2 * Implementation of the security services.
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
14 * Added conditional policy language extensions
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
23 * Added validation of kernel classes and permissions
27 * Added support for bounds domain and audit messaged on masked permissions
31 * Added support for runtime switching of the policy type
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
65 #include "conditional.h"
73 /* Policy capability names */
74 char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
75 "network_peer_controls",
77 "extended_socket_class",
78 "always_check_network",
80 "nnp_nosuid_transition"
83 int selinux_policycap_netpeer;
84 int selinux_policycap_openperm;
85 int selinux_policycap_extsockclass;
86 int selinux_policycap_alwaysnetwork;
87 int selinux_policycap_cgroupseclabel;
88 int selinux_policycap_nnp_nosuid_transition;
90 static DEFINE_RWLOCK(policy_rwlock);
92 static struct sidtab sidtab;
93 struct policydb policydb;
97 * The largest sequence number that has been used when
98 * providing an access decision to the access vector cache.
99 * The sequence number only changes when a policy change
102 static u32 latest_granting;
104 /* Forward declaration. */
105 static int context_struct_to_string(struct context *context, char **scontext,
108 static void context_struct_compute_av(struct context *scontext,
109 struct context *tcontext,
111 struct av_decision *avd,
112 struct extended_perms *xperms);
114 struct selinux_mapping {
115 u16 value; /* policy value */
117 u32 perms[sizeof(u32) * 8];
120 static struct selinux_mapping *current_mapping;
121 static u16 current_mapping_size;
123 static int selinux_set_mapping(struct policydb *pol,
124 struct security_class_mapping *map,
125 struct selinux_mapping **out_map_p,
128 struct selinux_mapping *out_map = NULL;
129 size_t size = sizeof(struct selinux_mapping);
132 bool print_unknown_handle = false;
134 /* Find number of classes in the input mapping */
141 /* Allocate space for the class records, plus one for class zero */
142 out_map = kcalloc(++i, size, GFP_ATOMIC);
146 /* Store the raw class and permission values */
148 while (map[j].name) {
149 struct security_class_mapping *p_in = map + (j++);
150 struct selinux_mapping *p_out = out_map + j;
152 /* An empty class string skips ahead */
153 if (!strcmp(p_in->name, "")) {
154 p_out->num_perms = 0;
158 p_out->value = string_to_security_class(pol, p_in->name);
161 "SELinux: Class %s not defined in policy.\n",
163 if (pol->reject_unknown)
165 p_out->num_perms = 0;
166 print_unknown_handle = true;
171 while (p_in->perms[k]) {
172 /* An empty permission string skips ahead */
173 if (!*p_in->perms[k]) {
177 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
179 if (!p_out->perms[k]) {
181 "SELinux: Permission %s in class %s not defined in policy.\n",
182 p_in->perms[k], p_in->name);
183 if (pol->reject_unknown)
185 print_unknown_handle = true;
190 p_out->num_perms = k;
193 if (print_unknown_handle)
194 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
195 pol->allow_unknown ? "allowed" : "denied");
197 *out_map_p = out_map;
206 * Get real, policy values from mapped values
209 static u16 unmap_class(u16 tclass)
211 if (tclass < current_mapping_size)
212 return current_mapping[tclass].value;
218 * Get kernel value for class from its policy value
220 static u16 map_class(u16 pol_value)
224 for (i = 1; i < current_mapping_size; i++) {
225 if (current_mapping[i].value == pol_value)
229 return SECCLASS_NULL;
232 static void map_decision(u16 tclass, struct av_decision *avd,
235 if (tclass < current_mapping_size) {
236 unsigned i, n = current_mapping[tclass].num_perms;
239 for (i = 0, result = 0; i < n; i++) {
240 if (avd->allowed & current_mapping[tclass].perms[i])
242 if (allow_unknown && !current_mapping[tclass].perms[i])
245 avd->allowed = result;
247 for (i = 0, result = 0; i < n; i++)
248 if (avd->auditallow & current_mapping[tclass].perms[i])
250 avd->auditallow = result;
252 for (i = 0, result = 0; i < n; i++) {
253 if (avd->auditdeny & current_mapping[tclass].perms[i])
255 if (!allow_unknown && !current_mapping[tclass].perms[i])
259 * In case the kernel has a bug and requests a permission
260 * between num_perms and the maximum permission number, we
261 * should audit that denial
263 for (; i < (sizeof(u32)*8); i++)
265 avd->auditdeny = result;
269 int security_mls_enabled(void)
271 return policydb.mls_enabled;
275 * Return the boolean value of a constraint expression
276 * when it is applied to the specified source and target
279 * xcontext is a special beast... It is used by the validatetrans rules
280 * only. For these rules, scontext is the context before the transition,
281 * tcontext is the context after the transition, and xcontext is the context
282 * of the process performing the transition. All other callers of
283 * constraint_expr_eval should pass in NULL for xcontext.
285 static int constraint_expr_eval(struct context *scontext,
286 struct context *tcontext,
287 struct context *xcontext,
288 struct constraint_expr *cexpr)
292 struct role_datum *r1, *r2;
293 struct mls_level *l1, *l2;
294 struct constraint_expr *e;
295 int s[CEXPR_MAXDEPTH];
298 for (e = cexpr; e; e = e->next) {
299 switch (e->expr_type) {
315 if (sp == (CEXPR_MAXDEPTH - 1))
319 val1 = scontext->user;
320 val2 = tcontext->user;
323 val1 = scontext->type;
324 val2 = tcontext->type;
327 val1 = scontext->role;
328 val2 = tcontext->role;
329 r1 = policydb.role_val_to_struct[val1 - 1];
330 r2 = policydb.role_val_to_struct[val2 - 1];
333 s[++sp] = ebitmap_get_bit(&r1->dominates,
337 s[++sp] = ebitmap_get_bit(&r2->dominates,
341 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
343 !ebitmap_get_bit(&r2->dominates,
351 l1 = &(scontext->range.level[0]);
352 l2 = &(tcontext->range.level[0]);
355 l1 = &(scontext->range.level[0]);
356 l2 = &(tcontext->range.level[1]);
359 l1 = &(scontext->range.level[1]);
360 l2 = &(tcontext->range.level[0]);
363 l1 = &(scontext->range.level[1]);
364 l2 = &(tcontext->range.level[1]);
367 l1 = &(scontext->range.level[0]);
368 l2 = &(scontext->range.level[1]);
371 l1 = &(tcontext->range.level[0]);
372 l2 = &(tcontext->range.level[1]);
377 s[++sp] = mls_level_eq(l1, l2);
380 s[++sp] = !mls_level_eq(l1, l2);
383 s[++sp] = mls_level_dom(l1, l2);
386 s[++sp] = mls_level_dom(l2, l1);
389 s[++sp] = mls_level_incomp(l2, l1);
403 s[++sp] = (val1 == val2);
406 s[++sp] = (val1 != val2);
414 if (sp == (CEXPR_MAXDEPTH-1))
417 if (e->attr & CEXPR_TARGET)
419 else if (e->attr & CEXPR_XTARGET) {
426 if (e->attr & CEXPR_USER)
428 else if (e->attr & CEXPR_ROLE)
430 else if (e->attr & CEXPR_TYPE)
439 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
442 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
460 * security_dump_masked_av - dumps masked permissions during
461 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
463 static int dump_masked_av_helper(void *k, void *d, void *args)
465 struct perm_datum *pdatum = d;
466 char **permission_names = args;
468 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
470 permission_names[pdatum->value - 1] = (char *)k;
475 static void security_dump_masked_av(struct context *scontext,
476 struct context *tcontext,
481 struct common_datum *common_dat;
482 struct class_datum *tclass_dat;
483 struct audit_buffer *ab;
485 char *scontext_name = NULL;
486 char *tcontext_name = NULL;
487 char *permission_names[32];
490 bool need_comma = false;
495 tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
496 tclass_dat = policydb.class_val_to_struct[tclass - 1];
497 common_dat = tclass_dat->comdatum;
499 /* init permission_names */
501 hashtab_map(common_dat->permissions.table,
502 dump_masked_av_helper, permission_names) < 0)
505 if (hashtab_map(tclass_dat->permissions.table,
506 dump_masked_av_helper, permission_names) < 0)
509 /* get scontext/tcontext in text form */
510 if (context_struct_to_string(scontext,
511 &scontext_name, &length) < 0)
514 if (context_struct_to_string(tcontext,
515 &tcontext_name, &length) < 0)
518 /* audit a message */
519 ab = audit_log_start(current->audit_context,
520 GFP_ATOMIC, AUDIT_SELINUX_ERR);
524 audit_log_format(ab, "op=security_compute_av reason=%s "
525 "scontext=%s tcontext=%s tclass=%s perms=",
526 reason, scontext_name, tcontext_name, tclass_name);
528 for (index = 0; index < 32; index++) {
529 u32 mask = (1 << index);
531 if ((mask & permissions) == 0)
534 audit_log_format(ab, "%s%s",
535 need_comma ? "," : "",
536 permission_names[index]
537 ? permission_names[index] : "????");
542 /* release scontext/tcontext */
543 kfree(tcontext_name);
544 kfree(scontext_name);
550 * security_boundary_permission - drops violated permissions
551 * on boundary constraint.
