1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Broadcom
9 * This is the general code for implementing KMS mode setting that
10 * doesn't clearly associate with any of the other objects (plane,
11 * crtc, HDMI encoder).
14 #include <linux/clk.h>
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_gem_framebuffer_helper.h>
20 #include <drm/drm_plane_helper.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_vblank.h>
27 #define HVS_NUM_CHANNELS 3
29 struct vc4_ctm_state {
30 struct drm_private_state base;
31 struct drm_color_ctm *ctm;
35 static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv)
37 return container_of(priv, struct vc4_ctm_state, base);
40 struct vc4_hvs_state {
41 struct drm_private_state base;
42 unsigned int unassigned_channels;
45 static struct vc4_hvs_state *
46 to_vc4_hvs_state(struct drm_private_state *priv)
48 return container_of(priv, struct vc4_hvs_state, base);
51 struct vc4_load_tracker_state {
52 struct drm_private_state base;
57 static struct vc4_load_tracker_state *
58 to_vc4_load_tracker_state(struct drm_private_state *priv)
60 return container_of(priv, struct vc4_load_tracker_state, base);
63 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
64 struct drm_private_obj *manager)
66 struct drm_device *dev = state->dev;
67 struct vc4_dev *vc4 = to_vc4_dev(dev);
68 struct drm_private_state *priv_state;
71 ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
75 priv_state = drm_atomic_get_private_obj_state(state, manager);
76 if (IS_ERR(priv_state))
77 return ERR_CAST(priv_state);
79 return to_vc4_ctm_state(priv_state);
82 static struct drm_private_state *
83 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
85 struct vc4_ctm_state *state;
87 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
91 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
96 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
97 struct drm_private_state *state)
99 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
104 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
105 .atomic_duplicate_state = vc4_ctm_duplicate_state,
106 .atomic_destroy_state = vc4_ctm_destroy_state,
109 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
111 struct vc4_dev *vc4 = to_vc4_dev(dev);
113 drm_atomic_private_obj_fini(&vc4->ctm_manager);
116 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
118 struct vc4_ctm_state *ctm_state;
120 drm_modeset_lock_init(&vc4->ctm_state_lock);
122 ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
126 drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
127 &vc4_ctm_state_funcs);
129 return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
132 /* Converts a DRM S31.32 value to the HW S0.9 format. */
133 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
138 r = in & BIT_ULL(63) ? BIT(9) : 0;
140 if ((in & GENMASK_ULL(62, 32)) > 0) {
141 /* We have zero integer bits so we can only saturate here. */
144 /* Otherwise take the 9 most important fractional bits. */
145 r |= (in >> 23) & GENMASK(8, 0);
152 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
154 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
155 struct drm_color_ctm *ctm = ctm_state->ctm;
157 if (ctm_state->fifo) {
158 HVS_WRITE(SCALER_OLEDCOEF2,
159 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
160 SCALER_OLEDCOEF2_R_TO_R) |
161 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
162 SCALER_OLEDCOEF2_R_TO_G) |
163 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
164 SCALER_OLEDCOEF2_R_TO_B));
165 HVS_WRITE(SCALER_OLEDCOEF1,
166 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
167 SCALER_OLEDCOEF1_G_TO_R) |
168 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
169 SCALER_OLEDCOEF1_G_TO_G) |
170 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
171 SCALER_OLEDCOEF1_G_TO_B));
172 HVS_WRITE(SCALER_OLEDCOEF0,
173 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
174 SCALER_OLEDCOEF0_B_TO_R) |
175 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
176 SCALER_OLEDCOEF0_B_TO_G) |
177 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
178 SCALER_OLEDCOEF0_B_TO_B));
181 HVS_WRITE(SCALER_OLEDOFFS,
182 VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
185 static struct vc4_hvs_state *
186 vc4_hvs_get_global_state(struct drm_atomic_state *state)
188 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
189 struct drm_private_state *priv_state;
