4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
34 #include <trace/events/f2fs.h>
36 static int f2fs_filemap_fault(struct vm_fault *vmf)
38 struct inode *inode = file_inode(vmf->vma->vm_file);
41 down_read(&F2FS_I(inode)->i_mmap_sem);
42 err = filemap_fault(vmf);
43 up_read(&F2FS_I(inode)->i_mmap_sem);
48 static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
50 struct page *page = vmf->page;
51 struct inode *inode = file_inode(vmf->vma->vm_file);
52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 struct dnode_of_data dn;
56 sb_start_pagefault(inode->i_sb);
58 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
60 /* block allocation */
62 set_new_dnode(&dn, inode, NULL, NULL, 0);
63 err = f2fs_reserve_block(&dn, page->index);
71 f2fs_balance_fs(sbi, dn.node_changed);
73 file_update_time(vmf->vma->vm_file);
74 down_read(&F2FS_I(inode)->i_mmap_sem);
76 if (unlikely(page->mapping != inode->i_mapping ||
77 page_offset(page) > i_size_read(inode) ||
78 !PageUptodate(page))) {
85 * check to see if the page is mapped already (no holes)
87 if (PageMappedToDisk(page))
90 /* page is wholly or partially inside EOF */
91 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
94 offset = i_size_read(inode) & ~PAGE_MASK;
95 zero_user_segment(page, offset, PAGE_SIZE);
98 if (!PageUptodate(page))
99 SetPageUptodate(page);
101 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
103 trace_f2fs_vm_page_mkwrite(page, DATA);
106 f2fs_wait_on_page_writeback(page, DATA, false);
108 /* wait for GCed encrypted page writeback */
109 if (f2fs_encrypted_file(inode))
110 f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
113 up_read(&F2FS_I(inode)->i_mmap_sem);
115 sb_end_pagefault(inode->i_sb);
116 f2fs_update_time(sbi, REQ_TIME);
117 return block_page_mkwrite_return(err);
120 static const struct vm_operations_struct f2fs_file_vm_ops = {
121 .fault = f2fs_filemap_fault,
122 .map_pages = filemap_map_pages,
123 .page_mkwrite = f2fs_vm_page_mkwrite,
126 static int get_parent_ino(struct inode *inode, nid_t *pino)
128 struct dentry *dentry;
130 inode = igrab(inode);
131 dentry = d_find_any_alias(inode);
136 *pino = parent_ino(dentry);
141 static inline bool need_do_checkpoint(struct inode *inode)
143 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
144 bool need_cp = false;
146 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
148 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
150 else if (file_wrong_pino(inode))
152 else if (!space_for_roll_forward(sbi))
154 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
156 else if (test_opt(sbi, FASTBOOT))
158 else if (sbi->active_logs == 2)
164 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
166 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
168 /* But we need to avoid that there are some inode updates */
169 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
175 static void try_to_fix_pino(struct inode *inode)
177 struct f2fs_inode_info *fi = F2FS_I(inode);
180 down_write(&fi->i_sem);
181 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
182 get_parent_ino(inode, &pino)) {
183 f2fs_i_pino_write(inode, pino);
184 file_got_pino(inode);
186 up_write(&fi->i_sem);
189 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
190 int datasync, bool atomic)
192 struct inode *inode = file->f_mapping->host;
193 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
194 nid_t ino = inode->i_ino;
196 bool need_cp = false;
197 struct writeback_control wbc = {
198 .sync_mode = WB_SYNC_ALL,
199 .nr_to_write = LONG_MAX,
203 if (unlikely(f2fs_readonly(inode->i_sb)))
206 trace_f2fs_sync_file_enter(inode);
208 /* if fdatasync is triggered, let's do in-place-update */
209 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
210 set_inode_flag(inode, FI_NEED_IPU);
211 ret = file_write_and_wait_range(file, start, end);
212 clear_inode_flag(inode, FI_NEED_IPU);
215 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
219 /* if the inode is dirty, let's recover all the time */
220 if (!f2fs_skip_inode_update(inode, datasync)) {
221 f2fs_write_inode(inode, NULL);
226 * if there is no written data, don't waste time to write recovery info.
228 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
229 !exist_written_data(sbi, ino, APPEND_INO)) {
231 /* it may call write_inode just prior to fsync */
232 if (need_inode_page_update(sbi, ino))
235 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
236 exist_written_data(sbi, ino, UPDATE_INO))
242 * Both of fdatasync() and fsync() are able to be recovered from
245 down_read(&F2FS_I(inode)->i_sem);
246 need_cp = need_do_checkpoint(inode);
247 up_read(&F2FS_I(inode)->i_sem);
250 /* all the dirty node pages should be flushed for POR */
251 ret = f2fs_sync_fs(inode->i_sb, 1);
254 * We've secured consistency through sync_fs. Following pino
255 * will be used only for fsynced inodes after checkpoint.
257 try_to_fix_pino(inode);
258 clear_inode_flag(inode, FI_APPEND_WRITE);
259 clear_inode_flag(inode, FI_UPDATE_WRITE);
263 ret = fsync_node_pages(sbi, inode, &wbc, atomic);
267 /* if cp_error was enabled, we should avoid infinite loop */
268 if (unlikely(f2fs_cp_error(sbi))) {
273 if (need_inode_block_update(sbi, ino)) {
274 f2fs_mark_inode_dirty_sync(inode, true);
275 f2fs_write_inode(inode, NULL);
280 * If it's atomic_write, it's just fine to keep write ordering. So
281 * here we don't need to wait for node write completion, since we use
282 * node chain which serializes node blocks. If one of node writes are
283 * reordered, we can see simply broken chain, resulting in stopping
284 * roll-forward recovery. It means we'll recover all or none node blocks
288 ret = wait_on_node_pages_writeback(sbi, ino);
293 /* once recovery info is written, don't need to tack this */
294 remove_ino_entry(sbi, ino, APPEND_INO);
295 clear_inode_flag(inode, FI_APPEND_WRITE);
297 remove_ino_entry(sbi, ino, UPDATE_INO);
298 clear_inode_flag(inode, FI_UPDATE_WRITE);
300 ret = f2fs_issue_flush(sbi);
301 f2fs_update_time(sbi, REQ_TIME);
303 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
304 f2fs_trace_ios(NULL, 1);
308 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
310 return f2fs_do_sync_file(file, start, end, datasync, false);
313 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
314 pgoff_t pgofs, int whence)
319 if (whence != SEEK_DATA)
322 /* find first dirty page index */
323 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
332 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
337 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
338 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
342 if (blkaddr == NULL_ADDR)
349 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
351 struct inode *inode = file->f_mapping->host;
352 loff_t maxbytes = inode->i_sb->s_maxbytes;
353 struct dnode_of_data dn;
354 pgoff_t pgofs, end_offset, dirty;
355 loff_t data_ofs = offset;
361 isize = i_size_read(inode);
365 /* handle inline data case */
366 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
367 if (whence == SEEK_HOLE)
372 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
374 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
376 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
377 set_new_dnode(&dn, inode, NULL, NULL, 0);
378 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
379 if (err && err != -ENOENT) {
381 } else if (err == -ENOENT) {
382 /* direct node does not exists */
383 if (whence == SEEK_DATA) {
384 pgofs = get_next_page_offset(&dn, pgofs);
391 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
393 /* find data/hole in dnode block */
394 for (; dn.ofs_in_node < end_offset;
