]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/selftest_engine_pm.c
Merge tag 'drm-intel-gt-next-2021-05-28' of git://anongit.freedesktop.org/drm/drm...
[linux.git] / drivers / gpu / drm / i915 / gt / selftest_engine_pm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright © 2018 Intel Corporation
4  */
5
6 #include <linux/sort.h>
7
8 #include "i915_selftest.h"
9 #include "intel_gpu_commands.h"
10 #include "intel_gt_clock_utils.h"
11 #include "selftest_engine.h"
12 #include "selftest_engine_heartbeat.h"
13 #include "selftests/igt_atomic.h"
14 #include "selftests/igt_flush_test.h"
15 #include "selftests/igt_spinner.h"
16
17 #define COUNT 5
18
19 static int cmp_u64(const void *A, const void *B)
20 {
21         const u64 *a = A, *b = B;
22
23         return *a - *b;
24 }
25
26 static u64 trifilter(u64 *a)
27 {
28         sort(a, COUNT, sizeof(*a), cmp_u64, NULL);
29         return (a[1] + 2 * a[2] + a[3]) >> 2;
30 }
31
32 static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value)
33 {
34         *cs++ = MI_SEMAPHORE_WAIT |
35                 MI_SEMAPHORE_GLOBAL_GTT |
36                 MI_SEMAPHORE_POLL |
37                 op;
38         *cs++ = value;
39         *cs++ = offset;
40         *cs++ = 0;
41
42         return cs;
43 }
44
45 static u32 *emit_store(u32 *cs, u32 offset, u32 value)
46 {
47         *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
48         *cs++ = offset;
49         *cs++ = 0;
50         *cs++ = value;
51
52         return cs;
53 }
54
55 static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset)
56 {
57         *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
58         *cs++ = i915_mmio_reg_offset(reg);
59         *cs++ = offset;
60         *cs++ = 0;
61
62         return cs;
63 }
64
65 static void write_semaphore(u32 *x, u32 value)
66 {
67         WRITE_ONCE(*x, value);
68         wmb();
69 }
70
71 static int __measure_timestamps(struct intel_context *ce,
72                                 u64 *dt, u64 *d_ring, u64 *d_ctx)
73 {
74         struct intel_engine_cs *engine = ce->engine;
75         u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5);
76         u32 offset = i915_ggtt_offset(engine->status_page.vma);
77         struct i915_request *rq;
78         u32 *cs;
79
80         rq = intel_context_create_request(ce);
81         if (IS_ERR(rq))
82                 return PTR_ERR(rq);
83
84         cs = intel_ring_begin(rq, 28);
85         if (IS_ERR(cs)) {
86                 i915_request_add(rq);
87                 return PTR_ERR(cs);
88         }
89
90         /* Signal & wait for start */
91         cs = emit_store(cs, offset + 4008, 1);
92         cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1);
93
94         cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000);
95         cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004);
96
97         /* Busy wait */
98         cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1);
99
100         cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016);
101         cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012);
102
103         intel_ring_advance(rq, cs);
104         i915_request_get(rq);
105         i915_request_add(rq);
106         intel_engine_flush_submission(engine);
107
108         /* Wait for the request to start executing, that then waits for us */
109         while (READ_ONCE(sema[2]) == 0)
110                 cpu_relax();
111
112         /* Run the request for a 100us, sampling timestamps before/after */
113         local_irq_disable();
114         write_semaphore(&sema[2], 0);
115         while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */
116                 cpu_relax();
117         *dt = local_clock();
118         udelay(100);
119         *dt = local_clock() - *dt;
120         write_semaphore(&sema[2], 1);
121         local_irq_enable();
122
123         if (i915_request_wait(rq, 0, HZ / 2) < 0) {
124                 i915_request_put(rq);
125                 return -ETIME;
126         }
127         i915_request_put(rq);
128
129         pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n",
130                  engine->name, sema[1], sema[3], sema[0], sema[4]);
131
132         *d_ctx = sema[3] - sema[1];
133         *d_ring = sema[4] - sema[0];
134         return 0;
135 }
136
137 static int __live_engine_timestamps(struct intel_engine_cs *engine)
138 {
139         u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt;
140         struct intel_context *ce;
141         int i, err = 0;
142
143         ce = intel_context_create(engine);
144         if (IS_ERR(ce))
145                 return PTR_ERR(ce);
146
147         for (i = 0; i < COUNT; i++) {