191 priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
192 if (IS_ERR(priv_state))
193 return ERR_CAST(priv_state);
195 return to_vc4_hvs_state(priv_state);
198 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
199 struct drm_atomic_state *state)
201 struct drm_crtc_state *crtc_state;
202 struct drm_crtc *crtc;
205 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
206 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
210 if (!crtc_state->active)
213 if (vc4_state->assigned_channel != 2)
217 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
219 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
221 * DSP3 is connected to FIFO2 unless the transposer is
222 * enabled. In this case, FIFO 2 is directly accessed by the
223 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
226 if (vc4_state->feed_txp)
227 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
229 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
231 dispctrl = HVS_READ(SCALER_DISPCTRL) &
232 ~SCALER_DISPCTRL_DSP3_MUX_MASK;
233 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
237 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
238 struct drm_atomic_state *state)
240 struct drm_crtc_state *crtc_state;
241 struct drm_crtc *crtc;
246 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
247 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
248 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
250 if (!vc4_state->update_muxing)
253 switch (vc4_crtc->data->hvs_output) {
255 mux = (vc4_state->assigned_channel == 2) ? 0 : 1;
256 reg = HVS_READ(SCALER_DISPECTRL);
257 HVS_WRITE(SCALER_DISPECTRL,
258 (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
259 VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
263 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
266 mux = vc4_state->assigned_channel;
268 reg = HVS_READ(SCALER_DISPCTRL);
269 HVS_WRITE(SCALER_DISPCTRL,
270 (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
271 VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
275 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
278 mux = vc4_state->assigned_channel;
280 reg = HVS_READ(SCALER_DISPEOLN);
281 HVS_WRITE(SCALER_DISPEOLN,
282 (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
283 VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
288 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
291 mux = vc4_state->assigned_channel;
293 reg = HVS_READ(SCALER_DISPDITHER);
294 HVS_WRITE(SCALER_DISPDITHER,
295 (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
296 VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
306 vc4_atomic_complete_commit(struct drm_atomic_state *state)
308 struct drm_device *dev = state->dev;
309 struct vc4_dev *vc4 = to_vc4_dev(dev);
310 struct vc4_hvs *hvs = vc4->hvs;
311 struct drm_crtc_state *new_crtc_state;
312 struct drm_crtc *crtc;
315 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
316 struct vc4_crtc_state *vc4_crtc_state;
318 if (!new_crtc_state->commit)
321 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
322 vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel);
326 clk_set_min_rate(hvs->core_clk, 500000000);
328 drm_atomic_helper_wait_for_fences(dev, state, false);
330 drm_atomic_helper_wait_for_dependencies(state);
332 drm_atomic_helper_commit_modeset_disables(dev, state);
334 vc4_ctm_commit(vc4, state);
337 vc5_hvs_pv_muxing_commit(vc4, state);
339 vc4_hvs_pv_muxing_commit(vc4, state);
341 drm_atomic_helper_commit_planes(dev, state, 0);
343 drm_atomic_helper_commit_modeset_enables(dev, state);
345 drm_atomic_helper_fake_vblank(state);
347 drm_atomic_helper_commit_hw_done(state);
349 drm_atomic_helper_wait_for_flip_done(dev, state);
351 drm_atomic_helper_cleanup_planes(dev, state);
353 drm_atomic_helper_commit_cleanup_done(state);
356 clk_set_min_rate(hvs->core_clk, 0);
358 drm_atomic_state_put(state);
360 up(&vc4->async_modeset);
363 static void commit_work(struct work_struct *work)
365 struct drm_atomic_state *state = container_of(work,
366 struct drm_atomic_state,
368 vc4_atomic_complete_commit(state);
372 * vc4_atomic_commit - commit validated state object
374 * @state: the driver state object
375 * @nonblock: nonblocking commit
377 * This function commits a with drm_atomic_helper_check() pre-validated state
378 * object. This can still fail when e.g. the framebuffer reservation fails. For
379 * now this doesn't implement asynchronous commits.
382 * Zero for success or -errno.