553 static void type_attribute_bounds_av(struct context *scontext,
554 struct context *tcontext,
556 struct av_decision *avd)
558 struct context lo_scontext;
559 struct context lo_tcontext, *tcontextp = tcontext;
560 struct av_decision lo_avd;
561 struct type_datum *source;
562 struct type_datum *target;
565 source = flex_array_get_ptr(policydb.type_val_to_struct_array,
572 target = flex_array_get_ptr(policydb.type_val_to_struct_array,
576 memset(&lo_avd, 0, sizeof(lo_avd));
578 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
579 lo_scontext.type = source->bounds;
581 if (target->bounds) {
582 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
583 lo_tcontext.type = target->bounds;
584 tcontextp = &lo_tcontext;
587 context_struct_compute_av(&lo_scontext,
593 masked = ~lo_avd.allowed & avd->allowed;
596 return; /* no masked permission */
598 /* mask violated permissions */
599 avd->allowed &= ~masked;
601 /* audit masked permissions */
602 security_dump_masked_av(scontext, tcontext,
603 tclass, masked, "bounds");
607 * flag which drivers have permissions
608 * only looking for ioctl based extended permssions
610 void services_compute_xperms_drivers(
611 struct extended_perms *xperms,
612 struct avtab_node *node)
616 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
617 /* if one or more driver has all permissions allowed */
618 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
619 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
620 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
621 /* if allowing permissions within a driver */
622 security_xperm_set(xperms->drivers.p,
623 node->datum.u.xperms->driver);
626 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
627 if (node->key.specified & AVTAB_XPERMS_ALLOWED)
632 * Compute access vectors and extended permissions based on a context
633 * structure pair for the permissions in a particular class.
635 static void context_struct_compute_av(struct context *scontext,
636 struct context *tcontext,
638 struct av_decision *avd,
639 struct extended_perms *xperms)
641 struct constraint_node *constraint;
642 struct role_allow *ra;
643 struct avtab_key avkey;
644 struct avtab_node *node;
645 struct class_datum *tclass_datum;
646 struct ebitmap *sattr, *tattr;
647 struct ebitmap_node *snode, *tnode;
652 avd->auditdeny = 0xffffffff;
654 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
658 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
659 if (printk_ratelimit())
660 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
664 tclass_datum = policydb.class_val_to_struct[tclass - 1];
667 * If a specific type enforcement rule was defined for
668 * this permission check, then use it.
670 avkey.target_class = tclass;
671 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
672 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
674 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
676 ebitmap_for_each_positive_bit(sattr, snode, i) {
677 ebitmap_for_each_positive_bit(tattr, tnode, j) {
678 avkey.source_type = i + 1;
679 avkey.target_type = j + 1;
680 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
682 node = avtab_search_node_next(node, avkey.specified)) {
683 if (node->key.specified == AVTAB_ALLOWED)
684 avd->allowed |= node->datum.u.data;
685 else if (node->key.specified == AVTAB_AUDITALLOW)
686 avd->auditallow |= node->datum.u.data;
687 else if (node->key.specified == AVTAB_AUDITDENY)
688 avd->auditdeny &= node->datum.u.data;
689 else if (xperms && (node->key.specified & AVTAB_XPERMS))
690 services_compute_xperms_drivers(xperms, node);
693 /* Check conditional av table for additional permissions */
694 cond_compute_av(&policydb.te_cond_avtab, &avkey,
701 * Remove any permissions prohibited by a constraint (this includes
704 constraint = tclass_datum->constraints;
706 if ((constraint->permissions & (avd->allowed)) &&
707 !constraint_expr_eval(scontext, tcontext, NULL,
709 avd->allowed &= ~(constraint->permissions);
711 constraint = constraint->next;
715 * If checking process transition permission and the
716 * role is changing, then check the (current_role, new_role)
719 if (tclass == policydb.process_class &&
720 (avd->allowed & policydb.process_trans_perms) &&
721 scontext->role != tcontext->role) {
722 for (ra = policydb.role_allow; ra; ra = ra->next) {
723 if (scontext->role == ra->role &&
724 tcontext->role == ra->new_role)
728 avd->allowed &= ~policydb.process_trans_perms;
732 * If the given source and target types have boundary
733 * constraint, lazy checks have to mask any violated
734 * permission and notice it to userspace via audit.
736 type_attribute_bounds_av(scontext, tcontext,
740 static int security_validtrans_handle_fail(struct context *ocontext,
741 struct context *ncontext,
742 struct context *tcontext,
745 char *o = NULL, *n = NULL, *t = NULL;
746 u32 olen, nlen, tlen;
748 if (context_struct_to_string(ocontext, &o, &olen))
750 if (context_struct_to_string(ncontext, &n, &nlen))
752 if (context_struct_to_string(tcontext, &t, &tlen))
754 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
755 "op=security_validate_transition seresult=denied"
756 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
757 o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
763 if (!selinux_enforcing)
768 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
769 u16 orig_tclass, bool user)
771 struct context *ocontext;
772 struct context *ncontext;
773 struct context *tcontext;
774 struct class_datum *tclass_datum;
775 struct constraint_node *constraint;
782 read_lock(&policy_rwlock);
785 tclass = unmap_class(orig_tclass);
787 tclass = orig_tclass;
789 if (!tclass || tclass > policydb.p_classes.nprim) {
793 tclass_datum = policydb.class_val_to_struct[tclass - 1];
795 ocontext = sidtab_search(&sidtab, oldsid);
797 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
803 ncontext = sidtab_search(&sidtab, newsid);
805 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
811 tcontext = sidtab_search(&sidtab, tasksid);
813 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
819 constraint = tclass_datum->validatetrans;
821 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
826 rc = security_validtrans_handle_fail(ocontext,
832 constraint = constraint->next;
836 read_unlock(&policy_rwlock);
840 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
843 return security_compute_validatetrans(oldsid, newsid, tasksid,
847 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
850 return security_compute_validatetrans(oldsid, newsid, tasksid,
855 * security_bounded_transition - check whether the given
856 * transition is directed to bounded, or not.
857 * It returns 0, if @newsid is bounded by @oldsid.
858 * Otherwise, it returns error code.
