1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * proc base directory handling functions
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
45 * Smaps information related to shared, private, clean and dirty pages.
48 * Overall revision about smaps.
51 #include <linux/uaccess.h>
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched/autogroup.h>
92 #include <linux/sched/mm.h>
93 #include <linux/sched/coredump.h>
94 #include <linux/sched/debug.h>
95 #include <linux/sched/stat.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
101 #include "../../lib/kstrtox.h"
104 * Implementing inode permission operations in /proc is almost
105 * certainly an error. Permission checks need to happen during
106 * each system call not at open time. The reason is that most of
107 * what we wish to check for permissions in /proc varies at runtime.
109 * The classic example of a problem is opening file descriptors
110 * in /proc for a task before it execs a suid executable.
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
120 const struct inode_operations *iop;
121 const struct file_operations *fop;
125 #define NOD(NAME, MODE, IOP, FOP, OP) { \
127 .len = sizeof(NAME) - 1, \
134 #define DIR(NAME, MODE, iops, fops) \
135 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link) \
137 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
138 &proc_pid_link_inode_operations, NULL, \
139 { .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops) \
141 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show) \
143 NOD(NAME, (S_IFREG|(MODE)), \
144 NULL, &proc_single_file_operations, \
145 { .proc_show = show } )
146 #define ATTR(LSM, NAME, MODE) \
147 NOD(NAME, (S_IFREG|(MODE)), \
148 NULL, &proc_pid_attr_operations, \
152 * Count the number of hardlinks for the pid_entry table, excluding the .
155 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
162 for (i = 0; i < n; ++i) {
163 if (S_ISDIR(entries[i].mode))
170 static int get_task_root(struct task_struct *task, struct path *root)
172 int result = -ENOENT;
176 get_fs_root(task->fs, root);
183 static int proc_cwd_link(struct dentry *dentry, struct path *path)
185 struct task_struct *task = get_proc_task(d_inode(dentry));
186 int result = -ENOENT;
191 get_fs_pwd(task->fs, path);
195 put_task_struct(task);
200 static int proc_root_link(struct dentry *dentry, struct path *path)
202 struct task_struct *task = get_proc_task(d_inode(dentry));
203 int result = -ENOENT;
206 result = get_task_root(task, path);
207 put_task_struct(task);
212 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
213 size_t count, loff_t *ppos)
215 unsigned long arg_start, arg_end, env_start, env_end;
216 unsigned long pos, len;
219 /* Check if process spawned far enough to have cmdline. */
223 spin_lock(&mm->arg_lock);
224 arg_start = mm->arg_start;
225 arg_end = mm->arg_end;
226 env_start = mm->env_start;
227 env_end = mm->env_end;
228 spin_unlock(&mm->arg_lock);
230 if (arg_start >= arg_end)
234 * We have traditionally allowed the user to re-write
235 * the argument strings and overflow the end result
236 * into the environment section. But only do that if
237 * the environment area is contiguous to the arguments.
239 if (env_start != arg_end || env_start >= env_end)
240 env_start = env_end = arg_end;
242 /* .. and limit it to a maximum of one page of slop */
243 if (env_end >= arg_end + PAGE_SIZE)
244 env_end = arg_end + PAGE_SIZE - 1;
246 /* We're not going to care if "*ppos" has high bits set */
247 pos = arg_start + *ppos;
249 /* .. but we do check the result is in the proper range */
250 if (pos < arg_start || pos >= env_end)
253 /* .. and we never go past env_end */
254 if (env_end - pos < count)
255 count = env_end - pos;
257 page = (char *)__get_free_page(GFP_KERNEL);
264 size_t size = min_t(size_t, PAGE_SIZE, count);
268 * Are we already starting past the official end?
269 * We always include the last byte that is *supposed*
272 offset = (pos >= arg_end) ? pos - arg_end + 1 : 0;
274 got = access_remote_vm(mm, pos - offset, page, size + offset, FOLL_ANON);
279 /* Don't walk past a NUL character once you hit arg_end */
280 if (pos + got >= arg_end) {
284 * If we started before 'arg_end' but ended up
285 * at or after it, we start the NUL character
286 * check at arg_end-1 (where we expect the normal
289 * NOTE! This is smaller than 'got', because
290 * pos + got >= arg_end
293 n = arg_end - pos - 1;
295 /* Cut off at first NUL after 'n' */
296 got = n + strnlen(page+n, offset+got-n);
301 /* Include the NUL if it existed */
306 got -= copy_to_user(buf, page+offset, got);
307 if (unlikely(!got)) {
318 free_page((unsigned long)page);
322 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
323 size_t count, loff_t *pos)
325 struct mm_struct *mm;
328 mm = get_task_mm(tsk);
332 ret = get_mm_cmdline(mm, buf, count, pos);
337 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
338 size_t count, loff_t *pos)
340 struct task_struct *tsk;
345 tsk = get_proc_task(file_inode(file));
348 ret = get_task_cmdline(tsk, buf, count, pos);
349 put_task_struct(tsk);
355 static const struct file_operations proc_pid_cmdline_ops = {
356 .read = proc_pid_cmdline_read,
357 .llseek = generic_file_llseek,
360 #ifdef CONFIG_KALLSYMS
362 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
363 * Returns the resolved symbol. If that fails, simply return the address.
365 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
366 struct pid *pid, struct task_struct *task)
369 char symname[KSYM_NAME_LEN];
371 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
374 wchan = get_wchan(task);
375 if (wchan && !lookup_symbol_name(wchan, symname)) {
376 seq_puts(m, symname);
384 #endif /* CONFIG_KALLSYMS */
386 static int lock_trace(struct task_struct *task)
388 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
391 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
392 mutex_unlock(&task->signal->cred_guard_mutex);
398 static void unlock_trace(struct task_struct *task)
400 mutex_unlock(&task->signal->cred_guard_mutex);
403 #ifdef CONFIG_STACKTRACE
405 #define MAX_STACK_TRACE_DEPTH 64
407 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
408 struct pid *pid, struct task_struct *task)
410 unsigned long *entries;
414 * The ability to racily run the kernel stack unwinder on a running task
415 * and then observe the unwinder output is scary; while it is useful for
416 * debugging kernel issues, it can also allow an attacker to leak kernel
418 * Doing this in a manner that is at least safe from races would require
419 * some work to ensure that the remote task can not be scheduled; and
420 * even then, this would still expose the unwinder as local attack
422 * Therefore, this interface is restricted to root.
