2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/delay.h>
24 #include <linux/wait.h>
27 #define DM_MSG_PREFIX "core"
31 * ratelimit state to be used in DMXXX_LIMIT().
33 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
34 DEFAULT_RATELIMIT_INTERVAL,
35 DEFAULT_RATELIMIT_BURST);
36 EXPORT_SYMBOL(dm_ratelimit_state);
40 * Cookies are numeric values sent with CHANGE and REMOVE
41 * uevents while resuming, removing or renaming the device.
43 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
44 #define DM_COOKIE_LENGTH 24
46 static const char *_name = DM_NAME;
48 static unsigned int major = 0;
49 static unsigned int _major = 0;
51 static DEFINE_IDR(_minor_idr);
53 static DEFINE_SPINLOCK(_minor_lock);
55 static void do_deferred_remove(struct work_struct *w);
57 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
59 static struct workqueue_struct *deferred_remove_workqueue;
62 * One of these is allocated per bio.
65 struct mapped_device *md;
69 unsigned long start_time;
70 spinlock_t endio_lock;
71 struct dm_stats_aux stats_aux;
74 #define MINOR_ALLOCED ((void *)-1)
77 * Bits for the md->flags field.
79 #define DMF_BLOCK_IO_FOR_SUSPEND 0
80 #define DMF_SUSPENDED 1
83 #define DMF_DELETING 4
84 #define DMF_NOFLUSH_SUSPENDING 5
85 #define DMF_DEFERRED_REMOVE 6
86 #define DMF_SUSPENDED_INTERNALLY 7
88 #define DM_NUMA_NODE NUMA_NO_NODE
89 static int dm_numa_node = DM_NUMA_NODE;
92 * For mempools pre-allocation at the table loading time.
94 struct dm_md_mempools {
100 struct list_head list;
102 struct dm_dev dm_dev;
105 static struct kmem_cache *_io_cache;
106 static struct kmem_cache *_rq_tio_cache;
107 static struct kmem_cache *_rq_cache;
110 * Bio-based DM's mempools' reserved IOs set by the user.
112 #define RESERVED_BIO_BASED_IOS 16
113 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
115 static int __dm_get_module_param_int(int *module_param, int min, int max)
117 int param = ACCESS_ONCE(*module_param);
118 int modified_param = 0;
119 bool modified = true;
122 modified_param = min;
123 else if (param > max)
124 modified_param = max;
129 (void)cmpxchg(module_param, param, modified_param);
130 param = modified_param;
136 unsigned __dm_get_module_param(unsigned *module_param,
137 unsigned def, unsigned max)
139 unsigned param = ACCESS_ONCE(*module_param);
140 unsigned modified_param = 0;
143 modified_param = def;
144 else if (param > max)
145 modified_param = max;
147 if (modified_param) {
148 (void)cmpxchg(module_param, param, modified_param);
149 param = modified_param;
155 unsigned dm_get_reserved_bio_based_ios(void)
157 return __dm_get_module_param(&reserved_bio_based_ios,
158 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
160 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
162 static unsigned dm_get_numa_node(void)
164 return __dm_get_module_param_int(&dm_numa_node,
165 DM_NUMA_NODE, num_online_nodes() - 1);
168 static int __init local_init(void)
172 /* allocate a slab for the dm_ios */
173 _io_cache = KMEM_CACHE(dm_io, 0);
177 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
179 goto out_free_io_cache;
181 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
182 __alignof__(struct request), 0, NULL);
184 goto out_free_rq_tio_cache;
186 r = dm_uevent_init();
188 goto out_free_rq_cache;
190 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
191 if (!deferred_remove_workqueue) {
193 goto out_uevent_exit;
197 r = register_blkdev(_major, _name);
199 goto out_free_workqueue;
207 destroy_workqueue(deferred_remove_workqueue);
211 kmem_cache_destroy(_rq_cache);
212 out_free_rq_tio_cache:
213 kmem_cache_destroy(_rq_tio_cache);
215 kmem_cache_destroy(_io_cache);
220 static void local_exit(void)
222 flush_scheduled_work();
223 destroy_workqueue(deferred_remove_workqueue);
225 kmem_cache_destroy(_rq_cache);
226 kmem_cache_destroy(_rq_tio_cache);
227 kmem_cache_destroy(_io_cache);
228 unregister_blkdev(_major, _name);
233 DMINFO("cleaned up");
236 static int (*_inits[])(void) __initdata = {
247 static void (*_exits[])(void) = {
258 static int __init dm_init(void)
260 const int count = ARRAY_SIZE(_inits);
264 for (i = 0; i < count; i++) {
279 static void __exit dm_exit(void)
281 int i = ARRAY_SIZE(_exits);
287 * Should be empty by this point.