860 * @oldsid : current security identifier
861 * @newsid : destinated security identifier
863 int security_bounded_transition(u32 old_sid, u32 new_sid)
865 struct context *old_context, *new_context;
866 struct type_datum *type;
870 read_lock(&policy_rwlock);
873 old_context = sidtab_search(&sidtab, old_sid);
875 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
881 new_context = sidtab_search(&sidtab, new_sid);
883 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
889 /* type/domain unchanged */
890 if (old_context->type == new_context->type)
893 index = new_context->type;
895 type = flex_array_get_ptr(policydb.type_val_to_struct_array,
899 /* not bounded anymore */
904 /* @newsid is bounded by @oldsid */
906 if (type->bounds == old_context->type)
909 index = type->bounds;
913 char *old_name = NULL;
914 char *new_name = NULL;
917 if (!context_struct_to_string(old_context,
918 &old_name, &length) &&
919 !context_struct_to_string(new_context,
920 &new_name, &length)) {
921 audit_log(current->audit_context,
922 GFP_ATOMIC, AUDIT_SELINUX_ERR,
923 "op=security_bounded_transition "
925 "oldcontext=%s newcontext=%s",
932 read_unlock(&policy_rwlock);
937 static void avd_init(struct av_decision *avd)
941 avd->auditdeny = 0xffffffff;
942 avd->seqno = latest_granting;
946 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
947 struct avtab_node *node)
951 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
952 if (xpermd->driver != node->datum.u.xperms->driver)
954 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
955 if (!security_xperm_test(node->datum.u.xperms->perms.p,
962 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
963 xpermd->used |= XPERMS_ALLOWED;
964 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
965 memset(xpermd->allowed->p, 0xff,
966 sizeof(xpermd->allowed->p));
968 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
969 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
970 xpermd->allowed->p[i] |=
971 node->datum.u.xperms->perms.p[i];
973 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
974 xpermd->used |= XPERMS_AUDITALLOW;
975 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
976 memset(xpermd->auditallow->p, 0xff,
977 sizeof(xpermd->auditallow->p));
979 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
980 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
981 xpermd->auditallow->p[i] |=
982 node->datum.u.xperms->perms.p[i];
984 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
985 xpermd->used |= XPERMS_DONTAUDIT;
986 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
987 memset(xpermd->dontaudit->p, 0xff,
988 sizeof(xpermd->dontaudit->p));
990 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
991 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
992 xpermd->dontaudit->p[i] |=
993 node->datum.u.xperms->perms.p[i];
1000 void security_compute_xperms_decision(u32 ssid,
1004 struct extended_perms_decision *xpermd)
1007 struct context *scontext, *tcontext;
1008 struct avtab_key avkey;
1009 struct avtab_node *node;
1010 struct ebitmap *sattr, *tattr;
1011 struct ebitmap_node *snode, *tnode;
1014 xpermd->driver = driver;
1016 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1017 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1018 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1020 read_lock(&policy_rwlock);
1021 if (!ss_initialized)
1024 scontext = sidtab_search(&sidtab, ssid);
1026 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1031 tcontext = sidtab_search(&sidtab, tsid);
1033 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1038 tclass = unmap_class(orig_tclass);
1039 if (unlikely(orig_tclass && !tclass)) {
1040 if (policydb.allow_unknown)
1046 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1047 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1051 avkey.target_class = tclass;
1052 avkey.specified = AVTAB_XPERMS;
1053 sattr = flex_array_get(policydb.type_attr_map_array,
1054 scontext->type - 1);
1056 tattr = flex_array_get(policydb.type_attr_map_array,
1057 tcontext->type - 1);
1059 ebitmap_for_each_positive_bit(sattr, snode, i) {
1060 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1061 avkey.source_type = i + 1;
1062 avkey.target_type = j + 1;
1063 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
1065 node = avtab_search_node_next(node, avkey.specified))
1066 services_compute_xperms_decision(xpermd, node);
1068 cond_compute_xperms(&policydb.te_cond_avtab,
1073 read_unlock(&policy_rwlock);
1076 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1081 * security_compute_av - Compute access vector decisions.
1082 * @ssid: source security identifier
1083 * @tsid: target security identifier
1084 * @tclass: target security class
1085 * @avd: access vector decisions
1086 * @xperms: extended permissions
1088 * Compute a set of access vector decisions based on the
1089 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1091 void security_compute_av(u32 ssid,
1094 struct av_decision *avd,
1095 struct extended_perms *xperms)
1098 struct context *scontext = NULL, *tcontext = NULL;
1100 read_lock(&policy_rwlock);
1103 if (!ss_initialized)
1106 scontext = sidtab_search(&sidtab, ssid);
1108 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1113 /* permissive domain? */
1114 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1115 avd->flags |= AVD_FLAGS_PERMISSIVE;
1117 tcontext = sidtab_search(&sidtab, tsid);
1119 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1124 tclass = unmap_class(orig_tclass);
1125 if (unlikely(orig_tclass && !tclass)) {
1126 if (policydb.allow_unknown)
1130 context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1131 map_decision(orig_tclass, avd, policydb.allow_unknown);
1133 read_unlock(&policy_rwlock);
1136 avd->allowed = 0xffffffff;
1140 void security_compute_av_user(u32 ssid,
1143 struct av_decision *avd)
1145 struct context *scontext = NULL, *tcontext = NULL;
1147 read_lock(&policy_rwlock);
1149 if (!ss_initialized)
1152 scontext = sidtab_search(&sidtab, ssid);
1154 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1159 /* permissive domain? */
1160 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1161 avd->flags |= AVD_FLAGS_PERMISSIVE;
1163 tcontext = sidtab_search(&sidtab, tsid);
1165 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1170 if (unlikely(!tclass)) {
1171 if (policydb.allow_unknown)
1176 context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
1178 read_unlock(&policy_rwlock);
1181 avd->allowed = 0xffffffff;
1186 * Write the security context string representation of
1187 * the context structure `context' into a dynamically
1188 * allocated string of the correct size. Set `*scontext'
1189 * to point to this string and set `*scontext_len' to
1190 * the length of the string.
1192 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1201 *scontext_len = context->len;
1203 *scontext = kstrdup(context->str, GFP_ATOMIC);
1210 /* Compute the size of the context. */
1211 *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1212 *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1213 *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1214 *scontext_len += mls_compute_context_len(context);
1219 /* Allocate space for the context; caller must free this space. */
1220 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1223 *scontext = scontextp;
1226 * Copy the user name, role name and type name into the context.
1228 scontextp += sprintf(scontextp, "%s:%s:%s",
1229 sym_name(&policydb, SYM_USERS, context->user - 1),
1230 sym_name(&policydb, SYM_ROLES, context->role - 1),
1231 sym_name(&policydb, SYM_TYPES, context->type - 1));
1233 mls_sid_to_context(context, &scontextp);
1240 #include "initial_sid_to_string.h"
1242 const char *security_get_initial_sid_context(u32 sid)
1244 if (unlikely(sid > SECINITSID_NUM))
1246 return initial_sid_to_string[sid];
1249 static int security_sid_to_context_core(u32 sid, char **scontext,
1250 u32 *scontext_len, int force)
1252 struct context *context;
1259 if (!ss_initialized) {
1260 if (sid <= SECINITSID_NUM) {
1263 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1266 scontextp = kmemdup(initial_sid_to_string[sid],
1267 *scontext_len, GFP_ATOMIC);
1272 *scontext = scontextp;
1275 printk(KERN_ERR "SELinux: %s: called before initial "
1276 "load_policy on unknown SID %d\n", __func__, sid);
1280 read_lock(&policy_rwlock);
1282 context = sidtab_search_force(&sidtab, sid);
1284 context = sidtab_search(&sidtab, sid);
1286 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1291 rc = context_struct_to_string(context, scontext, scontext_len);
1293 read_unlock(&policy_rwlock);
1300 * security_sid_to_context - Obtain a context for a given SID.
1301 * @sid: security identifier, SID
1302 * @scontext: security context
1303 * @scontext_len: length in bytes
1305 * Write the string representation of the context associated with @sid
1306 * into a dynamically allocated string of the correct size. Set @scontext
1307 * to point to this string and set @scontext_len to the length of the string.
1309 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1311 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1314 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1316 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1320 * Caveat: Mutates scontext.
1322 static int string_to_context_struct(struct policydb *pol,
1323 struct sidtab *sidtabp,
1326 struct context *ctx,
1329 struct role_datum *role;
1330 struct type_datum *typdatum;
1331 struct user_datum *usrdatum;
1332 char *scontextp, *p, oldc;
1337 /* Parse the security context. */
1340 scontextp = (char *) scontext;
1342 /* Extract the user. */
1344 while (*p && *p != ':')
1352 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1356 ctx->user = usrdatum->value;
1360 while (*p && *p != ':')
1368 role = hashtab_search(pol->p_roles.table, scontextp);
1371 ctx->role = role->value;
1375 while (*p && *p != ':')
1380 typdatum = hashtab_search(pol->p_types.table, scontextp);
1381 if (!typdatum || typdatum->attribute)
1384 ctx->type = typdatum->value;
1386 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1391 if ((p - scontext) < scontext_len)
1394 /* Check the validity of the new context. */
1395 if (!policydb_context_isvalid(pol, ctx))
1400 context_destroy(ctx);
1404 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1405 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1408 char *scontext2, *str = NULL;
1409 struct context context;
1412 /* An empty security context is never valid. */
1416 if (!ss_initialized) {
1419 for (i = 1; i < SECINITSID_NUM; i++) {
1420 if (!strcmp(initial_sid_to_string[i], scontext)) {
1425 *sid = SECINITSID_KERNEL;
1430 /* Copy the string so that we can modify the copy as we parse it. */
1431 scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1434 memcpy(scontext2, scontext, scontext_len);
1435 scontext2[scontext_len] = 0;
1438 /* Save another copy for storing in uninterpreted form */
1440 str = kstrdup(scontext2, gfp_flags);
1445 read_lock(&policy_rwlock);
1446 rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1447 scontext_len, &context, def_sid);
1448 if (rc == -EINVAL && force) {
1450 context.len = scontext_len;
1454 rc = sidtab_context_to_sid(&sidtab, &context, sid);
1455 context_destroy(&context);
1457 read_unlock(&policy_rwlock);
1465 * security_context_to_sid - Obtain a SID for a given security context.
