]> Git Repo - linux.git/blob - drivers/gpu/drm/vc4/vc4_kms.c
net: ipa: adjust GSI register addresses
[linux.git] / drivers / gpu / drm / vc4 / vc4_kms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 KMS
8  *
9  * This is the general code for implementing KMS mode setting that
10  * doesn't clearly associate with any of the other objects (plane,
11  * crtc, HDMI encoder).
12  */
13
14 #include <linux/clk.h>
15
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_gem_framebuffer_helper.h>
20 #include <drm/drm_plane_helper.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_vblank.h>
23
24 #include "vc4_drv.h"
25 #include "vc4_regs.h"
26
27 #define HVS_NUM_CHANNELS 3
28
29 struct vc4_ctm_state {
30         struct drm_private_state base;
31         struct drm_color_ctm *ctm;
32         int fifo;
33 };
34
35 static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv)
36 {
37         return container_of(priv, struct vc4_ctm_state, base);
38 }
39
40 struct vc4_hvs_state {
41         struct drm_private_state base;
42         unsigned int unassigned_channels;
43 };
44
45 static struct vc4_hvs_state *
46 to_vc4_hvs_state(struct drm_private_state *priv)
47 {
48         return container_of(priv, struct vc4_hvs_state, base);
49 }
50
51 struct vc4_load_tracker_state {
52         struct drm_private_state base;
53         u64 hvs_load;
54         u64 membus_load;
55 };
56
57 static struct vc4_load_tracker_state *
58 to_vc4_load_tracker_state(struct drm_private_state *priv)
59 {
60         return container_of(priv, struct vc4_load_tracker_state, base);
61 }
62
63 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
64                                                struct drm_private_obj *manager)
65 {
66         struct drm_device *dev = state->dev;
67         struct vc4_dev *vc4 = to_vc4_dev(dev);
68         struct drm_private_state *priv_state;
69         int ret;
70
71         ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
72         if (ret)
73                 return ERR_PTR(ret);
74
75         priv_state = drm_atomic_get_private_obj_state(state, manager);
76         if (IS_ERR(priv_state))
77                 return ERR_CAST(priv_state);
78
79         return to_vc4_ctm_state(priv_state);
80 }
81
82 static struct drm_private_state *
83 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
84 {
85         struct vc4_ctm_state *state;
86
87         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
88         if (!state)
89                 return NULL;
90
91         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
92
93         return &state->base;
94 }
95
96 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
97                                   struct drm_private_state *state)
98 {
99         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
100
101         kfree(ctm_state);
102 }
103
104 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
105         .atomic_duplicate_state = vc4_ctm_duplicate_state,
106         .atomic_destroy_state = vc4_ctm_destroy_state,
107 };
108
109 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
110 {
111         struct vc4_dev *vc4 = to_vc4_dev(dev);
112
113         drm_atomic_private_obj_fini(&vc4->ctm_manager);
114 }
115
116 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
117 {
118         struct vc4_ctm_state *ctm_state;
119
120         drm_modeset_lock_init(&vc4->ctm_state_lock);
121
122         ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
123         if (!ctm_state)
124                 return -ENOMEM;
125
126         drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
127                                     &vc4_ctm_state_funcs);
128
129         return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
130 }
131
132 /* Converts a DRM S31.32 value to the HW S0.9 format. */
133 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
134 {
135         u16 r;
136
137         /* Sign bit. */
138         r = in & BIT_ULL(63) ? BIT(9) : 0;
139
140         if ((in & GENMASK_ULL(62, 32)) > 0) {
141                 /* We have zero integer bits so we can only saturate here. */
142                 r |= GENMASK(8, 0);
143         } else {
144                 /* Otherwise take the 9 most important fractional bits. */
145                 r |= (in >> 23) & GENMASK(8, 0);
146         }
147
148         return r;
149 }
150
151 static void
152 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
153 {
154         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
155         struct drm_color_ctm *ctm = ctm_state->ctm;
156
157         if (ctm_state->fifo) {
158                 HVS_WRITE(SCALER_OLEDCOEF2,
159                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
160                                         SCALER_OLEDCOEF2_R_TO_R) |
161                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
162                                         SCALER_OLEDCOEF2_R_TO_G) |
163                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
164                                         SCALER_OLEDCOEF2_R_TO_B));
165                 HVS_WRITE(SCALER_OLEDCOEF1,
166                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
167                                         SCALER_OLEDCOEF1_G_TO_R) |
168                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
169                                         SCALER_OLEDCOEF1_G_TO_G) |
