2 * Procedures for creating, accessing and interpreting the device tree.
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
21 #define pr_fmt(fmt) "OF: " fmt
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/of_graph.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/proc_fs.h>
35 #include "of_private.h"
37 LIST_HEAD(aliases_lookup);
39 struct device_node *of_root;
40 EXPORT_SYMBOL(of_root);
41 struct device_node *of_chosen;
42 struct device_node *of_aliases;
43 struct device_node *of_stdout;
44 static const char *of_stdout_options;
49 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
50 * This mutex must be held whenever modifications are being made to the
51 * device tree. The of_{attach,detach}_node() and
52 * of_{add,remove,update}_property() helpers make sure this happens.
54 DEFINE_MUTEX(of_mutex);
56 /* use when traversing tree through the child, sibling,
57 * or parent members of struct device_node.
59 DEFINE_RAW_SPINLOCK(devtree_lock);
61 int of_n_addr_cells(struct device_node *np)
68 ip = of_get_property(np, "#address-cells", NULL);
70 return be32_to_cpup(ip);
72 /* No #address-cells property for the root node */
73 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
75 EXPORT_SYMBOL(of_n_addr_cells);
77 int of_n_size_cells(struct device_node *np)
84 ip = of_get_property(np, "#size-cells", NULL);
86 return be32_to_cpup(ip);
88 /* No #size-cells property for the root node */
89 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
91 EXPORT_SYMBOL(of_n_size_cells);
94 int __weak of_node_to_nid(struct device_node *np)
100 #ifndef CONFIG_OF_DYNAMIC
101 static void of_node_release(struct kobject *kobj)
103 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
105 #endif /* CONFIG_OF_DYNAMIC */
107 struct kobj_type of_node_ktype = {
108 .release = of_node_release,
111 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
112 struct bin_attribute *bin_attr, char *buf,
113 loff_t offset, size_t count)
115 struct property *pp = container_of(bin_attr, struct property, attr);
116 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
119 /* always return newly allocated name, caller must free after use */
120 static const char *safe_name(struct kobject *kobj, const char *orig_name)
122 const char *name = orig_name;
123 struct kernfs_node *kn;
126 /* don't be a hero. After 16 tries give up */
127 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
129 if (name != orig_name)
131 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
134 if (name == orig_name) {
135 name = kstrdup(orig_name, GFP_KERNEL);
137 pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
138 kobject_name(kobj), name);
143 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
147 /* Important: Don't leak passwords */
148 bool secure = strncmp(pp->name, "security-", 9) == 0;
150 if (!IS_ENABLED(CONFIG_SYSFS))
153 if (!of_kset || !of_node_is_attached(np))
156 sysfs_bin_attr_init(&pp->attr);
157 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
158 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
159 pp->attr.size = secure ? 0 : pp->length;
160 pp->attr.read = of_node_property_read;
162 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
163 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
167 int __of_attach_node_sysfs(struct device_node *np)
170 struct kobject *parent;
174 if (!IS_ENABLED(CONFIG_SYSFS))
180 np->kobj.kset = of_kset;
182 /* Nodes without parents are new top level trees */
183 name = safe_name(&of_kset->kobj, "base");
186 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
187 parent = &np->parent->kobj;
191 rc = kobject_add(&np->kobj, parent, "%s", name);
196 for_each_property_of_node(np, pp)
197 __of_add_property_sysfs(np, pp);
202 void __init of_core_init(void)
204 struct device_node *np;
206 /* Create the kset, and register existing nodes */
207 mutex_lock(&of_mutex);
208 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
210 mutex_unlock(&of_mutex);
211 pr_err("failed to register existing nodes\n");
214 for_each_of_allnodes(np)
215 __of_attach_node_sysfs(np);
216 mutex_unlock(&of_mutex);
218 /* Symlink in /proc as required by userspace ABI */
220 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
223 static struct property *__of_find_property(const struct device_node *np,
224 const char *name, int *lenp)
231 for (pp = np->properties; pp; pp = pp->next) {
232 if (of_prop_cmp(pp->name, name) == 0) {
242 struct property *of_find_property(const struct device_node *np,
249 raw_spin_lock_irqsave(&devtree_lock, flags);
250 pp = __of_find_property(np, name, lenp);
251 raw_spin_unlock_irqrestore(&devtree_lock, flags);
255 EXPORT_SYMBOL(of_find_property);
257 struct device_node *__of_find_all_nodes(struct device_node *prev)
259 struct device_node *np;
262 } else if (prev->child) {
265 /* Walk back up looking for a sibling, or the end of the structure */
267 while (np->parent && !np->sibling)
269 np = np->sibling; /* Might be null at the end of the tree */
275 * of_find_all_nodes - Get next node in global list
276 * @prev: Previous node or NULL to start iteration
277 * of_node_put() will be called on it
279 * Returns a node pointer with refcount incremented, use
280 * of_node_put() on it when done.
282 struct device_node *of_find_all_nodes(struct device_node *prev)
284 struct device_node *np;
287 raw_spin_lock_irqsave(&devtree_lock, flags);
288 np = __of_find_all_nodes(prev);
291 raw_spin_unlock_irqrestore(&devtree_lock, flags);
294 EXPORT_SYMBOL(of_find_all_nodes);
297 * Find a property with a given name for a given node
298 * and return the value.
300 const void *__of_get_property(const struct device_node *np,
301 const char *name, int *lenp)
303 struct property *pp = __of_find_property(np, name, lenp);
305 return pp ? pp->value : NULL;
309 * Find a property with a given name for a given node
310 * and return the value.
312 const void *of_get_property(const struct device_node *np, const char *name,
315 struct property *pp = of_find_property(np, name, lenp);
317 return pp ? pp->value : NULL;
319 EXPORT_SYMBOL(of_get_property);
322 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
324 * @cpu: logical cpu index of a core/thread
325 * @phys_id: physical identifier of a core/thread
327 * CPU logical to physical index mapping is architecture specific.
328 * However this __weak function provides a default match of physical
329 * id to logical cpu index. phys_id provided here is usually values read
330 * from the device tree which must match the hardware internal registers.
332 * Returns true if the physical identifier and the logical cpu index
333 * correspond to the same core/thread, false otherwise.
335 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
337 return (u32)phys_id == cpu;
341 * Checks if the given "prop_name" property holds the physical id of the
342 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
343 * NULL, local thread number within the core is returned in it.
345 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
346 const char *prop_name, int cpu, unsigned int *thread)
349 int ac, prop_len, tid;
352 ac = of_n_addr_cells(cpun);
353 cell = of_get_property(cpun, prop_name, &prop_len);
356 prop_len /= sizeof(*cell) * ac;
357 for (tid = 0; tid < prop_len; tid++) {
358 hwid = of_read_number(cell, ac);
359 if (arch_match_cpu_phys_id(cpu, hwid)) {
370 * arch_find_n_match_cpu_physical_id - See if the given device node is
371 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
372 * else false. If 'thread' is non-NULL, the local thread number within the
373 * core is returned in it.
