1 /* Basic authentication token and access key management
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
23 struct kmem_cache *key_jar;
24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
30 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200; /* general key count quota */
33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
42 void __key_check(const struct key *key)
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key, key->magic, KEY_DEBUG_MAGIC);
51 * Get the key quota record for a user, allocating a new record if one doesn't
54 struct key_user *key_user_lookup(kuid_t uid)
56 struct key_user *candidate = NULL, *user;
57 struct rb_node *parent, **p;
61 p = &key_user_tree.rb_node;
62 spin_lock(&key_user_lock);
64 /* search the tree for a user record with a matching UID */
67 user = rb_entry(parent, struct key_user, node);
69 if (uid_lt(uid, user->uid))
71 else if (uid_gt(uid, user->uid))
77 /* if we get here, we failed to find a match in the tree */
79 /* allocate a candidate user record if we don't already have
81 spin_unlock(&key_user_lock);
84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 if (unlikely(!candidate))
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 refcount_set(&candidate->usage, 1);
97 atomic_set(&candidate->nkeys, 0);
98 atomic_set(&candidate->nikeys, 0);
100 candidate->qnkeys = 0;
101 candidate->qnbytes = 0;
102 spin_lock_init(&candidate->lock);
103 mutex_init(&candidate->cons_lock);
105 rb_link_node(&candidate->node, parent, p);
106 rb_insert_color(&candidate->node, &key_user_tree);
107 spin_unlock(&key_user_lock);
111 /* okay - we found a user record for this UID */
113 refcount_inc(&user->usage);
114 spin_unlock(&key_user_lock);
121 * Dispose of a user structure
123 void key_user_put(struct key_user *user)
125 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
126 rb_erase(&user->node, &key_user_tree);
127 spin_unlock(&key_user_lock);
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
137 static inline void key_alloc_serial(struct key *key)
139 struct rb_node *parent, **p;
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
145 get_random_bytes(&key->serial, sizeof(key->serial));
147 key->serial >>= 1; /* negative numbers are not permitted */
148 } while (key->serial < 3);
150 spin_lock(&key_serial_lock);
154 p = &key_serial_tree.rb_node;
158 xkey = rb_entry(parent, struct key, serial_node);
160 if (key->serial < xkey->serial)
162 else if (key->serial > xkey->serial)
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key->serial_node, parent, p);
170 rb_insert_color(&key->serial_node, &key_serial_tree);
172 spin_unlock(&key_serial_lock);
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
180 if (key->serial < 3) {
182 goto attempt_insertion;
185 parent = rb_next(parent);
187 goto attempt_insertion;
189 xkey = rb_entry(parent, struct key, serial_node);
190 if (key->serial < xkey->serial)
191 goto attempt_insertion;
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 * @restrict_link: Optional link restriction for new keyrings.
206 * Allocate a key of the specified type with the attributes given. The key is
207 * returned in an uninstantiated state and the caller needs to instantiate the
208 * key before returning.
210 * The restrict_link structure (if not NULL) will be freed when the
211 * keyring is destroyed, so it must be dynamically allocated.
213 * The user's key count quota is updated to reflect the creation of the key and
214 * the user's key data quota has the default for the key type reserved. The
215 * instantiation function should amend this as necessary. If insufficient
216 * quota is available, -EDQUOT will be returned.
218 * The LSM security modules can prevent a key being created, in which case
219 * -EACCES will be returned.
221 * Returns a pointer to the new key if successful and an error code otherwise.
223 * Note that the caller needs to ensure the key type isn't uninstantiated.
224 * Internally this can be done by locking key_types_sem. Externally, this can
225 * be done by either never unregistering the key type, or making sure
226 * key_alloc() calls don't race with module unloading.