170                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
171                                         SCALER_OLEDCOEF1_G_TO_B));
172                 HVS_WRITE(SCALER_OLEDCOEF0,
173                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
174                                         SCALER_OLEDCOEF0_B_TO_R) |
175                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
176                                         SCALER_OLEDCOEF0_B_TO_G) |
177                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
178                                         SCALER_OLEDCOEF0_B_TO_B));
179         }
180
181         HVS_WRITE(SCALER_OLEDOFFS,
182                   VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
183 }
184
185 static struct vc4_hvs_state *
186 vc4_hvs_get_global_state(struct drm_atomic_state *state)
187 {
188         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
189         struct drm_private_state *priv_state;
190
191         priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
192         if (IS_ERR(priv_state))
193                 return ERR_CAST(priv_state);
194
195         return to_vc4_hvs_state(priv_state);
196 }
197
198 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
199                                      struct drm_atomic_state *state)
200 {
201         struct drm_crtc_state *crtc_state;
202         struct drm_crtc *crtc;
203         unsigned int i;
204
205         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
206                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
207                 u32 dispctrl;
208                 u32 dsp3_mux;
209
210                 if (!crtc_state->active)
211                         continue;
212
213                 if (vc4_state->assigned_channel != 2)
214                         continue;
215
216                 /*
217                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
218                  * FIFO X'.
219                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
220                  *
221                  * DSP3 is connected to FIFO2 unless the transposer is
222                  * enabled. In this case, FIFO 2 is directly accessed by the
223                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
224                  * route.
225                  */
226                 if (vc4_state->feed_txp)
227                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
228                 else
229                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
230
231                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
232                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
233                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
234         }
235 }
236
237 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
238                                      struct drm_atomic_state *state)
239 {
240         struct drm_crtc_state *crtc_state;
241         struct drm_crtc *crtc;
242         unsigned char mux;
243         unsigned int i;
244         u32 reg;
245
246         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
247                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
248                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
249
250                 if (!vc4_state->update_muxing)
251                         continue;
252
253                 switch (vc4_crtc->data->hvs_output) {
254                 case 2:
255                         mux = (vc4_state->assigned_channel == 2) ? 0 : 1;
256                         reg = HVS_READ(SCALER_DISPECTRL);
257                         HVS_WRITE(SCALER_DISPECTRL,
258                                   (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
259                                   VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
260                         break;
261
262                 case 3:
263                         if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
264                                 mux = 3;
265                         else
266                                 mux = vc4_state->assigned_channel;
267
268                         reg = HVS_READ(SCALER_DISPCTRL);
269                         HVS_WRITE(SCALER_DISPCTRL,
270                                   (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
271                                   VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
272                         break;
273
274                 case 4:
275                         if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
276                                 mux = 3;
277                         else
278                                 mux = vc4_state->assigned_channel;
279
280                         reg = HVS_READ(SCALER_DISPEOLN);
281                         HVS_WRITE(SCALER_DISPEOLN,
282                                   (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
283                                   VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
284
285                         break;
286
287                 case 5:
288                         if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
289                                 mux = 3;
290                         else