1466 * @scontext: security context
1467 * @scontext_len: length in bytes
1468 * @sid: security identifier, SID
1469 * @gfp: context for the allocation
1471 * Obtains a SID associated with the security context that
1472 * has the string representation specified by @scontext.
1473 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1474 * memory is available, or 0 on success.
1476 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1479 return security_context_to_sid_core(scontext, scontext_len,
1480 sid, SECSID_NULL, gfp, 0);
1483 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1485 return security_context_to_sid(scontext, strlen(scontext), sid, gfp);
1489 * security_context_to_sid_default - Obtain a SID for a given security context,
1490 * falling back to specified default if needed.
1492 * @scontext: security context
1493 * @scontext_len: length in bytes
1494 * @sid: security identifier, SID
1495 * @def_sid: default SID to assign on error
1497 * Obtains a SID associated with the security context that
1498 * has the string representation specified by @scontext.
1499 * The default SID is passed to the MLS layer to be used to allow
1500 * kernel labeling of the MLS field if the MLS field is not present
1501 * (for upgrading to MLS without full relabel).
1502 * Implicitly forces adding of the context even if it cannot be mapped yet.
1503 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1504 * memory is available, or 0 on success.
1506 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1507 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1509 return security_context_to_sid_core(scontext, scontext_len,
1510 sid, def_sid, gfp_flags, 1);
1513 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1516 return security_context_to_sid_core(scontext, scontext_len,
1517 sid, SECSID_NULL, GFP_KERNEL, 1);
1520 static int compute_sid_handle_invalid_context(
1521 struct context *scontext,
1522 struct context *tcontext,
1524 struct context *newcontext)
1526 char *s = NULL, *t = NULL, *n = NULL;
1527 u32 slen, tlen, nlen;
1529 if (context_struct_to_string(scontext, &s, &slen))
1531 if (context_struct_to_string(tcontext, &t, &tlen))
1533 if (context_struct_to_string(newcontext, &n, &nlen))
1535 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1536 "op=security_compute_sid invalid_context=%s"
1540 n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1545 if (!selinux_enforcing)
1550 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1551 u32 stype, u32 ttype, u16 tclass,
1552 const char *objname)
1554 struct filename_trans ft;
1555 struct filename_trans_datum *otype;
1558 * Most filename trans rules are going to live in specific directories
1559 * like /dev or /var/run. This bitmap will quickly skip rule searches
1560 * if the ttype does not contain any rules.
1562 if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1570 otype = hashtab_search(p->filename_trans, &ft);
1572 newcontext->type = otype->otype;
1575 static int security_compute_sid(u32 ssid,
1579 const char *objname,
1583 struct class_datum *cladatum = NULL;
1584 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1585 struct role_trans *roletr = NULL;
1586 struct avtab_key avkey;
1587 struct avtab_datum *avdatum;
1588 struct avtab_node *node;
1593 if (!ss_initialized) {
1594 switch (orig_tclass) {
1595 case SECCLASS_PROCESS: /* kernel value */
1605 context_init(&newcontext);
1607 read_lock(&policy_rwlock);
1610 tclass = unmap_class(orig_tclass);
1611 sock = security_is_socket_class(orig_tclass);
1613 tclass = orig_tclass;
1614 sock = security_is_socket_class(map_class(tclass));
1617 scontext = sidtab_search(&sidtab, ssid);
1619 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1624 tcontext = sidtab_search(&sidtab, tsid);
1626 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1632 if (tclass && tclass <= policydb.p_classes.nprim)
1633 cladatum = policydb.class_val_to_struct[tclass - 1];
1635 /* Set the user identity. */
1636 switch (specified) {
1637 case AVTAB_TRANSITION:
1639 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1640 newcontext.user = tcontext->user;
1642 /* notice this gets both DEFAULT_SOURCE and unset */
1643 /* Use the process user identity. */
1644 newcontext.user = scontext->user;
1648 /* Use the related object owner. */
1649 newcontext.user = tcontext->user;
1653 /* Set the role to default values. */
1654 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1655 newcontext.role = scontext->role;
1656 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1657 newcontext.role = tcontext->role;
1659 if ((tclass == policydb.process_class) || (sock == true))
1660 newcontext.role = scontext->role;
1662 newcontext.role = OBJECT_R_VAL;
1665 /* Set the type to default values. */
1666 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1667 newcontext.type = scontext->type;
1668 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1669 newcontext.type = tcontext->type;
1671 if ((tclass == policydb.process_class) || (sock == true)) {
1672 /* Use the type of process. */
1673 newcontext.type = scontext->type;
1675 /* Use the type of the related object. */
1676 newcontext.type = tcontext->type;
1680 /* Look for a type transition/member/change rule. */
1681 avkey.source_type = scontext->type;
1682 avkey.target_type = tcontext->type;
1683 avkey.target_class = tclass;
1684 avkey.specified = specified;
1685 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1687 /* If no permanent rule, also check for enabled conditional rules */
1689 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1690 for (; node; node = avtab_search_node_next(node, specified)) {
1691 if (node->key.specified & AVTAB_ENABLED) {
1692 avdatum = &node->datum;
1699 /* Use the type from the type transition/member/change rule. */
1700 newcontext.type = avdatum->u.data;
1703 /* if we have a objname this is a file trans check so check those rules */
1705 filename_compute_type(&policydb, &newcontext, scontext->type,
1706 tcontext->type, tclass, objname);
1708 /* Check for class-specific changes. */
1709 if (specified & AVTAB_TRANSITION) {
1710 /* Look for a role transition rule. */
1711 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1712 if ((roletr->role == scontext->role) &&
1713 (roletr->type == tcontext->type) &&
1714 (roletr->tclass == tclass)) {
1715 /* Use the role transition rule. */
1716 newcontext.role = roletr->new_role;
1722 /* Set the MLS attributes.
1723 This is done last because it may allocate memory. */
1724 rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1729 /* Check the validity of the context. */
1730 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1731 rc = compute_sid_handle_invalid_context(scontext,
1738 /* Obtain the sid for the context. */
1739 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1741 read_unlock(&policy_rwlock);
1742 context_destroy(&newcontext);
1748 * security_transition_sid - Compute the SID for a new subject/object.
1749 * @ssid: source security identifier
1750 * @tsid: target security identifier
1751 * @tclass: target security class
1752 * @out_sid: security identifier for new subject/object
1754 * Compute a SID to use for labeling a new subject or object in the
1755 * class @tclass based on a SID pair (@ssid, @tsid).
1756 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1757 * if insufficient memory is available, or %0 if the new SID was
1758 * computed successfully.
1760 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1761 const struct qstr *qstr, u32 *out_sid)
1763 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1764 qstr ? qstr->name : NULL, out_sid, true);
1767 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1768 const char *objname, u32 *out_sid)
1770 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1771 objname, out_sid, false);
1775 * security_member_sid - Compute the SID for member selection.
1776 * @ssid: source security identifier
1777 * @tsid: target security identifier
1778 * @tclass: target security class
1779 * @out_sid: security identifier for selected member
1781 * Compute a SID to use when selecting a member of a polyinstantiated
1782 * object of class @tclass based on a SID pair (@ssid, @tsid).
1783 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1784 * if insufficient memory is available, or %0 if the SID was
1785 * computed successfully.
1787 int security_member_sid(u32 ssid,
1792 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1797 * security_change_sid - Compute the SID for object relabeling.