148                 err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]);
149                 if (err)
150                         break;
151         }
152         intel_context_put(ce);
153         if (err)
154                 return err;
155
156         dt = trifilter(st);
157         d_ring = trifilter(s_ring);
158         d_ctx = trifilter(s_ctx);
159
160         pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n",
161                 engine->name, dt,
162                 intel_gt_clock_interval_to_ns(engine->gt, d_ctx),
163                 intel_gt_clock_interval_to_ns(engine->gt, d_ring));
164
165         d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring);
166         if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) {
167                 pr_err("%s Mismatch between ring timestamp and walltime!\n",
168                        engine->name);
169                 return -EINVAL;
170         }
171
172         d_ring = trifilter(s_ring);
173         d_ctx = trifilter(s_ctx);
174
175         d_ctx *= engine->gt->clock_frequency;
176         if (IS_ICELAKE(engine->i915))
177                 d_ring *= 12500000; /* Fixed 80ns for icl ctx timestamp? */
178         else
179                 d_ring *= engine->gt->clock_frequency;
180
181         if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) {
182                 pr_err("%s Mismatch between ring and context timestamps!\n",
183                        engine->name);
184                 return -EINVAL;
185         }
186
187         return 0;
188 }
189
190 static int live_engine_timestamps(void *arg)
191 {
192         struct intel_gt *gt = arg;
193         struct intel_engine_cs *engine;
194         enum intel_engine_id id;
195
196         /*
197          * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share
198          * the same CS clock.
199          */
200
201         if (INTEL_GEN(gt->i915) < 8)
202                 return 0;
203
204         for_each_engine(engine, gt, id) {
205                 int err;
206
207                 st_engine_heartbeat_disable(engine);
208                 err = __live_engine_timestamps(engine);
209                 st_engine_heartbeat_enable(engine);
210                 if (err)
211                         return err;
212         }
213
214         return 0;
215 }
216
217 static int live_engine_busy_stats(void *arg)
218 {
219         struct intel_gt *gt = arg;
220         struct intel_engine_cs *engine;
221         enum intel_engine_id id;
222         struct igt_spinner spin;
223         int err = 0;
224
225         /*
226          * Check that if an engine supports busy-stats, they tell the truth.
227          */
228
229         if (igt_spinner_init(&spin, gt))
230                 return -ENOMEM;
231
232         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
233         for_each_engine(engine, gt, id) {
234                 struct i915_request *rq;
235                 ktime_t de, dt;
236                 ktime_t t[2];
237
238                 if (!intel_engine_supports_stats(engine))
239                         continue;
240
241                 if (!intel_engine_can_store_dword(engine))
242                         continue;
243
244                 if (intel_gt_pm_wait_for_idle(gt)) {
245                         err = -EBUSY;
246                         break;
247                 }
248
249                 st_engine_heartbeat_disable(engine);
250
251                 ENGINE_TRACE(engine, "measuring idle time\n");
252                 preempt_disable();
253                 de = intel_engine_get_busy_time(engine, &t[0]);
254                 udelay(100);
255                 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
256                 preempt_enable();
257                 dt = ktime_sub(t[1], t[0]);
258                 if (de < 0 || de > 10) {
259                         pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n",
260                                engine->name,
261                                de, (int)div64_u64(100 * de, dt), dt);
262                         GEM_TRACE_DUMP();
263                         err = -EINVAL;
264                         goto end;
265                 }
266
267                 /* 100% busy */
268                 rq = igt_spinner_create_request(&spin,
269                                                 engine->kernel_context,
270                                                 MI_NOOP);
271                 if (IS_ERR(rq)) {
272                         err = PTR_ERR(rq);
273                         goto end;
274                 }
275                 i915_request_add(rq);
276
277                 if (!igt_wait_for_spinner(&spin, rq)) {
278                         intel_gt_set_wedged(engine->gt);