291                                 mux = vc4_state->assigned_channel;
292
293                         reg = HVS_READ(SCALER_DISPDITHER);
294                         HVS_WRITE(SCALER_DISPDITHER,
295                                   (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
296                                   VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
297                         break;
298
299                 default:
300                         break;
301                 }
302         }
303 }
304
305 static void
306 vc4_atomic_complete_commit(struct drm_atomic_state *state)
307 {
308         struct drm_device *dev = state->dev;
309         struct vc4_dev *vc4 = to_vc4_dev(dev);
310         struct vc4_hvs *hvs = vc4->hvs;
311         struct drm_crtc_state *new_crtc_state;
312         struct drm_crtc *crtc;
313         int i;
314
315         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
316                 struct vc4_crtc_state *vc4_crtc_state;
317
318                 if (!new_crtc_state->commit)
319                         continue;
320
321                 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
322                 vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel);
323         }
324
325         if (vc4->hvs->hvs5)
326                 clk_set_min_rate(hvs->core_clk, 500000000);
327
328         drm_atomic_helper_wait_for_fences(dev, state, false);
329
330         drm_atomic_helper_wait_for_dependencies(state);
331
332         drm_atomic_helper_commit_modeset_disables(dev, state);
333
334         vc4_ctm_commit(vc4, state);
335
336         if (vc4->hvs->hvs5)
337                 vc5_hvs_pv_muxing_commit(vc4, state);
338         else
339                 vc4_hvs_pv_muxing_commit(vc4, state);
340
341         drm_atomic_helper_commit_planes(dev, state, 0);
342
343         drm_atomic_helper_commit_modeset_enables(dev, state);
344
345         drm_atomic_helper_fake_vblank(state);
346
347         drm_atomic_helper_commit_hw_done(state);
348
349         drm_atomic_helper_wait_for_flip_done(dev, state);
350
351         drm_atomic_helper_cleanup_planes(dev, state);
352
353         drm_atomic_helper_commit_cleanup_done(state);
354
355         if (vc4->hvs->hvs5)
356                 clk_set_min_rate(hvs->core_clk, 0);
357
358         drm_atomic_state_put(state);
359
360         up(&vc4->async_modeset);
361 }
362
363 static void commit_work(struct work_struct *work)
364 {
365         struct drm_atomic_state *state = container_of(work,
366                                                       struct drm_atomic_state,
367                                                       commit_work);
368         vc4_atomic_complete_commit(state);
369 }
370
371 /**
372  * vc4_atomic_commit - commit validated state object
373  * @dev: DRM device
374  * @state: the driver state object
375  * @nonblock: nonblocking commit
376  *
377  * This function commits a with drm_atomic_helper_check() pre-validated state
378  * object. This can still fail when e.g. the framebuffer reservation fails. For
379  * now this doesn't implement asynchronous commits.
380  *
381  * RETURNS
382  * Zero for success or -errno.
383  */
384 static int vc4_atomic_commit(struct drm_device *dev,
385                              struct drm_atomic_state *state,
386                              bool nonblock)
387 {
388         struct vc4_dev *vc4 = to_vc4_dev(dev);
389         int ret;
390
391         if (state->async_update) {
392                 ret = down_interruptible(&vc4->async_modeset);
393                 if (ret)
394                         return ret;
395
396                 ret = drm_atomic_helper_prepare_planes(dev, state);
397                 if (ret) {
398                         up(&vc4->async_modeset);
399                         return ret;
400                 }
401
402                 drm_atomic_helper_async_commit(dev, state);
403
404                 drm_atomic_helper_cleanup_planes(dev, state);
405
406                 up(&vc4->async_modeset);
407
408                 return 0;
409         }
410
411         /* We know for sure we don't want an async update here. Set
412          * state->legacy_cursor_update to false to prevent
413          * drm_atomic_helper_setup_commit() from auto-completing
414          * commit->flip_done.
415          */
416         state->legacy_cursor_update = false;
417         ret = drm_atomic_helper_setup_commit(state, nonblock);
418         if (ret)
419                 return ret;
420
421         INIT_WORK(&state->commit_work, commit_work);
422
423         ret = down_interruptible(&vc4->async_modeset);
424         if (ret)
425                 return ret;
426
427         ret = drm_atomic_helper_prepare_planes(dev, state);
428         if (ret) {
429                 up(&vc4->async_modeset);
430                 return ret;
431         }
432
433         if (!nonblock) {
434                 ret = drm_atomic_helper_wait_for_fences(dev, state, true);
435                 if (ret) {
436                         drm_atomic_helper_cleanup_planes(dev, state);
437                         up(&vc4->async_modeset);
438                         return ret;
439                 }
440         }
441
442         /*
443          * This is the point of no return - everything below never fails except
444          * when the hw goes bonghits. Which means we can commit the new state on
445          * the software side now.