228 struct key *key_alloc(struct key_type *type, const char *desc,
229 kuid_t uid, kgid_t gid, const struct cred *cred,
230 key_perm_t perm, unsigned long flags,
231 struct key_restriction *restrict_link)
233 struct key_user *user = NULL;
235 size_t desclen, quotalen;
238 key = ERR_PTR(-EINVAL);
242 if (type->vet_description) {
243 ret = type->vet_description(desc);
250 desclen = strlen(desc);
251 quotalen = desclen + 1 + type->def_datalen;
253 /* get hold of the key tracking for this user */
254 user = key_user_lookup(uid);
258 /* check that the user's quota permits allocation of another key and
260 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
261 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
262 key_quota_root_maxkeys : key_quota_maxkeys;
263 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
264 key_quota_root_maxbytes : key_quota_maxbytes;
266 spin_lock(&user->lock);
267 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
268 if (user->qnkeys + 1 > maxkeys ||
269 user->qnbytes + quotalen > maxbytes ||
270 user->qnbytes + quotalen < user->qnbytes)
275 user->qnbytes += quotalen;
276 spin_unlock(&user->lock);
279 /* allocate and initialise the key and its description */
280 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
284 key->index_key.desc_len = desclen;
285 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
286 if (!key->index_key.description)
289 refcount_set(&key->usage, 1);
290 init_rwsem(&key->sem);
291 lockdep_set_class(&key->sem, &type->lock_class);
292 key->index_key.type = type;
294 key->quotalen = quotalen;
295 key->datalen = type->def_datalen;
299 key->restrict_link = restrict_link;
300 key->last_used_at = ktime_get_real_seconds();
302 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
303 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
304 if (flags & KEY_ALLOC_BUILT_IN)
305 key->flags |= 1 << KEY_FLAG_BUILTIN;
306 if (flags & KEY_ALLOC_UID_KEYRING)
307 key->flags |= 1 << KEY_FLAG_UID_KEYRING;
310 key->magic = KEY_DEBUG_MAGIC;
313 /* let the security module know about the key */
314 ret = security_key_alloc(key, cred, flags);
318 /* publish the key by giving it a serial number */
319 atomic_inc(&user->nkeys);
320 key_alloc_serial(key);
326 kfree(key->description);
327 kmem_cache_free(key_jar, key);
328 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
329 spin_lock(&user->lock);
331 user->qnbytes -= quotalen;
332 spin_unlock(&user->lock);
339 kmem_cache_free(key_jar, key);
341 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
342 spin_lock(&user->lock);
344 user->qnbytes -= quotalen;
345 spin_unlock(&user->lock);
349 key = ERR_PTR(-ENOMEM);
353 spin_unlock(&user->lock);
355 key = ERR_PTR(-EDQUOT);
358 EXPORT_SYMBOL(key_alloc);
361 * key_payload_reserve - Adjust data quota reservation for the key's payload
362 * @key: The key to make the reservation for.
363 * @datalen: The amount of data payload the caller now wants.
365 * Adjust the amount of the owning user's key data quota that a key reserves.
366 * If the amount is increased, then -EDQUOT may be returned if there isn't
367 * enough free quota available.
369 * If successful, 0 is returned.
371 int key_payload_reserve(struct key *key, size_t datalen)
373 int delta = (int)datalen - key->datalen;
378 /* contemplate the quota adjustment */
379 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
380 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
381 key_quota_root_maxbytes : key_quota_maxbytes;
383 spin_lock(&key->user->lock);
386 (key->user->qnbytes + delta >= maxbytes ||
387 key->user->qnbytes + delta < key->user->qnbytes)) {
391 key->user->qnbytes += delta;
392 key->quotalen += delta;
394 spin_unlock(&key->user->lock);
397 /* change the recorded data length if that didn't generate an error */
399 key->datalen = datalen;
403 EXPORT_SYMBOL(key_payload_reserve);
406 * Change the key state to being instantiated.
408 static void mark_key_instantiated(struct key *key, int reject_error)
410 /* Commit the payload before setting the state; barrier versus
413 smp_store_release(&key->state,
414 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
418 * Instantiate a key and link it into the target keyring atomically. Must be
419 * called with the target keyring's semaphore writelocked. The target key's
420 * semaphore need not be locked as instantiation is serialised by
421 * key_construction_mutex.