424 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
427 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
432 err = lock_trace(task);
434 unsigned int i, nr_entries;
436 nr_entries = stack_trace_save_tsk(task, entries,
437 MAX_STACK_TRACE_DEPTH, 0);
439 for (i = 0; i < nr_entries; i++) {
440 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
451 #ifdef CONFIG_SCHED_INFO
453 * Provides /proc/PID/schedstat
455 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
456 struct pid *pid, struct task_struct *task)
458 if (unlikely(!sched_info_on()))
459 seq_puts(m, "0 0 0\n");
461 seq_printf(m, "%llu %llu %lu\n",
462 (unsigned long long)task->se.sum_exec_runtime,
463 (unsigned long long)task->sched_info.run_delay,
464 task->sched_info.pcount);
470 #ifdef CONFIG_LATENCYTOP
471 static int lstats_show_proc(struct seq_file *m, void *v)
474 struct inode *inode = m->private;
475 struct task_struct *task = get_proc_task(inode);
479 seq_puts(m, "Latency Top version : v0.1\n");
480 for (i = 0; i < LT_SAVECOUNT; i++) {
481 struct latency_record *lr = &task->latency_record[i];
482 if (lr->backtrace[0]) {
484 seq_printf(m, "%i %li %li",
485 lr->count, lr->time, lr->max);
486 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
487 unsigned long bt = lr->backtrace[q];
491 seq_printf(m, " %ps", (void *)bt);
497 put_task_struct(task);
501 static int lstats_open(struct inode *inode, struct file *file)
503 return single_open(file, lstats_show_proc, inode);
506 static ssize_t lstats_write(struct file *file, const char __user *buf,
507 size_t count, loff_t *offs)
509 struct task_struct *task = get_proc_task(file_inode(file));
513 clear_tsk_latency_tracing(task);
514 put_task_struct(task);
519 static const struct file_operations proc_lstats_operations = {
522 .write = lstats_write,
524 .release = single_release,
529 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
530 struct pid *pid, struct task_struct *task)
532 unsigned long totalpages = totalram_pages() + total_swap_pages;
533 unsigned long points = 0;
535 points = oom_badness(task, NULL, NULL, totalpages) *
537 seq_printf(m, "%lu\n", points);
547 static const struct limit_names lnames[RLIM_NLIMITS] = {
548 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
549 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
550 [RLIMIT_DATA] = {"Max data size", "bytes"},
551 [RLIMIT_STACK] = {"Max stack size", "bytes"},
552 [RLIMIT_CORE] = {"Max core file size", "bytes"},
553 [RLIMIT_RSS] = {"Max resident set", "bytes"},
554 [RLIMIT_NPROC] = {"Max processes", "processes"},
555 [RLIMIT_NOFILE] = {"Max open files", "files"},
556 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
557 [RLIMIT_AS] = {"Max address space", "bytes"},
558 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
559 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
560 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
561 [RLIMIT_NICE] = {"Max nice priority", NULL},
562 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
563 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
566 /* Display limits for a process */
567 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
568 struct pid *pid, struct task_struct *task)
573 struct rlimit rlim[RLIM_NLIMITS];
575 if (!lock_task_sighand(task, &flags))
577 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
578 unlock_task_sighand(task, &flags);
581 * print the file header
588 for (i = 0; i < RLIM_NLIMITS; i++) {
589 if (rlim[i].rlim_cur == RLIM_INFINITY)
590 seq_printf(m, "%-25s %-20s ",
591 lnames[i].name, "unlimited");
593 seq_printf(m, "%-25s %-20lu ",
594 lnames[i].name, rlim[i].rlim_cur);
596 if (rlim[i].rlim_max == RLIM_INFINITY)
597 seq_printf(m, "%-20s ", "unlimited");
599 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
602 seq_printf(m, "%-10s\n", lnames[i].unit);
610 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
611 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
612 struct pid *pid, struct task_struct *task)
614 struct syscall_info info;
615 u64 *args = &info.data.args[0];
618 res = lock_trace(task);
622 if (task_current_syscall(task, &info))
623 seq_puts(m, "running\n");
624 else if (info.data.nr < 0)
625 seq_printf(m, "%d 0x%llx 0x%llx\n",
626 info.data.nr, info.sp, info.data.instruction_pointer);
629 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
631 args[0], args[1], args[2], args[3], args[4], args[5],
632 info.sp, info.data.instruction_pointer);
637 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
639 /************************************************************************/
640 /* Here the fs part begins */
641 /************************************************************************/
643 /* permission checks */
644 static int proc_fd_access_allowed(struct inode *inode)
646 struct task_struct *task;
648 /* Allow access to a task's file descriptors if it is us or we
649 * may use ptrace attach to the process and find out that
652 task = get_proc_task(inode);
654 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
655 put_task_struct(task);
660 int proc_setattr(struct dentry *dentry, struct iattr *attr)
663 struct inode *inode = d_inode(dentry);
665 if (attr->ia_valid & ATTR_MODE)
668 error = setattr_prepare(dentry, attr);
672 setattr_copy(inode, attr);
673 mark_inode_dirty(inode);
678 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
679 * or euid/egid (for hide_pid_min=2)?
681 static bool has_pid_permissions(struct pid_namespace *pid,
682 struct task_struct *task,
685 if (pid->hide_pid < hide_pid_min)
687 if (in_group_p(pid->pid_gid))
689 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
693 static int proc_pid_permission(struct inode *inode, int mask)
695 struct pid_namespace *pid = proc_pid_ns(inode);
696 struct task_struct *task;
699 task = get_proc_task(inode);
702 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
703 put_task_struct(task);
706 if (pid->hide_pid == HIDEPID_INVISIBLE) {
708 * Let's make getdents(), stat(), and open()
709 * consistent with each other. If a process
710 * may not stat() a file, it shouldn't be seen
718 return generic_permission(inode, mask);
723 static const struct inode_operations proc_def_inode_operations = {
724 .setattr = proc_setattr,
727 static int proc_single_show(struct seq_file *m, void *v)
729 struct inode *inode = m->private;
730 struct pid_namespace *ns = proc_pid_ns(inode);
731 struct pid *pid = proc_pid(inode);
732 struct task_struct *task;
735 task = get_pid_task(pid, PIDTYPE_PID);
739 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
741 put_task_struct(task);
745 static int proc_single_open(struct inode *inode, struct file *filp)
747 return single_open(filp, proc_single_show, inode);
750 static const struct file_operations proc_single_file_operations = {
751 .open = proc_single_open,
754 .release = single_release,
758 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
760 struct task_struct *task = get_proc_task(inode);
761 struct mm_struct *mm = ERR_PTR(-ESRCH);
764 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
765 put_task_struct(task);
767 if (!IS_ERR_OR_NULL(mm)) {
768 /* ensure this mm_struct can't be freed */
770 /* but do not pin its memory */
778 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
780 struct mm_struct *mm = proc_mem_open(inode, mode);
785 file->private_data = mm;
789 static int mem_open(struct inode *inode, struct file *file)
791 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
793 /* OK to pass negative loff_t, we can catch out-of-range */
794 file->f_mode |= FMODE_UNSIGNED_OFFSET;
799 static ssize_t mem_rw(struct file *file, char __user *buf,
800 size_t count, loff_t *ppos, int write)
802 struct mm_struct *mm = file->private_data;
803 unsigned long addr = *ppos;
811 page = (char *)__get_free_page(GFP_KERNEL);
816 if (!mmget_not_zero(mm))
819 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
822 int this_len = min_t(int, count, PAGE_SIZE);
824 if (write && copy_from_user(page, buf, this_len)) {
829 this_len = access_remote_vm(mm, addr, page, this_len, flags);
836 if (!write && copy_to_user(buf, page, this_len)) {
850 free_page((unsigned long) page);
854 static ssize_t mem_read(struct file *file, char __user *buf,
855 size_t count, loff_t *ppos)
857 return mem_rw(file, buf, count, ppos, 0);
860 static ssize_t mem_write(struct file *file, const char __user *buf,
861 size_t count, loff_t *ppos)
863 return mem_rw(file, (char __user*)buf, count, ppos, 1);
866 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
870 file->f_pos = offset;
873 file->f_pos += offset;
878 force_successful_syscall_return();
882 static int mem_release(struct inode *inode, struct file *file)
884 struct mm_struct *mm = file->private_data;
890 static const struct file_operations proc_mem_operations = {
895 .release = mem_release,
898 static int environ_open(struct inode *inode, struct file *file)
900 return __mem_open(inode, file, PTRACE_MODE_READ);
903 static ssize_t environ_read(struct file *file, char __user *buf,
904 size_t count, loff_t *ppos)
907 unsigned long src = *ppos;
909 struct mm_struct *mm = file->private_data;
910 unsigned long env_start, env_end;
912 /* Ensure the process spawned far enough to have an environment. */
913 if (!mm || !mm->env_end)
916 page = (char *)__get_free_page(GFP_KERNEL);
921 if (!mmget_not_zero(mm))
924 spin_lock(&mm->arg_lock);
925 env_start = mm->env_start;
926 env_end = mm->env_end;
927 spin_unlock(&mm->arg_lock);
930 size_t this_len, max_len;
933 if (src >= (env_end - env_start))
936 this_len = env_end - (env_start + src);
938 max_len = min_t(size_t, PAGE_SIZE, count);
939 this_len = min(max_len, this_len);
941 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
948 if (copy_to_user(buf, page, retval)) {
962 free_page((unsigned long) page);
966 static const struct file_operations proc_environ_operations = {
967 .open = environ_open,
968 .read = environ_read,
969 .llseek = generic_file_llseek,
970 .release = mem_release,
973 static int auxv_open(struct inode *inode, struct file *file)
975 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
978 static ssize_t auxv_read(struct file *file, char __user *buf,
979 size_t count, loff_t *ppos)
981 struct mm_struct *mm = file->private_data;
982 unsigned int nwords = 0;
988 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
989 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
990 nwords * sizeof(mm->saved_auxv[0]));
993 static const struct file_operations proc_auxv_operations = {
996 .llseek = generic_file_llseek,
997 .release = mem_release,
1000 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1003 struct task_struct *task = get_proc_task(file_inode(file));
1004 char buffer[PROC_NUMBUF];
1005 int oom_adj = OOM_ADJUST_MIN;
1010 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1011 oom_adj = OOM_ADJUST_MAX;
1013 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1015 put_task_struct(task);
1016 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1017 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1020 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1022 static DEFINE_MUTEX(oom_adj_mutex);
1023 struct mm_struct *mm = NULL;
1024 struct task_struct *task;
1027 task = get_proc_task(file_inode(file));
1031 mutex_lock(&oom_adj_mutex);
1033 if (oom_adj < task->signal->oom_score_adj &&
1034 !capable(CAP_SYS_RESOURCE)) {
1039 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1040 * /proc/pid/oom_score_adj instead.
1042 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1043 current->comm, task_pid_nr(current), task_pid_nr(task),
1046 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1047 !capable(CAP_SYS_RESOURCE)) {
1054 * Make sure we will check other processes sharing the mm if this is
1055 * not vfrok which wants its own oom_score_adj.