375 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
376 int cpu, unsigned int *thread)
378 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
379 * for thread ids on PowerPC. If it doesn't exist fallback to
380 * standard "reg" property.
382 if (IS_ENABLED(CONFIG_PPC) &&
383 __of_find_n_match_cpu_property(cpun,
384 "ibm,ppc-interrupt-server#s",
388 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
392 * of_get_cpu_node - Get device node associated with the given logical CPU
394 * @cpu: CPU number(logical index) for which device node is required
395 * @thread: if not NULL, local thread number within the physical core is
398 * The main purpose of this function is to retrieve the device node for the
399 * given logical CPU index. It should be used to initialize the of_node in
400 * cpu device. Once of_node in cpu device is populated, all the further
401 * references can use that instead.
403 * CPU logical to physical index mapping is architecture specific and is built
404 * before booting secondary cores. This function uses arch_match_cpu_phys_id
405 * which can be overridden by architecture specific implementation.
407 * Returns a node pointer for the logical cpu with refcount incremented, use
408 * of_node_put() on it when done. Returns NULL if not found.
410 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
412 struct device_node *cpun;
414 for_each_node_by_type(cpun, "cpu") {
415 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
420 EXPORT_SYMBOL(of_get_cpu_node);
423 * __of_device_is_compatible() - Check if the node matches given constraints
424 * @device: pointer to node
425 * @compat: required compatible string, NULL or "" for any match
426 * @type: required device_type value, NULL or "" for any match
427 * @name: required node name, NULL or "" for any match
429 * Checks if the given @compat, @type and @name strings match the
430 * properties of the given @device. A constraints can be skipped by
431 * passing NULL or an empty string as the constraint.
433 * Returns 0 for no match, and a positive integer on match. The return
434 * value is a relative score with larger values indicating better
435 * matches. The score is weighted for the most specific compatible value
436 * to get the highest score. Matching type is next, followed by matching
437 * name. Practically speaking, this results in the following priority
440 * 1. specific compatible && type && name
441 * 2. specific compatible && type
442 * 3. specific compatible && name
443 * 4. specific compatible
444 * 5. general compatible && type && name
445 * 6. general compatible && type
446 * 7. general compatible && name
447 * 8. general compatible
452 static int __of_device_is_compatible(const struct device_node *device,
453 const char *compat, const char *type, const char *name)
455 struct property *prop;
457 int index = 0, score = 0;
459 /* Compatible match has highest priority */
460 if (compat && compat[0]) {
461 prop = __of_find_property(device, "compatible", NULL);
462 for (cp = of_prop_next_string(prop, NULL); cp;
463 cp = of_prop_next_string(prop, cp), index++) {
464 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
465 score = INT_MAX/2 - (index << 2);
473 /* Matching type is better than matching name */
474 if (type && type[0]) {
475 if (!device->type || of_node_cmp(type, device->type))
480 /* Matching name is a bit better than not */
481 if (name && name[0]) {
482 if (!device->name || of_node_cmp(name, device->name))
490 /** Checks if the given "compat" string matches one of the strings in
491 * the device's "compatible" property
493 int of_device_is_compatible(const struct device_node *device,
499 raw_spin_lock_irqsave(&devtree_lock, flags);
500 res = __of_device_is_compatible(device, compat, NULL, NULL);
501 raw_spin_unlock_irqrestore(&devtree_lock, flags);
504 EXPORT_SYMBOL(of_device_is_compatible);
506 /** Checks if the device is compatible with any of the entries in
507 * a NULL terminated array of strings. Returns the best match
510 int of_device_compatible_match(struct device_node *device,
511 const char *const *compat)
513 unsigned int tmp, score = 0;
519 tmp = of_device_is_compatible(device, *compat);
529 * of_machine_is_compatible - Test root of device tree for a given compatible value
530 * @compat: compatible string to look for in root node's compatible property.
532 * Returns a positive integer if the root node has the given value in its
533 * compatible property.
535 int of_machine_is_compatible(const char *compat)
537 struct device_node *root;
540 root = of_find_node_by_path("/");
542 rc = of_device_is_compatible(root, compat);
547 EXPORT_SYMBOL(of_machine_is_compatible);
550 * __of_device_is_available - check if a device is available for use
552 * @device: Node to check for availability, with locks already held
554 * Returns true if the status property is absent or set to "okay" or "ok",
557 static bool __of_device_is_available(const struct device_node *device)
565 status = __of_get_property(device, "status", &statlen);
570 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
578 * of_device_is_available - check if a device is available for use
580 * @device: Node to check for availability
582 * Returns true if the status property is absent or set to "okay" or "ok",
585 bool of_device_is_available(const struct device_node *device)
590 raw_spin_lock_irqsave(&devtree_lock, flags);
591 res = __of_device_is_available(device);
592 raw_spin_unlock_irqrestore(&devtree_lock, flags);
596 EXPORT_SYMBOL(of_device_is_available);
599 * of_device_is_big_endian - check if a device has BE registers
601 * @device: Node to check for endianness
603 * Returns true if the device has a "big-endian" property, or if the kernel
604 * was compiled for BE *and* the device has a "native-endian" property.
605 * Returns false otherwise.
607 * Callers would nominally use ioread32be/iowrite32be if
608 * of_device_is_big_endian() == true, or readl/writel otherwise.
610 bool of_device_is_big_endian(const struct device_node *device)
612 if (of_property_read_bool(device, "big-endian"))
614 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
615 of_property_read_bool(device, "native-endian"))
619 EXPORT_SYMBOL(of_device_is_big_endian);
622 * of_get_parent - Get a node's parent if any
623 * @node: Node to get parent
625 * Returns a node pointer with refcount incremented, use
626 * of_node_put() on it when done.
628 struct device_node *of_get_parent(const struct device_node *node)
630 struct device_node *np;
636 raw_spin_lock_irqsave(&devtree_lock, flags);
637 np = of_node_get(node->parent);
638 raw_spin_unlock_irqrestore(&devtree_lock, flags);
641 EXPORT_SYMBOL(of_get_parent);
644 * of_get_next_parent - Iterate to a node's parent
645 * @node: Node to get parent of
647 * This is like of_get_parent() except that it drops the
648 * refcount on the passed node, making it suitable for iterating
649 * through a node's parents.
651 * Returns a node pointer with refcount incremented, use
652 * of_node_put() on it when done.
654 struct device_node *of_get_next_parent(struct device_node *node)
656 struct device_node *parent;
662 raw_spin_lock_irqsave(&devtree_lock, flags);
663 parent = of_node_get(node->parent);
665 raw_spin_unlock_irqrestore(&devtree_lock, flags);
668 EXPORT_SYMBOL(of_get_next_parent);
670 static struct device_node *__of_get_next_child(const struct device_node *node,
671 struct device_node *prev)
673 struct device_node *next;
678 next = prev ? prev->sibling : node->child;
679 for (; next; next = next->sibling)
680 if (of_node_get(next))
685 #define __for_each_child_of_node(parent, child) \
686 for (child = __of_get_next_child(parent, NULL); child != NULL; \
687 child = __of_get_next_child(parent, child))
690 * of_get_next_child - Iterate a node childs
692 * @prev: previous child of the parent node, or NULL to get first
694 * Returns a node pointer with refcount incremented, use of_node_put() on
695 * it when done. Returns NULL when prev is the last child. Decrements the
698 struct device_node *of_get_next_child(const struct device_node *node,
699 struct device_node *prev)
701 struct device_node *next;
704 raw_spin_lock_irqsave(&devtree_lock, flags);
705 next = __of_get_next_child(node, prev);
706 raw_spin_unlock_irqrestore(&devtree_lock, flags);
709 EXPORT_SYMBOL(of_get_next_child);
712 * of_get_next_available_child - Find the next available child node
714 * @prev: previous child of the parent node, or NULL to get first
716 * This function is like of_get_next_child(), except that it
717 * automatically skips any disabled nodes (i.e. status = "disabled").