289 idr_destroy(&_minor_idr);
293 * Block device functions
295 int dm_deleting_md(struct mapped_device *md)
297 return test_bit(DMF_DELETING, &md->flags);
300 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
302 struct mapped_device *md;
304 spin_lock(&_minor_lock);
306 md = bdev->bd_disk->private_data;
310 if (test_bit(DMF_FREEING, &md->flags) ||
311 dm_deleting_md(md)) {
317 atomic_inc(&md->open_count);
319 spin_unlock(&_minor_lock);
321 return md ? 0 : -ENXIO;
324 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
326 struct mapped_device *md;
328 spin_lock(&_minor_lock);
330 md = disk->private_data;
334 if (atomic_dec_and_test(&md->open_count) &&
335 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
336 queue_work(deferred_remove_workqueue, &deferred_remove_work);
340 spin_unlock(&_minor_lock);
343 int dm_open_count(struct mapped_device *md)
345 return atomic_read(&md->open_count);
349 * Guarantees nothing is using the device before it's deleted.
351 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
355 spin_lock(&_minor_lock);
357 if (dm_open_count(md)) {
360 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
361 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
364 set_bit(DMF_DELETING, &md->flags);
366 spin_unlock(&_minor_lock);
371 int dm_cancel_deferred_remove(struct mapped_device *md)
375 spin_lock(&_minor_lock);
377 if (test_bit(DMF_DELETING, &md->flags))
380 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
382 spin_unlock(&_minor_lock);
387 static void do_deferred_remove(struct work_struct *w)
389 dm_deferred_remove();
392 sector_t dm_get_size(struct mapped_device *md)
394 return get_capacity(md->disk);
397 struct request_queue *dm_get_md_queue(struct mapped_device *md)
402 struct dm_stats *dm_get_stats(struct mapped_device *md)
407 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 struct mapped_device *md = bdev->bd_disk->private_data;
411 return dm_get_geometry(md, geo);
414 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
415 struct block_device **bdev,
418 struct dm_target *tgt;
419 struct dm_table *map;
424 map = dm_get_live_table(md, &srcu_idx);
425 if (!map || !dm_table_get_size(map))
428 /* We only support devices that have a single target */
429 if (dm_table_get_num_targets(map) != 1)
432 tgt = dm_table_get_target(map, 0);
433 if (!tgt->type->prepare_ioctl)
436 if (dm_suspended_md(md)) {
441 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
446 dm_put_live_table(md, srcu_idx);
450 dm_put_live_table(md, srcu_idx);
451 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
458 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
459 unsigned int cmd, unsigned long arg)
461 struct mapped_device *md = bdev->bd_disk->private_data;
464 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
470 * Target determined this ioctl is being issued against a
471 * subset of the parent bdev; require extra privileges.
