]> Git Repo - linux.git/blob - kernel/bpf/core.c
drm/i915: use variadic macros and arrays to choose port/pipe based registers
[linux.git] / kernel / bpf / core.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <[email protected]>
12  *      Alexei Starovoitov <[email protected]>
13  *      Daniel Borkmann <[email protected]>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31
32 #include <asm/unaligned.h>
33
34 /* Registers */
35 #define BPF_R0  regs[BPF_REG_0]
36 #define BPF_R1  regs[BPF_REG_1]
37 #define BPF_R2  regs[BPF_REG_2]
38 #define BPF_R3  regs[BPF_REG_3]
39 #define BPF_R4  regs[BPF_REG_4]
40 #define BPF_R5  regs[BPF_REG_5]
41 #define BPF_R6  regs[BPF_REG_6]
42 #define BPF_R7  regs[BPF_REG_7]
43 #define BPF_R8  regs[BPF_REG_8]
44 #define BPF_R9  regs[BPF_REG_9]
45 #define BPF_R10 regs[BPF_REG_10]
46
47 /* Named registers */
48 #define DST     regs[insn->dst_reg]
49 #define SRC     regs[insn->src_reg]
50 #define FP      regs[BPF_REG_FP]
51 #define ARG1    regs[BPF_REG_ARG1]
52 #define CTX     regs[BPF_REG_CTX]
53 #define IMM     insn->imm
54
55 /* No hurry in this branch
56  *
57  * Exported for the bpf jit load helper.
58  */
59 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
60 {
61         u8 *ptr = NULL;
62
63         if (k >= SKF_NET_OFF)
64                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
65         else if (k >= SKF_LL_OFF)
66                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
67
68         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
69                 return ptr;
70
71         return NULL;
72 }
73
74 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
75 {
76         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
77                           gfp_extra_flags;
78         struct bpf_prog_aux *aux;
79         struct bpf_prog *fp;
80
81         size = round_up(size, PAGE_SIZE);
82         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
83         if (fp == NULL)
84                 return NULL;
85
86         kmemcheck_annotate_bitfield(fp, meta);
87
88         aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
89         if (aux == NULL) {
90                 vfree(fp);
91                 return NULL;
92         }
93
94         fp->pages = size / PAGE_SIZE;
95         fp->aux = aux;
96         fp->aux->prog = fp;
97
98         return fp;
99 }
100 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
101
102 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
103                                   gfp_t gfp_extra_flags)
104 {
105         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
106                           gfp_extra_flags;
107         struct bpf_prog *fp;
108         u32 pages, delta;
109         int ret;
110
111         BUG_ON(fp_old == NULL);
112
113         size = round_up(size, PAGE_SIZE);
114         pages = size / PAGE_SIZE;
115         if (pages <= fp_old->pages)
116                 return fp_old;
117
118         delta = pages - fp_old->pages;
119         ret = __bpf_prog_charge(fp_old->aux->user, delta);
120         if (ret)
121                 return NULL;
122
123         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
124         if (fp == NULL) {
125                 __bpf_prog_uncharge(fp_old->aux->user, delta);
126         } else {
127                 kmemcheck_annotate_bitfield(fp, meta);
128
129                 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
130                 fp->pages = pages;
131                 fp->aux->prog = fp;
132
133                 /* We keep fp->aux from fp_old around in the new
134                  * reallocated structure.
135                  */
136                 fp_old->aux = NULL;
137                 __bpf_prog_free(fp_old);
138         }
139
140         return fp;
141 }
142
143 void __bpf_prog_free(struct bpf_prog *fp)
144 {
145         kfree(fp->aux);
146         vfree(fp);
147 }
148
149 int bpf_prog_calc_digest(struct bpf_prog *fp)
150 {
151         const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
152         u32 raw_size = bpf_prog_digest_scratch_size(fp);
153         u32 ws[SHA_WORKSPACE_WORDS];
154         u32 i, bsize, psize, blocks;
155         struct bpf_insn *dst;
156         bool was_ld_map;
157         u8 *raw, *todo;
158         __be32 *result;
159         __be64 *bits;
160
161         raw = vmalloc(raw_size);
162         if (!raw)
163                 return -ENOMEM;
164
165         sha_init(fp->digest);
166         memset(ws, 0, sizeof(ws));
167
168         /* We need to take out the map fd for the digest calculation
169          * since they are unstable from user space side.