423 static int __key_instantiate_and_link(struct key *key,
424 struct key_preparsed_payload *prep,
427 struct assoc_array_edit **_edit)
437 mutex_lock(&key_construction_mutex);
439 /* can't instantiate twice */
440 if (key->state == KEY_IS_UNINSTANTIATED) {
441 /* instantiate the key */
442 ret = key->type->instantiate(key, prep);
445 /* mark the key as being instantiated */
446 atomic_inc(&key->user->nikeys);
447 mark_key_instantiated(key, 0);
449 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
452 /* and link it into the destination keyring */
454 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
455 set_bit(KEY_FLAG_KEEP, &key->flags);
457 __key_link(key, _edit);
460 /* disable the authorisation key */
464 if (prep->expiry != TIME64_MAX) {
465 key->expiry = prep->expiry;
466 key_schedule_gc(prep->expiry + key_gc_delay);
471 mutex_unlock(&key_construction_mutex);
473 /* wake up anyone waiting for a key to be constructed */
475 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
481 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
482 * @key: The key to instantiate.
483 * @data: The data to use to instantiate the keyring.
484 * @datalen: The length of @data.
485 * @keyring: Keyring to create a link in on success (or NULL).
486 * @authkey: The authorisation token permitting instantiation.
488 * Instantiate a key that's in the uninstantiated state using the provided data
489 * and, if successful, link it in to the destination keyring if one is
492 * If successful, 0 is returned, the authorisation token is revoked and anyone
493 * waiting for the key is woken up. If the key was already instantiated,
494 * -EBUSY will be returned.
496 int key_instantiate_and_link(struct key *key,
502 struct key_preparsed_payload prep;
503 struct assoc_array_edit *edit;
506 memset(&prep, 0, sizeof(prep));
508 prep.datalen = datalen;
509 prep.quotalen = key->type->def_datalen;
510 prep.expiry = TIME64_MAX;
511 if (key->type->preparse) {
512 ret = key->type->preparse(&prep);
518 ret = __key_link_begin(keyring, &key->index_key, &edit);
522 if (keyring->restrict_link && keyring->restrict_link->check) {
523 struct key_restriction *keyres = keyring->restrict_link;
525 ret = keyres->check(keyring, key->type, &prep.payload,
532 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
536 __key_link_end(keyring, &key->index_key, edit);
539 if (key->type->preparse)
540 key->type->free_preparse(&prep);
544 EXPORT_SYMBOL(key_instantiate_and_link);
547 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
548 * @key: The key to instantiate.
549 * @timeout: The timeout on the negative key.
550 * @error: The error to return when the key is hit.
551 * @keyring: Keyring to create a link in on success (or NULL).
552 * @authkey: The authorisation token permitting instantiation.
554 * Negatively instantiate a key that's in the uninstantiated state and, if
555 * successful, set its timeout and stored error and link it in to the
556 * destination keyring if one is supplied. The key and any links to the key
557 * will be automatically garbage collected after the timeout expires.
559 * Negative keys are used to rate limit repeated request_key() calls by causing
560 * them to return the stored error code (typically ENOKEY) until the negative
563 * If successful, 0 is returned, the authorisation token is revoked and anyone
564 * waiting for the key is woken up. If the key was already instantiated,
565 * -EBUSY will be returned.
567 int key_reject_and_link(struct key *key,
573 struct assoc_array_edit *edit;
574 int ret, awaken, link_ret = 0;
583 if (keyring->restrict_link)
586 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
589 mutex_lock(&key_construction_mutex);
591 /* can't instantiate twice */
592 if (key->state == KEY_IS_UNINSTANTIATED) {
593 /* mark the key as being negatively instantiated */
594 atomic_inc(&key->user->nikeys);
595 mark_key_instantiated(key, -error);
596 key->expiry = ktime_get_real_seconds() + timeout;
597 key_schedule_gc(key->expiry + key_gc_delay);
599 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
604 /* and link it into the destination keyring */
605 if (keyring && link_ret == 0)
606 __key_link(key, &edit);
608 /* disable the authorisation key */
613 mutex_unlock(&key_construction_mutex);
615 if (keyring && link_ret == 0)
616 __key_link_end(keyring, &key->index_key, edit);
618 /* wake up anyone waiting for a key to be constructed */
620 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
622 return ret == 0 ? link_ret : ret;
624 EXPORT_SYMBOL(key_reject_and_link);
627 * key_put - Discard a reference to a key.
628 * @key: The key to discard a reference from.
630 * Discard a reference to a key, and when all the references are gone, we
631 * schedule the cleanup task to come and pull it out of the tree in process
632 * context at some later time.
634 void key_put(struct key *key)
639 if (refcount_dec_and_test(&key->usage))
640 schedule_work(&key_gc_work);
643 EXPORT_SYMBOL(key_put);
646 * Find a key by its serial number.