395 dn.ofs_in_node++, pgofs++,
396 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
398 blkaddr = datablock_addr(dn.inode,
399 dn.node_page, dn.ofs_in_node);
401 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
409 if (whence == SEEK_DATA)
412 if (whence == SEEK_HOLE && data_ofs > isize)
415 return vfs_setpos(file, data_ofs, maxbytes);
421 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
423 struct inode *inode = file->f_mapping->host;
424 loff_t maxbytes = inode->i_sb->s_maxbytes;
430 return generic_file_llseek_size(file, offset, whence,
431 maxbytes, i_size_read(inode));
436 return f2fs_seek_block(file, offset, whence);
442 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
444 struct inode *inode = file_inode(file);
447 /* we don't need to use inline_data strictly */
448 err = f2fs_convert_inline_inode(inode);
453 vma->vm_ops = &f2fs_file_vm_ops;
457 static int f2fs_file_open(struct inode *inode, struct file *filp)
461 if (f2fs_encrypted_inode(inode)) {
462 int ret = fscrypt_get_encryption_info(inode);
465 if (!fscrypt_has_encryption_key(inode))
468 dir = dget_parent(file_dentry(filp));
469 if (f2fs_encrypted_inode(d_inode(dir)) &&
470 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
475 return dquot_file_open(inode, filp);
478 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
480 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
481 struct f2fs_node *raw_node;
482 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
486 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
487 base = get_extra_isize(dn->inode);
489 raw_node = F2FS_NODE(dn->node_page);
490 addr = blkaddr_in_node(raw_node) + base + ofs;
492 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
493 block_t blkaddr = le32_to_cpu(*addr);
494 if (blkaddr == NULL_ADDR)
497 dn->data_blkaddr = NULL_ADDR;
498 set_data_blkaddr(dn);
499 invalidate_blocks(sbi, blkaddr);
500 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
501 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
508 * once we invalidate valid blkaddr in range [ofs, ofs + count],
509 * we will invalidate all blkaddr in the whole range.
511 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
513 f2fs_update_extent_cache_range(dn, fofs, 0, len);
514 dec_valid_block_count(sbi, dn->inode, nr_free);
516 dn->ofs_in_node = ofs;
518 f2fs_update_time(sbi, REQ_TIME);
519 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
520 dn->ofs_in_node, nr_free);
524 void truncate_data_blocks(struct dnode_of_data *dn)
526 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
529 static int truncate_partial_data_page(struct inode *inode, u64 from,
532 unsigned offset = from & (PAGE_SIZE - 1);
533 pgoff_t index = from >> PAGE_SHIFT;
534 struct address_space *mapping = inode->i_mapping;
537 if (!offset && !cache_only)
541 page = find_lock_page(mapping, index);
542 if (page && PageUptodate(page))
544 f2fs_put_page(page, 1);
548 page = get_lock_data_page(inode, index, true);
550 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
552 f2fs_wait_on_page_writeback(page, DATA, true);
553 zero_user(page, offset, PAGE_SIZE - offset);
555 /* An encrypted inode should have a key and truncate the last page. */
556 f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
558 set_page_dirty(page);
559 f2fs_put_page(page, 1);
563 int truncate_blocks(struct inode *inode, u64 from, bool lock)
565 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
566 unsigned int blocksize = inode->i_sb->s_blocksize;
567 struct dnode_of_data dn;
569 int count = 0, err = 0;
571 bool truncate_page = false;
573 trace_f2fs_truncate_blocks_enter(inode, from);
575 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
577 if (free_from >= sbi->max_file_blocks)
583 ipage = get_node_page(sbi, inode->i_ino);
585 err = PTR_ERR(ipage);
589 if (f2fs_has_inline_data(inode)) {
590 truncate_inline_inode(inode, ipage, from);
591 f2fs_put_page(ipage, 1);
592 truncate_page = true;
596 set_new_dnode(&dn, inode, ipage, NULL, 0);
597 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
604 count = ADDRS_PER_PAGE(dn.node_page, inode);
606 count -= dn.ofs_in_node;
607 f2fs_bug_on(sbi, count < 0);
609 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
610 truncate_data_blocks_range(&dn, count);
616 err = truncate_inode_blocks(inode, free_from);
621 /* lastly zero out the first data page */
623 err = truncate_partial_data_page(inode, from, truncate_page);
625 trace_f2fs_truncate_blocks_exit(inode, err);
629 int f2fs_truncate(struct inode *inode)
633 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
634 S_ISLNK(inode->i_mode)))
637 trace_f2fs_truncate(inode);
639 #ifdef CONFIG_F2FS_FAULT_INJECTION
640 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
641 f2fs_show_injection_info(FAULT_TRUNCATE);
645 /* we should check inline_data size */
646 if (!f2fs_may_inline_data(inode)) {
647 err = f2fs_convert_inline_inode(inode);
652 err = truncate_blocks(inode, i_size_read(inode), true);
656 inode->i_mtime = inode->i_ctime = current_time(inode);
657 f2fs_mark_inode_dirty_sync(inode, false);
661 int f2fs_getattr(const struct path *path, struct kstat *stat,
662 u32 request_mask, unsigned int query_flags)
664 struct inode *inode = d_inode(path->dentry);
665 struct f2fs_inode_info *fi = F2FS_I(inode);
668 flags = fi->i_flags & (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
669 if (flags & FS_APPEND_FL)
670 stat->attributes |= STATX_ATTR_APPEND;
671 if (flags & FS_COMPR_FL)
672 stat->attributes |= STATX_ATTR_COMPRESSED;
673 if (f2fs_encrypted_inode(inode))
674 stat->attributes |= STATX_ATTR_ENCRYPTED;
675 if (flags & FS_IMMUTABLE_FL)
676 stat->attributes |= STATX_ATTR_IMMUTABLE;
677 if (flags & FS_NODUMP_FL)
678 stat->attributes |= STATX_ATTR_NODUMP;
680 stat->attributes_mask |= (STATX_ATTR_APPEND |
681 STATX_ATTR_COMPRESSED |
682 STATX_ATTR_ENCRYPTED |
683 STATX_ATTR_IMMUTABLE |
686 generic_fillattr(inode, stat);
690 #ifdef CONFIG_F2FS_FS_POSIX_ACL
691 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
693 unsigned int ia_valid = attr->ia_valid;
695 if (ia_valid & ATTR_UID)
696 inode->i_uid = attr->ia_uid;
697 if (ia_valid & ATTR_GID)
698 inode->i_gid = attr->ia_gid;
699 if (ia_valid & ATTR_ATIME)
700 inode->i_atime = timespec_trunc(attr->ia_atime,
701 inode->i_sb->s_time_gran);
702 if (ia_valid & ATTR_MTIME)
703 inode->i_mtime = timespec_trunc(attr->ia_mtime,
704 inode->i_sb->s_time_gran);
705 if (ia_valid & ATTR_CTIME)
706 inode->i_ctime = timespec_trunc(attr->ia_ctime,
707 inode->i_sb->s_time_gran);
708 if (ia_valid & ATTR_MODE) {
709 umode_t mode = attr->ia_mode;
711 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
713 set_acl_inode(inode, mode);
717 #define __setattr_copy setattr_copy
720 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
722 struct inode *inode = d_inode(dentry);
724 bool size_changed = false;
726 err = setattr_prepare(dentry, attr);
730 if (is_quota_modification(inode, attr)) {
731 err = dquot_initialize(inode);
735 if ((attr->ia_valid & ATTR_UID &&
736 !uid_eq(attr->ia_uid, inode->i_uid)) ||
737 (attr->ia_valid & ATTR_GID &&
738 !gid_eq(attr->ia_gid, inode->i_gid))) {
739 err = dquot_transfer(inode, attr);
744 if (attr->ia_valid & ATTR_SIZE) {
745 if (f2fs_encrypted_inode(inode)) {
746 err = fscrypt_get_encryption_info(inode);
749 if (!fscrypt_has_encryption_key(inode))
753 if (attr->ia_size <= i_size_read(inode)) {
754 down_write(&F2FS_I(inode)->i_mmap_sem);
755 truncate_setsize(inode, attr->ia_size);
756 err = f2fs_truncate(inode);
757 up_write(&F2FS_I(inode)->i_mmap_sem);
762 * do not trim all blocks after i_size if target size is
763 * larger than i_size.