170          */
171         dst = (void *)raw;
172         for (i = 0, was_ld_map = false; i < fp->len; i++) {
173                 dst[i] = fp->insnsi[i];
174                 if (!was_ld_map &&
175                     dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
176                     dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
177                         was_ld_map = true;
178                         dst[i].imm = 0;
179                 } else if (was_ld_map &&
180                            dst[i].code == 0 &&
181                            dst[i].dst_reg == 0 &&
182                            dst[i].src_reg == 0 &&
183                            dst[i].off == 0) {
184                         was_ld_map = false;
185                         dst[i].imm = 0;
186                 } else {
187                         was_ld_map = false;
188                 }
189         }
190
191         psize = bpf_prog_insn_size(fp);
192         memset(&raw[psize], 0, raw_size - psize);
193         raw[psize++] = 0x80;
194
195         bsize  = round_up(psize, SHA_MESSAGE_BYTES);
196         blocks = bsize / SHA_MESSAGE_BYTES;
197         todo   = raw;
198         if (bsize - psize >= sizeof(__be64)) {
199                 bits = (__be64 *)(todo + bsize - sizeof(__be64));
200         } else {
201                 bits = (__be64 *)(todo + bsize + bits_offset);
202                 blocks++;
203         }
204         *bits = cpu_to_be64((psize - 1) << 3);
205
206         while (blocks--) {
207                 sha_transform(fp->digest, todo, ws);
208                 todo += SHA_MESSAGE_BYTES;
209         }
210
211         result = (__force __be32 *)fp->digest;
212         for (i = 0; i < SHA_DIGEST_WORDS; i++)
213                 result[i] = cpu_to_be32(fp->digest[i]);
214
215         vfree(raw);
216         return 0;
217 }
218
219 static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
220 {
221         return BPF_CLASS(insn->code) == BPF_JMP  &&
222                /* Call and Exit are both special jumps with no
223                 * target inside the BPF instruction image.
224                 */
225                BPF_OP(insn->code) != BPF_CALL &&
226                BPF_OP(insn->code) != BPF_EXIT;
227 }
228
229 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
230 {
231         struct bpf_insn *insn = prog->insnsi;
232         u32 i, insn_cnt = prog->len;
233
234         for (i = 0; i < insn_cnt; i++, insn++) {
235                 if (!bpf_is_jmp_and_has_target(insn))
236                         continue;
237
238                 /* Adjust offset of jmps if we cross boundaries. */
239                 if (i < pos && i + insn->off + 1 > pos)
240                         insn->off += delta;
241                 else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
242                         insn->off -= delta;
243         }
244 }
245
246 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
247                                        const struct bpf_insn *patch, u32 len)
248 {
249         u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
250         struct bpf_prog *prog_adj;
251
252         /* Since our patchlet doesn't expand the image, we're done. */
253         if (insn_delta == 0) {
254                 memcpy(prog->insnsi + off, patch, sizeof(*patch));
255                 return prog;
256         }
257
258         insn_adj_cnt = prog->len + insn_delta;
259
260         /* Several new instructions need to be inserted. Make room
261          * for them. Likely, there's no need for a new allocation as
262          * last page could have large enough tailroom.
263          */
264         prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
265                                     GFP_USER);
266         if (!prog_adj)
267                 return NULL;
268
269         prog_adj->len = insn_adj_cnt;
270
271         /* Patching happens in 3 steps:
272          *
273          * 1) Move over tail of insnsi from next instruction onwards,
274          *    so we can patch the single target insn with one or more
275          *    new ones (patching is always from 1 to n insns, n > 0).
276          * 2) Inject new instructions at the target location.
277          * 3) Adjust branch offsets if necessary.