384 static int vc4_atomic_commit(struct drm_device *dev,
385 struct drm_atomic_state *state,
388 struct vc4_dev *vc4 = to_vc4_dev(dev);
391 if (state->async_update) {
392 ret = down_interruptible(&vc4->async_modeset);
396 ret = drm_atomic_helper_prepare_planes(dev, state);
398 up(&vc4->async_modeset);
402 drm_atomic_helper_async_commit(dev, state);
404 drm_atomic_helper_cleanup_planes(dev, state);
406 up(&vc4->async_modeset);
411 /* We know for sure we don't want an async update here. Set
412 * state->legacy_cursor_update to false to prevent
413 * drm_atomic_helper_setup_commit() from auto-completing
416 state->legacy_cursor_update = false;
417 ret = drm_atomic_helper_setup_commit(state, nonblock);
421 INIT_WORK(&state->commit_work, commit_work);
423 ret = down_interruptible(&vc4->async_modeset);
427 ret = drm_atomic_helper_prepare_planes(dev, state);
429 up(&vc4->async_modeset);
434 ret = drm_atomic_helper_wait_for_fences(dev, state, true);
436 drm_atomic_helper_cleanup_planes(dev, state);
437 up(&vc4->async_modeset);
443 * This is the point of no return - everything below never fails except
444 * when the hw goes bonghits. Which means we can commit the new state on
445 * the software side now.
448 BUG_ON(drm_atomic_helper_swap_state(state, false) < 0);
451 * Everything below can be run asynchronously without the need to grab
452 * any modeset locks at all under one condition: It must be guaranteed
453 * that the asynchronous work has either been cancelled (if the driver
454 * supports it, which at least requires that the framebuffers get
455 * cleaned up with drm_atomic_helper_cleanup_planes()) or completed
456 * before the new state gets committed on the software side with
457 * drm_atomic_helper_swap_state().
459 * This scheme allows new atomic state updates to be prepared and
460 * checked in parallel to the asynchronous completion of the previous
461 * update. Which is important since compositors need to figure out the
462 * composition of the next frame right after having submitted the
466 drm_atomic_state_get(state);
468 queue_work(system_unbound_wq, &state->commit_work);
470 vc4_atomic_complete_commit(state);
475 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
476 struct drm_file *file_priv,
477 const struct drm_mode_fb_cmd2 *mode_cmd)
479 struct drm_mode_fb_cmd2 mode_cmd_local;
481 /* If the user didn't specify a modifier, use the
482 * vc4_set_tiling_ioctl() state for the BO.
484 if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
485 struct drm_gem_object *gem_obj;
488 gem_obj = drm_gem_object_lookup(file_priv,
489 mode_cmd->handles[0]);
491 DRM_DEBUG("Failed to look up GEM BO %d\n",
492 mode_cmd->handles[0]);
493 return ERR_PTR(-ENOENT);
495 bo = to_vc4_bo(gem_obj);
497 mode_cmd_local = *mode_cmd;
500 mode_cmd_local.modifier[0] =
501 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
503 mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
506 drm_gem_object_put(gem_obj);
508 mode_cmd = &mode_cmd_local;
511 return drm_gem_fb_create(dev, file_priv, mode_cmd);
514 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
515 * at a time and the HW only supports S0.9 scalars. To account for the latter,
516 * we don't allow userland to set a CTM that we have no hope of approximating.
519 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
521 struct vc4_dev *vc4 = to_vc4_dev(dev);
522 struct vc4_ctm_state *ctm_state = NULL;
523 struct drm_crtc *crtc;
524 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
525 struct drm_color_ctm *ctm;
528 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
529 /* CTM is being disabled. */
530 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
531 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
532 if (IS_ERR(ctm_state))
533 return PTR_ERR(ctm_state);
538 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
539 if (new_crtc_state->ctm == old_crtc_state->ctm)
543 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
544 if (IS_ERR(ctm_state))
545 return PTR_ERR(ctm_state);
548 /* CTM is being enabled or the matrix changed. */
549 if (new_crtc_state->ctm) {
550 struct vc4_crtc_state *vc4_crtc_state =
551 to_vc4_crtc_state(new_crtc_state);
553 /* fifo is 1-based since 0 disables CTM. */
554 int fifo = vc4_crtc_state->assigned_channel + 1;
556 /* Check userland isn't trying to turn on CTM for more
557 * than one CRTC at a time.
559 if (ctm_state->fifo && ctm_state->fifo != fifo) {
560 DRM_DEBUG_DRIVER("Too many CTM configured\n");
564 /* Check we can approximate the specified CTM.