719 struct device_node *of_get_next_available_child(const struct device_node *node,
720 struct device_node *prev)
722 struct device_node *next;
728 raw_spin_lock_irqsave(&devtree_lock, flags);
729 next = prev ? prev->sibling : node->child;
730 for (; next; next = next->sibling) {
731 if (!__of_device_is_available(next))
733 if (of_node_get(next))
737 raw_spin_unlock_irqrestore(&devtree_lock, flags);
740 EXPORT_SYMBOL(of_get_next_available_child);
743 * of_get_child_by_name - Find the child node by name for a given parent
745 * @name: child name to look for.
747 * This function looks for child node for given matching name
749 * Returns a node pointer if found, with refcount incremented, use
750 * of_node_put() on it when done.
751 * Returns NULL if node is not found.
753 struct device_node *of_get_child_by_name(const struct device_node *node,
756 struct device_node *child;
758 for_each_child_of_node(node, child)
759 if (child->name && (of_node_cmp(child->name, name) == 0))
763 EXPORT_SYMBOL(of_get_child_by_name);
765 static struct device_node *__of_find_node_by_path(struct device_node *parent,
768 struct device_node *child;
771 len = strcspn(path, "/:");
775 __for_each_child_of_node(parent, child) {
776 const char *name = strrchr(child->full_name, '/');
777 if (WARN(!name, "malformed device_node %s\n", child->full_name))
780 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
787 * of_find_node_opts_by_path - Find a node matching a full OF path
788 * @path: Either the full path to match, or if the path does not
789 * start with '/', the name of a property of the /aliases
790 * node (an alias). In the case of an alias, the node
791 * matching the alias' value will be returned.
792 * @opts: Address of a pointer into which to store the start of
793 * an options string appended to the end of the path with
799 * foo/bar Valid alias + relative path
801 * Returns a node pointer with refcount incremented, use
802 * of_node_put() on it when done.
804 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
806 struct device_node *np = NULL;
809 const char *separator = strchr(path, ':');
812 *opts = separator ? separator + 1 : NULL;
814 if (strcmp(path, "/") == 0)
815 return of_node_get(of_root);
817 /* The path could begin with an alias */
820 const char *p = separator;
823 p = strchrnul(path, '/');
826 /* of_aliases must not be NULL */
830 for_each_property_of_node(of_aliases, pp) {
831 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
832 np = of_find_node_by_path(pp->value);
841 /* Step down the tree matching path components */
842 raw_spin_lock_irqsave(&devtree_lock, flags);
844 np = of_node_get(of_root);
845 while (np && *path == '/') {
846 struct device_node *tmp = np;
848 path++; /* Increment past '/' delimiter */
849 np = __of_find_node_by_path(np, path);
851 path = strchrnul(path, '/');
852 if (separator && separator < path)
855 raw_spin_unlock_irqrestore(&devtree_lock, flags);
858 EXPORT_SYMBOL(of_find_node_opts_by_path);
861 * of_find_node_by_name - Find a node by its "name" property
862 * @from: The node to start searching from or NULL, the node
863 * you pass will not be searched, only the next one
864 * will; typically, you pass what the previous call
865 * returned. of_node_put() will be called on it
866 * @name: The name string to match against
868 * Returns a node pointer with refcount incremented, use
869 * of_node_put() on it when done.
871 struct device_node *of_find_node_by_name(struct device_node *from,
874 struct device_node *np;
877 raw_spin_lock_irqsave(&devtree_lock, flags);
878 for_each_of_allnodes_from(from, np)
879 if (np->name && (of_node_cmp(np->name, name) == 0)
883 raw_spin_unlock_irqrestore(&devtree_lock, flags);
886 EXPORT_SYMBOL(of_find_node_by_name);
889 * of_find_node_by_type - Find a node by its "device_type" property
890 * @from: The node to start searching from, or NULL to start searching
891 * the entire device tree. The node you pass will not be
892 * searched, only the next one will; typically, you pass
893 * what the previous call returned. of_node_put() will be
894 * called on from for you.
895 * @type: The type string to match against
897 * Returns a node pointer with refcount incremented, use
898 * of_node_put() on it when done.
900 struct device_node *of_find_node_by_type(struct device_node *from,
903 struct device_node *np;
906 raw_spin_lock_irqsave(&devtree_lock, flags);
907 for_each_of_allnodes_from(from, np)
908 if (np->type && (of_node_cmp(np->type, type) == 0)
912 raw_spin_unlock_irqrestore(&devtree_lock, flags);
915 EXPORT_SYMBOL(of_find_node_by_type);
918 * of_find_compatible_node - Find a node based on type and one of the
919 * tokens in its "compatible" property
920 * @from: The node to start searching from or NULL, the node
921 * you pass will not be searched, only the next one
922 * will; typically, you pass what the previous call
923 * returned. of_node_put() will be called on it
924 * @type: The type string to match "device_type" or NULL to ignore
925 * @compatible: The string to match to one of the tokens in the device
928 * Returns a node pointer with refcount incremented, use
929 * of_node_put() on it when done.
931 struct device_node *of_find_compatible_node(struct device_node *from,
932 const char *type, const char *compatible)
934 struct device_node *np;
937 raw_spin_lock_irqsave(&devtree_lock, flags);
938 for_each_of_allnodes_from(from, np)
939 if (__of_device_is_compatible(np, compatible, type, NULL) &&
943 raw_spin_unlock_irqrestore(&devtree_lock, flags);
946 EXPORT_SYMBOL(of_find_compatible_node);
949 * of_find_node_with_property - Find a node which has a property with
951 * @from: The node to start searching from or NULL, the node
952 * you pass will not be searched, only the next one
953 * will; typically, you pass what the previous call
954 * returned. of_node_put() will be called on it
955 * @prop_name: The name of the property to look for.
957 * Returns a node pointer with refcount incremented, use
958 * of_node_put() on it when done.