278          */
279         insn_rest = insn_adj_cnt - off - len;
280
281         memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
282                 sizeof(*patch) * insn_rest);
283         memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
284
285         bpf_adj_branches(prog_adj, off, insn_delta);
286
287         return prog_adj;
288 }
289
290 #ifdef CONFIG_BPF_JIT
291 struct bpf_binary_header *
292 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
293                      unsigned int alignment,
294                      bpf_jit_fill_hole_t bpf_fill_ill_insns)
295 {
296         struct bpf_binary_header *hdr;
297         unsigned int size, hole, start;
298
299         /* Most of BPF filters are really small, but if some of them
300          * fill a page, allow at least 128 extra bytes to insert a
301          * random section of illegal instructions.
302          */
303         size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
304         hdr = module_alloc(size);
305         if (hdr == NULL)
306                 return NULL;
307
308         /* Fill space with illegal/arch-dep instructions. */
309         bpf_fill_ill_insns(hdr, size);
310
311         hdr->pages = size / PAGE_SIZE;
312         hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
313                      PAGE_SIZE - sizeof(*hdr));
314         start = (get_random_int() % hole) & ~(alignment - 1);
315
316         /* Leave a random number of instructions before BPF code. */
317         *image_ptr = &hdr->image[start];
318
319         return hdr;
320 }
321
322 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
323 {
324         module_memfree(hdr);
325 }
326
327 int bpf_jit_harden __read_mostly;
328
329 static int bpf_jit_blind_insn(const struct bpf_insn *from,
330                               const struct bpf_insn *aux,
331                               struct bpf_insn *to_buff)
332 {
333         struct bpf_insn *to = to_buff;
334         u32 imm_rnd = get_random_int();
335         s16 off;
336
337         BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
338         BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
339
340         if (from->imm == 0 &&
341             (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
342              from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
343                 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
344                 goto out;
345         }
346
347         switch (from->code) {
348         case BPF_ALU | BPF_ADD | BPF_K:
349         case BPF_ALU | BPF_SUB | BPF_K:
350         case BPF_ALU | BPF_AND | BPF_K:
351         case BPF_ALU | BPF_OR  | BPF_K:
352         case BPF_ALU | BPF_XOR | BPF_K:
353         case BPF_ALU | BPF_MUL | BPF_K:
354         case BPF_ALU | BPF_MOV | BPF_K:
355         case BPF_ALU | BPF_DIV | BPF_K:
356         case BPF_ALU | BPF_MOD | BPF_K:
357                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
358                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
359                 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
360                 break;
361
362         case BPF_ALU64 | BPF_ADD | BPF_K:
363         case BPF_ALU64 | BPF_SUB | BPF_K:
364         case BPF_ALU64 | BPF_AND | BPF_K:
365         case BPF_ALU64 | BPF_OR  | BPF_K:
366         case BPF_ALU64 | BPF_XOR | BPF_K:
367         case BPF_ALU64 | BPF_MUL | BPF_K:
368         case BPF_ALU64 | BPF_MOV | BPF_K:
369         case BPF_ALU64 | BPF_DIV | BPF_K:
370         case BPF_ALU64 | BPF_MOD | BPF_K:
371                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
372                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
373                 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
374                 break;
375
376         case BPF_JMP | BPF_JEQ  | BPF_K:
377         case BPF_JMP | BPF_JNE  | BPF_K:
378         case BPF_JMP | BPF_JGT  | BPF_K:
379         case BPF_JMP | BPF_JGE  | BPF_K:
380         case BPF_JMP | BPF_JSGT | BPF_K:
381         case BPF_JMP | BPF_JSGE | BPF_K:
382         case BPF_JMP | BPF_JSET | BPF_K:
383                 /* Accommodate for extra offset in case of a backjump. */
384                 off = from->off;
385                 if (off < 0)
386                         off -= 2;
387                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
388                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
389                 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
390                 break;
391
392         case BPF_LD | BPF_ABS | BPF_W:
393         case BPF_LD | BPF_ABS | BPF_H:
394         case BPF_LD | BPF_ABS | BPF_B:
395                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
396                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
397                 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
398                 break;
399
400         case BPF_LD | BPF_IND | BPF_W:
401         case BPF_LD | BPF_IND | BPF_H:
402         case BPF_LD | BPF_IND | BPF_B:
403                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
404                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
405                 *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
406                 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
407                 break;
408
409         case BPF_LD | BPF_IMM | BPF_DW:
410                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
411                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
412                 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
413                 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
414                 break;
415         case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
416                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
417                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
418                 *to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
419                 break;
420
421         case BPF_ST | BPF_MEM | BPF_DW:
422         case BPF_ST | BPF_MEM | BPF_W:
423         case BPF_ST | BPF_MEM | BPF_H:
424         case BPF_ST | BPF_MEM | BPF_B:
425                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
426                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
427                 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
428                 break;
429         }
430 out:
431         return to - to_buff;
432 }
433
434 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
435                                               gfp_t gfp_extra_flags)
436 {
437         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
438                           gfp_extra_flags;
439         struct bpf_prog *fp;
440
441         fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
442         if (fp != NULL) {
443                 kmemcheck_annotate_bitfield(fp, meta);
444
445                 /* aux->prog still points to the fp_other one, so
446                  * when promoting the clone to the real program,
447                  * this still needs to be adapted.