565 * We disallow scalars |c| > 1.0 since the HW has
568 ctm = new_crtc_state->ctm->data;
569 for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
570 u64 val = ctm->matrix[i];
573 if (val > BIT_ULL(32))
577 ctm_state->fifo = fifo;
578 ctm_state->ctm = ctm;
585 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
587 struct drm_plane_state *old_plane_state, *new_plane_state;
588 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
589 struct vc4_load_tracker_state *load_state;
590 struct drm_private_state *priv_state;
591 struct drm_plane *plane;
594 if (!vc4->load_tracker_available)
597 priv_state = drm_atomic_get_private_obj_state(state,
599 if (IS_ERR(priv_state))
600 return PTR_ERR(priv_state);
602 load_state = to_vc4_load_tracker_state(priv_state);
603 for_each_oldnew_plane_in_state(state, plane, old_plane_state,
604 new_plane_state, i) {
605 struct vc4_plane_state *vc4_plane_state;
607 if (old_plane_state->fb && old_plane_state->crtc) {
608 vc4_plane_state = to_vc4_plane_state(old_plane_state);
609 load_state->membus_load -= vc4_plane_state->membus_load;
610 load_state->hvs_load -= vc4_plane_state->hvs_load;
613 if (new_plane_state->fb && new_plane_state->crtc) {
614 vc4_plane_state = to_vc4_plane_state(new_plane_state);
615 load_state->membus_load += vc4_plane_state->membus_load;
616 load_state->hvs_load += vc4_plane_state->hvs_load;
620 /* Don't check the load when the tracker is disabled. */
621 if (!vc4->load_tracker_enabled)
624 /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
625 * the system work when other blocks are accessing the memory.
627 if (load_state->membus_load > SZ_1G + SZ_512M)
630 /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
631 * consider the maximum number of cycles is 240M.
633 if (load_state->hvs_load > 240000000ULL)
639 static struct drm_private_state *
640 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
642 struct vc4_load_tracker_state *state;
644 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
648 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
653 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
654 struct drm_private_state *state)
656 struct vc4_load_tracker_state *load_state;
658 load_state = to_vc4_load_tracker_state(state);
662 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
663 .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
664 .atomic_destroy_state = vc4_load_tracker_destroy_state,
667 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
669 struct vc4_dev *vc4 = to_vc4_dev(dev);
671 if (!vc4->load_tracker_available)
674 drm_atomic_private_obj_fini(&vc4->load_tracker);
677 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
679 struct vc4_load_tracker_state *load_state;
681 if (!vc4->load_tracker_available)
684 load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
688 drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
690 &vc4_load_tracker_state_funcs);
692 return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
695 static struct drm_private_state *
696 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
698 struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
699 struct vc4_hvs_state *state;
701 state = kzalloc(sizeof(*state), GFP_KERNEL);
705 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
707 state->unassigned_channels = old_state->unassigned_channels;
712 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
713 struct drm_private_state *state)
715 struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
720 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
721 .atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
722 .atomic_destroy_state = vc4_hvs_channels_destroy_state,
725 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
727 struct vc4_dev *vc4 = to_vc4_dev(dev);
729 drm_atomic_private_obj_fini(&vc4->hvs_channels);
732 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
734 struct vc4_hvs_state *state;
736 state = kzalloc(sizeof(*state), GFP_KERNEL);
740 state->unassigned_channels = GENMASK(HVS_NUM_CHANNELS - 1, 0);
741 drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
743 &vc4_hvs_state_funcs);
745 return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
749 * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
750 * the TXP (and therefore all the CRTCs found on that platform).
752 * The naive (and our initial) implementation would just iterate over
753 * all the active CRTCs, try to find a suitable FIFO, and then remove it
754 * from the pool of available FIFOs. However, there are a few corner
755 * cases that need to be considered:
757 * - When running in a dual-display setup (so with two CRTCs involved),
758 * we can update the state of a single CRTC (for example by changing
759 * its mode using xrandr under X11) without affecting the other. In
760 * this case, the other CRTC wouldn't be in the state at all, so we
761 * need to consider all the running CRTCs in the DRM device to assign
762 * a FIFO, not just the one in the state.
764 * - To fix the above, we can't use drm_atomic_get_crtc_state on all
765 * enabled CRTCs to pull their CRTC state into the global state, since
766 * a page flip would start considering their vblank to complete. Since
767 * we don't have a guarantee that they are actually active, that
768 * vblank might never happen, and shouldn't even be considered if we
769 * want to do a page flip on a single CRTC. That can be tested by
770 * doing a modetest -v first on HDMI1 and then on HDMI0.