473 if (!capable(CAP_SYS_RAWIO)) {
475 "%s: sending ioctl %x to DM device without required privilege.",
482 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
488 static struct dm_io *alloc_io(struct mapped_device *md)
490 return mempool_alloc(md->io_pool, GFP_NOIO);
493 static void free_io(struct mapped_device *md, struct dm_io *io)
495 mempool_free(io, md->io_pool);
498 static void free_tio(struct dm_target_io *tio)
500 bio_put(&tio->clone);
503 int md_in_flight(struct mapped_device *md)
505 return atomic_read(&md->pending[READ]) +
506 atomic_read(&md->pending[WRITE]);
509 static void start_io_acct(struct dm_io *io)
511 struct mapped_device *md = io->md;
512 struct bio *bio = io->bio;
514 int rw = bio_data_dir(bio);
516 io->start_time = jiffies;
518 cpu = part_stat_lock();
519 part_round_stats(cpu, &dm_disk(md)->part0);
521 atomic_set(&dm_disk(md)->part0.in_flight[rw],
522 atomic_inc_return(&md->pending[rw]));
524 if (unlikely(dm_stats_used(&md->stats)))
525 dm_stats_account_io(&md->stats, bio_data_dir(bio),
526 bio->bi_iter.bi_sector, bio_sectors(bio),
527 false, 0, &io->stats_aux);
530 static void end_io_acct(struct dm_io *io)
532 struct mapped_device *md = io->md;
533 struct bio *bio = io->bio;
534 unsigned long duration = jiffies - io->start_time;
536 int rw = bio_data_dir(bio);
538 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
540 if (unlikely(dm_stats_used(&md->stats)))
541 dm_stats_account_io(&md->stats, bio_data_dir(bio),
542 bio->bi_iter.bi_sector, bio_sectors(bio),
543 true, duration, &io->stats_aux);
546 * After this is decremented the bio must not be touched if it is
549 pending = atomic_dec_return(&md->pending[rw]);
550 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
551 pending += atomic_read(&md->pending[rw^0x1]);
553 /* nudge anyone waiting on suspend queue */
559 * Add the bio to the list of deferred io.
561 static void queue_io(struct mapped_device *md, struct bio *bio)
565 spin_lock_irqsave(&md->deferred_lock, flags);
566 bio_list_add(&md->deferred, bio);
567 spin_unlock_irqrestore(&md->deferred_lock, flags);
568 queue_work(md->wq, &md->work);
572 * Everyone (including functions in this file), should use this
573 * function to access the md->map field, and make sure they call
574 * dm_put_live_table() when finished.
576 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
578 *srcu_idx = srcu_read_lock(&md->io_barrier);
580 return srcu_dereference(md->map, &md->io_barrier);
583 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
585 srcu_read_unlock(&md->io_barrier, srcu_idx);
588 void dm_sync_table(struct mapped_device *md)
590 synchronize_srcu(&md->io_barrier);
591 synchronize_rcu_expedited();
595 * A fast alternative to dm_get_live_table/dm_put_live_table.
596 * The caller must not block between these two functions.
598 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
601 return rcu_dereference(md->map);
604 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
610 * Open a table device so we can use it as a map destination.
612 static int open_table_device(struct table_device *td, dev_t dev,
613 struct mapped_device *md)
615 static char *_claim_ptr = "I belong to device-mapper";
616 struct block_device *bdev;
620 BUG_ON(td->dm_dev.bdev);
622 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
624 return PTR_ERR(bdev);
626 r = bd_link_disk_holder(bdev, dm_disk(md));
628 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
632 td->dm_dev.bdev = bdev;
633 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
638 * Close a table device that we've been using.
640 static void close_table_device(struct table_device *td, struct mapped_device *md)
642 if (!td->dm_dev.bdev)
645 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
646 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
647 put_dax(td->dm_dev.dax_dev);
648 td->dm_dev.bdev = NULL;
649 td->dm_dev.dax_dev = NULL;
652 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
654 struct table_device *td;
656 list_for_each_entry(td, l, list)
657 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
663 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
664 struct dm_dev **result) {
666 struct table_device *td;
668 mutex_lock(&md->table_devices_lock);
669 td = find_table_device(&md->table_devices, dev, mode);
671 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
673 mutex_unlock(&md->table_devices_lock);
677 td->dm_dev.mode = mode;
678 td->dm_dev.bdev = NULL;
680 if ((r = open_table_device(td, dev, md))) {
681 mutex_unlock(&md->table_devices_lock);
686 format_dev_t(td->dm_dev.name, dev);
688 atomic_set(&td->count, 0);
689 list_add(&td->list, &md->table_devices);
691 atomic_inc(&td->count);
692 mutex_unlock(&md->table_devices_lock);
694 *result = &td->dm_dev;
697 EXPORT_SYMBOL_GPL(dm_get_table_device);
699 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
701 struct table_device *td = container_of(d, struct table_device, dm_dev);
703 mutex_lock(&md->table_devices_lock);
704 if (atomic_dec_and_test(&td->count)) {
705 close_table_device(td, md);
709 mutex_unlock(&md->table_devices_lock);
711 EXPORT_SYMBOL(dm_put_table_device);
713 static void free_table_devices(struct list_head *devices)
715 struct list_head *tmp, *next;
717 list_for_each_safe(tmp, next, devices) {
718 struct table_device *td = list_entry(tmp, struct table_device, list);
720 DMWARN("dm_destroy: %s still exists with %d references",
721 td->dm_dev.name, atomic_read(&td->count));
727 * Get the geometry associated with a dm device
729 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
737 * Set the geometry of a device.