1056 * pin the mm so it doesn't go away and get reused after task_unlock
1058 if (!task->vfork_done) {
1059 struct task_struct *p = find_lock_task_mm(task);
1062 if (atomic_read(&p->mm->mm_users) > 1) {
1070 task->signal->oom_score_adj = oom_adj;
1071 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1072 task->signal->oom_score_adj_min = (short)oom_adj;
1073 trace_oom_score_adj_update(task);
1076 struct task_struct *p;
1079 for_each_process(p) {
1080 if (same_thread_group(task, p))
1083 /* do not touch kernel threads or the global init */
1084 if (p->flags & PF_KTHREAD || is_global_init(p))
1088 if (!p->vfork_done && process_shares_mm(p, mm)) {
1089 p->signal->oom_score_adj = oom_adj;
1090 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1091 p->signal->oom_score_adj_min = (short)oom_adj;
1099 mutex_unlock(&oom_adj_mutex);
1100 put_task_struct(task);
1105 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1106 * kernels. The effective policy is defined by oom_score_adj, which has a
1107 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1108 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1109 * Processes that become oom disabled via oom_adj will still be oom disabled
1110 * with this implementation.
1112 * oom_adj cannot be removed since existing userspace binaries use it.
1114 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1115 size_t count, loff_t *ppos)
1117 char buffer[PROC_NUMBUF];
1121 memset(buffer, 0, sizeof(buffer));
1122 if (count > sizeof(buffer) - 1)
1123 count = sizeof(buffer) - 1;
1124 if (copy_from_user(buffer, buf, count)) {
1129 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1132 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1133 oom_adj != OOM_DISABLE) {
1139 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1140 * value is always attainable.
1142 if (oom_adj == OOM_ADJUST_MAX)
1143 oom_adj = OOM_SCORE_ADJ_MAX;
1145 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1147 err = __set_oom_adj(file, oom_adj, true);
1149 return err < 0 ? err : count;
1152 static const struct file_operations proc_oom_adj_operations = {
1153 .read = oom_adj_read,
1154 .write = oom_adj_write,
1155 .llseek = generic_file_llseek,
1158 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1159 size_t count, loff_t *ppos)
1161 struct task_struct *task = get_proc_task(file_inode(file));
1162 char buffer[PROC_NUMBUF];
1163 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1168 oom_score_adj = task->signal->oom_score_adj;
1169 put_task_struct(task);
1170 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1171 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1174 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1175 size_t count, loff_t *ppos)
1177 char buffer[PROC_NUMBUF];
1181 memset(buffer, 0, sizeof(buffer));
1182 if (count > sizeof(buffer) - 1)
1183 count = sizeof(buffer) - 1;
1184 if (copy_from_user(buffer, buf, count)) {
1189 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1192 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1193 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1198 err = __set_oom_adj(file, oom_score_adj, false);
1200 return err < 0 ? err : count;
1203 static const struct file_operations proc_oom_score_adj_operations = {
1204 .read = oom_score_adj_read,
1205 .write = oom_score_adj_write,
1206 .llseek = default_llseek,
1210 #define TMPBUFLEN 11
1211 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1212 size_t count, loff_t *ppos)
1214 struct inode * inode = file_inode(file);
1215 struct task_struct *task = get_proc_task(inode);
1217 char tmpbuf[TMPBUFLEN];
1221 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1222 from_kuid(file->f_cred->user_ns,
1223 audit_get_loginuid(task)));
1224 put_task_struct(task);
1225 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1228 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1229 size_t count, loff_t *ppos)
1231 struct inode * inode = file_inode(file);
1237 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1244 /* No partial writes. */
1248 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1252 /* is userspace tring to explicitly UNSET the loginuid? */
1253 if (loginuid == AUDIT_UID_UNSET) {
1254 kloginuid = INVALID_UID;
1256 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1257 if (!uid_valid(kloginuid))
1261 rv = audit_set_loginuid(kloginuid);
1267 static const struct file_operations proc_loginuid_operations = {
1268 .read = proc_loginuid_read,
1269 .write = proc_loginuid_write,
1270 .llseek = generic_file_llseek,
1273 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1274 size_t count, loff_t *ppos)
1276 struct inode * inode = file_inode(file);
1277 struct task_struct *task = get_proc_task(inode);
1279 char tmpbuf[TMPBUFLEN];
1283 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1284 audit_get_sessionid(task));
1285 put_task_struct(task);
1286 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1289 static const struct file_operations proc_sessionid_operations = {
1290 .read = proc_sessionid_read,
1291 .llseek = generic_file_llseek,
1295 #ifdef CONFIG_FAULT_INJECTION
1296 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1297 size_t count, loff_t *ppos)
1299 struct task_struct *task = get_proc_task(file_inode(file));
1300 char buffer[PROC_NUMBUF];
1306 make_it_fail = task->make_it_fail;
1307 put_task_struct(task);
1309 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1311 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1314 static ssize_t proc_fault_inject_write(struct file * file,
1315 const char __user * buf, size_t count, loff_t *ppos)
1317 struct task_struct *task;
1318 char buffer[PROC_NUMBUF];
1322 if (!capable(CAP_SYS_RESOURCE))
1324 memset(buffer, 0, sizeof(buffer));
1325 if (count > sizeof(buffer) - 1)
1326 count = sizeof(buffer) - 1;
1327 if (copy_from_user(buffer, buf, count))
1329 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1332 if (make_it_fail < 0 || make_it_fail > 1)
1335 task = get_proc_task(file_inode(file));
1338 task->make_it_fail = make_it_fail;
1339 put_task_struct(task);
1344 static const struct file_operations proc_fault_inject_operations = {
1345 .read = proc_fault_inject_read,
1346 .write = proc_fault_inject_write,
1347 .llseek = generic_file_llseek,
1350 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1351 size_t count, loff_t *ppos)
1353 struct task_struct *task;
1357 err = kstrtouint_from_user(buf, count, 0, &n);
1361 task = get_proc_task(file_inode(file));
1365 put_task_struct(task);
1370 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1371 size_t count, loff_t *ppos)
1373 struct task_struct *task;
1374 char numbuf[PROC_NUMBUF];
1377 task = get_proc_task(file_inode(file));
1380 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1381 put_task_struct(task);
1382 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1385 static const struct file_operations proc_fail_nth_operations = {
1386 .read = proc_fail_nth_read,
1387 .write = proc_fail_nth_write,
1392 #ifdef CONFIG_SCHED_DEBUG
1394 * Print out various scheduling related per-task fields:
1396 static int sched_show(struct seq_file *m, void *v)
1398 struct inode *inode = m->private;
1399 struct pid_namespace *ns = proc_pid_ns(inode);
1400 struct task_struct *p;
1402 p = get_proc_task(inode);
1405 proc_sched_show_task(p, ns, m);
1413 sched_write(struct file *file, const char __user *buf,
1414 size_t count, loff_t *offset)
1416 struct inode *inode = file_inode(file);
1417 struct task_struct *p;
1419 p = get_proc_task(inode);
1422 proc_sched_set_task(p);
1429 static int sched_open(struct inode *inode, struct file *filp)
1431 return single_open(filp, sched_show, inode);
1434 static const struct file_operations proc_pid_sched_operations = {
1437 .write = sched_write,
1438 .llseek = seq_lseek,
1439 .release = single_release,
1444 #ifdef CONFIG_SCHED_AUTOGROUP
1446 * Print out autogroup related information:
1448 static int sched_autogroup_show(struct seq_file *m, void *v)
1450 struct inode *inode = m->private;
1451 struct task_struct *p;
1453 p = get_proc_task(inode);
1456 proc_sched_autogroup_show_task(p, m);
1464 sched_autogroup_write(struct file *file, const char __user *buf,
1465 size_t count, loff_t *offset)
1467 struct inode *inode = file_inode(file);
1468 struct task_struct *p;
1469 char buffer[PROC_NUMBUF];
1473 memset(buffer, 0, sizeof(buffer));
1474 if (count > sizeof(buffer) - 1)
1475 count = sizeof(buffer) - 1;
1476 if (copy_from_user(buffer, buf, count))
1479 err = kstrtoint(strstrip(buffer), 0, &nice);
1483 p = get_proc_task(inode);
1487 err = proc_sched_autogroup_set_nice(p, nice);
1496 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1500 ret = single_open(filp, sched_autogroup_show, NULL);
1502 struct seq_file *m = filp->private_data;
1509 static const struct file_operations proc_pid_sched_autogroup_operations = {
1510 .open = sched_autogroup_open,
1512 .write = sched_autogroup_write,
1513 .llseek = seq_lseek,
1514 .release = single_release,
1517 #endif /* CONFIG_SCHED_AUTOGROUP */
1519 static ssize_t comm_write(struct file *file, const char __user *buf,
1520 size_t count, loff_t *offset)
1522 struct inode *inode = file_inode(file);
1523 struct task_struct *p;
1524 char buffer[TASK_COMM_LEN];
1525 const size_t maxlen = sizeof(buffer) - 1;