960 struct device_node *of_find_node_with_property(struct device_node *from,
961 const char *prop_name)
963 struct device_node *np;
967 raw_spin_lock_irqsave(&devtree_lock, flags);
968 for_each_of_allnodes_from(from, np) {
969 for (pp = np->properties; pp; pp = pp->next) {
970 if (of_prop_cmp(pp->name, prop_name) == 0) {
978 raw_spin_unlock_irqrestore(&devtree_lock, flags);
981 EXPORT_SYMBOL(of_find_node_with_property);
984 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
985 const struct device_node *node)
987 const struct of_device_id *best_match = NULL;
988 int score, best_score = 0;
993 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
994 score = __of_device_is_compatible(node, matches->compatible,
995 matches->type, matches->name);
996 if (score > best_score) {
997 best_match = matches;
1006 * of_match_node - Tell if a device_node has a matching of_match structure
1007 * @matches: array of of device match structures to search in
1008 * @node: the of device structure to match against
1010 * Low level utility function used by device matching.
1012 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1013 const struct device_node *node)
1015 const struct of_device_id *match;
1016 unsigned long flags;
1018 raw_spin_lock_irqsave(&devtree_lock, flags);
1019 match = __of_match_node(matches, node);
1020 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1023 EXPORT_SYMBOL(of_match_node);
1026 * of_find_matching_node_and_match - Find a node based on an of_device_id
1028 * @from: The node to start searching from or NULL, the node
1029 * you pass will not be searched, only the next one
1030 * will; typically, you pass what the previous call
1031 * returned. of_node_put() will be called on it
1032 * @matches: array of of device match structures to search in
1033 * @match Updated to point at the matches entry which matched
1035 * Returns a node pointer with refcount incremented, use
1036 * of_node_put() on it when done.
1038 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1039 const struct of_device_id *matches,
1040 const struct of_device_id **match)
1042 struct device_node *np;
1043 const struct of_device_id *m;
1044 unsigned long flags;
1049 raw_spin_lock_irqsave(&devtree_lock, flags);
1050 for_each_of_allnodes_from(from, np) {
1051 m = __of_match_node(matches, np);
1052 if (m && of_node_get(np)) {
1059 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1062 EXPORT_SYMBOL(of_find_matching_node_and_match);
1065 * of_modalias_node - Lookup appropriate modalias for a device node
1066 * @node: pointer to a device tree node
1067 * @modalias: Pointer to buffer that modalias value will be copied into
1068 * @len: Length of modalias value
1070 * Based on the value of the compatible property, this routine will attempt
1071 * to choose an appropriate modalias value for a particular device tree node.
1072 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1073 * from the first entry in the compatible list property.
1075 * This routine returns 0 on success, <0 on failure.
1077 int of_modalias_node(struct device_node *node, char *modalias, int len)
1079 const char *compatible, *p;
1082 compatible = of_get_property(node, "compatible", &cplen);
1083 if (!compatible || strlen(compatible) > cplen)
1085 p = strchr(compatible, ',');
1086 strlcpy(modalias, p ? p + 1 : compatible, len);
1089 EXPORT_SYMBOL_GPL(of_modalias_node);
1092 * of_find_node_by_phandle - Find a node given a phandle
1093 * @handle: phandle of the node to find
1095 * Returns a node pointer with refcount incremented, use
1096 * of_node_put() on it when done.
1098 struct device_node *of_find_node_by_phandle(phandle handle)
1100 struct device_node *np;
1101 unsigned long flags;
1106 raw_spin_lock_irqsave(&devtree_lock, flags);
1107 for_each_of_allnodes(np)
1108 if (np->phandle == handle)
1111 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1114 EXPORT_SYMBOL(of_find_node_by_phandle);
1117 * of_property_count_elems_of_size - Count the number of elements in a property
1119 * @np: device node from which the property value is to be read.
1120 * @propname: name of the property to be searched.
1121 * @elem_size: size of the individual element
1123 * Search for a property in a device node and count the number of elements of
1124 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1125 * property does not exist or its length does not match a multiple of elem_size
1126 * and -ENODATA if the property does not have a value.
1128 int of_property_count_elems_of_size(const struct device_node *np,
1129 const char *propname, int elem_size)
1131 struct property *prop = of_find_property(np, propname, NULL);
1138 if (prop->length % elem_size != 0) {
1139 pr_err("size of %s in node %s is not a multiple of %d\n",
1140 propname, np->full_name, elem_size);
1144 return prop->length / elem_size;
1146 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1149 * of_find_property_value_of_size
1151 * @np: device node from which the property value is to be read.
1152 * @propname: name of the property to be searched.
1153 * @min: minimum allowed length of property value
1154 * @max: maximum allowed length of property value (0 means unlimited)
1155 * @len: if !=NULL, actual length is written to here
1157 * Search for a property in a device node and valid the requested size.
1158 * Returns the property value on success, -EINVAL if the property does not
1159 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1160 * property data is too small or too large.
1163 static void *of_find_property_value_of_size(const struct device_node *np,
1164 const char *propname, u32 min, u32 max, size_t *len)
1166 struct property *prop = of_find_property(np, propname, NULL);
1169 return ERR_PTR(-EINVAL);
1171 return ERR_PTR(-ENODATA);
1172 if (prop->length < min)
1173 return ERR_PTR(-EOVERFLOW);
1174 if (max && prop->length > max)
1175 return ERR_PTR(-EOVERFLOW);
1178 *len = prop->length;
1184 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1186 * @np: device node from which the property value is to be read.
1187 * @propname: name of the property to be searched.
1188 * @index: index of the u32 in the list of values
1189 * @out_value: pointer to return value, modified only if no error.
1191 * Search for a property in a device node and read nth 32-bit value from
1192 * it. Returns 0 on success, -EINVAL if the property does not exist,
1193 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1194 * property data isn't large enough.
1196 * The out_value is modified only if a valid u32 value can be decoded.
1198 int of_property_read_u32_index(const struct device_node *np,
1199 const char *propname,
1200 u32 index, u32 *out_value)
1202 const u32 *val = of_find_property_value_of_size(np, propname,
1203 ((index + 1) * sizeof(*out_value)),
1208 return PTR_ERR(val);
1210 *out_value = be32_to_cpup(((__be32 *)val) + index);
1213 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1216 * of_property_read_variable_u8_array - Find and read an array of u8 from a
1217 * property, with bounds on the minimum and maximum array size.
1219 * @np: device node from which the property value is to be read.
1220 * @propname: name of the property to be searched.
1221 * @out_values: pointer to return value, modified only if return value is 0.
1222 * @sz_min: minimum number of array elements to read
1223 * @sz_max: maximum number of array elements to read, if zero there is no
1224 * upper limit on the number of elements in the dts entry but only
1225 * sz_min will be read.
1227 * Search for a property in a device node and read 8-bit value(s) from
1228 * it. Returns number of elements read on success, -EINVAL if the property
1229 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1230 * if the property data is smaller than sz_min or longer than sz_max.
1232 * dts entry of array should be like:
1233 * property = /bits/ 8 <0x50 0x60 0x70>;
1235 * The out_values is modified only if a valid u8 value can be decoded.
1237 int of_property_read_variable_u8_array(const struct device_node *np,
1238 const char *propname, u8 *out_values,
1239 size_t sz_min, size_t sz_max)
1242 const u8 *val = of_find_property_value_of_size(np, propname,
1243 (sz_min * sizeof(*out_values)),
1244 (sz_max * sizeof(*out_values)),
1248 return PTR_ERR(val);
1253 sz /= sizeof(*out_values);
1257 *out_values++ = *val++;
1261 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
1264 * of_property_read_variable_u16_array - Find and read an array of u16 from a
1265 * property, with bounds on the minimum and maximum array size.