765 down_write(&F2FS_I(inode)->i_mmap_sem);
766 truncate_setsize(inode, attr->ia_size);
767 up_write(&F2FS_I(inode)->i_mmap_sem);
769 /* should convert inline inode here */
770 if (!f2fs_may_inline_data(inode)) {
771 err = f2fs_convert_inline_inode(inode);
775 inode->i_mtime = inode->i_ctime = current_time(inode);
781 __setattr_copy(inode, attr);
783 if (attr->ia_valid & ATTR_MODE) {
784 err = posix_acl_chmod(inode, get_inode_mode(inode));
785 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
786 inode->i_mode = F2FS_I(inode)->i_acl_mode;
787 clear_inode_flag(inode, FI_ACL_MODE);
791 /* file size may changed here */
792 f2fs_mark_inode_dirty_sync(inode, size_changed);
794 /* inode change will produce dirty node pages flushed by checkpoint */
795 f2fs_balance_fs(F2FS_I_SB(inode), true);
800 const struct inode_operations f2fs_file_inode_operations = {
801 .getattr = f2fs_getattr,
802 .setattr = f2fs_setattr,
803 .get_acl = f2fs_get_acl,
804 .set_acl = f2fs_set_acl,
805 #ifdef CONFIG_F2FS_FS_XATTR
806 .listxattr = f2fs_listxattr,
808 .fiemap = f2fs_fiemap,
811 static int fill_zero(struct inode *inode, pgoff_t index,
812 loff_t start, loff_t len)
814 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
820 f2fs_balance_fs(sbi, true);
823 page = get_new_data_page(inode, NULL, index, false);
827 return PTR_ERR(page);
829 f2fs_wait_on_page_writeback(page, DATA, true);
830 zero_user(page, start, len);
831 set_page_dirty(page);
832 f2fs_put_page(page, 1);
836 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
840 while (pg_start < pg_end) {
841 struct dnode_of_data dn;
842 pgoff_t end_offset, count;
844 set_new_dnode(&dn, inode, NULL, NULL, 0);
845 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
847 if (err == -ENOENT) {
854 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
855 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
857 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
859 truncate_data_blocks_range(&dn, count);
867 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
869 pgoff_t pg_start, pg_end;
870 loff_t off_start, off_end;
873 ret = f2fs_convert_inline_inode(inode);
877 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
878 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
880 off_start = offset & (PAGE_SIZE - 1);
881 off_end = (offset + len) & (PAGE_SIZE - 1);
883 if (pg_start == pg_end) {
884 ret = fill_zero(inode, pg_start, off_start,
885 off_end - off_start);
890 ret = fill_zero(inode, pg_start++, off_start,
891 PAGE_SIZE - off_start);
896 ret = fill_zero(inode, pg_end, 0, off_end);
901 if (pg_start < pg_end) {
902 struct address_space *mapping = inode->i_mapping;
903 loff_t blk_start, blk_end;
904 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
906 f2fs_balance_fs(sbi, true);
908 blk_start = (loff_t)pg_start << PAGE_SHIFT;
909 blk_end = (loff_t)pg_end << PAGE_SHIFT;
910 down_write(&F2FS_I(inode)->i_mmap_sem);
911 truncate_inode_pages_range(mapping, blk_start,
915 ret = truncate_hole(inode, pg_start, pg_end);
917 up_write(&F2FS_I(inode)->i_mmap_sem);
924 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
925 int *do_replace, pgoff_t off, pgoff_t len)
927 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
928 struct dnode_of_data dn;
932 set_new_dnode(&dn, inode, NULL, NULL, 0);
933 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
934 if (ret && ret != -ENOENT) {
936 } else if (ret == -ENOENT) {
937 if (dn.max_level == 0)
939 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
945 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
946 dn.ofs_in_node, len);
947 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
948 *blkaddr = datablock_addr(dn.inode,
949 dn.node_page, dn.ofs_in_node);
950 if (!is_checkpointed_data(sbi, *blkaddr)) {
952 if (test_opt(sbi, LFS)) {
957 /* do not invalidate this block address */
958 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
971 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
972 int *do_replace, pgoff_t off, int len)
974 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
975 struct dnode_of_data dn;
978 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
979 if (*do_replace == 0)
982 set_new_dnode(&dn, inode, NULL, NULL, 0);
983 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
985 dec_valid_block_count(sbi, inode, 1);
986 invalidate_blocks(sbi, *blkaddr);
988 f2fs_update_data_blkaddr(&dn, *blkaddr);
995 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
996 block_t *blkaddr, int *do_replace,
997 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
999 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1004 if (blkaddr[i] == NULL_ADDR && !full) {
1009 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1010 struct dnode_of_data dn;
1011 struct node_info ni;
1015 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1016 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1020 get_node_info(sbi, dn.nid, &ni);
1021 ilen = min((pgoff_t)
1022 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1023 dn.ofs_in_node, len - i);
1025 dn.data_blkaddr = datablock_addr(dn.inode,
1026 dn.node_page, dn.ofs_in_node);
1027 truncate_data_blocks_range(&dn, 1);
1029 if (do_replace[i]) {
1030 f2fs_i_blocks_write(src_inode,
1032 f2fs_i_blocks_write(dst_inode,
1034 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1035 blkaddr[i], ni.version, true, false);
1041 new_size = (dst + i) << PAGE_SHIFT;
1042 if (dst_inode->i_size < new_size)
1043 f2fs_i_size_write(dst_inode, new_size);
1044 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1046 f2fs_put_dnode(&dn);
1048 struct page *psrc, *pdst;
1050 psrc = get_lock_data_page(src_inode, src + i, true);
1052 return PTR_ERR(psrc);
1053 pdst = get_new_data_page(dst_inode, NULL, dst + i,
1056 f2fs_put_page(psrc, 1);
1057 return PTR_ERR(pdst);
1059 f2fs_copy_page(psrc, pdst);
1060 set_page_dirty(pdst);
1061 f2fs_put_page(pdst, 1);
1062 f2fs_put_page(psrc, 1);
1064 ret = truncate_hole(src_inode, src + i, src + i + 1);
1073 static int __exchange_data_block(struct inode *src_inode,
1074 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1075 pgoff_t len, bool full)
1077 block_t *src_blkaddr;
1083 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1085 src_blkaddr = kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1089 do_replace = kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1091 kvfree(src_blkaddr);
1095 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1096 do_replace, src, olen);
