spin_table;
202 np = of_get_cpu_node(cpu, NULL);
203 cpu_rel_addr = of_get_property(np, "cpu-release-addr", NULL);
205 pr_err("No cpu-release-addr for cpu %d\n", cpu);
210 * A secondary core could be in a spinloop in the bootpage
211 * (0xfffff000), somewhere in highmem, or somewhere in lowmem.
212 * The bootpage and highmem can be accessed via ioremap(), but
213 * we need to directly access the spinloop if its in lowmem.
215 ioremappable = *cpu_rel_addr > virt_to_phys(high_memory);
217 /* Map the spin table */
219 spin_table = ioremap_prot(*cpu_rel_addr,
220 sizeof(struct epapr_spin_table), _PAGE_COHERENT);
222 spin_table = phys_to_virt(*cpu_rel_addr);
224 local_irq_save(flags);
228 qoriq_pm_ops->cpu_up_prepare(cpu);
230 /* if cpu is not spinning, reset it */
231 if (read_spin_table_addr_l(spin_table) != 1) {
233 * We don't set the BPTR register here since it already points
234 * to the boot page properly.
236 mpic_reset_core(cpu);
239 * wait until core is ready...
240 * We need to invalidate the stale data, in case the boot
241 * loader uses a cache-inhibited spin table.
243 if (!spin_event_timeout(
244 read_spin_table_addr_l(spin_table) == 1,
246 pr_err("timeout waiting for cpu %d to reset\n",
253 flush_spin_table(spin_table);
254 out_be32(&spin_table->pir, hw_cpu);
256 out_be64((u64 *)(&spin_table->addr_h),
257 __pa(ppc_function_entry(generic_secondary_smp_init)));
259 out_be32(&spin_table->addr_l, __pa(__early_start));
261 flush_spin_table(spin_table);
263 local_irq_restore(flags);
271 static int smp_85xx_kick_cpu(int nr)
278 WARN_ON(nr < 0 || nr >= num_possible_cpus());
280 pr_debug("kick CPU #%d\n", nr);
283 if (threads_per_core == 2) {
284 if (WARN_ON_ONCE(!cpu_has_feature(CPU_FTR_SMT)))
287 booting_thread_hwid = cpu_thread_in_core(nr);
288 primary = cpu_first_thread_sibling(nr);
291 qoriq_pm_ops->cpu_up_prepare(nr);
294 * If either thread in the core is online, use it to start
297 if (cpu_online(primary)) {
298 smp_call_function_single(primary,
299 wake_hw_thread, &nr, 1);
301 } else if (cpu_online(primary + 1)) {
302 smp_call_function_single(primary + 1,
303 wake_hw_thread, &nr, 1);
308 * If getting here, it means both threads in the core are
309 * offline. So start the primary thread, then it will start
310 * the thread specified in booting_thread_hwid, the one
311 * corresponding to nr.
314 } else if (threads_per_core == 1) {
316 * If one core has only one thread, set booting_thread_hwid to
319 booting_thread_hwid = INVALID_THREAD_HWID;
321 } else if (threads_per_core > 2) {
322 pr_err("Do not support more than 2 threads per CPU.");
326 ret = smp_85xx_start_cpu(primary);
331 paca[nr].cpu_start = 1;
332 generic_set_cpu_up(nr);
336 ret = smp_85xx_start_cpu(nr);
340 generic_set_cpu_up(nr);
346 struct smp_ops_t smp_85xx_ops = {
347 .cause_nmi_ipi = NULL,
348 .kick_cpu = smp_85xx_kick_cpu,
349 .cpu_bootable = smp_generic_cpu_bootable,
350 #ifdef CONFIG_HOTPLUG_CPU
351 .cpu_disable = generic_cpu_disable,
352 .cpu_die = generic_cpu_die,
354 #if defined(CONFIG_KEXEC_CORE) && !defined(CONFIG_PPC64)
355 .give_timebase = smp_generic_give_timebase,
356 .take_timebase = smp_generic_take_timebase,
360 #ifdef CONFIG_KEXEC_CORE
362 atomic_t kexec_down_cpus = ATOMIC_INIT(0);
364 void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary)
369 cur_cpu_spec->cpu_down_flush();
370 atomic_inc(&kexec_down_cpus);
376 static void mpc85xx_smp_kexec_down(void *arg)
378 if (ppc_md.kexec_cpu_down)
379 ppc_md.kexec_cpu_down(0,1);
382 void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary)
384 int cpu = smp_processor_id();
385 int sibling = cpu_last_thread_sibling(cpu);
386 bool notified = false;
388 int disable_threadbit = 0;
394 mpic_teardown_this_cpu(secondary);
396 if (cpu == crashing_cpu && cpu_thread_in_core(cpu) != 0) {
398 * We enter the crash kernel on whatever cpu crashed,
399 * even if it's a secondary thread. If that's the case,
400 * disable the corresponding primary thread.