446          */
447
448         BUG_ON(drm_atomic_helper_swap_state(state, false) < 0);
449
450         /*
451          * Everything below can be run asynchronously without the need to grab
452          * any modeset locks at all under one condition: It must be guaranteed
453          * that the asynchronous work has either been cancelled (if the driver
454          * supports it, which at least requires that the framebuffers get
455          * cleaned up with drm_atomic_helper_cleanup_planes()) or completed
456          * before the new state gets committed on the software side with
457          * drm_atomic_helper_swap_state().
458          *
459          * This scheme allows new atomic state updates to be prepared and
460          * checked in parallel to the asynchronous completion of the previous
461          * update. Which is important since compositors need to figure out the
462          * composition of the next frame right after having submitted the
463          * current layout.
464          */
465
466         drm_atomic_state_get(state);
467         if (nonblock)
468                 queue_work(system_unbound_wq, &state->commit_work);
469         else
470                 vc4_atomic_complete_commit(state);
471
472         return 0;
473 }
474
475 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
476                                              struct drm_file *file_priv,
477                                              const struct drm_mode_fb_cmd2 *mode_cmd)
478 {
479         struct drm_mode_fb_cmd2 mode_cmd_local;
480
481         /* If the user didn't specify a modifier, use the
482          * vc4_set_tiling_ioctl() state for the BO.
483          */
484         if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
485                 struct drm_gem_object *gem_obj;
486                 struct vc4_bo *bo;
487
488                 gem_obj = drm_gem_object_lookup(file_priv,
489                                                 mode_cmd->handles[0]);
490                 if (!gem_obj) {
491                         DRM_DEBUG("Failed to look up GEM BO %d\n",
492                                   mode_cmd->handles[0]);
493                         return ERR_PTR(-ENOENT);
494                 }
495                 bo = to_vc4_bo(gem_obj);
496
497                 mode_cmd_local = *mode_cmd;
498
499                 if (bo->t_format) {
500                         mode_cmd_local.modifier[0] =
501                                 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
502                 } else {
503                         mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
504                 }
505
506                 drm_gem_object_put(gem_obj);
507
508                 mode_cmd = &mode_cmd_local;
509         }
510
511         return drm_gem_fb_create(dev, file_priv, mode_cmd);
512 }
513
514 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
515  * at a time and the HW only supports S0.9 scalars. To account for the latter,
516  * we don't allow userland to set a CTM that we have no hope of approximating.
517  */
518 static int
519 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
520 {
521         struct vc4_dev *vc4 = to_vc4_dev(dev);
522         struct vc4_ctm_state *ctm_state = NULL;
523         struct drm_crtc *crtc;
524         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
525         struct drm_color_ctm *ctm;
526         int i;
527
528         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
529                 /* CTM is being disabled. */
530                 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
531                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
532                         if (IS_ERR(ctm_state))
533                                 return PTR_ERR(ctm_state);
534                         ctm_state->fifo = 0;
535                 }
536         }
537
538         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
539                 if (new_crtc_state->ctm == old_crtc_state->ctm)
540                         continue;
541
542                 if (!ctm_state) {
543                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
544                         if (IS_ERR(ctm_state))
545                                 return PTR_ERR(ctm_state);
546                 }
547
548                 /* CTM is being enabled or the matrix changed. */
549                 if (new_crtc_state->ctm) {
550                         struct vc4_crtc_state *vc4_crtc_state =
551                                 to_vc4_crtc_state(new_crtc_state);
552
553                         /* fifo is 1-based since 0 disables CTM. */
554                         int fifo = vc4_crtc_state->assigned_channel + 1;
555
556                         /* Check userland isn't trying to turn on CTM for more
557                          * than one CRTC at a time.