1100 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1101 do_replace, src, dst, olen, full);
1109 kvfree(src_blkaddr);
1115 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1116 kvfree(src_blkaddr);
1121 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1123 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1124 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1127 f2fs_balance_fs(sbi, true);
1130 f2fs_drop_extent_tree(inode);
1132 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1133 f2fs_unlock_op(sbi);
1137 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1139 pgoff_t pg_start, pg_end;
1143 if (offset + len >= i_size_read(inode))
1146 /* collapse range should be aligned to block size of f2fs. */
1147 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1150 ret = f2fs_convert_inline_inode(inode);
1154 pg_start = offset >> PAGE_SHIFT;
1155 pg_end = (offset + len) >> PAGE_SHIFT;
1157 down_write(&F2FS_I(inode)->i_mmap_sem);
1158 /* write out all dirty pages from offset */
1159 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1163 truncate_pagecache(inode, offset);
1165 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1169 /* write out all moved pages, if possible */
1170 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1171 truncate_pagecache(inode, offset);
1173 new_size = i_size_read(inode) - len;
1174 truncate_pagecache(inode, new_size);
1176 ret = truncate_blocks(inode, new_size, true);
1178 f2fs_i_size_write(inode, new_size);
1181 up_write(&F2FS_I(inode)->i_mmap_sem);
1185 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1188 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1189 pgoff_t index = start;
1190 unsigned int ofs_in_node = dn->ofs_in_node;
1194 for (; index < end; index++, dn->ofs_in_node++) {
1195 if (datablock_addr(dn->inode, dn->node_page,
1196 dn->ofs_in_node) == NULL_ADDR)
1200 dn->ofs_in_node = ofs_in_node;
1201 ret = reserve_new_blocks(dn, count);
1205 dn->ofs_in_node = ofs_in_node;
1206 for (index = start; index < end; index++, dn->ofs_in_node++) {
1207 dn->data_blkaddr = datablock_addr(dn->inode,
1208 dn->node_page, dn->ofs_in_node);
1210 * reserve_new_blocks will not guarantee entire block
1213 if (dn->data_blkaddr == NULL_ADDR) {
1217 if (dn->data_blkaddr != NEW_ADDR) {
1218 invalidate_blocks(sbi, dn->data_blkaddr);
1219 dn->data_blkaddr = NEW_ADDR;
1220 set_data_blkaddr(dn);
1224 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1229 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1232 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1233 struct address_space *mapping = inode->i_mapping;
1234 pgoff_t index, pg_start, pg_end;
1235 loff_t new_size = i_size_read(inode);
1236 loff_t off_start, off_end;
1239 ret = inode_newsize_ok(inode, (len + offset));
1243 ret = f2fs_convert_inline_inode(inode);
1247 down_write(&F2FS_I(inode)->i_mmap_sem);
1248 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1252 truncate_pagecache_range(inode, offset, offset + len - 1);
1254 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1255 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1257 off_start = offset & (PAGE_SIZE - 1);
1258 off_end = (offset + len) & (PAGE_SIZE - 1);
1260 if (pg_start == pg_end) {
1261 ret = fill_zero(inode, pg_start, off_start,
1262 off_end - off_start);
1266 new_size = max_t(loff_t, new_size, offset + len);
1269 ret = fill_zero(inode, pg_start++, off_start,
1270 PAGE_SIZE - off_start);
1274 new_size = max_t(loff_t, new_size,
1275 (loff_t)pg_start << PAGE_SHIFT);
1278 for (index = pg_start; index < pg_end;) {
1279 struct dnode_of_data dn;
1280 unsigned int end_offset;
1285 set_new_dnode(&dn, inode, NULL, NULL, 0);
1286 ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1288 f2fs_unlock_op(sbi);
1292 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1293 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1295 ret = f2fs_do_zero_range(&dn, index, end);
1296 f2fs_put_dnode(&dn);
1297 f2fs_unlock_op(sbi);
1299 f2fs_balance_fs(sbi, dn.node_changed);
1305 new_size = max_t(loff_t, new_size,
1306 (loff_t)index << PAGE_SHIFT);
1310 ret = fill_zero(inode, pg_end, 0, off_end);
1314 new_size = max_t(loff_t, new_size, offset + len);
1319 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1320 f2fs_i_size_write(inode, new_size);
1322 up_write(&F2FS_I(inode)->i_mmap_sem);
1327 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1329 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1330 pgoff_t nr, pg_start, pg_end, delta, idx;
1334 new_size = i_size_read(inode) + len;
1335 ret = inode_newsize_ok(inode, new_size);
1339 if (offset >= i_size_read(inode))
1342 /* insert range should be aligned to block size of f2fs. */
1343 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1346 ret = f2fs_convert_inline_inode(inode);
1350 f2fs_balance_fs(sbi, true);
1352 down_write(&F2FS_I(inode)->i_mmap_sem);
1353 ret = truncate_blocks(inode, i_size_read(inode), true);
1357 /* write out all dirty pages from offset */
1358 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1362 truncate_pagecache(inode, offset);
1364 pg_start = offset >> PAGE_SHIFT;
1365 pg_end = (offset + len) >> PAGE_SHIFT;
1366 delta = pg_end - pg_start;
1367 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1369 while (!ret && idx > pg_start) {
1370 nr = idx - pg_start;
1376 f2fs_drop_extent_tree(inode);
1378 ret = __exchange_data_block(inode, inode, idx,
1379 idx + delta, nr, false);
1380 f2fs_unlock_op(sbi);
1383 /* write out all moved pages, if possible */
1384 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1385 truncate_pagecache(inode, offset);
1388 f2fs_i_size_write(inode, new_size);
1390 up_write(&F2FS_I(inode)->i_mmap_sem);
1394 static int expand_inode_data(struct inode *inode, loff_t offset,
1395 loff_t len, int mode)
1397 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1398 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1400 loff_t new_size = i_size_read(inode);
1404 err = inode_newsize_ok(inode, (len + offset));
1408 err = f2fs_convert_inline_inode(inode);
1412 f2fs_balance_fs(sbi, true);
1414 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1415 off_end = (offset + len) & (PAGE_SIZE - 1);
1417 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1418 map.m_len = pg_end - map.m_lblk;
1422 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1429 last_off = map.m_lblk + map.m_len - 1;