1267 * @np: device node from which the property value is to be read.
1268 * @propname: name of the property to be searched.
1269 * @out_values: pointer to return value, modified only if return value is 0.
1270 * @sz_min: minimum number of array elements to read
1271 * @sz_max: maximum number of array elements to read, if zero there is no
1272 * upper limit on the number of elements in the dts entry but only
1273 * sz_min will be read.
1275 * Search for a property in a device node and read 16-bit value(s) from
1276 * it. Returns number of elements read on success, -EINVAL if the property
1277 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1278 * if the property data is smaller than sz_min or longer than sz_max.
1280 * dts entry of array should be like:
1281 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1283 * The out_values is modified only if a valid u16 value can be decoded.
1285 int of_property_read_variable_u16_array(const struct device_node *np,
1286 const char *propname, u16 *out_values,
1287 size_t sz_min, size_t sz_max)
1290 const __be16 *val = of_find_property_value_of_size(np, propname,
1291 (sz_min * sizeof(*out_values)),
1292 (sz_max * sizeof(*out_values)),
1296 return PTR_ERR(val);
1301 sz /= sizeof(*out_values);
1305 *out_values++ = be16_to_cpup(val++);
1309 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
1312 * of_property_read_variable_u32_array - Find and read an array of 32 bit
1313 * integers from a property, with bounds on the minimum and maximum array size.
1315 * @np: device node from which the property value is to be read.
1316 * @propname: name of the property to be searched.
1317 * @out_values: pointer to return value, modified only if return value is 0.
1318 * @sz_min: minimum number of array elements to read
1319 * @sz_max: maximum number of array elements to read, if zero there is no
1320 * upper limit on the number of elements in the dts entry but only
1321 * sz_min will be read.
1323 * Search for a property in a device node and read 32-bit value(s) from
1324 * it. Returns number of elements read on success, -EINVAL if the property
1325 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1326 * if the property data is smaller than sz_min or longer than sz_max.
1328 * The out_values is modified only if a valid u32 value can be decoded.
1330 int of_property_read_variable_u32_array(const struct device_node *np,
1331 const char *propname, u32 *out_values,
1332 size_t sz_min, size_t sz_max)
1335 const __be32 *val = of_find_property_value_of_size(np, propname,
1336 (sz_min * sizeof(*out_values)),
1337 (sz_max * sizeof(*out_values)),
1341 return PTR_ERR(val);
1346 sz /= sizeof(*out_values);
1350 *out_values++ = be32_to_cpup(val++);
1354 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
1357 * of_property_read_u64 - Find and read a 64 bit integer from a property
1358 * @np: device node from which the property value is to be read.
1359 * @propname: name of the property to be searched.
1360 * @out_value: pointer to return value, modified only if return value is 0.
1362 * Search for a property in a device node and read a 64-bit value from
1363 * it. Returns 0 on success, -EINVAL if the property does not exist,
1364 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1365 * property data isn't large enough.
1367 * The out_value is modified only if a valid u64 value can be decoded.
1369 int of_property_read_u64(const struct device_node *np, const char *propname,
1372 const __be32 *val = of_find_property_value_of_size(np, propname,
1378 return PTR_ERR(val);
1380 *out_value = of_read_number(val, 2);
1383 EXPORT_SYMBOL_GPL(of_property_read_u64);
1386 * of_property_read_variable_u64_array - Find and read an array of 64 bit
1387 * integers from a property, with bounds on the minimum and maximum array size.
1389 * @np: device node from which the property value is to be read.
1390 * @propname: name of the property to be searched.
1391 * @out_values: pointer to return value, modified only if return value is 0.
1392 * @sz_min: minimum number of array elements to read
1393 * @sz_max: maximum number of array elements to read, if zero there is no
1394 * upper limit on the number of elements in the dts entry but only
1395 * sz_min will be read.
1397 * Search for a property in a device node and read 64-bit value(s) from
1398 * it. Returns number of elements read on success, -EINVAL if the property
1399 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1400 * if the property data is smaller than sz_min or longer than sz_max.
1402 * The out_values is modified only if a valid u64 value can be decoded.
1404 int of_property_read_variable_u64_array(const struct device_node *np,
1405 const char *propname, u64 *out_values,
1406 size_t sz_min, size_t sz_max)
1409 const __be32 *val = of_find_property_value_of_size(np, propname,
1410 (sz_min * sizeof(*out_values)),
1411 (sz_max * sizeof(*out_values)),
1415 return PTR_ERR(val);
1420 sz /= sizeof(*out_values);
1424 *out_values++ = of_read_number(val, 2);
1430 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
1433 * of_property_read_string - Find and read a string from a property
1434 * @np: device node from which the property value is to be read.
1435 * @propname: name of the property to be searched.
1436 * @out_string: pointer to null terminated return string, modified only if
1437 * return value is 0.
1439 * Search for a property in a device tree node and retrieve a null
1440 * terminated string value (pointer to data, not a copy). Returns 0 on
1441 * success, -EINVAL if the property does not exist, -ENODATA if property
1442 * does not have a value, and -EILSEQ if the string is not null-terminated
1443 * within the length of the property data.
1445 * The out_string pointer is modified only if a valid string can be decoded.
1447 int of_property_read_string(const struct device_node *np, const char *propname,
1448 const char **out_string)
1450 const struct property *prop = of_find_property(np, propname, NULL);
1455 if (strnlen(prop->value, prop->length) >= prop->length)
1457 *out_string = prop->value;
1460 EXPORT_SYMBOL_GPL(of_property_read_string);
1463 * of_property_match_string() - Find string in a list and return index
1464 * @np: pointer to node containing string list property
1465 * @propname: string list property name
1466 * @string: pointer to string to search for in string list
1468 * This function searches a string list property and returns the index
1469 * of a specific string value.
1471 int of_property_match_string(const struct device_node *np, const char *propname,
1474 const struct property *prop = of_find_property(np, propname, NULL);
1477 const char *p, *end;
1485 end = p + prop->length;
1487 for (i = 0; p < end; i++, p += l) {
1488 l = strnlen(p, end - p) + 1;
1491 pr_debug("comparing %s with %s\n", string, p);
1492 if (strcmp(string, p) == 0)
1493 return i; /* Found it; return index */
1497 EXPORT_SYMBOL_GPL(of_property_match_string);
1500 * of_property_read_string_helper() - Utility helper for parsing string properties
1501 * @np: device node from which the property value is to be read.
1502 * @propname: name of the property to be searched.
1503 * @out_strs: output array of string pointers.
1504 * @sz: number of array elements to read.
1505 * @skip: Number of strings to skip over at beginning of list.
1507 * Don't call this function directly. It is a utility helper for the
1508 * of_property_read_string*() family of functions.