648 struct key *key_lookup(key_serial_t id)
653 spin_lock(&key_serial_lock);
655 /* search the tree for the specified key */
656 n = key_serial_tree.rb_node;
658 key = rb_entry(n, struct key, serial_node);
660 if (id < key->serial)
662 else if (id > key->serial)
669 key = ERR_PTR(-ENOKEY);
673 /* A key is allowed to be looked up only if someone still owns a
674 * reference to it - otherwise it's awaiting the gc.
676 if (!refcount_inc_not_zero(&key->usage))
680 spin_unlock(&key_serial_lock);
685 * Find and lock the specified key type against removal.
687 * We return with the sem read-locked if successful. If the type wasn't
688 * available -ENOKEY is returned instead.
690 struct key_type *key_type_lookup(const char *type)
692 struct key_type *ktype;
694 down_read(&key_types_sem);
696 /* look up the key type to see if it's one of the registered kernel
698 list_for_each_entry(ktype, &key_types_list, link) {
699 if (strcmp(ktype->name, type) == 0)
700 goto found_kernel_type;
703 up_read(&key_types_sem);
704 ktype = ERR_PTR(-ENOKEY);
710 void key_set_timeout(struct key *key, unsigned timeout)
714 /* make the changes with the locks held to prevent races */
715 down_write(&key->sem);
718 expiry = ktime_get_real_seconds() + timeout;
720 key->expiry = expiry;
721 key_schedule_gc(key->expiry + key_gc_delay);
725 EXPORT_SYMBOL_GPL(key_set_timeout);
728 * Unlock a key type locked by key_type_lookup().
730 void key_type_put(struct key_type *ktype)
732 up_read(&key_types_sem);
736 * Attempt to update an existing key.
738 * The key is given to us with an incremented refcount that we need to discard
739 * if we get an error.
741 static inline key_ref_t __key_update(key_ref_t key_ref,
742 struct key_preparsed_payload *prep)
744 struct key *key = key_ref_to_ptr(key_ref);
747 /* need write permission on the key to update it */
748 ret = key_permission(key_ref, KEY_NEED_WRITE);
753 if (!key->type->update)
756 down_write(&key->sem);
758 ret = key->type->update(key, prep);
760 /* Updating a negative key positively instantiates it */
761 mark_key_instantiated(key, 0);
772 key_ref = ERR_PTR(ret);
777 * key_create_or_update - Update or create and instantiate a key.
778 * @keyring_ref: A pointer to the destination keyring with possession flag.
779 * @type: The type of key.
780 * @description: The searchable description for the key.
781 * @payload: The data to use to instantiate or update the key.
782 * @plen: The length of @payload.
783 * @perm: The permissions mask for a new key.
784 * @flags: The quota flags for a new key.
786 * Search the destination keyring for a key of the same description and if one
787 * is found, update it, otherwise create and instantiate a new one and create a
788 * link to it from that keyring.
790 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
793 * Returns a pointer to the new key if successful, -ENODEV if the key type
794 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
795 * caller isn't permitted to modify the keyring or the LSM did not permit
796 * creation of the key.
798 * On success, the possession flag from the keyring ref will be tacked on to
799 * the key ref before it is returned.