1431 /* update new size to the failed position */
1432 new_size = (last_off == pg_end) ? offset + len:
1433 (loff_t)(last_off + 1) << PAGE_SHIFT;
1435 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1438 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1439 f2fs_i_size_write(inode, new_size);
1444 static long f2fs_fallocate(struct file *file, int mode,
1445 loff_t offset, loff_t len)
1447 struct inode *inode = file_inode(file);
1450 /* f2fs only support ->fallocate for regular file */
1451 if (!S_ISREG(inode->i_mode))
1454 if (f2fs_encrypted_inode(inode) &&
1455 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1458 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1459 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1460 FALLOC_FL_INSERT_RANGE))
1465 if (mode & FALLOC_FL_PUNCH_HOLE) {
1466 if (offset >= inode->i_size)
1469 ret = punch_hole(inode, offset, len);
1470 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1471 ret = f2fs_collapse_range(inode, offset, len);
1472 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1473 ret = f2fs_zero_range(inode, offset, len, mode);
1474 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1475 ret = f2fs_insert_range(inode, offset, len);
1477 ret = expand_inode_data(inode, offset, len, mode);
1481 inode->i_mtime = inode->i_ctime = current_time(inode);
1482 f2fs_mark_inode_dirty_sync(inode, false);
1483 if (mode & FALLOC_FL_KEEP_SIZE)
1484 file_set_keep_isize(inode);
1485 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1489 inode_unlock(inode);
1491 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1495 static int f2fs_release_file(struct inode *inode, struct file *filp)
1498 * f2fs_relase_file is called at every close calls. So we should
1499 * not drop any inmemory pages by close called by other process.
1501 if (!(filp->f_mode & FMODE_WRITE) ||
1502 atomic_read(&inode->i_writecount) != 1)
1505 /* some remained atomic pages should discarded */
1506 if (f2fs_is_atomic_file(inode))
1507 drop_inmem_pages(inode);
1508 if (f2fs_is_volatile_file(inode)) {
1509 clear_inode_flag(inode, FI_VOLATILE_FILE);
1510 stat_dec_volatile_write(inode);
1511 set_inode_flag(inode, FI_DROP_CACHE);
1512 filemap_fdatawrite(inode->i_mapping);
1513 clear_inode_flag(inode, FI_DROP_CACHE);
1518 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1520 struct inode *inode = file_inode(file);
1523 * If the process doing a transaction is crashed, we should do
1524 * roll-back. Otherwise, other reader/write can see corrupted database
1525 * until all the writers close its file. Since this should be done
1526 * before dropping file lock, it needs to do in ->flush.
1528 if (f2fs_is_atomic_file(inode) &&
1529 F2FS_I(inode)->inmem_task == current)
1530 drop_inmem_pages(inode);
1534 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1536 struct inode *inode = file_inode(filp);
1537 struct f2fs_inode_info *fi = F2FS_I(inode);
1538 unsigned int flags = fi->i_flags &
1539 (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
1540 return put_user(flags, (int __user *)arg);
1543 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1545 struct f2fs_inode_info *fi = F2FS_I(inode);
1546 unsigned int oldflags;
1548 /* Is it quota file? Do not allow user to mess with it */
1549 if (IS_NOQUOTA(inode))
1552 flags = f2fs_mask_flags(inode->i_mode, flags);
1554 oldflags = fi->i_flags;
1556 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL))
1557 if (!capable(CAP_LINUX_IMMUTABLE))
1560 flags = flags & (FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1561 flags |= oldflags & ~(FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1562 fi->i_flags = flags;
1564 if (fi->i_flags & FS_PROJINHERIT_FL)
1565 set_inode_flag(inode, FI_PROJ_INHERIT);
1567 clear_inode_flag(inode, FI_PROJ_INHERIT);
1569 inode->i_ctime = current_time(inode);
1570 f2fs_set_inode_flags(inode);
1571 f2fs_mark_inode_dirty_sync(inode, false);
1575 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1577 struct inode *inode = file_inode(filp);
1581 if (!inode_owner_or_capable(inode))
1584 if (get_user(flags, (int __user *)arg))
1587 ret = mnt_want_write_file(filp);
1593 ret = __f2fs_ioc_setflags(inode, flags);
1595 inode_unlock(inode);
1596 mnt_drop_write_file(filp);
1600 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1602 struct inode *inode = file_inode(filp);
1604 return put_user(inode->i_generation, (int __user *)arg);
1607 static int f2fs_ioc_start_atomic_write(struct file *filp)
1609 struct inode *inode = file_inode(filp);
1612 if (!inode_owner_or_capable(inode))
1615 if (!S_ISREG(inode->i_mode))
1618 ret = mnt_want_write_file(filp);
1624 if (f2fs_is_atomic_file(inode))
1627 ret = f2fs_convert_inline_inode(inode);
1631 set_inode_flag(inode, FI_ATOMIC_FILE);
1632 set_inode_flag(inode, FI_HOT_DATA);
1633 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1635 if (!get_dirty_pages(inode))
1638 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1639 "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1640 inode->i_ino, get_dirty_pages(inode));
1641 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1643 clear_inode_flag(inode, FI_ATOMIC_FILE);
1644 clear_inode_flag(inode, FI_HOT_DATA);
1649 F2FS_I(inode)->inmem_task = current;
1650 stat_inc_atomic_write(inode);
1651 stat_update_max_atomic_write(inode);
1653 inode_unlock(inode);
1654 mnt_drop_write_file(filp);
1658 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1660 struct inode *inode = file_inode(filp);
1663 if (!inode_owner_or_capable(inode))
1666 ret = mnt_want_write_file(filp);
1672 if (f2fs_is_volatile_file(inode))
1675 if (f2fs_is_atomic_file(inode)) {
1676 ret = commit_inmem_pages(inode);
1680 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1682 clear_inode_flag(inode, FI_ATOMIC_FILE);
1683 clear_inode_flag(inode, FI_HOT_DATA);
1684 stat_dec_atomic_write(inode);
1687 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1690 inode_unlock(inode);
1691 mnt_drop_write_file(filp);
1695 static int f2fs_ioc_start_volatile_write(struct file *filp)
1697 struct inode *inode = file_inode(filp);
1700 if (!inode_owner_or_capable(inode))
1703 if (!S_ISREG(inode->i_mode))
1706 ret = mnt_want_write_file(filp);
1712 if (f2fs_is_volatile_file(inode))
1715 ret = f2fs_convert_inline_inode(inode);
1719 stat_inc_volatile_write(inode);
1720 stat_update_max_volatile_write(inode);
1722 set_inode_flag(inode, FI_VOLATILE_FILE);