1510 int of_property_read_string_helper(const struct device_node *np,
1511 const char *propname, const char **out_strs,
1512 size_t sz, int skip)
1514 const struct property *prop = of_find_property(np, propname, NULL);
1516 const char *p, *end;
1523 end = p + prop->length;
1525 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1526 l = strnlen(p, end - p) + 1;
1529 if (out_strs && i >= skip)
1533 return i <= 0 ? -ENODATA : i;
1535 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1537 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1540 printk("%s %s", msg, of_node_full_name(args->np));
1541 for (i = 0; i < args->args_count; i++) {
1542 const char delim = i ? ',' : ':';
1544 pr_cont("%c%08x", delim, args->args[i]);
1549 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1550 const struct device_node *np,
1551 const char *list_name,
1552 const char *cells_name,
1558 memset(it, 0, sizeof(*it));
1560 list = of_get_property(np, list_name, &size);
1564 it->cells_name = cells_name;
1565 it->cell_count = cell_count;
1567 it->list_end = list + size / sizeof(*list);
1568 it->phandle_end = list;
1574 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1579 of_node_put(it->node);
1583 if (!it->cur || it->phandle_end >= it->list_end)
1586 it->cur = it->phandle_end;
1588 /* If phandle is 0, then it is an empty entry with no arguments. */
1589 it->phandle = be32_to_cpup(it->cur++);
1594 * Find the provider node and parse the #*-cells property to
1595 * determine the argument length.
1597 it->node = of_find_node_by_phandle(it->phandle);
1599 if (it->cells_name) {
1601 pr_err("%s: could not find phandle\n",
1602 it->parent->full_name);
1606 if (of_property_read_u32(it->node, it->cells_name,
1608 pr_err("%s: could not get %s for %s\n",
1609 it->parent->full_name,
1611 it->node->full_name);
1615 count = it->cell_count;
1619 * Make sure that the arguments actually fit in the remaining
1620 * property data length
1622 if (it->cur + count > it->list_end) {
1623 pr_err("%s: arguments longer than property\n",
1624 it->parent->full_name);
1629 it->phandle_end = it->cur + count;
1630 it->cur_count = count;
1636 of_node_put(it->node);
1643 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1649 count = it->cur_count;
1651 if (WARN_ON(size < count))
1654 for (i = 0; i < count; i++)
1655 args[i] = be32_to_cpup(it->cur++);
1660 static int __of_parse_phandle_with_args(const struct device_node *np,
1661 const char *list_name,
1662 const char *cells_name,
1663 int cell_count, int index,
1664 struct of_phandle_args *out_args)
1666 struct of_phandle_iterator it;
1667 int rc, cur_index = 0;
1669 /* Loop over the phandles until all the requested entry is found */
1670 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1672 * All of the error cases bail out of the loop, so at
1673 * this point, the parsing is successful. If the requested
1674 * index matches, then fill the out_args structure and return,
1675 * or return -ENOENT for an empty entry.
1678 if (cur_index == index) {
1685 c = of_phandle_iterator_args(&it,
1688 out_args->np = it.node;
1689 out_args->args_count = c;
1691 of_node_put(it.node);
1694 /* Found it! return success */
1702 * Unlock node before returning result; will be one of:
1703 * -ENOENT : index is for empty phandle
1704 * -EINVAL : parsing error on data
1708 of_node_put(it.node);
1713 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1714 * @np: Pointer to device node holding phandle property
1715 * @phandle_name: Name of property holding a phandle value
1716 * @index: For properties holding a table of phandles, this is the index into
1719 * Returns the device_node pointer with refcount incremented. Use
1720 * of_node_put() on it when done.
1722 struct device_node *of_parse_phandle(const struct device_node *np,
1723 const char *phandle_name, int index)
1725 struct of_phandle_args args;
1730 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1736 EXPORT_SYMBOL(of_parse_phandle);
1739 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1740 * @np: pointer to a device tree node containing a list
1741 * @list_name: property name that contains a list
1742 * @cells_name: property name that specifies phandles' arguments count
1743 * @index: index of a phandle to parse out
1744 * @out_args: optional pointer to output arguments structure (will be filled)
1746 * This function is useful to parse lists of phandles and their arguments.
1747 * Returns 0 on success and fills out_args, on error returns appropriate
1750 * Caller is responsible to call of_node_put() on the returned out_args->np
1756 * #list-cells = <2>;
1760 * #list-cells = <1>;
1764 * list = <&phandle1 1 2 &phandle2 3>;
1767 * To get a device_node of the `node2' node you may call this:
1768 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1770 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1771 const char *cells_name, int index,
1772 struct of_phandle_args *out_args)
1776 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1779 EXPORT_SYMBOL(of_parse_phandle_with_args);
1782 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1783 * @np: pointer to a device tree node containing a list
1784 * @list_name: property name that contains a list
1785 * @cell_count: number of argument cells following the phandle
1786 * @index: index of a phandle to parse out
1787 * @out_args: optional pointer to output arguments structure (will be filled)
1789 * This function is useful to parse lists of phandles and their arguments.
1790 * Returns 0 on success and fills out_args, on error returns appropriate
1793 * Caller is responsible to call of_node_put() on the returned out_args->np
1805 * list = <&phandle1 0 2 &phandle2 2 3>;
1808 * To get a device_node of the `node2' node you may call this:
1809 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1811 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1812 const char *list_name, int cell_count,
1813 int index, struct of_phandle_args *out_args)
1817 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1820 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1823 * of_count_phandle_with_args() - Find the number of phandles references in a property
1824 * @np: pointer to a device tree node containing a list
1825 * @list_name: property name that contains a list
1826 * @cells_name: property name that specifies phandles' arguments count
1828 * Returns the number of phandle + argument tuples within a property. It
1829 * is a typical pattern to encode a list of phandle and variable
1830 * arguments into a single property. The number of arguments is encoded
1831 * by a property in the phandle-target node. For example, a gpios
1832 * property would contain a list of GPIO specifies consisting of a
1833 * phandle and 1 or more arguments. The number of arguments are
1834 * determined by the #gpio-cells property in the node pointed to by the
1837 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1838 const char *cells_name)
1840 struct of_phandle_iterator it;
1841 int rc, cur_index = 0;
1843 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1847 while ((rc = of_phandle_iterator_next(&it)) == 0)
1855 EXPORT_SYMBOL(of_count_phandle_with_args);
1858 * __of_add_property - Add a property to a node without lock operations
1860 int __of_add_property(struct device_node *np, struct property *prop)
1862 struct property **next;
1865 next = &np->properties;
1867 if (strcmp(prop->name, (*next)->name) == 0)
1868 /* duplicate ! don't insert it */
1871 next = &(*next)->next;
1879 * of_add_property - Add a property to a node
1881 int of_add_property(struct device_node *np, struct property *prop)
1883 unsigned long flags;
1886 mutex_lock(&of_mutex);
1888 raw_spin_lock_irqsave(&devtree_lock, flags);
1889 rc = __of_add_property(np, prop);
1890 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1893 __of_add_property_sysfs(np, prop);
1895 mutex_unlock(&of_mutex);
1898 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1903 int __of_remove_property(struct device_node *np, struct property *prop)
1905 struct property **next;
1907 for (next = &np->properties; *next; next = &(*next)->next) {
1914 /* found the node */
1916 prop->next = np->deadprops;
1917 np->deadprops = prop;
1922 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1924 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1925 kfree(prop->attr.attr.name);
1928 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1930 if (!IS_ENABLED(CONFIG_SYSFS))
1933 /* at early boot, bail here and defer setup to of_init() */
1934 if (of_kset && of_node_is_attached(np))
1935 __of_sysfs_remove_bin_file(np, prop);
1939 * of_remove_property - Remove a property from a node.
