1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright © 2018 Intel Corporation
6 #include <linux/sort.h>
8 #include "i915_selftest.h"
9 #include "intel_gpu_commands.h"
10 #include "intel_gt_clock_utils.h"
11 #include "selftest_engine.h"
12 #include "selftest_engine_heartbeat.h"
13 #include "selftests/igt_atomic.h"
14 #include "selftests/igt_flush_test.h"
15 #include "selftests/igt_spinner.h"
19 static int cmp_u64(const void *A, const void *B)
21 const u64 *a = A, *b = B;
26 static u64 trifilter(u64 *a)
28 sort(a, COUNT, sizeof(*a), cmp_u64, NULL);
29 return (a[1] + 2 * a[2] + a[3]) >> 2;
32 static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value)
34 *cs++ = MI_SEMAPHORE_WAIT |
35 MI_SEMAPHORE_GLOBAL_GTT |
45 static u32 *emit_store(u32 *cs, u32 offset, u32 value)
47 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
55 static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset)
57 *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
58 *cs++ = i915_mmio_reg_offset(reg);
65 static void write_semaphore(u32 *x, u32 value)
67 WRITE_ONCE(*x, value);
71 static int __measure_timestamps(struct intel_context *ce,
72 u64 *dt, u64 *d_ring, u64 *d_ctx)
74 struct intel_engine_cs *engine = ce->engine;
75 u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5);
76 u32 offset = i915_ggtt_offset(engine->status_page.vma);
77 struct i915_request *rq;
80 rq = intel_context_create_request(ce);
84 cs = intel_ring_begin(rq, 28);
90 /* Signal & wait for start */
91 cs = emit_store(cs, offset + 4008, 1);
92 cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1);
94 cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000);
95 cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004);
98 cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1);
100 cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016);
101 cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012);
103 intel_ring_advance(rq, cs);
104 i915_request_get(rq);
105 i915_request_add(rq);
106 intel_engine_flush_submission(engine);
108 /* Wait for the request to start executing, that then waits for us */
109 while (READ_ONCE(sema[2]) == 0)
112 /* Run the request for a 100us, sampling timestamps before/after */
114 write_semaphore(&sema[2], 0);
115 while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */
119 *dt = local_clock() - *dt;
120 write_semaphore(&sema[2], 1);
123 if (i915_request_wait(rq, 0, HZ / 2) < 0) {
124 i915_request_put(rq);
127 i915_request_put(rq);
129 pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n",
130 engine->name, sema[1], sema[3], sema[0], sema[4]);
132 *d_ctx = sema[3] - sema[1];
133 *d_ring = sema[4] - sema[0];
137 static int __live_engine_timestamps(struct intel_engine_cs *engine)
139 u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt;
140 struct intel_context *ce;
143 ce = intel_context_create(engine);
147 for (i = 0; i < COUNT; i++) {
148 err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]);
152 intel_context_put(ce);
157 d_ring = trifilter(s_ring);
158 d_ctx = trifilter(s_ctx);
160 pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n",
162 intel_gt_clock_interval_to_ns(engine->gt, d_ctx),
163 intel_gt_clock_interval_to_ns(engine->gt, d_ring));
165 d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring);
166 if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) {
167 pr_err("%s Mismatch between ring timestamp and walltime!\n",
172 d_ring = trifilter(s_ring);
173 d_ctx = trifilter(s_ctx);
175 d_ctx *= engine->gt->clock_frequency;
176 if (IS_ICELAKE(engine->i915))
177 d_ring *= 12500000; /* Fixed 80ns for icl ctx timestamp? */
179 d_ring *= engine->gt->clock_frequency;
181 if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) {
182 pr_err("%s Mismatch between ring and context timestamps!\n",
190 static int live_engine_timestamps(void *arg)
192 struct intel_gt *gt = arg;
193 struct intel_engine_cs *engine;
194 enum intel_engine_id id;
197 * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share
201 if (INTEL_GEN(gt->i915) < 8)
204 for_each_engine(engine, gt, id) {
207 st_engine_heartbeat_disable(engine);
208 err = __live_engine_timestamps(engine);
209 st_engine_heartbeat_enable(engine);
217 static int live_engine_busy_stats(void *arg)
219 struct intel_gt *gt = arg;
220 struct intel_engine_cs *engine;
221 enum intel_engine_id id;
222 struct igt_spinner spin;
226 * Check that if an engine supports busy-stats, they tell the truth.