448                  */
449                 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
450         }
451
452         return fp;
453 }
454
455 static void bpf_prog_clone_free(struct bpf_prog *fp)
456 {
457         /* aux was stolen by the other clone, so we cannot free
458          * it from this path! It will be freed eventually by the
459          * other program on release.
460          *
461          * At this point, we don't need a deferred release since
462          * clone is guaranteed to not be locked.
463          */
464         fp->aux = NULL;
465         __bpf_prog_free(fp);
466 }
467
468 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
469 {
470         /* We have to repoint aux->prog to self, as we don't
471          * know whether fp here is the clone or the original.
472          */
473         fp->aux->prog = fp;
474         bpf_prog_clone_free(fp_other);
475 }
476
477 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
478 {
479         struct bpf_insn insn_buff[16], aux[2];
480         struct bpf_prog *clone, *tmp;
481         int insn_delta, insn_cnt;
482         struct bpf_insn *insn;
483         int i, rewritten;
484
485         if (!bpf_jit_blinding_enabled())
486                 return prog;
487
488         clone = bpf_prog_clone_create(prog, GFP_USER);
489         if (!clone)
490                 return ERR_PTR(-ENOMEM);
491
492         insn_cnt = clone->len;
493         insn = clone->insnsi;
494
495         for (i = 0; i < insn_cnt; i++, insn++) {
496                 /* We temporarily need to hold the original ld64 insn
497                  * so that we can still access the first part in the
498                  * second blinding run.
499                  */
500                 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
501                     insn[1].code == 0)
502                         memcpy(aux, insn, sizeof(aux));
503
504                 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
505                 if (!rewritten)
506                         continue;
507
508                 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
509                 if (!tmp) {
510                         /* Patching may have repointed aux->prog during
511                          * realloc from the original one, so we need to
512                          * fix it up here on error.
513                          */
514                         bpf_jit_prog_release_other(prog, clone);
515                         return ERR_PTR(-ENOMEM);
516                 }
517
518                 clone = tmp;
519                 insn_delta = rewritten - 1;
520
521                 /* Walk new program and skip insns we just inserted. */
522                 insn = clone->insnsi + i + insn_delta;
523                 insn_cnt += insn_delta;
524                 i        += insn_delta;
525         }
526
527         return clone;
528 }
529 #endif /* CONFIG_BPF_JIT */
530
531 /* Base function for offset calculation. Needs to go into .text section,
532  * therefore keeping it non-static as well; will also be used by JITs
533  * anyway later on, so do not let the compiler omit it.
534  */
535 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
536 {
537         return 0;
538 }
539 EXPORT_SYMBOL_GPL(__bpf_call_base);
540
541 /**
542  *      __bpf_prog_run - run eBPF program on a given context
543  *      @ctx: is the data we are operating on
544  *      @insn: is the array of eBPF instructions
545  *
546  * Decode and execute eBPF instructions.