801 key_ref_t key_create_or_update(key_ref_t keyring_ref,
803 const char *description,
809 struct keyring_index_key index_key = {
810 .description = description,
812 struct key_preparsed_payload prep;
813 struct assoc_array_edit *edit;
814 const struct cred *cred = current_cred();
815 struct key *keyring, *key = NULL;
818 struct key_restriction *restrict_link = NULL;
820 /* look up the key type to see if it's one of the registered kernel
822 index_key.type = key_type_lookup(type);
823 if (IS_ERR(index_key.type)) {
824 key_ref = ERR_PTR(-ENODEV);
828 key_ref = ERR_PTR(-EINVAL);
829 if (!index_key.type->instantiate ||
830 (!index_key.description && !index_key.type->preparse))
833 keyring = key_ref_to_ptr(keyring_ref);
837 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
838 restrict_link = keyring->restrict_link;
840 key_ref = ERR_PTR(-ENOTDIR);
841 if (keyring->type != &key_type_keyring)
844 memset(&prep, 0, sizeof(prep));
847 prep.quotalen = index_key.type->def_datalen;
848 prep.expiry = TIME64_MAX;
849 if (index_key.type->preparse) {
850 ret = index_key.type->preparse(&prep);
852 key_ref = ERR_PTR(ret);
853 goto error_free_prep;
855 if (!index_key.description)
856 index_key.description = prep.description;
857 key_ref = ERR_PTR(-EINVAL);
858 if (!index_key.description)
859 goto error_free_prep;
861 index_key.desc_len = strlen(index_key.description);
863 ret = __key_link_begin(keyring, &index_key, &edit);
865 key_ref = ERR_PTR(ret);
866 goto error_free_prep;
869 if (restrict_link && restrict_link->check) {
870 ret = restrict_link->check(keyring, index_key.type,
871 &prep.payload, restrict_link->key);
873 key_ref = ERR_PTR(ret);
878 /* if we're going to allocate a new key, we're going to have
879 * to modify the keyring */
880 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
882 key_ref = ERR_PTR(ret);
886 /* if it's possible to update this type of key, search for an existing
887 * key of the same type and description in the destination keyring and
888 * update that instead if possible
890 if (index_key.type->update) {
891 key_ref = find_key_to_update(keyring_ref, &index_key);
893 goto found_matching_key;
896 /* if the client doesn't provide, decide on the permissions we want */
897 if (perm == KEY_PERM_UNDEF) {
898 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
899 perm |= KEY_USR_VIEW;
901 if (index_key.type->read)
902 perm |= KEY_POS_READ;
904 if (index_key.type == &key_type_keyring ||
905 index_key.type->update)
906 perm |= KEY_POS_WRITE;
909 /* allocate a new key */
910 key = key_alloc(index_key.type, index_key.description,
911 cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
913 key_ref = ERR_CAST(key);
917 /* instantiate it and link it into the target keyring */
918 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
921 key_ref = ERR_PTR(ret);
925 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
928 __key_link_end(keyring, &index_key, edit);
930 if (index_key.type->preparse)
931 index_key.type->free_preparse(&prep);
933 key_type_put(index_key.type);
938 /* we found a matching key, so we're going to try to update it
939 * - we can drop the locks first as we have the key pinned
941 __key_link_end(keyring, &index_key, edit);
943 key = key_ref_to_ptr(key_ref);
944 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
945 ret = wait_for_key_construction(key, true);
947 key_ref_put(key_ref);
948 key_ref = ERR_PTR(ret);
949 goto error_free_prep;
953 key_ref = __key_update(key_ref, &prep);
954 goto error_free_prep;
956 EXPORT_SYMBOL(key_create_or_update);
959 * key_update - Update a key's contents.
960 * @key_ref: The pointer (plus possession flag) to the key.
961 * @payload: The data to be used to update the key.
962 * @plen: The length of @payload.
964 * Attempt to update the contents of a key with the given payload data. The
965 * caller must be granted Write permission on the key. Negative keys can be
966 * instantiated by this method.
968 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
969 * type does not support updating. The key type may return other errors.
971 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
973 struct key_preparsed_payload prep;
974 struct key *key = key_ref_to_ptr(key_ref);
979 /* the key must be writable */
980 ret = key_permission(key_ref, KEY_NEED_WRITE);
984 /* attempt to update it if supported */
985 if (!key->type->update)
988 memset(&prep, 0, sizeof(prep));
991 prep.quotalen = key->type->def_datalen;
992 prep.expiry = TIME64_MAX;
993 if (key->type->preparse) {
994 ret = key->type->preparse(&prep);
999 down_write(&key->sem);
1001 ret = key->type->update(key, &prep);
1003 /* Updating a negative key positively instantiates it */
1004 mark_key_instantiated(key, 0);
1006 up_write(&key->sem);
1009 if (key->type->preparse)
1010 key->type->free_preparse(&prep);
1013 EXPORT_SYMBOL(key_update);
1016 * key_revoke - Revoke a key.
1017 * @key: The key to be revoked.
1019 * Mark a key as being revoked and ask the type to free up its resources. The
1020 * revocation timeout is set and the key and all its links will be
1021 * automatically garbage collected after key_gc_delay amount of time if they
1022 * are not manually dealt with first.