739 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
741 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
743 if (geo->start > sz) {
744 DMWARN("Start sector is beyond the geometry limits.");
753 /*-----------------------------------------------------------------
755 * A more elegant soln is in the works that uses the queue
756 * merge fn, unfortunately there are a couple of changes to
757 * the block layer that I want to make for this. So in the
758 * interests of getting something for people to use I give
759 * you this clearly demarcated crap.
760 *---------------------------------------------------------------*/
762 static int __noflush_suspending(struct mapped_device *md)
764 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
768 * Decrements the number of outstanding ios that a bio has been
769 * cloned into, completing the original io if necc.
771 static void dec_pending(struct dm_io *io, int error)
776 struct mapped_device *md = io->md;
778 /* Push-back supersedes any I/O errors */
779 if (unlikely(error)) {
780 spin_lock_irqsave(&io->endio_lock, flags);
781 if (!(io->error > 0 && __noflush_suspending(md)))
783 spin_unlock_irqrestore(&io->endio_lock, flags);
786 if (atomic_dec_and_test(&io->io_count)) {
787 if (io->error == DM_ENDIO_REQUEUE) {
789 * Target requested pushing back the I/O.
791 spin_lock_irqsave(&md->deferred_lock, flags);
792 if (__noflush_suspending(md))
793 bio_list_add_head(&md->deferred, io->bio);
795 /* noflush suspend was interrupted. */
797 spin_unlock_irqrestore(&md->deferred_lock, flags);
800 io_error = io->error;
805 if (io_error == DM_ENDIO_REQUEUE)
808 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
810 * Preflush done for flush with data, reissue
811 * without REQ_PREFLUSH.
813 bio->bi_opf &= ~REQ_PREFLUSH;
816 /* done with normal IO or empty flush */
817 trace_block_bio_complete(md->queue, bio, io_error);
818 bio->bi_error = io_error;
824 void disable_write_same(struct mapped_device *md)
826 struct queue_limits *limits = dm_get_queue_limits(md);
828 /* device doesn't really support WRITE SAME, disable it */
829 limits->max_write_same_sectors = 0;
832 static void clone_endio(struct bio *bio)
834 int error = bio->bi_error;
836 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
837 struct dm_io *io = tio->io;
838 struct mapped_device *md = tio->io->md;
839 dm_endio_fn endio = tio->ti->type->end_io;
842 r = endio(tio->ti, bio, error);
843 if (r < 0 || r == DM_ENDIO_REQUEUE)
845 * error and requeue request are handled
849 else if (r == DM_ENDIO_INCOMPLETE)
850 /* The target will handle the io */
853 DMWARN("unimplemented target endio return value: %d", r);
858 if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
859 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
860 disable_write_same(md);
863 dec_pending(io, error);
867 * Return maximum size of I/O possible at the supplied sector up to the current
870 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
872 sector_t target_offset = dm_target_offset(ti, sector);
874 return ti->len - target_offset;
877 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
879 sector_t len = max_io_len_target_boundary(sector, ti);
880 sector_t offset, max_len;
883 * Does the target need to split even further?