558                          */
559                         if (ctm_state->fifo && ctm_state->fifo != fifo) {
560                                 DRM_DEBUG_DRIVER("Too many CTM configured\n");
561                                 return -EINVAL;
562                         }
563
564                         /* Check we can approximate the specified CTM.
565                          * We disallow scalars |c| > 1.0 since the HW has
566                          * no integer bits.
567                          */
568                         ctm = new_crtc_state->ctm->data;
569                         for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
570                                 u64 val = ctm->matrix[i];
571
572                                 val &= ~BIT_ULL(63);
573                                 if (val > BIT_ULL(32))
574                                         return -EINVAL;
575                         }
576
577                         ctm_state->fifo = fifo;
578                         ctm_state->ctm = ctm;
579                 }
580         }
581
582         return 0;
583 }
584
585 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
586 {
587         struct drm_plane_state *old_plane_state, *new_plane_state;
588         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
589         struct vc4_load_tracker_state *load_state;
590         struct drm_private_state *priv_state;
591         struct drm_plane *plane;
592         int i;
593
594         if (!vc4->load_tracker_available)
595                 return 0;
596
597         priv_state = drm_atomic_get_private_obj_state(state,
598                                                       &vc4->load_tracker);
599         if (IS_ERR(priv_state))
600                 return PTR_ERR(priv_state);
601
602         load_state = to_vc4_load_tracker_state(priv_state);
603         for_each_oldnew_plane_in_state(state, plane, old_plane_state,
604                                        new_plane_state, i) {
605                 struct vc4_plane_state *vc4_plane_state;
606
607                 if (old_plane_state->fb && old_plane_state->crtc) {
608                         vc4_plane_state = to_vc4_plane_state(old_plane_state);
609                         load_state->membus_load -= vc4_plane_state->membus_load;
610                         load_state->hvs_load -= vc4_plane_state->hvs_load;
611                 }
612
613                 if (new_plane_state->fb && new_plane_state->crtc) {
614                         vc4_plane_state = to_vc4_plane_state(new_plane_state);
615                         load_state->membus_load += vc4_plane_state->membus_load;
616                         load_state->hvs_load += vc4_plane_state->hvs_load;
617                 }
618         }
619
620         /* Don't check the load when the tracker is disabled. */
621         if (!vc4->load_tracker_enabled)
622                 return 0;
623
624         /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
625          * the system work when other blocks are accessing the memory.
626          */
627         if (load_state->membus_load > SZ_1G + SZ_512M)
628                 return -ENOSPC;
629
630         /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
631          * consider the maximum number of cycles is 240M.
632          */
633         if (load_state->hvs_load > 240000000ULL)
634                 return -ENOSPC;
635
636         return 0;
637 }
638
639 static struct drm_private_state *
640 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
641 {
642         struct vc4_load_tracker_state *state;
643
644         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
645         if (!state)
646                 return NULL;
647
648         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
649
650         return &state->base;
651 }
652
653 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
654                                            struct drm_private_state *state)
655 {
656         struct vc4_load_tracker_state *load_state;
657
658         load_state = to_vc4_load_tracker_state(state);
659         kfree(load_state);
660 }
661
662 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
663         .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
664         .atomic_destroy_state = vc4_load_tracker_destroy_state,
665 };
666
667 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
668 {
669         struct vc4_dev *vc4 = to_vc4_dev(dev);
670
671         if (!vc4->load_tracker_available)
672                 return;
673
674         drm_atomic_private_obj_fini(&vc4->load_tracker);
675 }
676
677 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
678 {
679         struct vc4_load_tracker_state *load_state;
680
681         if (!vc4->load_tracker_available)
682                 return 0;
683
684         load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
685         if (!load_state)
686                 return -ENOMEM;
687
688         drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
689                                     &load_state->base,
690                                     &vc4_load_tracker_state_funcs);
691
692         return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
693 }
694