547  */
548 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
549 {
550         u64 stack[MAX_BPF_STACK / sizeof(u64)];
551         u64 regs[MAX_BPF_REG], tmp;
552         static const void *jumptable[256] = {
553                 [0 ... 255] = &&default_label,
554                 /* Now overwrite non-defaults ... */
555                 /* 32 bit ALU operations */
556                 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
557                 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
558                 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
559                 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
560                 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
561                 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
562                 [BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
563                 [BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
564                 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
565                 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
566                 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
567                 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
568                 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
569                 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
570                 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
571                 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
572                 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
573                 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
574                 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
575                 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
576                 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
577                 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
578                 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
579                 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
580                 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
581                 /* 64 bit ALU operations */
582                 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
583                 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
584                 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
585                 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
586                 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
587                 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
588                 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
589                 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
590                 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
591                 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
592                 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
593                 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
594                 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
595                 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
596                 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
597                 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
598                 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
599                 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
600                 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
601                 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
602                 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
603                 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
604                 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
605                 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
606                 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
607                 /* Call instruction */
608                 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
609                 [BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
610                 /* Jumps */
611                 [BPF_JMP | BPF_JA] = &&JMP_JA,
612                 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
613                 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
614                 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
615                 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
616                 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
617                 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
618                 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
619                 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
620                 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
621                 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
622                 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
623                 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
624                 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
625                 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
626                 /* Program return */
627                 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
628                 /* Store instructions */
629                 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
630                 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
631                 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
632                 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
633                 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
634                 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
635                 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
636                 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
637                 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
638                 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
639                 /* Load instructions */
640                 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
641                 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
642                 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
643                 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
644                 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
645                 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
646                 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