1527 memset(buffer, 0, sizeof(buffer));
1528 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1531 p = get_proc_task(inode);
1535 if (same_thread_group(current, p))
1536 set_task_comm(p, buffer);
1545 static int comm_show(struct seq_file *m, void *v)
1547 struct inode *inode = m->private;
1548 struct task_struct *p;
1550 p = get_proc_task(inode);
1554 proc_task_name(m, p, false);
1562 static int comm_open(struct inode *inode, struct file *filp)
1564 return single_open(filp, comm_show, inode);
1567 static const struct file_operations proc_pid_set_comm_operations = {
1570 .write = comm_write,
1571 .llseek = seq_lseek,
1572 .release = single_release,
1575 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1577 struct task_struct *task;
1578 struct file *exe_file;
1580 task = get_proc_task(d_inode(dentry));
1583 exe_file = get_task_exe_file(task);
1584 put_task_struct(task);
1586 *exe_path = exe_file->f_path;
1587 path_get(&exe_file->f_path);
1594 static const char *proc_pid_get_link(struct dentry *dentry,
1595 struct inode *inode,
1596 struct delayed_call *done)
1599 int error = -EACCES;
1602 return ERR_PTR(-ECHILD);
1604 /* Are we allowed to snoop on the tasks file descriptors? */
1605 if (!proc_fd_access_allowed(inode))
1608 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1612 nd_jump_link(&path);
1615 return ERR_PTR(error);
1618 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1620 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1627 pathname = d_path(path, tmp, PAGE_SIZE);
1628 len = PTR_ERR(pathname);
1629 if (IS_ERR(pathname))
1631 len = tmp + PAGE_SIZE - 1 - pathname;
1635 if (copy_to_user(buffer, pathname, len))
1638 free_page((unsigned long)tmp);
1642 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1644 int error = -EACCES;
1645 struct inode *inode = d_inode(dentry);
1648 /* Are we allowed to snoop on the tasks file descriptors? */
1649 if (!proc_fd_access_allowed(inode))
1652 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1656 error = do_proc_readlink(&path, buffer, buflen);
1662 const struct inode_operations proc_pid_link_inode_operations = {
1663 .readlink = proc_pid_readlink,
1664 .get_link = proc_pid_get_link,
1665 .setattr = proc_setattr,
1669 /* building an inode */
1671 void task_dump_owner(struct task_struct *task, umode_t mode,
1672 kuid_t *ruid, kgid_t *rgid)
1674 /* Depending on the state of dumpable compute who should own a
1675 * proc file for a task.
1677 const struct cred *cred;
1681 if (unlikely(task->flags & PF_KTHREAD)) {
1682 *ruid = GLOBAL_ROOT_UID;
1683 *rgid = GLOBAL_ROOT_GID;
1687 /* Default to the tasks effective ownership */
1689 cred = __task_cred(task);
1695 * Before the /proc/pid/status file was created the only way to read
1696 * the effective uid of a /process was to stat /proc/pid. Reading
1697 * /proc/pid/status is slow enough that procps and other packages
1698 * kept stating /proc/pid. To keep the rules in /proc simple I have
1699 * made this apply to all per process world readable and executable
1702 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1703 struct mm_struct *mm;
1706 /* Make non-dumpable tasks owned by some root */
1708 if (get_dumpable(mm) != SUID_DUMP_USER) {
1709 struct user_namespace *user_ns = mm->user_ns;
1711 uid = make_kuid(user_ns, 0);
1712 if (!uid_valid(uid))
1713 uid = GLOBAL_ROOT_UID;
1715 gid = make_kgid(user_ns, 0);
1716 if (!gid_valid(gid))
1717 gid = GLOBAL_ROOT_GID;
1720 uid = GLOBAL_ROOT_UID;
1721 gid = GLOBAL_ROOT_GID;
1729 struct inode *proc_pid_make_inode(struct super_block * sb,
1730 struct task_struct *task, umode_t mode)
1732 struct inode * inode;
1733 struct proc_inode *ei;
1735 /* We need a new inode */
1737 inode = new_inode(sb);
1743 inode->i_mode = mode;
1744 inode->i_ino = get_next_ino();
1745 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1746 inode->i_op = &proc_def_inode_operations;
1749 * grab the reference to task.
1751 ei->pid = get_task_pid(task, PIDTYPE_PID);
1755 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1756 security_task_to_inode(task, inode);
1766 int pid_getattr(const struct path *path, struct kstat *stat,
1767 u32 request_mask, unsigned int query_flags)
1769 struct inode *inode = d_inode(path->dentry);
1770 struct pid_namespace *pid = proc_pid_ns(inode);
1771 struct task_struct *task;
1773 generic_fillattr(inode, stat);
1775 stat->uid = GLOBAL_ROOT_UID;
1776 stat->gid = GLOBAL_ROOT_GID;
1778 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1780 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1783 * This doesn't prevent learning whether PID exists,
1784 * it only makes getattr() consistent with readdir().
1788 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1797 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1799 void pid_update_inode(struct task_struct *task, struct inode *inode)
1801 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1803 inode->i_mode &= ~(S_ISUID | S_ISGID);
1804 security_task_to_inode(task, inode);
1808 * Rewrite the inode's ownerships here because the owning task may have
1809 * performed a setuid(), etc.
1812 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1814 struct inode *inode;
1815 struct task_struct *task;
1817 if (flags & LOOKUP_RCU)
1820 inode = d_inode(dentry);
1821 task = get_proc_task(inode);
1824 pid_update_inode(task, inode);
1825 put_task_struct(task);
1831 static inline bool proc_inode_is_dead(struct inode *inode)
1833 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1836 int pid_delete_dentry(const struct dentry *dentry)
1838 /* Is the task we represent dead?
1839 * If so, then don't put the dentry on the lru list,
1840 * kill it immediately.
1842 return proc_inode_is_dead(d_inode(dentry));
1845 const struct dentry_operations pid_dentry_operations =
1847 .d_revalidate = pid_revalidate,
1848 .d_delete = pid_delete_dentry,
1854 * Fill a directory entry.
1856 * If possible create the dcache entry and derive our inode number and
1857 * file type from dcache entry.
1859 * Since all of the proc inode numbers are dynamically generated, the inode
1860 * numbers do not exist until the inode is cache. This means creating the
1861 * the dcache entry in readdir is necessary to keep the inode numbers
1862 * reported by readdir in sync with the inode numbers reported
1865 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1866 const char *name, unsigned int len,
1867 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1869 struct dentry *child, *dir = file->f_path.dentry;
1870 struct qstr qname = QSTR_INIT(name, len);
1871 struct inode *inode;
1872 unsigned type = DT_UNKNOWN;
1875 child = d_hash_and_lookup(dir, &qname);
1877 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1878 child = d_alloc_parallel(dir, &qname, &wq);
1880 goto end_instantiate;
1881 if (d_in_lookup(child)) {
1883 res = instantiate(child, task, ptr);
1884 d_lookup_done(child);
1885 if (unlikely(res)) {
1889 goto end_instantiate;
1893 inode = d_inode(child);
1895 type = inode->i_mode >> 12;
1898 return dir_emit(ctx, name, len, ino, type);
1902 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1903 * which represent vma start and end addresses.
1905 static int dname_to_vma_addr(struct dentry *dentry,
1906 unsigned long *start, unsigned long *end)
1908 const char *str = dentry->d_name.name;
1909 unsigned long long sval, eval;
1912 if (str[0] == '0' && str[1] != '-')
1914 len = _parse_integer(str, 16, &sval);
1915 if (len & KSTRTOX_OVERFLOW)
1917 if (sval != (unsigned long)sval)
1925 if (str[0] == '0' && str[1])
1927 len = _parse_integer(str, 16, &eval);
1928 if (len & KSTRTOX_OVERFLOW)
1930 if (eval != (unsigned long)eval)
1943 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1945 unsigned long vm_start, vm_end;
1946 bool exact_vma_exists = false;
1947 struct mm_struct *mm = NULL;
1948 struct task_struct *task;
1949 struct inode *inode;
1952 if (flags & LOOKUP_RCU)
1955 inode = d_inode(dentry);
1956 task = get_proc_task(inode);
1960 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1961 if (IS_ERR_OR_NULL(mm))
1964 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1965 down_read(&mm->mmap_sem);
1966 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1967 up_read(&mm->mmap_sem);
1972 if (exact_vma_exists) {
1973 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1975 security_task_to_inode(task, inode);
1980 put_task_struct(task);
1986 static const struct dentry_operations tid_map_files_dentry_operations = {
1987 .d_revalidate = map_files_d_revalidate,
1988 .d_delete = pid_delete_dentry,
1991 static int map_files_get_link(struct dentry *dentry, struct path *path)
1993 unsigned long vm_start, vm_end;
1994 struct vm_area_struct *vma;
1995 struct task_struct *task;
1996 struct mm_struct *mm;
2000 task = get_proc_task(d_inode(dentry));
2004 mm = get_task_mm(task);
2005 put_task_struct(task);
2009 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2014 down_read(&mm->mmap_sem);
2015 vma = find_exact_vma(mm, vm_start, vm_end);
2016 if (vma && vma->vm_file) {
2017 *path = vma->vm_file->f_path;
2021 up_read(&mm->mmap_sem);
2029 struct map_files_info {
2030 unsigned long start;
2036 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2037 * symlinks may be used to bypass permissions on ancestor directories in the
2038 * path to the file in question.