1723 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1725 inode_unlock(inode);
1726 mnt_drop_write_file(filp);
1730 static int f2fs_ioc_release_volatile_write(struct file *filp)
1732 struct inode *inode = file_inode(filp);
1735 if (!inode_owner_or_capable(inode))
1738 ret = mnt_want_write_file(filp);
1744 if (!f2fs_is_volatile_file(inode))
1747 if (!f2fs_is_first_block_written(inode)) {
1748 ret = truncate_partial_data_page(inode, 0, true);
1752 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1754 inode_unlock(inode);
1755 mnt_drop_write_file(filp);
1759 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1761 struct inode *inode = file_inode(filp);
1764 if (!inode_owner_or_capable(inode))
1767 ret = mnt_want_write_file(filp);
1773 if (f2fs_is_atomic_file(inode))
1774 drop_inmem_pages(inode);
1775 if (f2fs_is_volatile_file(inode)) {
1776 clear_inode_flag(inode, FI_VOLATILE_FILE);
1777 stat_dec_volatile_write(inode);
1778 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1781 inode_unlock(inode);
1783 mnt_drop_write_file(filp);
1784 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1788 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1790 struct inode *inode = file_inode(filp);
1791 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1792 struct super_block *sb = sbi->sb;
1796 if (!capable(CAP_SYS_ADMIN))
1799 if (get_user(in, (__u32 __user *)arg))
1802 ret = mnt_want_write_file(filp);
1807 case F2FS_GOING_DOWN_FULLSYNC:
1808 sb = freeze_bdev(sb->s_bdev);
1809 if (sb && !IS_ERR(sb)) {
1810 f2fs_stop_checkpoint(sbi, false);
1811 thaw_bdev(sb->s_bdev, sb);
1814 case F2FS_GOING_DOWN_METASYNC:
1815 /* do checkpoint only */
1816 f2fs_sync_fs(sb, 1);
1817 f2fs_stop_checkpoint(sbi, false);
1819 case F2FS_GOING_DOWN_NOSYNC:
1820 f2fs_stop_checkpoint(sbi, false);
1822 case F2FS_GOING_DOWN_METAFLUSH:
1823 sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1824 f2fs_stop_checkpoint(sbi, false);
1830 f2fs_update_time(sbi, REQ_TIME);
1832 mnt_drop_write_file(filp);
1836 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1838 struct inode *inode = file_inode(filp);
1839 struct super_block *sb = inode->i_sb;
1840 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1841 struct fstrim_range range;
1844 if (!capable(CAP_SYS_ADMIN))
1847 if (!blk_queue_discard(q))
1850 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1854 ret = mnt_want_write_file(filp);
1858 range.minlen = max((unsigned int)range.minlen,
1859 q->limits.discard_granularity);
1860 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1861 mnt_drop_write_file(filp);
1865 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1868 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1872 static bool uuid_is_nonzero(__u8 u[16])
1876 for (i = 0; i < 16; i++)
1882 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1884 struct inode *inode = file_inode(filp);
1886 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1888 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1891 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1893 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1896 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1898 struct inode *inode = file_inode(filp);
1899 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1902 if (!f2fs_sb_has_crypto(inode->i_sb))
1905 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1908 err = mnt_want_write_file(filp);
1912 /* update superblock with uuid */
1913 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1915 err = f2fs_commit_super(sbi, false);
1918 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1919 mnt_drop_write_file(filp);
1922 mnt_drop_write_file(filp);
1924 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1930 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1932 struct inode *inode = file_inode(filp);
1933 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1937 if (!capable(CAP_SYS_ADMIN))
1940 if (get_user(sync, (__u32 __user *)arg))
1943 if (f2fs_readonly(sbi->sb))
1946 ret = mnt_want_write_file(filp);
1951 if (!mutex_trylock(&sbi->gc_mutex)) {
1956 mutex_lock(&sbi->gc_mutex);
1959 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
1961 mnt_drop_write_file(filp);
1965 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
1967 struct inode *inode = file_inode(filp);
1968 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1969 struct f2fs_gc_range range;
1973 if (!capable(CAP_SYS_ADMIN))
1976 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
1980 if (f2fs_readonly(sbi->sb))
1983 ret = mnt_want_write_file(filp);
1987 end = range.start + range.len;
1988 if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi))
1992 if (!mutex_trylock(&sbi->gc_mutex)) {
1997 mutex_lock(&sbi->gc_mutex);
2000 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2001 range.start += sbi->blocks_per_seg;
2002 if (range.start <= end)
2005 mnt_drop_write_file(filp);
2009 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2011 struct inode *inode = file_inode(filp);
2012 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2015 if (!capable(CAP_SYS_ADMIN))
2018 if (f2fs_readonly(sbi->sb))
2021 ret = mnt_want_write_file(filp);
2025 ret = f2fs_sync_fs(sbi->sb, 1);
2027 mnt_drop_write_file(filp);
2031 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2033 struct f2fs_defragment *range)
2035 struct inode *inode = file_inode(filp);
2036 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
2037 struct extent_info ei = {0,0,0};
2038 pgoff_t pg_start, pg_end;
2039 unsigned int blk_per_seg = sbi->blocks_per_seg;
2040 unsigned int total = 0, sec_num;
2041 block_t blk_end = 0;
2042 bool fragmented = false;
2045 /* if in-place-update policy is enabled, don't waste time here */
2046 if (need_inplace_update_policy(inode, NULL))
2049 pg_start = range->start >> PAGE_SHIFT;
2050 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2052 f2fs_balance_fs(sbi, true);
2056 /* writeback all dirty pages in the range */
2057 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2058 range->start + range->len - 1);
2063 * lookup mapping info in extent cache, skip defragmenting if physical
2064 * block addresses are continuous.
2066 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2067 if (ei.fofs + ei.len >= pg_end)
2071 map.m_lblk = pg_start;
2074 * lookup mapping info in dnode page cache, skip defragmenting if all
2075 * physical block addresses are continuous even if there are hole(s)
2076 * in logical blocks.