647                 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
648                 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
649                 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
650                 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
651         };
652         u32 tail_call_cnt = 0;
653         void *ptr;
654         int off;
655
656 #define CONT     ({ insn++; goto select_insn; })
657 #define CONT_JMP ({ insn++; goto select_insn; })
658
659         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
660         ARG1 = (u64) (unsigned long) ctx;
661
662 select_insn:
663         goto *jumptable[insn->code];
664
665         /* ALU */
666 #define ALU(OPCODE, OP)                 \
667         ALU64_##OPCODE##_X:             \
668                 DST = DST OP SRC;       \
669                 CONT;                   \
670         ALU_##OPCODE##_X:               \
671                 DST = (u32) DST OP (u32) SRC;   \
672                 CONT;                   \
673         ALU64_##OPCODE##_K:             \
674                 DST = DST OP IMM;               \
675                 CONT;                   \
676         ALU_##OPCODE##_K:               \
677                 DST = (u32) DST OP (u32) IMM;   \
678                 CONT;
679
680         ALU(ADD,  +)
681         ALU(SUB,  -)
682         ALU(AND,  &)
683         ALU(OR,   |)
684         ALU(LSH, <<)
685         ALU(RSH, >>)
686         ALU(XOR,  ^)
687         ALU(MUL,  *)
688 #undef ALU
689         ALU_NEG:
690                 DST = (u32) -DST;
691                 CONT;
692         ALU64_NEG:
693                 DST = -DST;
694                 CONT;
695         ALU_MOV_X:
696                 DST = (u32) SRC;
697                 CONT;
698         ALU_MOV_K:
699                 DST = (u32) IMM;
700                 CONT;
701         ALU64_MOV_X:
702                 DST = SRC;
703                 CONT;
704         ALU64_MOV_K:
705                 DST = IMM;
706                 CONT;
707         LD_IMM_DW:
708                 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
709                 insn++;
710                 CONT;
711         ALU64_ARSH_X:
712                 (*(s64 *) &DST) >>= SRC;
713                 CONT;
714         ALU64_ARSH_K:
715                 (*(s64 *) &DST) >>= IMM;
716                 CONT;
717         ALU64_MOD_X:
718                 if (unlikely(SRC == 0))
719                         return 0;
720                 div64_u64_rem(DST, SRC, &tmp);
721                 DST = tmp;
722                 CONT;
723         ALU_MOD_X:
724                 if (unlikely(SRC == 0))
725                         return 0;
726                 tmp = (u32) DST;
727                 DST = do_div(tmp, (u32) SRC);
728                 CONT;
729         ALU64_MOD_K:
730                 div64_u64_rem(DST, IMM, &tmp);
731                 DST = tmp;
732                 CONT;
733         ALU_MOD_K:
734                 tmp = (u32) DST;
735                 DST = do_div(tmp, (u32) IMM);
736                 CONT;
737         ALU64_DIV_X:
738                 if (unlikely(SRC == 0))
739                         return 0;
740                 DST = div64_u64(DST, SRC);
741                 CONT;
742         ALU_DIV_X:
743                 if (unlikely(SRC == 0))
744                         return 0;
745                 tmp = (u32) DST;
746                 do_div(tmp, (u32) SRC);
747                 DST = (u32) tmp;
748                 CONT;
749         ALU64_DIV_K:
750                 DST = div64_u64(DST, IMM);
751                 CONT;
752         ALU_DIV_K:
753                 tmp = (u32) DST;
754                 do_div(tmp, (u32) IMM);
755                 DST = (u32) tmp;
756                 CONT;
757         ALU_END_TO_BE:
758                 switch (IMM) {
759                 case 16:
760                         DST = (__force u16) cpu_to_be16(DST);
761                         break;
762                 case 32:
763                         DST = (__force u32) cpu_to_be32(DST);
764                         break;
765                 case 64:
766                         DST = (__force u64) cpu_to_be64(DST);
767                         break;
768                 }
769                 CONT;
770         ALU_END_TO_LE:
771                 switch (IMM) {
772                 case 16:
773                         DST = (__force u16) cpu_to_le16(DST);
774                         break;
775                 case 32:
776                         DST = (__force u32) cpu_to_le32(DST);
777                         break;
778                 case 64:
779                         DST = (__force u64) cpu_to_le64(DST);
780                         break;
781                 }
782                 CONT;
783
784         /* CALL */
785         JMP_CALL:
786                 /* Function call scratches BPF_R1-BPF_R5 registers,
787                  * preserves BPF_R6-BPF_R9, and stores return value
788                  * into BPF_R0.
789                  */
790                 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
791                                                        BPF_R4, BPF_R5);
792                 CONT;
793
794         JMP_TAIL_CALL: {
795                 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
796                 struct bpf_array *array = container_of(map, struct bpf_array, map);
797                 struct bpf_prog *prog;
798                 u64 index = BPF_R3;
799
800                 if (unlikely(index >= array->map.max_entries))
801                         goto out;
802                 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
803                         goto out;
804
805                 tail_call_cnt++;
806
807                 prog = READ_ONCE(array->ptrs[index]);
808                 if (!prog)
809                         goto out;
810
811                 /* ARG1 at this point is guaranteed to point to CTX from
812                  * the verifier side due to the fact that the tail call is
813                  * handeled like a helper, that is, bpf_tail_call_proto,
814                  * where arg1_type is ARG_PTR_TO_CTX.
815                  */
816                 insn = prog->insnsi;
817                 goto select_insn;
818 out:
819                 CONT;
820         }
821         /* JMP */
822         JMP_JA:
823                 insn += insn->off;
824                 CONT;
825         JMP_JEQ_X:
826                 if (DST == SRC) {
827                         insn += insn->off;
828                         CONT_JMP;
829                 }
830                 CONT;
831         JMP_JEQ_K:
832                 if (DST == IMM) {
833                         insn += insn->off;
834                         CONT_JMP;
835                 }
836                 CONT;
837         JMP_JNE_X:
838                 if (DST != SRC) {