279                         err = -ETIME;
280                         goto end;
281                 }
282
283                 ENGINE_TRACE(engine, "measuring busy time\n");
284                 preempt_disable();
285                 de = intel_engine_get_busy_time(engine, &t[0]);
286                 udelay(100);
287                 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
288                 preempt_enable();
289                 dt = ktime_sub(t[1], t[0]);
290                 if (100 * de < 95 * dt || 95 * de > 100 * dt) {
291                         pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n",
292                                engine->name,
293                                de, (int)div64_u64(100 * de, dt), dt);
294                         GEM_TRACE_DUMP();
295                         err = -EINVAL;
296                         goto end;
297                 }
298
299 end:
300                 st_engine_heartbeat_enable(engine);
301                 igt_spinner_end(&spin);
302                 if (igt_flush_test(gt->i915))
303                         err = -EIO;
304                 if (err)
305                         break;
306         }
307
308         igt_spinner_fini(&spin);
309         if (igt_flush_test(gt->i915))
310                 err = -EIO;
311         return err;
312 }
313
314 static int live_engine_pm(void *arg)
315 {
316         struct intel_gt *gt = arg;
317         struct intel_engine_cs *engine;
318         enum intel_engine_id id;
319
320         /*
321          * Check we can call intel_engine_pm_put from any context. No
322          * failures are reported directly, but if we mess up lockdep should
323          * tell us.
324          */
325         if (intel_gt_pm_wait_for_idle(gt)) {
326                 pr_err("Unable to flush GT pm before test\n");
327                 return -EBUSY;
328         }
329
330         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
331         for_each_engine(engine, gt, id) {
332                 const typeof(*igt_atomic_phases) *p;
333
334                 for (p = igt_atomic_phases; p->name; p++) {
335                         /*
336                          * Acquisition is always synchronous, except if we
337                          * know that the engine is already awake, in which
338                          * case we should use intel_engine_pm_get_if_awake()
339                          * to atomically grab the wakeref.
340                          *
341                          * In practice,
342                          *    intel_engine_pm_get();
343                          *    intel_engine_pm_put();
344                          * occurs in one thread, while simultaneously
345                          *    intel_engine_pm_get_if_awake();
346                          *    intel_engine_pm_put();
347                          * occurs from atomic context in another.
348                          */
349                         GEM_BUG_ON(intel_engine_pm_is_awake(engine));
350                         intel_engine_pm_get(engine);
351
352                         p->critical_section_begin();
353                         if (!intel_engine_pm_get_if_awake(engine))
354                                 pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n",
355                                        engine->name, p->name);
356                         else
357                                 intel_engine_pm_put_async(engine);
358                         intel_engine_pm_put_async(engine);
359                         p->critical_section_end();
360
361                         intel_engine_pm_flush(engine);
362
363                         if (intel_engine_pm_is_awake(engine)) {
364                                 pr_err("%s is still awake after flushing pm\n",
365                                        engine->name);
366                                 return -EINVAL;
367                         }
368
369                         /* gt wakeref is async (deferred to workqueue) */
370                         if (intel_gt_pm_wait_for_idle(gt)) {
371                                 pr_err("GT failed to idle\n");
372                                 return -EINVAL;
373                         }
374                 }
375         }
376
377         return 0;
378 }
379
380 int live_engine_pm_selftests(struct intel_gt *gt)
381 {
382         static const struct i915_subtest tests[] = {
383                 SUBTEST(live_engine_timestamps),
384                 SUBTEST(live_engine_busy_stats),
385                 SUBTEST(live_engine_pm),
386         };
387
388         return intel_gt_live_subtests(tests, gt);
389 }
This page took 0.063592 seconds and 4 git commands to generate.