2041 proc_map_files_get_link(struct dentry *dentry,
2042 struct inode *inode,
2043 struct delayed_call *done)
2045 if (!capable(CAP_SYS_ADMIN))
2046 return ERR_PTR(-EPERM);
2048 return proc_pid_get_link(dentry, inode, done);
2052 * Identical to proc_pid_link_inode_operations except for get_link()
2054 static const struct inode_operations proc_map_files_link_inode_operations = {
2055 .readlink = proc_pid_readlink,
2056 .get_link = proc_map_files_get_link,
2057 .setattr = proc_setattr,
2060 static struct dentry *
2061 proc_map_files_instantiate(struct dentry *dentry,
2062 struct task_struct *task, const void *ptr)
2064 fmode_t mode = (fmode_t)(unsigned long)ptr;
2065 struct proc_inode *ei;
2066 struct inode *inode;
2068 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2069 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2070 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2072 return ERR_PTR(-ENOENT);
2075 ei->op.proc_get_link = map_files_get_link;
2077 inode->i_op = &proc_map_files_link_inode_operations;
2080 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2081 return d_splice_alias(inode, dentry);
2084 static struct dentry *proc_map_files_lookup(struct inode *dir,
2085 struct dentry *dentry, unsigned int flags)
2087 unsigned long vm_start, vm_end;
2088 struct vm_area_struct *vma;
2089 struct task_struct *task;
2090 struct dentry *result;
2091 struct mm_struct *mm;
2093 result = ERR_PTR(-ENOENT);
2094 task = get_proc_task(dir);
2098 result = ERR_PTR(-EACCES);
2099 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2102 result = ERR_PTR(-ENOENT);
2103 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2106 mm = get_task_mm(task);
2110 down_read(&mm->mmap_sem);
2111 vma = find_exact_vma(mm, vm_start, vm_end);
2116 result = proc_map_files_instantiate(dentry, task,
2117 (void *)(unsigned long)vma->vm_file->f_mode);
2120 up_read(&mm->mmap_sem);
2123 put_task_struct(task);
2128 static const struct inode_operations proc_map_files_inode_operations = {
2129 .lookup = proc_map_files_lookup,
2130 .permission = proc_fd_permission,
2131 .setattr = proc_setattr,
2135 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2137 struct vm_area_struct *vma;
2138 struct task_struct *task;
2139 struct mm_struct *mm;
2140 unsigned long nr_files, pos, i;
2141 GENRADIX(struct map_files_info) fa;
2142 struct map_files_info *p;
2148 task = get_proc_task(file_inode(file));
2153 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2157 if (!dir_emit_dots(file, ctx))
2160 mm = get_task_mm(task);
2163 down_read(&mm->mmap_sem);
2168 * We need two passes here:
2170 * 1) Collect vmas of mapped files with mmap_sem taken
2171 * 2) Release mmap_sem and instantiate entries
2173 * otherwise we get lockdep complained, since filldir()
2174 * routine might require mmap_sem taken in might_fault().
2177 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2180 if (++pos <= ctx->pos)
2183 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2186 up_read(&mm->mmap_sem);
2191 p->start = vma->vm_start;
2192 p->end = vma->vm_end;
2193 p->mode = vma->vm_file->f_mode;
2195 up_read(&mm->mmap_sem);
2198 for (i = 0; i < nr_files; i++) {
2199 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2202 p = genradix_ptr(&fa, i);
2203 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2204 if (!proc_fill_cache(file, ctx,
2206 proc_map_files_instantiate,
2208 (void *)(unsigned long)p->mode))
2214 put_task_struct(task);
2220 static const struct file_operations proc_map_files_operations = {
2221 .read = generic_read_dir,
2222 .iterate_shared = proc_map_files_readdir,
2223 .llseek = generic_file_llseek,
2226 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2227 struct timers_private {
2229 struct task_struct *task;
2230 struct sighand_struct *sighand;
2231 struct pid_namespace *ns;
2232 unsigned long flags;
2235 static void *timers_start(struct seq_file *m, loff_t *pos)
2237 struct timers_private *tp = m->private;
2239 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2241 return ERR_PTR(-ESRCH);
2243 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2245 return ERR_PTR(-ESRCH);
2247 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2250 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2252 struct timers_private *tp = m->private;
2253 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2256 static void timers_stop(struct seq_file *m, void *v)
2258 struct timers_private *tp = m->private;
2261 unlock_task_sighand(tp->task, &tp->flags);
2266 put_task_struct(tp->task);
2271 static int show_timer(struct seq_file *m, void *v)
2273 struct k_itimer *timer;
2274 struct timers_private *tp = m->private;
2276 static const char * const nstr[] = {
2277 [SIGEV_SIGNAL] = "signal",
2278 [SIGEV_NONE] = "none",
2279 [SIGEV_THREAD] = "thread",
2282 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2283 notify = timer->it_sigev_notify;
2285 seq_printf(m, "ID: %d\n", timer->it_id);
2286 seq_printf(m, "signal: %d/%px\n",
2287 timer->sigq->info.si_signo,
2288 timer->sigq->info.si_value.sival_ptr);
2289 seq_printf(m, "notify: %s/%s.%d\n",
2290 nstr[notify & ~SIGEV_THREAD_ID],
2291 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2292 pid_nr_ns(timer->it_pid, tp->ns));
2293 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2298 static const struct seq_operations proc_timers_seq_ops = {
2299 .start = timers_start,
2300 .next = timers_next,
2301 .stop = timers_stop,
2305 static int proc_timers_open(struct inode *inode, struct file *file)
2307 struct timers_private *tp;
2309 tp = __seq_open_private(file, &proc_timers_seq_ops,
2310 sizeof(struct timers_private));
2314 tp->pid = proc_pid(inode);
2315 tp->ns = proc_pid_ns(inode);
2319 static const struct file_operations proc_timers_operations = {
2320 .open = proc_timers_open,
2322 .llseek = seq_lseek,
2323 .release = seq_release_private,
2327 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2328 size_t count, loff_t *offset)
2330 struct inode *inode = file_inode(file);
2331 struct task_struct *p;
2335 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2339 p = get_proc_task(inode);
2345 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2352 err = security_task_setscheduler(p);
2361 p->timer_slack_ns = p->default_timer_slack_ns;
2363 p->timer_slack_ns = slack_ns;
2372 static int timerslack_ns_show(struct seq_file *m, void *v)
2374 struct inode *inode = m->private;
2375 struct task_struct *p;
2378 p = get_proc_task(inode);
2384 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2391 err = security_task_getscheduler(p);
2397 seq_printf(m, "%llu\n", p->timer_slack_ns);
2406 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2408 return single_open(filp, timerslack_ns_show, inode);
2411 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2412 .open = timerslack_ns_open,
2414 .write = timerslack_ns_write,
2415 .llseek = seq_lseek,
2416 .release = single_release,
2419 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2420 struct task_struct *task, const void *ptr)
2422 const struct pid_entry *p = ptr;
2423 struct inode *inode;
2424 struct proc_inode *ei;
2426 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2428 return ERR_PTR(-ENOENT);
2431 if (S_ISDIR(inode->i_mode))
2432 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2434 inode->i_op = p->iop;
2436 inode->i_fop = p->fop;
2438 pid_update_inode(task, inode);
2439 d_set_d_op(dentry, &pid_dentry_operations);
2440 return d_splice_alias(inode, dentry);
2443 static struct dentry *proc_pident_lookup(struct inode *dir,
2444 struct dentry *dentry,
2445 const struct pid_entry *p,
2446 const struct pid_entry *end)
2448 struct task_struct *task = get_proc_task(dir);
2449 struct dentry *res = ERR_PTR(-ENOENT);
2455 * Yes, it does not scale. And it should not. Don't add
2456 * new entries into /proc/<tgid>/ without very good reasons.