839                         insn += insn->off;
840                         CONT_JMP;
841                 }
842                 CONT;
843         JMP_JNE_K:
844                 if (DST != IMM) {
845                         insn += insn->off;
846                         CONT_JMP;
847                 }
848                 CONT;
849         JMP_JGT_X:
850                 if (DST > SRC) {
851                         insn += insn->off;
852                         CONT_JMP;
853                 }
854                 CONT;
855         JMP_JGT_K:
856                 if (DST > IMM) {
857                         insn += insn->off;
858                         CONT_JMP;
859                 }
860                 CONT;
861         JMP_JGE_X:
862                 if (DST >= SRC) {
863                         insn += insn->off;
864                         CONT_JMP;
865                 }
866                 CONT;
867         JMP_JGE_K:
868                 if (DST >= IMM) {
869                         insn += insn->off;
870                         CONT_JMP;
871                 }
872                 CONT;
873         JMP_JSGT_X:
874                 if (((s64) DST) > ((s64) SRC)) {
875                         insn += insn->off;
876                         CONT_JMP;
877                 }
878                 CONT;
879         JMP_JSGT_K:
880                 if (((s64) DST) > ((s64) IMM)) {
881                         insn += insn->off;
882                         CONT_JMP;
883                 }
884                 CONT;
885         JMP_JSGE_X:
886                 if (((s64) DST) >= ((s64) SRC)) {
887                         insn += insn->off;
888                         CONT_JMP;
889                 }
890                 CONT;
891         JMP_JSGE_K:
892                 if (((s64) DST) >= ((s64) IMM)) {
893                         insn += insn->off;
894                         CONT_JMP;
895                 }
896                 CONT;
897         JMP_JSET_X:
898                 if (DST & SRC) {
899                         insn += insn->off;
900                         CONT_JMP;
901                 }
902                 CONT;
903         JMP_JSET_K:
904                 if (DST & IMM) {
905                         insn += insn->off;
906                         CONT_JMP;
907                 }
908                 CONT;
909         JMP_EXIT:
910                 return BPF_R0;
911
912         /* STX and ST and LDX*/
913 #define LDST(SIZEOP, SIZE)                                              \
914         STX_MEM_##SIZEOP:                                               \
915                 *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
916                 CONT;                                                   \
917         ST_MEM_##SIZEOP:                                                \
918                 *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
919                 CONT;                                                   \
920         LDX_MEM_##SIZEOP:                                               \
921                 DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
922                 CONT;
923
924         LDST(B,   u8)
925         LDST(H,  u16)
926         LDST(W,  u32)
927         LDST(DW, u64)
928 #undef LDST
929         STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
930                 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
931                            (DST + insn->off));
932                 CONT;
933         STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
934                 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
935                              (DST + insn->off));
936                 CONT;
937         LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
938                 off = IMM;
939 load_word:
940                 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
941                  * only appearing in the programs where ctx ==
942                  * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
943                  * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
944                  * internal BPF verifier will check that BPF_R6 ==
945                  * ctx.
946                  *
947                  * BPF_ABS and BPF_IND are wrappers of function calls,
948                  * so they scratch BPF_R1-BPF_R5 registers, preserve
949                  * BPF_R6-BPF_R9, and store return value into BPF_R0.
950                  *
951                  * Implicit input:
952                  *   ctx == skb == BPF_R6 == CTX
953                  *
954                  * Explicit input:
955                  *   SRC == any register
956                  *   IMM == 32-bit immediate
957                  *
958                  * Output:
959                  *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
960                  */
961
962                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
963                 if (likely(ptr != NULL)) {
964                         BPF_R0 = get_unaligned_be32(ptr);
965                         CONT;
966                 }
967
968                 return 0;
969         LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
970                 off = IMM;
971 load_half:
972                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
973                 if (likely(ptr != NULL)) {
974                         BPF_R0 = get_unaligned_be16(ptr);
975                         CONT;
976                 }
977
978                 return 0;
979         LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
980                 off = IMM;
981 load_byte:
982                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
983                 if (likely(ptr != NULL)) {
984                         BPF_R0 = *(u8 *)ptr;
985                         CONT;
986                 }
987
988                 return 0;
989         LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
990                 off = IMM + SRC;
991                 goto load_word;
992         LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
993                 off = IMM + SRC;
994                 goto load_half;
995         LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
996                 off = IMM + SRC;
997                 goto load_byte;
998
999         default_label:
1000                 /* If we ever reach this, we have a bug somewhere. */
1001                 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
1002                 return 0;
1003 }
1004 STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
1005
1006 bool bpf_prog_array_compatible(struct bpf_array *array,
1007                                const struct bpf_prog *fp)
1008 {
1009         if (!array->owner_prog_type) {
1010                 /* There's no owner yet where we could check for
1011                  * compatibility.