885 if (ti->max_io_len) {
886 offset = dm_target_offset(ti, sector);
887 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
888 max_len = sector_div(offset, ti->max_io_len);
890 max_len = offset & (ti->max_io_len - 1);
891 max_len = ti->max_io_len - max_len;
900 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
902 if (len > UINT_MAX) {
903 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
904 (unsigned long long)len, UINT_MAX);
905 ti->error = "Maximum size of target IO is too large";
909 ti->max_io_len = (uint32_t) len;
913 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
915 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
916 sector_t sector, int *srcu_idx)
918 struct dm_table *map;
919 struct dm_target *ti;
921 map = dm_get_live_table(md, srcu_idx);
925 ti = dm_table_find_target(map, sector);
926 if (!dm_target_is_valid(ti))
932 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
933 long nr_pages, void **kaddr, pfn_t *pfn)
935 struct mapped_device *md = dax_get_private(dax_dev);
936 sector_t sector = pgoff * PAGE_SECTORS;
937 struct dm_target *ti;
938 long len, ret = -EIO;
941 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
945 if (!ti->type->direct_access)
947 len = max_io_len(sector, ti) / PAGE_SECTORS;
950 nr_pages = min(len, nr_pages);
951 if (ti->type->direct_access)
952 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
955 dm_put_live_table(md, srcu_idx);
960 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
961 void **kaddr, pfn_t *pfn, long size)
963 struct mapped_device *md = bdev->bd_disk->private_data;
964 struct dax_device *dax_dev = md->dax_dev;
965 long nr_pages = size / PAGE_SIZE;
967 nr_pages = dm_dax_direct_access(dax_dev, sector / PAGE_SECTORS,
968 nr_pages, kaddr, pfn);
969 return nr_pages < 0 ? nr_pages : nr_pages * PAGE_SIZE;
973 * A target may call dm_accept_partial_bio only from the map routine. It is
974 * allowed for all bio types except REQ_PREFLUSH.
976 * dm_accept_partial_bio informs the dm that the target only wants to process
977 * additional n_sectors sectors of the bio and the rest of the data should be
978 * sent in a next bio.
980 * A diagram that explains the arithmetics:
981 * +--------------------+---------------+-------+
983 * +--------------------+---------------+-------+
985 * <-------------- *tio->len_ptr --------------->
986 * <------- bi_size ------->
989 * Region 1 was already iterated over with bio_advance or similar function.
990 * (it may be empty if the target doesn't use bio_advance)
991 * Region 2 is the remaining bio size that the target wants to process.
992 * (it may be empty if region 1 is non-empty, although there is no reason
994 * The target requires that region 3 is to be sent in the next bio.
996 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
997 * the partially processed part (the sum of regions 1+2) must be the same for all
1000 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1002 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1003 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1004 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1005 BUG_ON(bi_size > *tio->len_ptr);
1006 BUG_ON(n_sectors > bi_size);
1007 *tio->len_ptr -= bi_size - n_sectors;
1008 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1010 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1013 * Flush current->bio_list when the target map method blocks.
1014 * This fixes deadlocks in snapshot and possibly in other targets.
1017 struct blk_plug plug;
1018 struct blk_plug_cb cb;
1021 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1023 struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1024 struct bio_list list;
1028 INIT_LIST_HEAD(&o->cb.list);
1030 if (unlikely(!current->bio_list))
1033 for (i = 0; i < 2; i++) {
1034 list = current->bio_list[i];
1035 bio_list_init(¤t->bio_list[i]);
1037 while ((bio = bio_list_pop(&list))) {
1038 struct bio_set *bs = bio->bi_pool;
1039 if (unlikely(!bs) || bs == fs_bio_set) {
1040 bio_list_add(¤t->bio_list[i], bio);
1044 spin_lock(&bs->rescue_lock);
1045 bio_list_add(&bs->rescue_list, bio);
1046 queue_work(bs->rescue_workqueue, &bs->rescue_work);
1047 spin_unlock(&bs->rescue_lock);
1052 static void dm_offload_start(struct dm_offload *o)
1054 blk_start_plug(&o->plug);
1055 o->cb.callback = flush_current_bio_list;