2458 for (; p < end; p++) {
2459 if (p->len != dentry->d_name.len)
2461 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2462 res = proc_pident_instantiate(dentry, task, p);
2466 put_task_struct(task);
2471 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2472 const struct pid_entry *ents, unsigned int nents)
2474 struct task_struct *task = get_proc_task(file_inode(file));
2475 const struct pid_entry *p;
2480 if (!dir_emit_dots(file, ctx))
2483 if (ctx->pos >= nents + 2)
2486 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2487 if (!proc_fill_cache(file, ctx, p->name, p->len,
2488 proc_pident_instantiate, task, p))
2493 put_task_struct(task);
2497 #ifdef CONFIG_SECURITY
2498 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2499 size_t count, loff_t *ppos)
2501 struct inode * inode = file_inode(file);
2504 struct task_struct *task = get_proc_task(inode);
2509 length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2510 (char*)file->f_path.dentry->d_name.name,
2512 put_task_struct(task);
2514 length = simple_read_from_buffer(buf, count, ppos, p, length);
2519 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2520 size_t count, loff_t *ppos)
2522 struct inode * inode = file_inode(file);
2523 struct task_struct *task;
2528 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2533 /* A task may only write its own attributes. */
2534 if (current != task) {
2538 /* Prevent changes to overridden credentials. */
2539 if (current_cred() != current_real_cred()) {
2545 if (count > PAGE_SIZE)
2548 /* No partial writes. */
2552 page = memdup_user(buf, count);
2558 /* Guard against adverse ptrace interaction */
2559 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2563 rv = security_setprocattr(PROC_I(inode)->op.lsm,
2564 file->f_path.dentry->d_name.name, page,
2566 mutex_unlock(¤t->signal->cred_guard_mutex);
2573 static const struct file_operations proc_pid_attr_operations = {
2574 .read = proc_pid_attr_read,
2575 .write = proc_pid_attr_write,
2576 .llseek = generic_file_llseek,
2579 #define LSM_DIR_OPS(LSM) \
2580 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2581 struct dir_context *ctx) \
2583 return proc_pident_readdir(filp, ctx, \
2584 LSM##_attr_dir_stuff, \
2585 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2588 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2589 .read = generic_read_dir, \
2590 .iterate = proc_##LSM##_attr_dir_iterate, \
2591 .llseek = default_llseek, \
2594 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2595 struct dentry *dentry, unsigned int flags) \
2597 return proc_pident_lookup(dir, dentry, \
2598 LSM##_attr_dir_stuff, \
2599 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2602 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2603 .lookup = proc_##LSM##_attr_dir_lookup, \
2604 .getattr = pid_getattr, \
2605 .setattr = proc_setattr, \
2608 #ifdef CONFIG_SECURITY_SMACK
2609 static const struct pid_entry smack_attr_dir_stuff[] = {
2610 ATTR("smack", "current", 0666),
2615 static const struct pid_entry attr_dir_stuff[] = {
2616 ATTR(NULL, "current", 0666),
2617 ATTR(NULL, "prev", 0444),
2618 ATTR(NULL, "exec", 0666),
2619 ATTR(NULL, "fscreate", 0666),
2620 ATTR(NULL, "keycreate", 0666),
2621 ATTR(NULL, "sockcreate", 0666),
2622 #ifdef CONFIG_SECURITY_SMACK
2624 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2628 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2630 return proc_pident_readdir(file, ctx,
2631 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2634 static const struct file_operations proc_attr_dir_operations = {
2635 .read = generic_read_dir,
2636 .iterate_shared = proc_attr_dir_readdir,
2637 .llseek = generic_file_llseek,
2640 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2641 struct dentry *dentry, unsigned int flags)
2643 return proc_pident_lookup(dir, dentry,
2645 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2648 static const struct inode_operations proc_attr_dir_inode_operations = {
2649 .lookup = proc_attr_dir_lookup,
2650 .getattr = pid_getattr,
2651 .setattr = proc_setattr,
2656 #ifdef CONFIG_ELF_CORE
2657 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2658 size_t count, loff_t *ppos)
2660 struct task_struct *task = get_proc_task(file_inode(file));
2661 struct mm_struct *mm;
2662 char buffer[PROC_NUMBUF];
2670 mm = get_task_mm(task);
2672 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2673 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2674 MMF_DUMP_FILTER_SHIFT));
2676 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2679 put_task_struct(task);
2684 static ssize_t proc_coredump_filter_write(struct file *file,
2685 const char __user *buf,
2689 struct task_struct *task;
2690 struct mm_struct *mm;
2696 ret = kstrtouint_from_user(buf, count, 0, &val);
2701 task = get_proc_task(file_inode(file));
2705 mm = get_task_mm(task);
2710 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2712 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2714 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2719 put_task_struct(task);
2726 static const struct file_operations proc_coredump_filter_operations = {
2727 .read = proc_coredump_filter_read,
2728 .write = proc_coredump_filter_write,
2729 .llseek = generic_file_llseek,
2733 #ifdef CONFIG_TASK_IO_ACCOUNTING
2734 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2736 struct task_io_accounting acct = task->ioac;
2737 unsigned long flags;
2740 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2744 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2749 if (whole && lock_task_sighand(task, &flags)) {
2750 struct task_struct *t = task;
2752 task_io_accounting_add(&acct, &task->signal->ioac);
2753 while_each_thread(task, t)
2754 task_io_accounting_add(&acct, &t->ioac);
2756 unlock_task_sighand(task, &flags);
2763 "read_bytes: %llu\n"
2764 "write_bytes: %llu\n"
2765 "cancelled_write_bytes: %llu\n",
2766 (unsigned long long)acct.rchar,
2767 (unsigned long long)acct.wchar,
2768 (unsigned long long)acct.syscr,
2769 (unsigned long long)acct.syscw,
2770 (unsigned long long)acct.read_bytes,
2771 (unsigned long long)acct.write_bytes,
2772 (unsigned long long)acct.cancelled_write_bytes);
2776 mutex_unlock(&task->signal->cred_guard_mutex);
2780 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2781 struct pid *pid, struct task_struct *task)
2783 return do_io_accounting(task, m, 0);
2786 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2787 struct pid *pid, struct task_struct *task)
2789 return do_io_accounting(task, m, 1);
2791 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2793 #ifdef CONFIG_USER_NS
2794 static int proc_id_map_open(struct inode *inode, struct file *file,
2795 const struct seq_operations *seq_ops)
2797 struct user_namespace *ns = NULL;
2798 struct task_struct *task;
2799 struct seq_file *seq;
2802 task = get_proc_task(inode);
2805 ns = get_user_ns(task_cred_xxx(task, user_ns));
2807 put_task_struct(task);
2812 ret = seq_open(file, seq_ops);
2816 seq = file->private_data;
2826 static int proc_id_map_release(struct inode *inode, struct file *file)
2828 struct seq_file *seq = file->private_data;
2829 struct user_namespace *ns = seq->private;
2831 return seq_release(inode, file);
2834 static int proc_uid_map_open(struct inode *inode, struct file *file)
2836 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2839 static int proc_gid_map_open(struct inode *inode, struct file *file)
2841 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2844 static int proc_projid_map_open(struct inode *inode, struct file *file)
2846 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2849 static const struct file_operations proc_uid_map_operations = {
2850 .open = proc_uid_map_open,
2851 .write = proc_uid_map_write,
2853 .llseek = seq_lseek,
2854 .release = proc_id_map_release,
2857 static const struct file_operations proc_gid_map_operations = {
2858 .open = proc_gid_map_open,
2859 .write = proc_gid_map_write,
2861 .llseek = seq_lseek,
2862 .release = proc_id_map_release,
2865 static const struct file_operations proc_projid_map_operations = {
2866 .open = proc_projid_map_open,
2867 .write = proc_projid_map_write,
2869 .llseek = seq_lseek,
2870 .release = proc_id_map_release,
2873 static int proc_setgroups_open(struct inode *inode, struct file *file)
2875 struct user_namespace *ns = NULL;
2876 struct task_struct *task;
2880 task = get_proc_task(inode);
2883 ns = get_user_ns(task_cred_xxx(task, user_ns));
2885 put_task_struct(task);
2890 if (file->f_mode & FMODE_WRITE) {
2892 if (!ns_capable(ns, CAP_SYS_ADMIN))
2896 ret = single_open(file, &proc_setgroups_show, ns);
2907 static int proc_setgroups_release(struct inode *inode, struct file *file)
2909 struct seq_file *seq = file->private_data;
2910 struct user_namespace *ns = seq->private;
2911 int ret = single_release(inode, file);
2916 static const struct file_operations proc_setgroups_operations = {
2917 .open = proc_setgroups_open,
2918 .write = proc_setgroups_write,
2920 .llseek = seq_lseek,
2921 .release = proc_setgroups_release,
2923 #endif /* CONFIG_USER_NS */
2925 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2926 struct pid *pid, struct task_struct *task)
2928 int err = lock_trace(task);
2930 seq_printf(m, "%08x\n", task->personality);
2936 #ifdef CONFIG_LIVEPATCH
2937 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2938 struct pid *pid, struct task_struct *task)
2940 seq_printf(m, "%d\n", task->patch_state);
2943 #endif /* CONFIG_LIVEPATCH */
2945 #ifdef CONFIG_STACKLEAK_METRICS
2946 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
2947 struct pid *pid, struct task_struct *task)
2949 unsigned long prev_depth = THREAD_SIZE -
2950 (task->prev_lowest_stack & (THREAD_SIZE - 1));
2951 unsigned long depth = THREAD_SIZE -
2952 (task->lowest_stack & (THREAD_SIZE - 1));
2954 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