1012                  */
1013                 array->owner_prog_type = fp->type;
1014                 array->owner_jited = fp->jited;
1015
1016                 return true;
1017         }
1018
1019         return array->owner_prog_type == fp->type &&
1020                array->owner_jited == fp->jited;
1021 }
1022
1023 static int bpf_check_tail_call(const struct bpf_prog *fp)
1024 {
1025         struct bpf_prog_aux *aux = fp->aux;
1026         int i;
1027
1028         for (i = 0; i < aux->used_map_cnt; i++) {
1029                 struct bpf_map *map = aux->used_maps[i];
1030                 struct bpf_array *array;
1031
1032                 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1033                         continue;
1034
1035                 array = container_of(map, struct bpf_array, map);
1036                 if (!bpf_prog_array_compatible(array, fp))
1037                         return -EINVAL;
1038         }
1039
1040         return 0;
1041 }
1042
1043 /**
1044  *      bpf_prog_select_runtime - select exec runtime for BPF program
1045  *      @fp: bpf_prog populated with internal BPF program
1046  *      @err: pointer to error variable
1047  *
1048  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1049  * The BPF program will be executed via BPF_PROG_RUN() macro.
1050  */
1051 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1052 {
1053         fp->bpf_func = (void *) __bpf_prog_run;
1054
1055         /* eBPF JITs can rewrite the program in case constant
1056          * blinding is active. However, in case of error during
1057          * blinding, bpf_int_jit_compile() must always return a
1058          * valid program, which in this case would simply not
1059          * be JITed, but falls back to the interpreter.
1060          */
1061         fp = bpf_int_jit_compile(fp);
1062         bpf_prog_lock_ro(fp);
1063
1064         /* The tail call compatibility check can only be done at
1065          * this late stage as we need to determine, if we deal
1066          * with JITed or non JITed program concatenations and not
1067          * all eBPF JITs might immediately support all features.
1068          */
1069         *err = bpf_check_tail_call(fp);
1070
1071         return fp;
1072 }
1073 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1074
1075 static void bpf_prog_free_deferred(struct work_struct *work)
1076 {
1077         struct bpf_prog_aux *aux;
1078
1079         aux = container_of(work, struct bpf_prog_aux, work);
1080         bpf_jit_free(aux->prog);
1081 }
1082
1083 /* Free internal BPF program */
1084 void bpf_prog_free(struct bpf_prog *fp)
1085 {
1086         struct bpf_prog_aux *aux = fp->aux;
1087
1088         INIT_WORK(&aux->work, bpf_prog_free_deferred);
1089         schedule_work(&aux->work);
1090 }
1091 EXPORT_SYMBOL_GPL(bpf_prog_free);
1092
1093 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1094 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1095
1096 void bpf_user_rnd_init_once(void)
1097 {
1098         prandom_init_once(&bpf_user_rnd_state);
1099 }
1100
1101 BPF_CALL_0(bpf_user_rnd_u32)
1102 {
1103         /* Should someone ever have the rather unwise idea to use some
1104          * of the registers passed into this function, then note that
1105          * this function is called from native eBPF and classic-to-eBPF
1106          * transformations. Register assignments from both sides are
1107          * different, f.e. classic always sets fn(ctx, A, X) here.
1108          */
1109         struct rnd_state *state;
1110         u32 res;
1111
1112         state = &get_cpu_var(bpf_user_rnd_state);
1113         res = prandom_u32_state(state);
1114         put_cpu_var(bpf_user_rnd_state);
1115
1116         return res;
1117 }
1118
1119 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1120 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1121 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1122 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1123
1124 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1125 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1126 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1127 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1128
1129 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1130 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1131 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1132
1133 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1134 {
1135         return NULL;
1136 }
1137
1138 u64 __weak
1139 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1140                  void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1141 {
1142         return -ENOTSUPP;
1143 }
1144
1145 /* Always built-in helper functions. */
1146 const struct bpf_func_proto bpf_tail_call_proto = {
1147         .func           = NULL,
1148         .gpl_only       = false,
1149         .ret_type       = RET_VOID,
1150         .arg1_type      = ARG_PTR_TO_CTX,
1151         .arg2_type      = ARG_CONST_MAP_PTR,
1152         .arg3_type      = ARG_ANYTHING,
1153 };
1154
1155 /* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
1156 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1157 {
1158         return prog;
1159 }
1160
1161 bool __weak bpf_helper_changes_pkt_data(void *func)
1162 {
1163         return false;
1164 }
1165
1166 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1167  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1168  */
1169 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1170                          int len)
1171 {
1172         return -EFAULT;
1173 }
This page took 0.098628 seconds and 4 git commands to generate.