229 if (igt_spinner_init(&spin, gt))
232 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
233 for_each_engine(engine, gt, id) {
234 struct i915_request *rq;
238 if (!intel_engine_supports_stats(engine))
241 if (!intel_engine_can_store_dword(engine))
244 if (intel_gt_pm_wait_for_idle(gt)) {
249 st_engine_heartbeat_disable(engine);
251 ENGINE_TRACE(engine, "measuring idle time\n");
253 de = intel_engine_get_busy_time(engine, &t[0]);
255 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
257 dt = ktime_sub(t[1], t[0]);
258 if (de < 0 || de > 10) {
259 pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n",
261 de, (int)div64_u64(100 * de, dt), dt);
268 rq = igt_spinner_create_request(&spin,
269 engine->kernel_context,
275 i915_request_add(rq);
277 if (!igt_wait_for_spinner(&spin, rq)) {
278 intel_gt_set_wedged(engine->gt);
283 ENGINE_TRACE(engine, "measuring busy time\n");
285 de = intel_engine_get_busy_time(engine, &t[0]);
287 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
289 dt = ktime_sub(t[1], t[0]);
290 if (100 * de < 95 * dt || 95 * de > 100 * dt) {
291 pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n",
293 de, (int)div64_u64(100 * de, dt), dt);
300 st_engine_heartbeat_enable(engine);
301 igt_spinner_end(&spin);
302 if (igt_flush_test(gt->i915))
308 igt_spinner_fini(&spin);
309 if (igt_flush_test(gt->i915))
314 static int live_engine_pm(void *arg)
316 struct intel_gt *gt = arg;
317 struct intel_engine_cs *engine;
318 enum intel_engine_id id;
321 * Check we can call intel_engine_pm_put from any context. No
322 * failures are reported directly, but if we mess up lockdep should
325 if (intel_gt_pm_wait_for_idle(gt)) {
326 pr_err("Unable to flush GT pm before test\n");
330 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
331 for_each_engine(engine, gt, id) {
332 const typeof(*igt_atomic_phases) *p;
334 for (p = igt_atomic_phases; p->name; p++) {
336 * Acquisition is always synchronous, except if we
337 * know that the engine is already awake, in which
338 * case we should use intel_engine_pm_get_if_awake()
339 * to atomically grab the wakeref.
342 * intel_engine_pm_get();
343 * intel_engine_pm_put();
344 * occurs in one thread, while simultaneously
345 * intel_engine_pm_get_if_awake();
346 * intel_engine_pm_put();
347 * occurs from atomic context in another.
349 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
350 intel_engine_pm_get(engine);
352 p->critical_section_begin();
353 if (!intel_engine_pm_get_if_awake(engine))
354 pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n",
355 engine->name, p->name);
357 intel_engine_pm_put_async(engine);
358 intel_engine_pm_put_async(engine);
359 p->critical_section_end();
361 intel_engine_pm_flush(engine);
363 if (intel_engine_pm_is_awake(engine)) {
364 pr_err("%s is still awake after flushing pm\n",
369 /* gt wakeref is async (deferred to workqueue) */
370 if (intel_gt_pm_wait_for_idle(gt)) {
371 pr_err("GT failed to idle\n");
380 int live_engine_pm_selftests(struct intel_gt *gt)
382 static const struct i915_subtest tests[] = {
383 SUBTEST(live_engine_timestamps),
384 SUBTEST(live_engine_busy_stats),
385 SUBTEST(live_engine_pm),
388 return intel_gt_live_subtests(tests, gt);