2958 #endif /* CONFIG_STACKLEAK_METRICS */
2963 static const struct file_operations proc_task_operations;
2964 static const struct inode_operations proc_task_inode_operations;
2966 static const struct pid_entry tgid_base_stuff[] = {
2967 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2968 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2969 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2970 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2971 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2973 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2975 REG("environ", S_IRUSR, proc_environ_operations),
2976 REG("auxv", S_IRUSR, proc_auxv_operations),
2977 ONE("status", S_IRUGO, proc_pid_status),
2978 ONE("personality", S_IRUSR, proc_pid_personality),
2979 ONE("limits", S_IRUGO, proc_pid_limits),
2980 #ifdef CONFIG_SCHED_DEBUG
2981 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2983 #ifdef CONFIG_SCHED_AUTOGROUP
2984 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2986 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2987 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2988 ONE("syscall", S_IRUSR, proc_pid_syscall),
2990 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
2991 ONE("stat", S_IRUGO, proc_tgid_stat),
2992 ONE("statm", S_IRUGO, proc_pid_statm),
2993 REG("maps", S_IRUGO, proc_pid_maps_operations),
2995 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2997 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2998 LNK("cwd", proc_cwd_link),
2999 LNK("root", proc_root_link),
3000 LNK("exe", proc_exe_link),
3001 REG("mounts", S_IRUGO, proc_mounts_operations),
3002 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3003 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3004 #ifdef CONFIG_PROC_PAGE_MONITOR
3005 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3006 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3007 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3008 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3010 #ifdef CONFIG_SECURITY
3011 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3013 #ifdef CONFIG_KALLSYMS
3014 ONE("wchan", S_IRUGO, proc_pid_wchan),
3016 #ifdef CONFIG_STACKTRACE
3017 ONE("stack", S_IRUSR, proc_pid_stack),
3019 #ifdef CONFIG_SCHED_INFO
3020 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3022 #ifdef CONFIG_LATENCYTOP
3023 REG("latency", S_IRUGO, proc_lstats_operations),
3025 #ifdef CONFIG_PROC_PID_CPUSET
3026 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3028 #ifdef CONFIG_CGROUPS
3029 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3031 ONE("oom_score", S_IRUGO, proc_oom_score),
3032 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3033 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3035 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3036 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3038 #ifdef CONFIG_FAULT_INJECTION
3039 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3040 REG("fail-nth", 0644, proc_fail_nth_operations),
3042 #ifdef CONFIG_ELF_CORE
3043 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3045 #ifdef CONFIG_TASK_IO_ACCOUNTING
3046 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3048 #ifdef CONFIG_USER_NS
3049 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3050 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3051 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3052 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3054 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3055 REG("timers", S_IRUGO, proc_timers_operations),
3057 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3058 #ifdef CONFIG_LIVEPATCH
3059 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3061 #ifdef CONFIG_STACKLEAK_METRICS
3062 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3066 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3068 return proc_pident_readdir(file, ctx,
3069 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3072 static const struct file_operations proc_tgid_base_operations = {
3073 .read = generic_read_dir,
3074 .iterate_shared = proc_tgid_base_readdir,
3075 .llseek = generic_file_llseek,
3078 struct pid *tgid_pidfd_to_pid(const struct file *file)
3080 if (!d_is_dir(file->f_path.dentry) ||
3081 (file->f_op != &proc_tgid_base_operations))
3082 return ERR_PTR(-EBADF);
3084 return proc_pid(file_inode(file));
3087 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3089 return proc_pident_lookup(dir, dentry,
3091 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3094 static const struct inode_operations proc_tgid_base_inode_operations = {
3095 .lookup = proc_tgid_base_lookup,
3096 .getattr = pid_getattr,
3097 .setattr = proc_setattr,
3098 .permission = proc_pid_permission,
3101 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3103 struct dentry *dentry, *leader, *dir;
3108 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3109 /* no ->d_hash() rejects on procfs */
3110 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3112 d_invalidate(dentry);
3120 name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3121 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3126 name.len = strlen(name.name);
3127 dir = d_hash_and_lookup(leader, &name);
3129 goto out_put_leader;
3132 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3133 dentry = d_hash_and_lookup(dir, &name);
3135 d_invalidate(dentry);
3147 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3148 * @task: task that should be flushed.
3150 * When flushing dentries from proc, one needs to flush them from global
3151 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3152 * in. This call is supposed to do all of this job.
3154 * Looks in the dcache for
3156 * /proc/@tgid/task/@pid
3157 * if either directory is present flushes it and all of it'ts children
3160 * It is safe and reasonable to cache /proc entries for a task until
3161 * that task exits. After that they just clog up the dcache with
3162 * useless entries, possibly causing useful dcache entries to be
3163 * flushed instead. This routine is proved to flush those useless
3164 * dcache entries at process exit time.
3166 * NOTE: This routine is just an optimization so it does not guarantee
3167 * that no dcache entries will exist at process exit time it
3168 * just makes it very unlikely that any will persist.
3171 void proc_flush_task(struct task_struct *task)
3174 struct pid *pid, *tgid;
3177 pid = task_pid(task);
3178 tgid = task_tgid(task);
3180 for (i = 0; i <= pid->level; i++) {
3181 upid = &pid->numbers[i];
3182 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3183 tgid->numbers[i].nr);
3187 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3188 struct task_struct *task, const void *ptr)
3190 struct inode *inode;
3192 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3194 return ERR_PTR(-ENOENT);
3196 inode->i_op = &proc_tgid_base_inode_operations;
3197 inode->i_fop = &proc_tgid_base_operations;
3198 inode->i_flags|=S_IMMUTABLE;
3200 set_nlink(inode, nlink_tgid);
3201 pid_update_inode(task, inode);
3203 d_set_d_op(dentry, &pid_dentry_operations);
3204 return d_splice_alias(inode, dentry);
3207 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3209 struct task_struct *task;
3211 struct pid_namespace *ns;
3212 struct dentry *result = ERR_PTR(-ENOENT);
3214 tgid = name_to_int(&dentry->d_name);
3218 ns = dentry->d_sb->s_fs_info;
3220 task = find_task_by_pid_ns(tgid, ns);
3222 get_task_struct(task);
3227 result = proc_pid_instantiate(dentry, task, NULL);
3228 put_task_struct(task);
3234 * Find the first task with tgid >= tgid
3239 struct task_struct *task;
3241 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3246 put_task_struct(iter.task);
3250 pid = find_ge_pid(iter.tgid, ns);
3252 iter.tgid = pid_nr_ns(pid, ns);
3253 iter.task = pid_task(pid, PIDTYPE_PID);
3254 /* What we to know is if the pid we have find is the
3255 * pid of a thread_group_leader. Testing for task
3256 * being a thread_group_leader is the obvious thing
3257 * todo but there is a window when it fails, due to
3258 * the pid transfer logic in de_thread.
3260 * So we perform the straight forward test of seeing
3261 * if the pid we have found is the pid of a thread
3262 * group leader, and don't worry if the task we have
3263 * found doesn't happen to be a thread group leader.
3264 * As we don't care in the case of readdir.
3266 if (!iter.task || !has_group_leader_pid(iter.task)) {
3270 get_task_struct(iter.task);
3276 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3278 /* for the /proc/ directory itself, after non-process stuff has been done */
3279 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3281 struct tgid_iter iter;
3282 struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3283 loff_t pos = ctx->pos;
3285 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3288 if (pos == TGID_OFFSET - 2) {
3289 struct inode *inode = d_inode(ns->proc_self);
3290 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3292 ctx->pos = pos = pos + 1;
3294 if (pos == TGID_OFFSET - 1) {
3295 struct inode *inode = d_inode(ns->proc_thread_self);
3296 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3298 ctx->pos = pos = pos + 1;
3300 iter.tgid = pos - TGID_OFFSET;
3302 for (iter = next_tgid(ns, iter);
3304 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3309 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3312 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3313 ctx->pos = iter.tgid + TGID_OFFSET;
3314 if (!proc_fill_cache(file, ctx, name, len,
3315 proc_pid_instantiate, iter.task, NULL)) {
3316 put_task_struct(iter.task);
3320 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3325 * proc_tid_comm_permission is a special permission function exclusively
3326 * used for the node /proc/<pid>/task/<tid>/comm.