2078 while (map.m_lblk < pg_end) {
2079 map.m_len = pg_end - map.m_lblk;
2080 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2084 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2089 if (blk_end && blk_end != map.m_pblk) {
2093 blk_end = map.m_pblk + map.m_len;
2095 map.m_lblk += map.m_len;
2101 map.m_lblk = pg_start;
2102 map.m_len = pg_end - pg_start;
2104 sec_num = (map.m_len + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2107 * make sure there are enough free section for LFS allocation, this can
2108 * avoid defragment running in SSR mode when free section are allocated
2111 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2116 while (map.m_lblk < pg_end) {
2121 map.m_len = pg_end - map.m_lblk;
2122 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2126 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2131 set_inode_flag(inode, FI_DO_DEFRAG);
2134 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2137 page = get_lock_data_page(inode, idx, true);
2139 err = PTR_ERR(page);
2143 set_page_dirty(page);
2144 f2fs_put_page(page, 1);
2153 if (idx < pg_end && cnt < blk_per_seg)
2156 clear_inode_flag(inode, FI_DO_DEFRAG);
2158 err = filemap_fdatawrite(inode->i_mapping);
2163 clear_inode_flag(inode, FI_DO_DEFRAG);
2165 inode_unlock(inode);
2167 range->len = (u64)total << PAGE_SHIFT;
2171 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2173 struct inode *inode = file_inode(filp);
2174 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2175 struct f2fs_defragment range;
2178 if (!capable(CAP_SYS_ADMIN))
2181 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2184 if (f2fs_readonly(sbi->sb))
2187 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2191 /* verify alignment of offset & size */
2192 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2195 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2196 sbi->max_file_blocks))
2199 err = mnt_want_write_file(filp);
2203 err = f2fs_defragment_range(sbi, filp, &range);
2204 mnt_drop_write_file(filp);
2206 f2fs_update_time(sbi, REQ_TIME);
2210 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2217 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2218 struct file *file_out, loff_t pos_out, size_t len)
2220 struct inode *src = file_inode(file_in);
2221 struct inode *dst = file_inode(file_out);
2222 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2223 size_t olen = len, dst_max_i_size = 0;
2227 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2228 src->i_sb != dst->i_sb)
2231 if (unlikely(f2fs_readonly(src->i_sb)))
2234 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2237 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2241 if (pos_in == pos_out)
2243 if (pos_out > pos_in && pos_out < pos_in + len)
2249 if (!inode_trylock(dst)) {
2256 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2259 olen = len = src->i_size - pos_in;
2260 if (pos_in + len == src->i_size)
2261 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2267 dst_osize = dst->i_size;
2268 if (pos_out + olen > dst->i_size)
2269 dst_max_i_size = pos_out + olen;
2271 /* verify the end result is block aligned */
2272 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2273 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2274 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2277 ret = f2fs_convert_inline_inode(src);
2281 ret = f2fs_convert_inline_inode(dst);
2285 /* write out all dirty pages from offset */
2286 ret = filemap_write_and_wait_range(src->i_mapping,
2287 pos_in, pos_in + len);
2291 ret = filemap_write_and_wait_range(dst->i_mapping,
2292 pos_out, pos_out + len);
2296 f2fs_balance_fs(sbi, true);
2298 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2299 pos_out >> F2FS_BLKSIZE_BITS,
2300 len >> F2FS_BLKSIZE_BITS, false);
2304 f2fs_i_size_write(dst, dst_max_i_size);
2305 else if (dst_osize != dst->i_size)
2306 f2fs_i_size_write(dst, dst_osize);
2308 f2fs_unlock_op(sbi);
2317 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2319 struct f2fs_move_range range;
2323 if (!(filp->f_mode & FMODE_READ) ||
2324 !(filp->f_mode & FMODE_WRITE))
2327 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2331 dst = fdget(range.dst_fd);
2335 if (!(dst.file->f_mode & FMODE_WRITE)) {
2340 err = mnt_want_write_file(filp);
2344 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2345 range.pos_out, range.len);
2347 mnt_drop_write_file(filp);
2351 if (copy_to_user((struct f2fs_move_range __user *)arg,
2352 &range, sizeof(range)))
2359 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2361 struct inode *inode = file_inode(filp);
2362 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2363 struct sit_info *sm = SIT_I(sbi);
2364 unsigned int start_segno = 0, end_segno = 0;
2365 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2366 struct f2fs_flush_device range;
2369 if (!capable(CAP_SYS_ADMIN))
2372 if (f2fs_readonly(sbi->sb))
2375 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2379 if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2380 sbi->segs_per_sec != 1) {
2381 f2fs_msg(sbi->sb, KERN_WARNING,
2382 "Can't flush %u in %d for segs_per_sec %u != 1\n",
2383 range.dev_num, sbi->s_ndevs,
2388 ret = mnt_want_write_file(filp);
2392 if (range.dev_num != 0)
2393 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2394 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2396 start_segno = sm->last_victim[FLUSH_DEVICE];
2397 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2398 start_segno = dev_start_segno;
2399 end_segno = min(start_segno + range.segments, dev_end_segno);
2401 while (start_segno < end_segno) {
2402 if (!mutex_trylock(&sbi->gc_mutex)) {
2406 sm->last_victim[GC_CB] = end_segno + 1;
2407 sm->last_victim[GC_GREEDY] = end_segno + 1;
2408 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2409 ret = f2fs_gc(sbi, true, true, start_segno);
2417 mnt_drop_write_file(filp);
2421 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2423 struct inode *inode = file_inode(filp);
2424 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2426 /* Must validate to set it with SQLite behavior in Android. */
2427 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2429 return put_user(sb_feature, (u32 __user *)arg);
2433 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2435 struct inode *inode = file_inode(filp);
2436 struct f2fs_inode_info *fi = F2FS_I(inode);
2437 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2438 struct super_block *sb = sbi->sb;
2439 struct dquot *transfer_to[MAXQUOTAS] = {};
2444 if (!f2fs_sb_has_project_quota(sb)) {
2445 if (projid != F2FS_DEF_PROJID)
2451 if (!f2fs_has_extra_attr(inode))
2454 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2456 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2459 err = mnt_want_write_file(filp);
2466 /* Is it quota file? Do not allow user to mess with it */
2467 if (IS_NOQUOTA(inode))
2470 ipage = get_node_page(sbi, inode->i_ino);
2471 if (IS_ERR(ipage)) {
2472 err = PTR_ERR(ipage);
2476 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2479 f2fs_put_page(ipage, 1);
2482 f2fs_put_page(ipage, 1);
2484 dquot_initialize(inode);
2486 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2487 if (!IS_ERR(transfer_to[PRJQUOTA])) {