695 static struct drm_private_state *
696 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
697 {
698         struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
699         struct vc4_hvs_state *state;
700
701         state = kzalloc(sizeof(*state), GFP_KERNEL);
702         if (!state)
703                 return NULL;
704
705         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
706
707         state->unassigned_channels = old_state->unassigned_channels;
708
709         return &state->base;
710 }
711
712 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
713                                            struct drm_private_state *state)
714 {
715         struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
716
717         kfree(hvs_state);
718 }
719
720 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
721         .atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
722         .atomic_destroy_state = vc4_hvs_channels_destroy_state,
723 };
724
725 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
726 {
727         struct vc4_dev *vc4 = to_vc4_dev(dev);
728
729         drm_atomic_private_obj_fini(&vc4->hvs_channels);
730 }
731
732 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
733 {
734         struct vc4_hvs_state *state;
735
736         state = kzalloc(sizeof(*state), GFP_KERNEL);
737         if (!state)
738                 return -ENOMEM;
739
740         state->unassigned_channels = GENMASK(HVS_NUM_CHANNELS - 1, 0);
741         drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
742                                     &state->base,
743                                     &vc4_hvs_state_funcs);
744
745         return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
746 }
747
748 /*
749  * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
750  * the TXP (and therefore all the CRTCs found on that platform).
751  *
752  * The naive (and our initial) implementation would just iterate over
753  * all the active CRTCs, try to find a suitable FIFO, and then remove it
754  * from the pool of available FIFOs. However, there are a few corner
755  * cases that need to be considered:
756  *
757  * - When running in a dual-display setup (so with two CRTCs involved),
758  *   we can update the state of a single CRTC (for example by changing
759  *   its mode using xrandr under X11) without affecting the other. In
760  *   this case, the other CRTC wouldn't be in the state at all, so we
761  *   need to consider all the running CRTCs in the DRM device to assign
762  *   a FIFO, not just the one in the state.
763  *
764  * - To fix the above, we can't use drm_atomic_get_crtc_state on all
765  *   enabled CRTCs to pull their CRTC state into the global state, since
766  *   a page flip would start considering their vblank to complete. Since
767  *   we don't have a guarantee that they are actually active, that
768  *   vblank might never happen, and shouldn't even be considered if we
769  *   want to do a page flip on a single CRTC. That can be tested by
770  *   doing a modetest -v first on HDMI1 and then on HDMI0.
771  *
772  * - Since we need the pixelvalve to be disabled and enabled back when
773  *   the FIFO is changed, we should keep the FIFO assigned for as long
774  *   as the CRTC is enabled, only considering it free again once that
775  *   CRTC has been disabled. This can be tested by booting X11 on a
776  *   single display, and changing the resolution down and then back up.
777  */
778 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
779                                       struct drm_atomic_state *state)
780 {
781         struct vc4_hvs_state *hvs_new_state;
782         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
783         struct drm_crtc *crtc;
784         unsigned int i;
785
786         hvs_new_state = vc4_hvs_get_global_state(state);
787         if (!hvs_new_state)
788                 return -EINVAL;
789
790         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
791                 struct vc4_crtc_state *old_vc4_crtc_state =
792                         to_vc4_crtc_state(old_crtc_state);
793                 struct vc4_crtc_state *new_vc4_crtc_state =
794                         to_vc4_crtc_state(new_crtc_state);
795                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
796                 unsigned int matching_channels;
797
798                 /* Nothing to do here, let's skip it */
799                 if (old_crtc_state->enable == new_crtc_state->enable)
800                         continue;
801
802                 /* Muxing will need to be modified, mark it as such */
803                 new_vc4_crtc_state->update_muxing = true;
804
805                 /* If we're disabling our CRTC, we put back our channel */
806                 if (!new_crtc_state->enable) {
807                         hvs_new_state->unassigned_channels |= BIT(old_vc4_crtc_state->assigned_channel);
808                         new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
809                         continue;
810                 }
811
812                 /*
813                  * The problem we have to solve here is that we have
814                  * up to 7 encoders, connected to up to 6 CRTCs.