1056 list_add(&o->cb.list, ¤t->plug->cb_list);
1059 static void dm_offload_end(struct dm_offload *o)
1061 list_del(&o->cb.list);
1062 blk_finish_plug(&o->plug);
1065 static void __map_bio(struct dm_target_io *tio)
1069 struct dm_offload o;
1070 struct bio *clone = &tio->clone;
1071 struct dm_target *ti = tio->ti;
1073 clone->bi_end_io = clone_endio;
1076 * Map the clone. If r == 0 we don't need to do
1077 * anything, the target has assumed ownership of
1080 atomic_inc(&tio->io->io_count);
1081 sector = clone->bi_iter.bi_sector;
1083 dm_offload_start(&o);
1084 r = ti->type->map(ti, clone);
1087 if (r == DM_MAPIO_REMAPPED) {
1088 /* the bio has been remapped so dispatch it */
1090 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1091 tio->io->bio->bi_bdev->bd_dev, sector);
1093 generic_make_request(clone);
1094 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1095 /* error the io and bail out, or requeue it if needed */
1096 dec_pending(tio->io, r);
1098 } else if (r != DM_MAPIO_SUBMITTED) {
1099 DMWARN("unimplemented target map return value: %d", r);
1105 struct mapped_device *md;
1106 struct dm_table *map;
1110 unsigned sector_count;
1113 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1115 bio->bi_iter.bi_sector = sector;
1116 bio->bi_iter.bi_size = to_bytes(len);
1120 * Creates a bio that consists of range of complete bvecs.
1122 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1123 sector_t sector, unsigned len)
1125 struct bio *clone = &tio->clone;
1127 __bio_clone_fast(clone, bio);
1129 if (bio_integrity(bio)) {
1130 int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1135 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1136 clone->bi_iter.bi_size = to_bytes(len);
1138 if (bio_integrity(bio))
1139 bio_integrity_trim(clone, 0, len);
1144 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1145 struct dm_target *ti,
1146 unsigned target_bio_nr)
1148 struct dm_target_io *tio;
1151 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1152 tio = container_of(clone, struct dm_target_io, clone);
1156 tio->target_bio_nr = target_bio_nr;
1161 static void __clone_and_map_simple_bio(struct clone_info *ci,
1162 struct dm_target *ti,
1163 unsigned target_bio_nr, unsigned *len)
1165 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1166 struct bio *clone = &tio->clone;
1170 __bio_clone_fast(clone, ci->bio);
1172 bio_setup_sector(clone, ci->sector, *len);
1177 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1178 unsigned num_bios, unsigned *len)
1180 unsigned target_bio_nr;
1182 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1183 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1186 static int __send_empty_flush(struct clone_info *ci)
1188 unsigned target_nr = 0;
1189 struct dm_target *ti;
1191 BUG_ON(bio_has_data(ci->bio));
1192 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1193 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1198 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1199 sector_t sector, unsigned *len)
1201 struct bio *bio = ci->bio;
1202 struct dm_target_io *tio;
1203 unsigned target_bio_nr;
1204 unsigned num_target_bios = 1;
1208 * Does the target want to receive duplicate copies of the bio?
1210 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1211 num_target_bios = ti->num_write_bios(ti, bio);
1213 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1214 tio = alloc_tio(ci, ti, target_bio_nr);
1216 r = clone_bio(tio, bio, sector, *len);
1227 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1229 static unsigned get_num_discard_bios(struct dm_target *ti)
1231 return ti->num_discard_bios;
1234 static unsigned get_num_write_same_bios(struct dm_target *ti)
1236 return ti->num_write_same_bios;
1239 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1241 static bool is_split_required_for_discard(struct dm_target *ti)
1243 return ti->split_discard_bios;
1246 static int __send_changing_extent_only(struct clone_info *ci,
1247 get_num_bios_fn get_num_bios,
1248 is_split_required_fn is_split_required)
1250 struct dm_target *ti;
1255 ti = dm_table_find_target(ci->map, ci->sector);
1256 if (!dm_target_is_valid(ti))
1260 * Even though the device advertised support for this type of
1261 * request, that does not mean every target supports it, and
1262 * reconfiguration might also have changed that since the
1263 * check was performed.