1024 void key_revoke(struct key *key)
1030 /* make sure no one's trying to change or use the key when we mark it
1031 * - we tell lockdep that we might nest because we might be revoking an
1032 * authorisation key whilst holding the sem on a key we've just
1035 down_write_nested(&key->sem, 1);
1036 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1038 key->type->revoke(key);
1040 /* set the death time to no more than the expiry time */
1041 time = ktime_get_real_seconds();
1042 if (key->revoked_at == 0 || key->revoked_at > time) {
1043 key->revoked_at = time;
1044 key_schedule_gc(key->revoked_at + key_gc_delay);
1047 up_write(&key->sem);
1049 EXPORT_SYMBOL(key_revoke);
1052 * key_invalidate - Invalidate a key.
1053 * @key: The key to be invalidated.
1055 * Mark a key as being invalidated and have it cleaned up immediately. The key
1056 * is ignored by all searches and other operations from this point.
1058 void key_invalidate(struct key *key)
1060 kenter("%d", key_serial(key));
1064 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1065 down_write_nested(&key->sem, 1);
1066 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1067 key_schedule_gc_links();
1068 up_write(&key->sem);
1071 EXPORT_SYMBOL(key_invalidate);
1074 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1075 * @key: The key to be instantiated
1076 * @prep: The preparsed data to load.
1078 * Instantiate a key from preparsed data. We assume we can just copy the data
1079 * in directly and clear the old pointers.
1081 * This can be pointed to directly by the key type instantiate op pointer.
1083 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1087 pr_devel("==>%s()\n", __func__);
1089 ret = key_payload_reserve(key, prep->quotalen);
1091 rcu_assign_keypointer(key, prep->payload.data[0]);
1092 key->payload.data[1] = prep->payload.data[1];
1093 key->payload.data[2] = prep->payload.data[2];
1094 key->payload.data[3] = prep->payload.data[3];
1095 prep->payload.data[0] = NULL;
1096 prep->payload.data[1] = NULL;
1097 prep->payload.data[2] = NULL;
1098 prep->payload.data[3] = NULL;
1100 pr_devel("<==%s() = %d\n", __func__, ret);
1103 EXPORT_SYMBOL(generic_key_instantiate);
1106 * register_key_type - Register a type of key.
1107 * @ktype: The new key type.
1109 * Register a new key type.
1111 * Returns 0 on success or -EEXIST if a type of this name already exists.
1113 int register_key_type(struct key_type *ktype)
1118 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1121 down_write(&key_types_sem);
1123 /* disallow key types with the same name */
1124 list_for_each_entry(p, &key_types_list, link) {
1125 if (strcmp(p->name, ktype->name) == 0)
1129 /* store the type */
1130 list_add(&ktype->link, &key_types_list);
1132 pr_notice("Key type %s registered\n", ktype->name);
1136 up_write(&key_types_sem);
1139 EXPORT_SYMBOL(register_key_type);
1142 * unregister_key_type - Unregister a type of key.
1143 * @ktype: The key type.
1145 * Unregister a key type and mark all the extant keys of this type as dead.
1146 * Those keys of this type are then destroyed to get rid of their payloads and
1147 * they and their links will be garbage collected as soon as possible.
1149 void unregister_key_type(struct key_type *ktype)
1151 down_write(&key_types_sem);
1152 list_del_init(&ktype->link);
1153 downgrade_write(&key_types_sem);
1154 key_gc_keytype(ktype);
1155 pr_notice("Key type %s unregistered\n", ktype->name);
1156 up_read(&key_types_sem);
1158 EXPORT_SYMBOL(unregister_key_type);
1161 * Initialise the key management state.
1163 void __init key_init(void)
1165 /* allocate a slab in which we can store keys */
1166 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1167 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1169 /* add the special key types */
1170 list_add_tail(&key_type_keyring.link, &key_types_list);
1171 list_add_tail(&key_type_dead.link, &key_types_list);
1172 list_add_tail(&key_type_user.link, &key_types_list);
1173 list_add_tail(&key_type_logon.link, &key_types_list);
1175 /* record the root user tracking */
1176 rb_link_node(&root_key_user.node,
1178 &key_user_tree.rb_node);
1180 rb_insert_color(&root_key_user.node,