1798 * @ssid: source security identifier
1799 * @tsid: target security identifier
1800 * @tclass: target security class
1801 * @out_sid: security identifier for selected member
1803 * Compute a SID to use for relabeling an object of class @tclass
1804 * based on a SID pair (@ssid, @tsid).
1805 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1806 * if insufficient memory is available, or %0 if the SID was
1807 * computed successfully.
1809 int security_change_sid(u32 ssid,
1814 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1818 /* Clone the SID into the new SID table. */
1819 static int clone_sid(u32 sid,
1820 struct context *context,
1823 struct sidtab *s = arg;
1825 if (sid > SECINITSID_NUM)
1826 return sidtab_insert(s, sid, context);
1831 static inline int convert_context_handle_invalid_context(struct context *context)
1836 if (selinux_enforcing)
1839 if (!context_struct_to_string(context, &s, &len)) {
1840 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s);
1846 struct convert_context_args {
1847 struct policydb *oldp;
1848 struct policydb *newp;
1852 * Convert the values in the security context
1853 * structure `c' from the values specified
1854 * in the policy `p->oldp' to the values specified
1855 * in the policy `p->newp'. Verify that the
1856 * context is valid under the new policy.
1858 static int convert_context(u32 key,
1862 struct convert_context_args *args;
1863 struct context oldc;
1864 struct ocontext *oc;
1865 struct mls_range *range;
1866 struct role_datum *role;
1867 struct type_datum *typdatum;
1868 struct user_datum *usrdatum;
1873 if (key <= SECINITSID_NUM)
1882 s = kstrdup(c->str, GFP_KERNEL);
1886 rc = string_to_context_struct(args->newp, NULL, s,
1887 c->len, &ctx, SECSID_NULL);
1890 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n",
1892 /* Replace string with mapped representation. */
1894 memcpy(c, &ctx, sizeof(*c));
1896 } else if (rc == -EINVAL) {
1897 /* Retain string representation for later mapping. */
1901 /* Other error condition, e.g. ENOMEM. */
1902 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n",
1908 rc = context_cpy(&oldc, c);
1912 /* Convert the user. */
1914 usrdatum = hashtab_search(args->newp->p_users.table,
1915 sym_name(args->oldp, SYM_USERS, c->user - 1));
1918 c->user = usrdatum->value;
1920 /* Convert the role. */
1922 role = hashtab_search(args->newp->p_roles.table,
1923 sym_name(args->oldp, SYM_ROLES, c->role - 1));
1926 c->role = role->value;
1928 /* Convert the type. */
1930 typdatum = hashtab_search(args->newp->p_types.table,
1931 sym_name(args->oldp, SYM_TYPES, c->type - 1));
1934 c->type = typdatum->value;
1936 /* Convert the MLS fields if dealing with MLS policies */
1937 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1938 rc = mls_convert_context(args->oldp, args->newp, c);
1941 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1943 * Switching between MLS and non-MLS policy:
1944 * free any storage used by the MLS fields in the
1945 * context for all existing entries in the sidtab.
1947 mls_context_destroy(c);
1948 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1950 * Switching between non-MLS and MLS policy:
1951 * ensure that the MLS fields of the context for all
1952 * existing entries in the sidtab are filled in with a
1953 * suitable default value, likely taken from one of the
1956 oc = args->newp->ocontexts[OCON_ISID];
1957 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1961 printk(KERN_ERR "SELinux: unable to look up"
1962 " the initial SIDs list\n");
1965 range = &oc->context[0].range;
1966 rc = mls_range_set(c, range);
1971 /* Check the validity of the new context. */
1972 if (!policydb_context_isvalid(args->newp, c)) {
1973 rc = convert_context_handle_invalid_context(&oldc);
1978 context_destroy(&oldc);
1984 /* Map old representation to string and save it. */
1985 rc = context_struct_to_string(&oldc, &s, &len);
1988 context_destroy(&oldc);
1992 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n",
1998 static void security_load_policycaps(void)
2001 struct ebitmap_node *node;
2003 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
2004 POLICYDB_CAPABILITY_NETPEER);
2005 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
2006 POLICYDB_CAPABILITY_OPENPERM);
2007 selinux_policycap_extsockclass = ebitmap_get_bit(&policydb.policycaps,
2008 POLICYDB_CAPABILITY_EXTSOCKCLASS);
2009 selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
2010 POLICYDB_CAPABILITY_ALWAYSNETWORK);
2011 selinux_policycap_cgroupseclabel =
2012 ebitmap_get_bit(&policydb.policycaps,
2013 POLICYDB_CAPABILITY_CGROUPSECLABEL);
2014 selinux_policycap_nnp_nosuid_transition =
2015 ebitmap_get_bit(&policydb.policycaps,
2016 POLICYDB_CAPABILITY_NNP_NOSUID_TRANSITION);
2018 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2019 pr_info("SELinux: policy capability %s=%d\n",
2020 selinux_policycap_names[i],
2021 ebitmap_get_bit(&policydb.policycaps, i));
2023 ebitmap_for_each_positive_bit(&policydb.policycaps, node, i) {
2024 if (i >= ARRAY_SIZE(selinux_policycap_names))
2025 pr_info("SELinux: unknown policy capability %u\n",
2030 static int security_preserve_bools(struct policydb *p);
2033 * security_load_policy - Load a security policy configuration.
2034 * @data: binary policy data
2035 * @len: length of data in bytes
2037 * Load a new set of security policy configuration data,
2038 * validate it and convert the SID table as necessary.
2039 * This function will flush the access vector cache after
2040 * loading the new policy.
2042 int security_load_policy(void *data, size_t len)
2044 struct policydb *oldpolicydb, *newpolicydb;
2045 struct sidtab oldsidtab, newsidtab;
2046 struct selinux_mapping *oldmap, *map = NULL;
2047 struct convert_context_args args;
2051 struct policy_file file = { data, len }, *fp = &file;
2053 oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2058 newpolicydb = oldpolicydb + 1;
2060 if (!ss_initialized) {
2062 ebitmap_cache_init();
2063 rc = policydb_read(&policydb, fp);
2065 avtab_cache_destroy();
2066 ebitmap_cache_destroy();
2071 rc = selinux_set_mapping(&policydb, secclass_map,
2073 ¤t_mapping_size);
2075 policydb_destroy(&policydb);
2076 avtab_cache_destroy();
2077 ebitmap_cache_destroy();
2081 rc = policydb_load_isids(&policydb, &sidtab);
2083 policydb_destroy(&policydb);
2084 avtab_cache_destroy();
2085 ebitmap_cache_destroy();
2089 security_load_policycaps();
2091 seqno = ++latest_granting;
2092 selinux_complete_init();
2093 avc_ss_reset(seqno);
2094 selnl_notify_policyload(seqno);
2095 selinux_status_update_policyload(seqno);
2096 selinux_netlbl_cache_invalidate();
2097 selinux_xfrm_notify_policyload();
2102 sidtab_hash_eval(&sidtab, "sids");
2105 rc = policydb_read(newpolicydb, fp);
2109 newpolicydb->len = len;
2110 /* If switching between different policy types, log MLS status */
2111 if (policydb.mls_enabled && !newpolicydb->mls_enabled)
2112 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2113 else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
2114 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2116 rc = policydb_load_isids(newpolicydb, &newsidtab);
2118 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n");
2119 policydb_destroy(newpolicydb);
2123 rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
2127 rc = security_preserve_bools(newpolicydb);
2129 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
2133 /* Clone the SID table. */
2134 sidtab_shutdown(&sidtab);
2136 rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2141 * Convert the internal representations of contexts
2142 * in the new SID table.