1265 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1269 if (is_split_required && !is_split_required(ti))
1270 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1272 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1274 __send_duplicate_bios(ci, ti, num_bios, &len);
1277 } while (ci->sector_count -= len);
1282 static int __send_discard(struct clone_info *ci)
1284 return __send_changing_extent_only(ci, get_num_discard_bios,
1285 is_split_required_for_discard);
1288 static int __send_write_same(struct clone_info *ci)
1290 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1294 * Select the correct strategy for processing a non-flush bio.
1296 static int __split_and_process_non_flush(struct clone_info *ci)
1298 struct bio *bio = ci->bio;
1299 struct dm_target *ti;
1303 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1304 return __send_discard(ci);
1305 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1306 return __send_write_same(ci);
1308 ti = dm_table_find_target(ci->map, ci->sector);
1309 if (!dm_target_is_valid(ti))
1312 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1314 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1319 ci->sector_count -= len;
1325 * Entry point to split a bio into clones and submit them to the targets.
1327 static void __split_and_process_bio(struct mapped_device *md,
1328 struct dm_table *map, struct bio *bio)
1330 struct clone_info ci;
1333 if (unlikely(!map)) {
1340 ci.io = alloc_io(md);
1342 atomic_set(&ci.io->io_count, 1);
1345 spin_lock_init(&ci.io->endio_lock);
1346 ci.sector = bio->bi_iter.bi_sector;
1348 start_io_acct(ci.io);
1350 if (bio->bi_opf & REQ_PREFLUSH) {
1351 ci.bio = &ci.md->flush_bio;
1352 ci.sector_count = 0;
1353 error = __send_empty_flush(&ci);
1354 /* dec_pending submits any data associated with flush */
1357 ci.sector_count = bio_sectors(bio);
1358 while (ci.sector_count && !error)
1359 error = __split_and_process_non_flush(&ci);
1362 /* drop the extra reference count */
1363 dec_pending(ci.io, error);
1365 /*-----------------------------------------------------------------
1367 *---------------------------------------------------------------*/
1370 * The request function that just remaps the bio built up by
1373 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1375 int rw = bio_data_dir(bio);
1376 struct mapped_device *md = q->queuedata;
1378 struct dm_table *map;
1380 map = dm_get_live_table(md, &srcu_idx);
1382 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1384 /* if we're suspended, we have to queue this io for later */
1385 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1386 dm_put_live_table(md, srcu_idx);
1388 if (!(bio->bi_opf & REQ_RAHEAD))
1392 return BLK_QC_T_NONE;
1395 __split_and_process_bio(md, map, bio);
1396 dm_put_live_table(md, srcu_idx);
1397 return BLK_QC_T_NONE;
1400 static int dm_any_congested(void *congested_data, int bdi_bits)
1403 struct mapped_device *md = congested_data;
1404 struct dm_table *map;
1406 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1407 if (dm_request_based(md)) {
1409 * With request-based DM we only need to check the
1410 * top-level queue for congestion.
1412 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1414 map = dm_get_live_table_fast(md);
1416 r = dm_table_any_congested(map, bdi_bits);
1417 dm_put_live_table_fast(md);
1424 /*-----------------------------------------------------------------
1425 * An IDR is used to keep track of allocated minor numbers.
1426 *---------------------------------------------------------------*/
1427 static void free_minor(int minor)
1429 spin_lock(&_minor_lock);
1430 idr_remove(&_minor_idr, minor);
1431 spin_unlock(&_minor_lock);
1435 * See if the device with a specific minor # is free.
1437 static int specific_minor(int minor)
1441 if (minor >= (1 << MINORBITS))
1444 idr_preload(GFP_KERNEL);
1445 spin_lock(&_minor_lock);
1447 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1449 spin_unlock(&_minor_lock);
1452 return r == -ENOSPC ? -EBUSY : r;
1456 static int next_free_minor(int *minor)
1460 idr_preload(GFP_KERNEL);
1461 spin_lock(&_minor_lock);
1463 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1465 spin_unlock(&_minor_lock);
1473 static const struct block_device_operations dm_blk_dops;
1474 static const struct dax_operations dm_dax_ops;
1476 static void dm_wq_work(struct work_struct *work);
1478 void dm_init_md_queue(struct mapped_device *md)
1481 * Request-based dm devices cannot be stacked on top of bio-based dm
1482 * devices. The type of this dm device may not have been decided yet.