3327 * It bypasses generic permission checks in the case where a task of the same
3328 * task group attempts to access the node.
3329 * The rationale behind this is that glibc and bionic access this node for
3330 * cross thread naming (pthread_set/getname_np(!self)). However, if
3331 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3332 * which locks out the cross thread naming implementation.
3333 * This function makes sure that the node is always accessible for members of
3334 * same thread group.
3336 static int proc_tid_comm_permission(struct inode *inode, int mask)
3338 bool is_same_tgroup;
3339 struct task_struct *task;
3341 task = get_proc_task(inode);
3344 is_same_tgroup = same_thread_group(current, task);
3345 put_task_struct(task);
3347 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3348 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3349 * read or written by the members of the corresponding
3355 return generic_permission(inode, mask);
3358 static const struct inode_operations proc_tid_comm_inode_operations = {
3359 .permission = proc_tid_comm_permission,
3365 static const struct pid_entry tid_base_stuff[] = {
3366 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3367 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3368 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3370 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3372 REG("environ", S_IRUSR, proc_environ_operations),
3373 REG("auxv", S_IRUSR, proc_auxv_operations),
3374 ONE("status", S_IRUGO, proc_pid_status),
3375 ONE("personality", S_IRUSR, proc_pid_personality),
3376 ONE("limits", S_IRUGO, proc_pid_limits),
3377 #ifdef CONFIG_SCHED_DEBUG
3378 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3380 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3381 &proc_tid_comm_inode_operations,
3382 &proc_pid_set_comm_operations, {}),
3383 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3384 ONE("syscall", S_IRUSR, proc_pid_syscall),
3386 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3387 ONE("stat", S_IRUGO, proc_tid_stat),
3388 ONE("statm", S_IRUGO, proc_pid_statm),
3389 REG("maps", S_IRUGO, proc_pid_maps_operations),
3390 #ifdef CONFIG_PROC_CHILDREN
3391 REG("children", S_IRUGO, proc_tid_children_operations),
3394 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3396 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3397 LNK("cwd", proc_cwd_link),
3398 LNK("root", proc_root_link),
3399 LNK("exe", proc_exe_link),
3400 REG("mounts", S_IRUGO, proc_mounts_operations),
3401 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3402 #ifdef CONFIG_PROC_PAGE_MONITOR
3403 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3404 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3405 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3406 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3408 #ifdef CONFIG_SECURITY
3409 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3411 #ifdef CONFIG_KALLSYMS
3412 ONE("wchan", S_IRUGO, proc_pid_wchan),
3414 #ifdef CONFIG_STACKTRACE
3415 ONE("stack", S_IRUSR, proc_pid_stack),
3417 #ifdef CONFIG_SCHED_INFO
3418 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3420 #ifdef CONFIG_LATENCYTOP
3421 REG("latency", S_IRUGO, proc_lstats_operations),
3423 #ifdef CONFIG_PROC_PID_CPUSET
3424 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3426 #ifdef CONFIG_CGROUPS
3427 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3429 ONE("oom_score", S_IRUGO, proc_oom_score),
3430 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3431 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3433 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3434 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3436 #ifdef CONFIG_FAULT_INJECTION
3437 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3438 REG("fail-nth", 0644, proc_fail_nth_operations),
3440 #ifdef CONFIG_TASK_IO_ACCOUNTING
3441 ONE("io", S_IRUSR, proc_tid_io_accounting),
3443 #ifdef CONFIG_USER_NS
3444 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3445 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3446 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3447 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3449 #ifdef CONFIG_LIVEPATCH
3450 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3454 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3456 return proc_pident_readdir(file, ctx,
3457 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3460 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3462 return proc_pident_lookup(dir, dentry,
3464 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3467 static const struct file_operations proc_tid_base_operations = {
3468 .read = generic_read_dir,
3469 .iterate_shared = proc_tid_base_readdir,
3470 .llseek = generic_file_llseek,
3473 static const struct inode_operations proc_tid_base_inode_operations = {
3474 .lookup = proc_tid_base_lookup,
3475 .getattr = pid_getattr,
3476 .setattr = proc_setattr,
3479 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3480 struct task_struct *task, const void *ptr)
3482 struct inode *inode;
3483 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3485 return ERR_PTR(-ENOENT);
3487 inode->i_op = &proc_tid_base_inode_operations;
3488 inode->i_fop = &proc_tid_base_operations;
3489 inode->i_flags |= S_IMMUTABLE;
3491 set_nlink(inode, nlink_tid);
3492 pid_update_inode(task, inode);
3494 d_set_d_op(dentry, &pid_dentry_operations);
3495 return d_splice_alias(inode, dentry);
3498 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3500 struct task_struct *task;
3501 struct task_struct *leader = get_proc_task(dir);
3503 struct pid_namespace *ns;
3504 struct dentry *result = ERR_PTR(-ENOENT);
3509 tid = name_to_int(&dentry->d_name);
3513 ns = dentry->d_sb->s_fs_info;
3515 task = find_task_by_pid_ns(tid, ns);
3517 get_task_struct(task);
3521 if (!same_thread_group(leader, task))
3524 result = proc_task_instantiate(dentry, task, NULL);
3526 put_task_struct(task);
3528 put_task_struct(leader);
3534 * Find the first tid of a thread group to return to user space.
3536 * Usually this is just the thread group leader, but if the users
3537 * buffer was too small or there was a seek into the middle of the
3538 * directory we have more work todo.
3540 * In the case of a short read we start with find_task_by_pid.
3542 * In the case of a seek we start with the leader and walk nr
3545 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3546 struct pid_namespace *ns)
3548 struct task_struct *pos, *task;
3549 unsigned long nr = f_pos;
3551 if (nr != f_pos) /* 32bit overflow? */
3555 task = pid_task(pid, PIDTYPE_PID);
3559 /* Attempt to start with the tid of a thread */
3561 pos = find_task_by_pid_ns(tid, ns);
3562 if (pos && same_thread_group(pos, task))
3566 /* If nr exceeds the number of threads there is nothing todo */
3567 if (nr >= get_nr_threads(task))
3570 /* If we haven't found our starting place yet start
3571 * with the leader and walk nr threads forward.
3573 pos = task = task->group_leader;
3577 } while_each_thread(task, pos);
3582 get_task_struct(pos);
3589 * Find the next thread in the thread list.
3590 * Return NULL if there is an error or no next thread.
3592 * The reference to the input task_struct is released.
3594 static struct task_struct *next_tid(struct task_struct *start)
3596 struct task_struct *pos = NULL;
3598 if (pid_alive(start)) {
3599 pos = next_thread(start);
3600 if (thread_group_leader(pos))
3603 get_task_struct(pos);
3606 put_task_struct(start);
3610 /* for the /proc/TGID/task/ directories */
3611 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3613 struct inode *inode = file_inode(file);
3614 struct task_struct *task;
3615 struct pid_namespace *ns;
3618 if (proc_inode_is_dead(inode))
3621 if (!dir_emit_dots(file, ctx))
3624 /* f_version caches the tgid value that the last readdir call couldn't
3625 * return. lseek aka telldir automagically resets f_version to 0.
3627 ns = proc_pid_ns(inode);
3628 tid = (int)file->f_version;
3629 file->f_version = 0;
3630 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3632 task = next_tid(task), ctx->pos++) {
3635 tid = task_pid_nr_ns(task, ns);
3636 len = snprintf(name, sizeof(name), "%u", tid);
3637 if (!proc_fill_cache(file, ctx, name, len,
3638 proc_task_instantiate, task, NULL)) {
3639 /* returning this tgid failed, save it as the first
3640 * pid for the next readir call */
3641 file->f_version = (u64)tid;
3642 put_task_struct(task);
3650 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3651 u32 request_mask, unsigned int query_flags)
3653 struct inode *inode = d_inode(path->dentry);
3654 struct task_struct *p = get_proc_task(inode);
3655 generic_fillattr(inode, stat);
3658 stat->nlink += get_nr_threads(p);
3665 static const struct inode_operations proc_task_inode_operations = {
3666 .lookup = proc_task_lookup,
3667 .getattr = proc_task_getattr,
3668 .setattr = proc_setattr,
3669 .permission = proc_pid_permission,
3672 static const struct file_operations proc_task_operations = {
3673 .read = generic_read_dir,
3674 .iterate_shared = proc_task_readdir,
3675 .llseek = generic_file_llseek,
3678 void __init set_proc_pid_nlink(void)
3680 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3681 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));