2144 args.oldp = &policydb;
2145 args.newp = newpolicydb;
2146 rc = sidtab_map(&newsidtab, convert_context, &args);
2148 printk(KERN_ERR "SELinux: unable to convert the internal"
2149 " representation of contexts in the new SID"
2154 /* Save the old policydb and SID table to free later. */
2155 memcpy(oldpolicydb, &policydb, sizeof(policydb));
2156 sidtab_set(&oldsidtab, &sidtab);
2158 /* Install the new policydb and SID table. */
2159 write_lock_irq(&policy_rwlock);
2160 memcpy(&policydb, newpolicydb, sizeof(policydb));
2161 sidtab_set(&sidtab, &newsidtab);
2162 security_load_policycaps();
2163 oldmap = current_mapping;
2164 current_mapping = map;
2165 current_mapping_size = map_size;
2166 seqno = ++latest_granting;
2167 write_unlock_irq(&policy_rwlock);
2169 /* Free the old policydb and SID table. */
2170 policydb_destroy(oldpolicydb);
2171 sidtab_destroy(&oldsidtab);
2174 avc_ss_reset(seqno);
2175 selnl_notify_policyload(seqno);
2176 selinux_status_update_policyload(seqno);
2177 selinux_netlbl_cache_invalidate();
2178 selinux_xfrm_notify_policyload();
2185 sidtab_destroy(&newsidtab);
2186 policydb_destroy(newpolicydb);
2193 size_t security_policydb_len(void)
2197 read_lock(&policy_rwlock);
2199 read_unlock(&policy_rwlock);
2205 * security_port_sid - Obtain the SID for a port.
2206 * @protocol: protocol number
2207 * @port: port number
2208 * @out_sid: security identifier
2210 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2215 read_lock(&policy_rwlock);
2217 c = policydb.ocontexts[OCON_PORT];
2219 if (c->u.port.protocol == protocol &&
2220 c->u.port.low_port <= port &&
2221 c->u.port.high_port >= port)
2228 rc = sidtab_context_to_sid(&sidtab,
2234 *out_sid = c->sid[0];
2236 *out_sid = SECINITSID_PORT;
2240 read_unlock(&policy_rwlock);
2245 * security_pkey_sid - Obtain the SID for a pkey.
2246 * @subnet_prefix: Subnet Prefix
2247 * @pkey_num: pkey number
2248 * @out_sid: security identifier
2250 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2255 read_lock(&policy_rwlock);
2257 c = policydb.ocontexts[OCON_IBPKEY];
2259 if (c->u.ibpkey.low_pkey <= pkey_num &&
2260 c->u.ibpkey.high_pkey >= pkey_num &&
2261 c->u.ibpkey.subnet_prefix == subnet_prefix)
2269 rc = sidtab_context_to_sid(&sidtab,
2275 *out_sid = c->sid[0];
2277 *out_sid = SECINITSID_UNLABELED;
2280 read_unlock(&policy_rwlock);
2285 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2286 * @dev_name: device name
2287 * @port: port number
2288 * @out_sid: security identifier
2290 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2295 read_lock(&policy_rwlock);
2297 c = policydb.ocontexts[OCON_IBENDPORT];
2299 if (c->u.ibendport.port == port_num &&
2300 !strncmp(c->u.ibendport.dev_name,
2302 IB_DEVICE_NAME_MAX))
2310 rc = sidtab_context_to_sid(&sidtab,
2316 *out_sid = c->sid[0];
2318 *out_sid = SECINITSID_UNLABELED;
2321 read_unlock(&policy_rwlock);
2326 * security_netif_sid - Obtain the SID for a network interface.
2327 * @name: interface name
2328 * @if_sid: interface SID
2330 int security_netif_sid(char *name, u32 *if_sid)
2335 read_lock(&policy_rwlock);
2337 c = policydb.ocontexts[OCON_NETIF];
2339 if (strcmp(name, c->u.name) == 0)
2345 if (!c->sid[0] || !c->sid[1]) {
2346 rc = sidtab_context_to_sid(&sidtab,
2351 rc = sidtab_context_to_sid(&sidtab,
2357 *if_sid = c->sid[0];
2359 *if_sid = SECINITSID_NETIF;
2362 read_unlock(&policy_rwlock);
2366 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2370 for (i = 0; i < 4; i++)
2371 if (addr[i] != (input[i] & mask[i])) {
2380 * security_node_sid - Obtain the SID for a node (host).
2381 * @domain: communication domain aka address family
2383 * @addrlen: address length in bytes
2384 * @out_sid: security identifier
2386 int security_node_sid(u16 domain,
2394 read_lock(&policy_rwlock);
2401 if (addrlen != sizeof(u32))
2404 addr = *((u32 *)addrp);
2406 c = policydb.ocontexts[OCON_NODE];
2408 if (c->u.node.addr == (addr & c->u.node.mask))
2417 if (addrlen != sizeof(u64) * 2)
2419 c = policydb.ocontexts[OCON_NODE6];
2421 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2430 *out_sid = SECINITSID_NODE;
2436 rc = sidtab_context_to_sid(&sidtab,
2442 *out_sid = c->sid[0];
2444 *out_sid = SECINITSID_NODE;
2449 read_unlock(&policy_rwlock);
2456 * security_get_user_sids - Obtain reachable SIDs for a user.
2457 * @fromsid: starting SID
2458 * @username: username
2459 * @sids: array of reachable SIDs for user
2460 * @nel: number of elements in @sids
2462 * Generate the set of SIDs for legal security contexts
2463 * for a given user that can be reached by @fromsid.
2464 * Set *@sids to point to a dynamically allocated
2465 * array containing the set of SIDs. Set *@nel to the
2466 * number of elements in the array.
2469 int security_get_user_sids(u32 fromsid,
2474 struct context *fromcon, usercon;
2475 u32 *mysids = NULL, *mysids2, sid;
2476 u32 mynel = 0, maxnel = SIDS_NEL;
2477 struct user_datum *user;
2478 struct role_datum *role;
2479 struct ebitmap_node *rnode, *tnode;
2485 if (!ss_initialized)
2488 read_lock(&policy_rwlock);
2490 context_init(&usercon);
2493 fromcon = sidtab_search(&sidtab, fromsid);
2498 user = hashtab_search(policydb.p_users.table, username);
2502 usercon.user = user->value;
2505 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2509 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2510 role = policydb.role_val_to_struct[i];
2511 usercon.role = i + 1;
2512 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2513 usercon.type = j + 1;
2515 if (mls_setup_user_range(fromcon, user, &usercon))
2518 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2521 if (mynel < maxnel) {
2522 mysids[mynel++] = sid;
2526 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2529 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2532 mysids[mynel++] = sid;
2538 read_unlock(&policy_rwlock);
2545 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2550 for (i = 0, j = 0; i < mynel; i++) {
2551 struct av_decision dummy_avd;
2552 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2553 SECCLASS_PROCESS, /* kernel value */
2554 PROCESS__TRANSITION, AVC_STRICT,
2557 mysids2[j++] = mysids[i];
2569 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2570 * @fstype: filesystem type
2571 * @path: path from root of mount
2572 * @sclass: file security class
2573 * @sid: SID for path
2575 * Obtain a SID to use for a file in a filesystem that
2576 * cannot support xattr or use a fixed labeling behavior like
2577 * transition SIDs or task SIDs.
2579 * The caller must acquire the policy_rwlock before calling this function.
2581 static inline int __security_genfs_sid(const char *fstype,
2588 struct genfs *genfs;
2592 while (path[0] == '/' && path[1] == '/')
2595 sclass = unmap_class(orig_sclass);
2596 *sid = SECINITSID_UNLABELED;
2598 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2599 cmp = strcmp(fstype, genfs->fstype);
2608 for (c = genfs->head; c; c = c->next) {
2609 len = strlen(c->u.name);
2610 if ((!c->v.sclass || sclass == c->v.sclass) &&
2611 (strncmp(c->u.name, path, len) == 0))
2620 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2632 * security_genfs_sid - Obtain a SID for a file in a filesystem
2633 * @fstype: filesystem type
2634 * @path: path from root of mount
2635 * @sclass: file security class
2636 * @sid: SID for path
2638 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2641 int security_genfs_sid(const char *fstype,
2648 read_lock(&policy_rwlock);
2649 retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2650 read_unlock(&policy_rwlock);
2655 * security_fs_use - Determine how to handle labeling for a filesystem.