2488 err = __dquot_transfer(inode, transfer_to);
2489 dqput(transfer_to[PRJQUOTA]);
2494 F2FS_I(inode)->i_projid = kprojid;
2495 inode->i_ctime = current_time(inode);
2497 f2fs_mark_inode_dirty_sync(inode, true);
2499 inode_unlock(inode);
2500 mnt_drop_write_file(filp);
2504 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2506 if (projid != F2FS_DEF_PROJID)
2512 /* Transfer internal flags to xflags */
2513 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2517 if (iflags & FS_SYNC_FL)
2518 xflags |= FS_XFLAG_SYNC;
2519 if (iflags & FS_IMMUTABLE_FL)
2520 xflags |= FS_XFLAG_IMMUTABLE;
2521 if (iflags & FS_APPEND_FL)
2522 xflags |= FS_XFLAG_APPEND;
2523 if (iflags & FS_NODUMP_FL)
2524 xflags |= FS_XFLAG_NODUMP;
2525 if (iflags & FS_NOATIME_FL)
2526 xflags |= FS_XFLAG_NOATIME;
2527 if (iflags & FS_PROJINHERIT_FL)
2528 xflags |= FS_XFLAG_PROJINHERIT;
2532 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2533 FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2534 FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2536 /* Flags we can manipulate with through EXT4_IOC_FSSETXATTR */
2537 #define F2FS_FL_XFLAG_VISIBLE (FS_SYNC_FL | \
2544 /* Transfer xflags flags to internal */
2545 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2547 unsigned long iflags = 0;
2549 if (xflags & FS_XFLAG_SYNC)
2550 iflags |= FS_SYNC_FL;
2551 if (xflags & FS_XFLAG_IMMUTABLE)
2552 iflags |= FS_IMMUTABLE_FL;
2553 if (xflags & FS_XFLAG_APPEND)
2554 iflags |= FS_APPEND_FL;
2555 if (xflags & FS_XFLAG_NODUMP)
2556 iflags |= FS_NODUMP_FL;
2557 if (xflags & FS_XFLAG_NOATIME)
2558 iflags |= FS_NOATIME_FL;
2559 if (xflags & FS_XFLAG_PROJINHERIT)
2560 iflags |= FS_PROJINHERIT_FL;
2565 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2567 struct inode *inode = file_inode(filp);
2568 struct f2fs_inode_info *fi = F2FS_I(inode);
2571 memset(&fa, 0, sizeof(struct fsxattr));
2572 fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2573 (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL));
2575 if (f2fs_sb_has_project_quota(inode->i_sb))
2576 fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2579 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2584 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2586 struct inode *inode = file_inode(filp);
2587 struct f2fs_inode_info *fi = F2FS_I(inode);
2592 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2595 /* Make sure caller has proper permission */
2596 if (!inode_owner_or_capable(inode))
2599 if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2602 flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2603 if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2606 err = mnt_want_write_file(filp);
2611 flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2612 (flags & F2FS_FL_XFLAG_VISIBLE);
2613 err = __f2fs_ioc_setflags(inode, flags);
2614 inode_unlock(inode);
2615 mnt_drop_write_file(filp);
2619 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2626 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2629 case F2FS_IOC_GETFLAGS:
2630 return f2fs_ioc_getflags(filp, arg);
2631 case F2FS_IOC_SETFLAGS:
2632 return f2fs_ioc_setflags(filp, arg);
2633 case F2FS_IOC_GETVERSION:
2634 return f2fs_ioc_getversion(filp, arg);
2635 case F2FS_IOC_START_ATOMIC_WRITE:
2636 return f2fs_ioc_start_atomic_write(filp);
2637 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2638 return f2fs_ioc_commit_atomic_write(filp);
2639 case F2FS_IOC_START_VOLATILE_WRITE:
2640 return f2fs_ioc_start_volatile_write(filp);
2641 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2642 return f2fs_ioc_release_volatile_write(filp);
2643 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2644 return f2fs_ioc_abort_volatile_write(filp);
2645 case F2FS_IOC_SHUTDOWN:
2646 return f2fs_ioc_shutdown(filp, arg);
2648 return f2fs_ioc_fitrim(filp, arg);
2649 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2650 return f2fs_ioc_set_encryption_policy(filp, arg);
2651 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2652 return f2fs_ioc_get_encryption_policy(filp, arg);
2653 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2654 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2655 case F2FS_IOC_GARBAGE_COLLECT:
2656 return f2fs_ioc_gc(filp, arg);
2657 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2658 return f2fs_ioc_gc_range(filp, arg);
2659 case F2FS_IOC_WRITE_CHECKPOINT:
2660 return f2fs_ioc_write_checkpoint(filp, arg);
2661 case F2FS_IOC_DEFRAGMENT:
2662 return f2fs_ioc_defragment(filp, arg);
2663 case F2FS_IOC_MOVE_RANGE:
2664 return f2fs_ioc_move_range(filp, arg);
2665 case F2FS_IOC_FLUSH_DEVICE:
2666 return f2fs_ioc_flush_device(filp, arg);
2667 case F2FS_IOC_GET_FEATURES:
2668 return f2fs_ioc_get_features(filp, arg);
2669 case F2FS_IOC_FSGETXATTR:
2670 return f2fs_ioc_fsgetxattr(filp, arg);
2671 case F2FS_IOC_FSSETXATTR:
2672 return f2fs_ioc_fssetxattr(filp, arg);
2678 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2680 struct file *file = iocb->ki_filp;
2681 struct inode *inode = file_inode(file);
2682 struct blk_plug plug;
2686 ret = generic_write_checks(iocb, from);
2690 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2691 set_inode_flag(inode, FI_NO_PREALLOC);
2693 err = f2fs_preallocate_blocks(iocb, from);
2695 inode_unlock(inode);
2698 blk_start_plug(&plug);
2699 ret = __generic_file_write_iter(iocb, from);
2700 blk_finish_plug(&plug);
2701 clear_inode_flag(inode, FI_NO_PREALLOC);
2704 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
2706 inode_unlock(inode);
2709 ret = generic_write_sync(iocb, ret);
2713 #ifdef CONFIG_COMPAT
2714 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2717 case F2FS_IOC32_GETFLAGS:
2718 cmd = F2FS_IOC_GETFLAGS;
2720 case F2FS_IOC32_SETFLAGS:
2721 cmd = F2FS_IOC_SETFLAGS;
2723 case F2FS_IOC32_GETVERSION:
2724 cmd = F2FS_IOC_GETVERSION;
2726 case F2FS_IOC_START_ATOMIC_WRITE:
2727 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2728 case F2FS_IOC_START_VOLATILE_WRITE:
2729 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2730 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2731 case F2FS_IOC_SHUTDOWN:
2732 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2733 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2734 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2735 case F2FS_IOC_GARBAGE_COLLECT:
2736 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2737 case F2FS_IOC_WRITE_CHECKPOINT:
2738 case F2FS_IOC_DEFRAGMENT:
2739 case F2FS_IOC_MOVE_RANGE:
2740 case F2FS_IOC_FLUSH_DEVICE:
2741 case F2FS_IOC_GET_FEATURES:
2742 case F2FS_IOC_FSGETXATTR:
2743 case F2FS_IOC_FSSETXATTR:
2746 return -ENOIOCTLCMD;
2748 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2752 const struct file_operations f2fs_file_operations = {
2753 .llseek = f2fs_llseek,
2754 .read_iter = generic_file_read_iter,
2755 .write_iter = f2fs_file_write_iter,
2756 .open = f2fs_file_open,
2757 .release = f2fs_release_file,
2758 .mmap = f2fs_file_mmap,
2759 .flush = f2fs_file_flush,
2760 .fsync = f2fs_sync_file,
2761 .fallocate = f2fs_fallocate,
2762 .unlocked_ioctl = f2fs_ioctl,
2763 #ifdef CONFIG_COMPAT
2764 .compat_ioctl = f2fs_compat_ioctl,
2766 .splice_read = generic_file_splice_read,
2767 .splice_write = iter_file_splice_write,