815                  *
816                  * Those CRTCs, depending on the instance, can be
817                  * routed to 1, 2 or 3 HVS FIFOs, and we need to set
818                  * the change the muxing between FIFOs and outputs in
819                  * the HVS accordingly.
820                  *
821                  * It would be pretty hard to come up with an
822                  * algorithm that would generically solve
823                  * this. However, the current routing trees we support
824                  * allow us to simplify a bit the problem.
825                  *
826                  * Indeed, with the current supported layouts, if we
827                  * try to assign in the ascending crtc index order the
828                  * FIFOs, we can't fall into the situation where an
829                  * earlier CRTC that had multiple routes is assigned
830                  * one that was the only option for a later CRTC.
831                  *
832                  * If the layout changes and doesn't give us that in
833                  * the future, we will need to have something smarter,
834                  * but it works so far.
835                  */
836                 matching_channels = hvs_new_state->unassigned_channels & vc4_crtc->data->hvs_available_channels;
837                 if (matching_channels) {
838                         unsigned int channel = ffs(matching_channels) - 1;
839
840                         new_vc4_crtc_state->assigned_channel = channel;
841                         hvs_new_state->unassigned_channels &= ~BIT(channel);
842                 } else {
843                         return -EINVAL;
844                 }
845         }
846
847         return 0;
848 }
849
850 static int
851 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
852 {
853         int ret;
854
855         ret = vc4_pv_muxing_atomic_check(dev, state);
856         if (ret)
857                 return ret;
858
859         ret = vc4_ctm_atomic_check(dev, state);
860         if (ret < 0)
861                 return ret;
862
863         ret = drm_atomic_helper_check(dev, state);
864         if (ret)
865                 return ret;
866
867         return vc4_load_tracker_atomic_check(state);
868 }
869
870 static const struct drm_mode_config_funcs vc4_mode_funcs = {
871         .atomic_check = vc4_atomic_check,
872         .atomic_commit = vc4_atomic_commit,
873         .fb_create = vc4_fb_create,
874 };
875
876 int vc4_kms_load(struct drm_device *dev)
877 {
878         struct vc4_dev *vc4 = to_vc4_dev(dev);
879         bool is_vc5 = of_device_is_compatible(dev->dev->of_node,
880                                               "brcm,bcm2711-vc5");
881         int ret;
882
883         if (!is_vc5) {
884                 vc4->load_tracker_available = true;
885
886                 /* Start with the load tracker enabled. Can be
887                  * disabled through the debugfs load_tracker file.
888                  */
889                 vc4->load_tracker_enabled = true;
890         }
891
892         sema_init(&vc4->async_modeset, 1);
893
894         /* Set support for vblank irq fast disable, before drm_vblank_init() */
895         dev->vblank_disable_immediate = true;
896
897         dev->irq_enabled = true;
898         ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
899         if (ret < 0) {
900                 dev_err(dev->dev, "failed to initialize vblank\n");
901                 return ret;
902         }
903
904         if (is_vc5) {
905                 dev->mode_config.max_width = 7680;
906                 dev->mode_config.max_height = 7680;
907         } else {
908                 dev->mode_config.max_width = 2048;
909                 dev->mode_config.max_height = 2048;
910         }
911
912         dev->mode_config.funcs = &vc4_mode_funcs;
913         dev->mode_config.preferred_depth = 24;
914         dev->mode_config.async_page_flip = true;
915         dev->mode_config.allow_fb_modifiers = true;
916
917         ret = vc4_ctm_obj_init(vc4);
918         if (ret)
919                 return ret;
920
921         ret = vc4_load_tracker_obj_init(vc4);
922         if (ret)
923                 return ret;
924
925         ret = vc4_hvs_channels_obj_init(vc4);
926         if (ret)
927                 return ret;
928
929         drm_mode_config_reset(dev);
930
931         drm_kms_helper_poll_init(dev);
932
933         return 0;
934 }
This page took 0.090042 seconds and 4 git commands to generate.