1941 * Note that we don't actually remove it, since we have given out
1942 * who-knows-how-many pointers to the data using get-property.
1943 * Instead we just move the property to the "dead properties"
1944 * list, so it won't be found any more.
1946 int of_remove_property(struct device_node *np, struct property *prop)
1948 unsigned long flags;
1954 mutex_lock(&of_mutex);
1956 raw_spin_lock_irqsave(&devtree_lock, flags);
1957 rc = __of_remove_property(np, prop);
1958 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1961 __of_remove_property_sysfs(np, prop);
1963 mutex_unlock(&of_mutex);
1966 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1971 int __of_update_property(struct device_node *np, struct property *newprop,
1972 struct property **oldpropp)
1974 struct property **next, *oldprop;
1976 for (next = &np->properties; *next; next = &(*next)->next) {
1977 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1980 *oldpropp = oldprop = *next;
1983 /* replace the node */
1984 newprop->next = oldprop->next;
1986 oldprop->next = np->deadprops;
1987 np->deadprops = oldprop;
1990 newprop->next = NULL;
1997 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1998 struct property *oldprop)
2000 if (!IS_ENABLED(CONFIG_SYSFS))
2003 /* At early boot, bail out and defer setup to of_init() */
2008 __of_sysfs_remove_bin_file(np, oldprop);
2009 __of_add_property_sysfs(np, newprop);
2013 * of_update_property - Update a property in a node, if the property does
2014 * not exist, add it.
2016 * Note that we don't actually remove it, since we have given out
2017 * who-knows-how-many pointers to the data using get-property.
2018 * Instead we just move the property to the "dead properties" list,
2019 * and add the new property to the property list
2021 int of_update_property(struct device_node *np, struct property *newprop)
2023 struct property *oldprop;
2024 unsigned long flags;
2030 mutex_lock(&of_mutex);
2032 raw_spin_lock_irqsave(&devtree_lock, flags);
2033 rc = __of_update_property(np, newprop, &oldprop);
2034 raw_spin_unlock_irqrestore(&devtree_lock, flags);
2037 __of_update_property_sysfs(np, newprop, oldprop);
2039 mutex_unlock(&of_mutex);
2042 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
2047 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
2048 int id, const char *stem, int stem_len)
2052 strncpy(ap->stem, stem, stem_len);
2053 ap->stem[stem_len] = 0;
2054 list_add_tail(&ap->link, &aliases_lookup);
2055 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
2056 ap->alias, ap->stem, ap->id, of_node_full_name(np));
2060 * of_alias_scan - Scan all properties of the 'aliases' node
2062 * The function scans all the properties of the 'aliases' node and populates
2063 * the global lookup table with the properties. It returns the
2064 * number of alias properties found, or an error code in case of failure.
2066 * @dt_alloc: An allocator that provides a virtual address to memory
2067 * for storing the resulting tree
2069 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
2071 struct property *pp;
2073 of_aliases = of_find_node_by_path("/aliases");
2074 of_chosen = of_find_node_by_path("/chosen");
2075 if (of_chosen == NULL)
2076 of_chosen = of_find_node_by_path("/chosen@0");
2079 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2080 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
2082 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
2083 if (IS_ENABLED(CONFIG_PPC) && !name)
2084 name = of_get_property(of_aliases, "stdout", NULL);
2086 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2092 for_each_property_of_node(of_aliases, pp) {
2093 const char *start = pp->name;
2094 const char *end = start + strlen(start);
2095 struct device_node *np;
2096 struct alias_prop *ap;
2099 /* Skip those we do not want to proceed */
2100 if (!strcmp(pp->name, "name") ||
2101 !strcmp(pp->name, "phandle") ||
2102 !strcmp(pp->name, "linux,phandle"))
2105 np = of_find_node_by_path(pp->value);
2109 /* walk the alias backwards to extract the id and work out
2110 * the 'stem' string */
2111 while (isdigit(*(end-1)) && end > start)
2115 if (kstrtoint(end, 10, &id) < 0)
2118 /* Allocate an alias_prop with enough space for the stem */
2119 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2122 memset(ap, 0, sizeof(*ap) + len + 1);
2124 of_alias_add(ap, np, id, start, len);
2129 * of_alias_get_id - Get alias id for the given device_node
2130 * @np: Pointer to the given device_node
2131 * @stem: Alias stem of the given device_node
2133 * The function travels the lookup table to get the alias id for the given
2134 * device_node and alias stem. It returns the alias id if found.
2136 int of_alias_get_id(struct device_node *np, const char *stem)
2138 struct alias_prop *app;
2141 mutex_lock(&of_mutex);
2142 list_for_each_entry(app, &aliases_lookup, link) {
2143 if (strcmp(app->stem, stem) != 0)
2146 if (np == app->np) {
2151 mutex_unlock(&of_mutex);
2155 EXPORT_SYMBOL_GPL(of_alias_get_id);
2158 * of_alias_get_highest_id - Get highest alias id for the given stem
2159 * @stem: Alias stem to be examined
2161 * The function travels the lookup table to get the highest alias id for the
2162 * given alias stem. It returns the alias id if found.
2164 int of_alias_get_highest_id(const char *stem)
2166 struct alias_prop *app;
2169 mutex_lock(&of_mutex);
2170 list_for_each_entry(app, &aliases_lookup, link) {
2171 if (strcmp(app->stem, stem) != 0)
2177 mutex_unlock(&of_mutex);
2181 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2183 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2186 const void *curv = cur;
2196 curv += sizeof(*cur);
2197 if (curv >= prop->value + prop->length)
2201 *pu = be32_to_cpup(curv);
2204 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2206 const char *of_prop_next_string(struct property *prop, const char *cur)
2208 const void *curv = cur;
2216 curv += strlen(cur) + 1;
2217 if (curv >= prop->value + prop->length)
2222 EXPORT_SYMBOL_GPL(of_prop_next_string);
2225 * of_console_check() - Test and setup console for DT setup
2226 * @dn - Pointer to device node
2227 * @name - Name to use for preferred console without index. ex. "ttyS"
2228 * @index - Index to use for preferred console.
2230 * Check if the given device node matches the stdout-path property in the
2231 * /chosen node. If it does then register it as the preferred console and return
2232 * TRUE. Otherwise return FALSE.