772 * - Since we need the pixelvalve to be disabled and enabled back when
773 * the FIFO is changed, we should keep the FIFO assigned for as long
774 * as the CRTC is enabled, only considering it free again once that
775 * CRTC has been disabled. This can be tested by booting X11 on a
776 * single display, and changing the resolution down and then back up.
778 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
779 struct drm_atomic_state *state)
781 struct vc4_hvs_state *hvs_new_state;
782 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
783 struct drm_crtc *crtc;
786 hvs_new_state = vc4_hvs_get_global_state(state);
790 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
791 struct vc4_crtc_state *old_vc4_crtc_state =
792 to_vc4_crtc_state(old_crtc_state);
793 struct vc4_crtc_state *new_vc4_crtc_state =
794 to_vc4_crtc_state(new_crtc_state);
795 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
796 unsigned int matching_channels;
798 /* Nothing to do here, let's skip it */
799 if (old_crtc_state->enable == new_crtc_state->enable)
802 /* Muxing will need to be modified, mark it as such */
803 new_vc4_crtc_state->update_muxing = true;
805 /* If we're disabling our CRTC, we put back our channel */
806 if (!new_crtc_state->enable) {
807 hvs_new_state->unassigned_channels |= BIT(old_vc4_crtc_state->assigned_channel);
808 new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
813 * The problem we have to solve here is that we have
814 * up to 7 encoders, connected to up to 6 CRTCs.
816 * Those CRTCs, depending on the instance, can be
817 * routed to 1, 2 or 3 HVS FIFOs, and we need to set
818 * the change the muxing between FIFOs and outputs in
819 * the HVS accordingly.
821 * It would be pretty hard to come up with an
822 * algorithm that would generically solve
823 * this. However, the current routing trees we support
824 * allow us to simplify a bit the problem.
826 * Indeed, with the current supported layouts, if we
827 * try to assign in the ascending crtc index order the
828 * FIFOs, we can't fall into the situation where an
829 * earlier CRTC that had multiple routes is assigned
830 * one that was the only option for a later CRTC.
832 * If the layout changes and doesn't give us that in
833 * the future, we will need to have something smarter,
834 * but it works so far.
836 matching_channels = hvs_new_state->unassigned_channels & vc4_crtc->data->hvs_available_channels;
837 if (matching_channels) {
838 unsigned int channel = ffs(matching_channels) - 1;
840 new_vc4_crtc_state->assigned_channel = channel;
841 hvs_new_state->unassigned_channels &= ~BIT(channel);
851 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
855 ret = vc4_pv_muxing_atomic_check(dev, state);
859 ret = vc4_ctm_atomic_check(dev, state);
863 ret = drm_atomic_helper_check(dev, state);
867 return vc4_load_tracker_atomic_check(state);
870 static const struct drm_mode_config_funcs vc4_mode_funcs = {
871 .atomic_check = vc4_atomic_check,
872 .atomic_commit = vc4_atomic_commit,
873 .fb_create = vc4_fb_create,
876 int vc4_kms_load(struct drm_device *dev)
878 struct vc4_dev *vc4 = to_vc4_dev(dev);
879 bool is_vc5 = of_device_is_compatible(dev->dev->of_node,
884 vc4->load_tracker_available = true;
886 /* Start with the load tracker enabled. Can be
887 * disabled through the debugfs load_tracker file.
889 vc4->load_tracker_enabled = true;
892 sema_init(&vc4->async_modeset, 1);
894 /* Set support for vblank irq fast disable, before drm_vblank_init() */
895 dev->vblank_disable_immediate = true;
897 dev->irq_enabled = true;
898 ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
900 dev_err(dev->dev, "failed to initialize vblank\n");
905 dev->mode_config.max_width = 7680;
906 dev->mode_config.max_height = 7680;
908 dev->mode_config.max_width = 2048;
909 dev->mode_config.max_height = 2048;
912 dev->mode_config.funcs = &vc4_mode_funcs;
913 dev->mode_config.preferred_depth = 24;
914 dev->mode_config.async_page_flip = true;
915 dev->mode_config.allow_fb_modifiers = true;
917 ret = vc4_ctm_obj_init(vc4);
921 ret = vc4_load_tracker_obj_init(vc4);
925 ret = vc4_hvs_channels_obj_init(vc4);
929 drm_mode_config_reset(dev);
931 drm_kms_helper_poll_init(dev);