402 disable_threadbit = 1;
403 disable_cpu = cpu_first_thread_sibling(cpu);
404 } else if (sibling != crashing_cpu &&
405 cpu_thread_in_core(cpu) == 0 &&
406 cpu_thread_in_core(sibling) != 0) {
407 disable_threadbit = 2;
408 disable_cpu = sibling;
411 if (disable_threadbit) {
412 while (paca[disable_cpu].kexec_state < KEXEC_STATE_REAL_MODE) {
415 if (!notified && now - start > 1000000) {
416 pr_info("%s/%d: waiting for cpu %d to enter KEXEC_STATE_REAL_MODE (%d)\n",
417 __func__, smp_processor_id(),
419 paca[disable_cpu].kexec_state);
425 pr_info("%s: cpu %d done waiting\n",
426 __func__, disable_cpu);
429 mtspr(SPRN_TENC, disable_threadbit);
430 while (mfspr(SPRN_TENSR) & disable_threadbit)
436 static void mpc85xx_smp_machine_kexec(struct kimage *image)
439 int timeout = INT_MAX;
440 int i, num_cpus = num_present_cpus();
442 if (image->type == KEXEC_TYPE_DEFAULT)
443 smp_call_function(mpc85xx_smp_kexec_down, NULL, 0);
445 while ( (atomic_read(&kexec_down_cpus) != (num_cpus - 1)) &&
452 printk(KERN_ERR "Unable to bring down secondary cpu(s)");
454 for_each_online_cpu(i)
456 if ( i == smp_processor_id() ) continue;
461 default_machine_kexec(image);
463 #endif /* CONFIG_KEXEC_CORE */
465 static void smp_85xx_setup_cpu(int cpu_nr)
467 mpic_setup_this_cpu();
470 void __init mpc85xx_smp_init(void)
472 struct device_node *np;
475 np = of_find_node_by_type(NULL, "open-pic");
477 smp_85xx_ops.probe = smp_mpic_probe;
478 smp_85xx_ops.setup_cpu = smp_85xx_setup_cpu;
479 smp_85xx_ops.message_pass = smp_mpic_message_pass;
481 smp_85xx_ops.setup_cpu = NULL;
483 if (cpu_has_feature(CPU_FTR_DBELL)) {
485 * If left NULL, .message_pass defaults to
486 * smp_muxed_ipi_message_pass
488 smp_85xx_ops.message_pass = NULL;
489 smp_85xx_ops.cause_ipi = doorbell_global_ipi;
490 smp_85xx_ops.probe = NULL;
493 #ifdef CONFIG_HOTPLUG_CPU
494 #ifdef CONFIG_FSL_CORENET_RCPM
498 #ifdef CONFIG_FSL_PMC
502 smp_85xx_ops.give_timebase = mpc85xx_give_timebase;
503 smp_85xx_ops.take_timebase = mpc85xx_take_timebase;
504 ppc_md.cpu_die = smp_85xx_mach_cpu_die;
505 smp_85xx_ops.cpu_die = qoriq_cpu_kill;
508 smp_ops = &smp_85xx_ops;
510 #ifdef CONFIG_KEXEC_CORE
511 ppc_md.kexec_cpu_down = mpc85xx_smp_kexec_cpu_down;
512 ppc_md.machine_kexec = mpc85xx_smp_machine_kexec;