2234 bool of_console_check(struct device_node *dn, char *name, int index)
2236 if (!dn || dn != of_stdout || console_set_on_cmdline)
2238 return !add_preferred_console(name, index,
2239 kstrdup(of_stdout_options, GFP_KERNEL));
2241 EXPORT_SYMBOL_GPL(of_console_check);
2244 * of_find_next_cache_node - Find a node's subsidiary cache
2245 * @np: node of type "cpu" or "cache"
2247 * Returns a node pointer with refcount incremented, use
2248 * of_node_put() on it when done. Caller should hold a reference
2251 struct device_node *of_find_next_cache_node(const struct device_node *np)
2253 struct device_node *child;
2254 const phandle *handle;
2256 handle = of_get_property(np, "l2-cache", NULL);
2258 handle = of_get_property(np, "next-level-cache", NULL);
2261 return of_find_node_by_phandle(be32_to_cpup(handle));
2263 /* OF on pmac has nodes instead of properties named "l2-cache"
2264 * beneath CPU nodes.
2266 if (!strcmp(np->type, "cpu"))
2267 for_each_child_of_node(np, child)
2268 if (!strcmp(child->type, "cache"))
2275 * of_find_last_cache_level - Find the level at which the last cache is
2276 * present for the given logical cpu
2278 * @cpu: cpu number(logical index) for which the last cache level is needed
2280 * Returns the the level at which the last cache is present. It is exactly
2281 * same as the total number of cache levels for the given logical cpu.
2283 int of_find_last_cache_level(unsigned int cpu)
2285 u32 cache_level = 0;
2286 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2291 np = of_find_next_cache_node(np);
2294 of_property_read_u32(prev, "cache-level", &cache_level);
2300 * of_graph_parse_endpoint() - parse common endpoint node properties
2301 * @node: pointer to endpoint device_node
2302 * @endpoint: pointer to the OF endpoint data structure
2304 * The caller should hold a reference to @node.
2306 int of_graph_parse_endpoint(const struct device_node *node,
2307 struct of_endpoint *endpoint)
2309 struct device_node *port_node = of_get_parent(node);
2311 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2312 __func__, node->full_name);
2314 memset(endpoint, 0, sizeof(*endpoint));
2316 endpoint->local_node = node;
2318 * It doesn't matter whether the two calls below succeed.
2319 * If they don't then the default value 0 is used.
2321 of_property_read_u32(port_node, "reg", &endpoint->port);
2322 of_property_read_u32(node, "reg", &endpoint->id);
2324 of_node_put(port_node);
2328 EXPORT_SYMBOL(of_graph_parse_endpoint);
2331 * of_graph_get_port_by_id() - get the port matching a given id
2332 * @parent: pointer to the parent device node
2333 * @id: id of the port
2335 * Return: A 'port' node pointer with refcount incremented. The caller
2336 * has to use of_node_put() on it when done.
2338 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2340 struct device_node *node, *port;
2342 node = of_get_child_by_name(parent, "ports");
2346 for_each_child_of_node(parent, port) {
2349 if (of_node_cmp(port->name, "port") != 0)
2351 of_property_read_u32(port, "reg", &port_id);
2360 EXPORT_SYMBOL(of_graph_get_port_by_id);
2363 * of_graph_get_next_endpoint() - get next endpoint node
2364 * @parent: pointer to the parent device node
2365 * @prev: previous endpoint node, or NULL to get first
2367 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2368 * of the passed @prev node is decremented.
2370 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2371 struct device_node *prev)
2373 struct device_node *endpoint;
2374 struct device_node *port;
2380 * Start by locating the port node. If no previous endpoint is specified
2381 * search for the first port node, otherwise get the previous endpoint
2385 struct device_node *node;
2387 node = of_get_child_by_name(parent, "ports");
2391 port = of_get_child_by_name(parent, "port");
2395 pr_err("graph: no port node found in %s\n",
2400 port = of_get_parent(prev);
2401 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2402 __func__, prev->full_name))
2408 * Now that we have a port node, get the next endpoint by
2409 * getting the next child. If the previous endpoint is NULL this
2410 * will return the first child.
2412 endpoint = of_get_next_child(port, prev);
2418 /* No more endpoints under this port, try the next one. */
2422 port = of_get_next_child(parent, port);
2425 } while (of_node_cmp(port->name, "port"));
2428 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2431 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2432 * @parent: pointer to the parent device node
2433 * @port_reg: identifier (value of reg property) of the parent port node
2434 * @reg: identifier (value of reg property) of the endpoint node
2436 * Return: An 'endpoint' node pointer which is identified by reg and at the same
2437 * is the child of a port node identified by port_reg. reg and port_reg are
2438 * ignored when they are -1.
2440 struct device_node *of_graph_get_endpoint_by_regs(
2441 const struct device_node *parent, int port_reg, int reg)
2443 struct of_endpoint endpoint;
2444 struct device_node *node = NULL;
2446 for_each_endpoint_of_node(parent, node) {
2447 of_graph_parse_endpoint(node, &endpoint);
2448 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2449 ((reg == -1) || (endpoint.id == reg)))
2455 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2458 * of_graph_get_remote_port_parent() - get remote port's parent node
2459 * @node: pointer to a local endpoint device_node
2461 * Return: Remote device node associated with remote endpoint node linked
2462 * to @node. Use of_node_put() on it when done.
2464 struct device_node *of_graph_get_remote_port_parent(
2465 const struct device_node *node)
2467 struct device_node *np;
2470 /* Get remote endpoint node. */
2471 np = of_parse_phandle(node, "remote-endpoint", 0);
2473 /* Walk 3 levels up only if there is 'ports' node. */
2474 for (depth = 3; depth && np; depth--) {
2475 np = of_get_next_parent(np);
2476 if (depth == 2 && of_node_cmp(np->name, "ports"))
2481 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2484 * of_graph_get_remote_port() - get remote port node
2485 * @node: pointer to a local endpoint device_node
2487 * Return: Remote port node associated with remote endpoint node linked
2488 * to @node. Use of_node_put() on it when done.
2490 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2492 struct device_node *np;
2494 /* Get remote endpoint node. */
2495 np = of_parse_phandle(node, "remote-endpoint", 0);
2498 return of_get_next_parent(np);
2500 EXPORT_SYMBOL(of_graph_get_remote_port);
2503 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
2504 * @node: pointer to parent device_node containing graph port/endpoint
2505 * @port: identifier (value of reg property) of the parent port node
2506 * @endpoint: identifier (value of reg property) of the endpoint node
2508 * Return: Remote device node associated with remote endpoint node linked
2509 * to @node. Use of_node_put() on it when done.
2511 struct device_node *of_graph_get_remote_node(const struct device_node *node,
2512 u32 port, u32 endpoint)
2514 struct device_node *endpoint_node, *remote;
2516 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
2517 if (!endpoint_node) {
2518 pr_debug("no valid endpoint (%d, %d) for node %s\n",
2519 port, endpoint, node->full_name);
2523 remote = of_graph_get_remote_port_parent(endpoint_node);
2524 of_node_put(endpoint_node);
2526 pr_debug("no valid remote node\n");
2530 if (!of_device_is_available(remote)) {
2531 pr_debug("not available for remote node\n");
2537 EXPORT_SYMBOL(of_graph_get_remote_node);