2656 * @sb: superblock in question
2658 int security_fs_use(struct super_block *sb)
2662 struct superblock_security_struct *sbsec = sb->s_security;
2663 const char *fstype = sb->s_type->name;
2665 read_lock(&policy_rwlock);
2667 c = policydb.ocontexts[OCON_FSUSE];
2669 if (strcmp(fstype, c->u.name) == 0)
2675 sbsec->behavior = c->v.behavior;
2677 rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2682 sbsec->sid = c->sid[0];
2684 rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2687 sbsec->behavior = SECURITY_FS_USE_NONE;
2690 sbsec->behavior = SECURITY_FS_USE_GENFS;
2695 read_unlock(&policy_rwlock);
2699 int security_get_bools(int *len, char ***names, int **values)
2703 read_lock(&policy_rwlock);
2708 *len = policydb.p_bools.nprim;
2713 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2718 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2722 for (i = 0; i < *len; i++) {
2723 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2726 (*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC);
2732 read_unlock(&policy_rwlock);
2736 for (i = 0; i < *len; i++)
2744 int security_set_bools(int len, int *values)
2747 int lenp, seqno = 0;
2748 struct cond_node *cur;
2750 write_lock_irq(&policy_rwlock);
2753 lenp = policydb.p_bools.nprim;
2757 for (i = 0; i < len; i++) {
2758 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2759 audit_log(current->audit_context, GFP_ATOMIC,
2760 AUDIT_MAC_CONFIG_CHANGE,
2761 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2762 sym_name(&policydb, SYM_BOOLS, i),
2764 policydb.bool_val_to_struct[i]->state,
2765 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2766 audit_get_sessionid(current));
2769 policydb.bool_val_to_struct[i]->state = 1;
2771 policydb.bool_val_to_struct[i]->state = 0;
2774 for (cur = policydb.cond_list; cur; cur = cur->next) {
2775 rc = evaluate_cond_node(&policydb, cur);
2780 seqno = ++latest_granting;
2783 write_unlock_irq(&policy_rwlock);
2785 avc_ss_reset(seqno);
2786 selnl_notify_policyload(seqno);
2787 selinux_status_update_policyload(seqno);
2788 selinux_xfrm_notify_policyload();
2793 int security_get_bool_value(int index)
2798 read_lock(&policy_rwlock);
2801 len = policydb.p_bools.nprim;
2805 rc = policydb.bool_val_to_struct[index]->state;
2807 read_unlock(&policy_rwlock);
2811 static int security_preserve_bools(struct policydb *p)
2813 int rc, nbools = 0, *bvalues = NULL, i;
2814 char **bnames = NULL;
2815 struct cond_bool_datum *booldatum;
2816 struct cond_node *cur;
2818 rc = security_get_bools(&nbools, &bnames, &bvalues);
2821 for (i = 0; i < nbools; i++) {
2822 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2824 booldatum->state = bvalues[i];
2826 for (cur = p->cond_list; cur; cur = cur->next) {
2827 rc = evaluate_cond_node(p, cur);
2834 for (i = 0; i < nbools; i++)
2843 * security_sid_mls_copy() - computes a new sid based on the given
2844 * sid and the mls portion of mls_sid.
2846 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2848 struct context *context1;
2849 struct context *context2;
2850 struct context newcon;
2856 if (!ss_initialized || !policydb.mls_enabled) {
2861 context_init(&newcon);
2863 read_lock(&policy_rwlock);
2866 context1 = sidtab_search(&sidtab, sid);
2868 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2874 context2 = sidtab_search(&sidtab, mls_sid);
2876 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2881 newcon.user = context1->user;
2882 newcon.role = context1->role;
2883 newcon.type = context1->type;
2884 rc = mls_context_cpy(&newcon, context2);
2888 /* Check the validity of the new context. */
2889 if (!policydb_context_isvalid(&policydb, &newcon)) {
2890 rc = convert_context_handle_invalid_context(&newcon);
2892 if (!context_struct_to_string(&newcon, &s, &len)) {
2893 audit_log(current->audit_context,
2894 GFP_ATOMIC, AUDIT_SELINUX_ERR,
2895 "op=security_sid_mls_copy "
2896 "invalid_context=%s", s);
2903 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2905 read_unlock(&policy_rwlock);
2906 context_destroy(&newcon);
2912 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2913 * @nlbl_sid: NetLabel SID
2914 * @nlbl_type: NetLabel labeling protocol type
2915 * @xfrm_sid: XFRM SID
2918 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2919 * resolved into a single SID it is returned via @peer_sid and the function
2920 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2921 * returns a negative value. A table summarizing the behavior is below:
2923 * | function return | @sid
2924 * ------------------------------+-----------------+-----------------
2925 * no peer labels | 0 | SECSID_NULL
2926 * single peer label | 0 | <peer_label>
2927 * multiple, consistent labels | 0 | <peer_label>
2928 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2931 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2936 struct context *nlbl_ctx;
2937 struct context *xfrm_ctx;
2939 *peer_sid = SECSID_NULL;
2941 /* handle the common (which also happens to be the set of easy) cases
2942 * right away, these two if statements catch everything involving a
2943 * single or absent peer SID/label */
2944 if (xfrm_sid == SECSID_NULL) {
2945 *peer_sid = nlbl_sid;
2948 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2949 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2951 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2952 *peer_sid = xfrm_sid;
2956 /* we don't need to check ss_initialized here since the only way both
2957 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2958 * security server was initialized and ss_initialized was true */
2959 if (!policydb.mls_enabled)
2962 read_lock(&policy_rwlock);
2965 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2967 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2968 __func__, nlbl_sid);
2972 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2974 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2975 __func__, xfrm_sid);
2978 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2982 /* at present NetLabel SIDs/labels really only carry MLS
2983 * information so if the MLS portion of the NetLabel SID
2984 * matches the MLS portion of the labeled XFRM SID/label
2985 * then pass along the XFRM SID as it is the most
2987 *peer_sid = xfrm_sid;
2989 read_unlock(&policy_rwlock);
2993 static int get_classes_callback(void *k, void *d, void *args)
2995 struct class_datum *datum = d;
2996 char *name = k, **classes = args;
2997 int value = datum->value - 1;
2999 classes[value] = kstrdup(name, GFP_ATOMIC);
3000 if (!classes[value])
3006 int security_get_classes(char ***classes, int *nclasses)
3010 read_lock(&policy_rwlock);
3013 *nclasses = policydb.p_classes.nprim;
3014 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3018 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
3022 for (i = 0; i < *nclasses; i++)
3023 kfree((*classes)[i]);
3028 read_unlock(&policy_rwlock);
3032 static int get_permissions_callback(void *k, void *d, void *args)
3034 struct perm_datum *datum = d;
3035 char *name = k, **perms = args;
3036 int value = datum->value - 1;
3038 perms[value] = kstrdup(name, GFP_ATOMIC);
3045 int security_get_permissions(char *class, char ***perms, int *nperms)
3048 struct class_datum *match;
3050 read_lock(&policy_rwlock);
3053 match = hashtab_search(policydb.p_classes.table, class);
3055 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
3061 *nperms = match->permissions.nprim;
3062 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3066 if (match->comdatum) {
3067 rc = hashtab_map(match->comdatum->permissions.table,
3068 get_permissions_callback, *perms);
3073 rc = hashtab_map(match->permissions.table, get_permissions_callback,
3079 read_unlock(&policy_rwlock);
3083 read_unlock(&policy_rwlock);
3084 for (i = 0; i < *nperms; i++)
3090 int security_get_reject_unknown(void)
3092 return policydb.reject_unknown;
3095 int security_get_allow_unknown(void)
3097 return policydb.allow_unknown;
3101 * security_policycap_supported - Check for a specific policy capability
3102 * @req_cap: capability
3105 * This function queries the currently loaded policy to see if it supports the
3106 * capability specified by @req_cap. Returns true (1) if the capability is
3107 * supported, false (0) if it isn't supported.
3110 int security_policycap_supported(unsigned int req_cap)
3114 read_lock(&policy_rwlock);
3115 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
3116 read_unlock(&policy_rwlock);
3121 struct selinux_audit_rule {
3123 struct context au_ctxt;
3126 void selinux_audit_rule_free(void *vrule)
3128 struct selinux_audit_rule *rule = vrule;
3131 context_destroy(&rule->au_ctxt);
3136 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3138 struct selinux_audit_rule *tmprule;
3139 struct role_datum *roledatum;
3140 struct type_datum *typedatum;
3141 struct user_datum *userdatum;
3142 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3147 if (!ss_initialized)
3151 case AUDIT_SUBJ_USER:
3152 case AUDIT_SUBJ_ROLE:
3153 case AUDIT_SUBJ_TYPE:
3154 case AUDIT_OBJ_USER:
3155 case AUDIT_OBJ_ROLE:
3156 case AUDIT_OBJ_TYPE:
3157 /* only 'equals' and 'not equals' fit user, role, and type */
3158 if (op != Audit_equal && op != Audit_not_equal)
3161 case AUDIT_SUBJ_SEN:
3162 case AUDIT_SUBJ_CLR:
3163 case AUDIT_OBJ_LEV_LOW:
3164 case AUDIT_OBJ_LEV_HIGH:
3165 /* we do not allow a range, indicated by the presence of '-' */
3166 if (strchr(rulestr, '-'))
3170 /* only the above fields are valid */
3174 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3178 context_init(&tmprule->au_ctxt);
3180 read_lock(&policy_rwlock);
3182 tmprule->au_seqno = latest_granting;
3185 case AUDIT_SUBJ_USER:
3186 case AUDIT_OBJ_USER:
3188 userdatum = hashtab_search(policydb.p_users.table, rulestr);
3191 tmprule->au_ctxt.user = userdatum->value;
3193 case AUDIT_SUBJ_ROLE:
3194 case AUDIT_OBJ_ROLE:
3196 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3199 tmprule->au_ctxt.role = roledatum->value;
3201 case AUDIT_SUBJ_TYPE:
3202 case AUDIT_OBJ_TYPE:
3204 typedatum = hashtab_search(policydb.p_types.table, rulestr);
3207 tmprule->au_ctxt.type = typedatum->value;
3209 case AUDIT_SUBJ_SEN:
3210 case AUDIT_SUBJ_CLR:
3211 case AUDIT_OBJ_LEV_LOW:
3212 case AUDIT_OBJ_LEV_HIGH:
3213 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
3220 read_unlock(&policy_rwlock);
3223 selinux_audit_rule_free(tmprule);
3232 /* Check to see if the rule contains any selinux fields */
3233 int selinux_audit_rule_known(struct audit_krule *rule)
3237 for (i = 0; i < rule->field_count; i++) {
3238 struct audit_field *f = &rule->fields[i];
3240 case AUDIT_SUBJ_USER:
3241 case AUDIT_SUBJ_ROLE:
3242 case AUDIT_SUBJ_TYPE:
3243 case AUDIT_SUBJ_SEN:
3244 case AUDIT_SUBJ_CLR:
3245 case AUDIT_OBJ_USER:
3246 case AUDIT_OBJ_ROLE:
3247 case AUDIT_OBJ_TYPE:
3248 case AUDIT_OBJ_LEV_LOW:
3249 case AUDIT_OBJ_LEV_HIGH:
3257 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3258 struct audit_context *actx)
3260 struct context *ctxt;
3261 struct mls_level *level;
3262 struct selinux_audit_rule *rule = vrule;
3265 if (unlikely(!rule)) {
3266 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3270 read_lock(&policy_rwlock);
3272 if (rule->au_seqno < latest_granting) {
3277 ctxt = sidtab_search(&sidtab, sid);
3278 if (unlikely(!ctxt)) {
3279 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3285 /* a field/op pair that is not caught here will simply fall through
3288 case AUDIT_SUBJ_USER:
3289 case AUDIT_OBJ_USER:
3292 match = (ctxt->user == rule->au_ctxt.user);
3294 case Audit_not_equal:
3295 match = (ctxt->user != rule->au_ctxt.user);
3299 case AUDIT_SUBJ_ROLE:
3300 case AUDIT_OBJ_ROLE:
3303 match = (ctxt->role == rule->au_ctxt.role);
3305 case Audit_not_equal:
3306 match = (ctxt->role != rule->au_ctxt.role);
3310 case AUDIT_SUBJ_TYPE:
3311 case AUDIT_OBJ_TYPE:
3314 match = (ctxt->type == rule->au_ctxt.type);
3316 case Audit_not_equal:
3317 match = (ctxt->type != rule->au_ctxt.type);
3321 case AUDIT_SUBJ_SEN:
3322 case AUDIT_SUBJ_CLR:
3323 case AUDIT_OBJ_LEV_LOW:
3324 case AUDIT_OBJ_LEV_HIGH:
3325 level = ((field == AUDIT_SUBJ_SEN ||
3326 field == AUDIT_OBJ_LEV_LOW) ?
3327 &ctxt->range.level[0] : &ctxt->range.level[1]);
3330 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3333 case Audit_not_equal:
3334 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3338 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3340 !mls_level_eq(&rule->au_ctxt.range.level[0],
3344 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3348 match = (mls_level_dom(level,
3349 &rule->au_ctxt.range.level[0]) &&
3350 !mls_level_eq(level,
3351 &rule->au_ctxt.range.level[0]));
3354 match = mls_level_dom(level,
3355 &rule->au_ctxt.range.level[0]);
3361 read_unlock(&policy_rwlock);
3365 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3367 static int aurule_avc_callback(u32 event)
3371 if (event == AVC_CALLBACK_RESET && aurule_callback)
3372 err = aurule_callback();
3376 static int __init aurule_init(void)
3380 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3382 panic("avc_add_callback() failed, error %d\n", err);
3386 __initcall(aurule_init);
3388 #ifdef CONFIG_NETLABEL
3390 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3391 * @secattr: the NetLabel packet security attributes
3392 * @sid: the SELinux SID
3395 * Attempt to cache the context in @ctx, which was derived from the packet in
3396 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3397 * already been initialized.
3400 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3405 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3406 if (sid_cache == NULL)
3408 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3409 if (secattr->cache == NULL) {
3415 secattr->cache->free = kfree;
3416 secattr->cache->data = sid_cache;
3417 secattr->flags |= NETLBL_SECATTR_CACHE;
3421 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3422 * @secattr: the NetLabel packet security attributes
3423 * @sid: the SELinux SID
3426 * Convert the given NetLabel security attributes in @secattr into a
3427 * SELinux SID. If the @secattr field does not contain a full SELinux
3428 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3429 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3430 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3431 * conversion for future lookups. Returns zero on success, negative values on
3435 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3439 struct context *ctx;
3440 struct context ctx_new;
3442 if (!ss_initialized) {
3447 read_lock(&policy_rwlock);
3449 if (secattr->flags & NETLBL_SECATTR_CACHE)
3450 *sid = *(u32 *)secattr->cache->data;
3451 else if (secattr->flags & NETLBL_SECATTR_SECID)
3452 *sid = secattr->attr.secid;
3453 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3455 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3459 context_init(&ctx_new);
3460 ctx_new.user = ctx->user;
3461 ctx_new.role = ctx->role;
3462 ctx_new.type = ctx->type;
3463 mls_import_netlbl_lvl(&ctx_new, secattr);
3464 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3465 rc = mls_import_netlbl_cat(&ctx_new, secattr);
3470 if (!mls_context_isvalid(&policydb, &ctx_new))
3473 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3477 security_netlbl_cache_add(secattr, *sid);
3479 ebitmap_destroy(&ctx_new.range.level[0].cat);
3483 read_unlock(&policy_rwlock);
3486 ebitmap_destroy(&ctx_new.range.level[0].cat);
3488 read_unlock(&policy_rwlock);
3493 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3494 * @sid: the SELinux SID
3495 * @secattr: the NetLabel packet security attributes
3498 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3499 * Returns zero on success, negative values on failure.
3502 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3505 struct context *ctx;
3507 if (!ss_initialized)
3510 read_lock(&policy_rwlock);
3513 ctx = sidtab_search(&sidtab, sid);
3518 secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3520 if (secattr->domain == NULL)
3523 secattr->attr.secid = sid;
3524 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3525 mls_export_netlbl_lvl(ctx, secattr);
3526 rc = mls_export_netlbl_cat(ctx, secattr);
3528 read_unlock(&policy_rwlock);
3531 #endif /* CONFIG_NETLABEL */
3534 * security_read_policy - read the policy.
3535 * @data: binary policy data
3536 * @len: length of data in bytes
3539 int security_read_policy(void **data, size_t *len)
3542 struct policy_file fp;
3544 if (!ss_initialized)
3547 *len = security_policydb_len();
3549 *data = vmalloc_user(*len);
3556 read_lock(&policy_rwlock);
3557 rc = policydb_write(&policydb, &fp);
3558 read_unlock(&policy_rwlock);
3563 *len = (unsigned long)fp.data - (unsigned long)*data;