1483 * The type is decided at the first table loading time.
1484 * To prevent problematic device stacking, clear the queue flag
1485 * for request stacking support until then.
1487 * This queue is new, so no concurrency on the queue_flags.
1489 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1492 * Initialize data that will only be used by a non-blk-mq DM queue
1493 * - must do so here (in alloc_dev callchain) before queue is used
1495 md->queue->queuedata = md;
1496 md->queue->backing_dev_info->congested_data = md;
1499 void dm_init_normal_md_queue(struct mapped_device *md)
1501 md->use_blk_mq = false;
1502 dm_init_md_queue(md);
1505 * Initialize aspects of queue that aren't relevant for blk-mq
1507 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1508 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1511 static void cleanup_mapped_device(struct mapped_device *md)
1514 destroy_workqueue(md->wq);
1515 if (md->kworker_task)
1516 kthread_stop(md->kworker_task);
1517 mempool_destroy(md->io_pool);
1519 bioset_free(md->bs);
1522 kill_dax(md->dax_dev);
1523 put_dax(md->dax_dev);
1528 spin_lock(&_minor_lock);
1529 md->disk->private_data = NULL;
1530 spin_unlock(&_minor_lock);
1531 del_gendisk(md->disk);
1536 blk_cleanup_queue(md->queue);
1538 cleanup_srcu_struct(&md->io_barrier);
1545 dm_mq_cleanup_mapped_device(md);
1549 * Allocate and initialise a blank device with a given minor.
1551 static struct mapped_device *alloc_dev(int minor)
1553 int r, numa_node_id = dm_get_numa_node();
1554 struct dax_device *dax_dev;
1555 struct mapped_device *md;
1558 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1560 DMWARN("unable to allocate device, out of memory.");
1564 if (!try_module_get(THIS_MODULE))
1565 goto bad_module_get;
1567 /* get a minor number for the dev */
1568 if (minor == DM_ANY_MINOR)
1569 r = next_free_minor(&minor);
1571 r = specific_minor(minor);
1575 r = init_srcu_struct(&md->io_barrier);
1577 goto bad_io_barrier;
1579 md->numa_node_id = numa_node_id;
1580 md->use_blk_mq = dm_use_blk_mq_default();
1581 md->init_tio_pdu = false;
1582 md->type = DM_TYPE_NONE;
1583 mutex_init(&md->suspend_lock);
1584 mutex_init(&md->type_lock);
1585 mutex_init(&md->table_devices_lock);
1586 spin_lock_init(&md->deferred_lock);
1587 atomic_set(&md->holders, 1);
1588 atomic_set(&md->open_count, 0);
1589 atomic_set(&md->event_nr, 0);
1590 atomic_set(&md->uevent_seq, 0);
1591 INIT_LIST_HEAD(&md->uevent_list);
1592 INIT_LIST_HEAD(&md->table_devices);
1593 spin_lock_init(&md->uevent_lock);
1595 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1599 dm_init_md_queue(md);
1601 md->disk = alloc_disk_node(1, numa_node_id);
1605 atomic_set(&md->pending[0], 0);
1606 atomic_set(&md->pending[1], 0);
1607 init_waitqueue_head(&md->wait);
1608 INIT_WORK(&md->work, dm_wq_work);
1609 init_waitqueue_head(&md->eventq);
1610 init_completion(&md->kobj_holder.completion);
1611 md->kworker_task = NULL;
1613 md->disk->major = _major;
1614 md->disk->first_minor = minor;
1615 md->disk->fops = &dm_blk_dops;
1616 md->disk->queue = md->queue;
1617 md->disk->private_data = md;
1618 sprintf(md->disk->disk_name, "dm-%d", minor);
1620 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1623 md->dax_dev = dax_dev;
1626 format_dev_t(md->name, MKDEV(_major, minor));
1628 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1632 md->bdev = bdget_disk(md->disk, 0);
1636 bio_init(&md->flush_bio, NULL, 0);
1637 md->flush_bio.bi_bdev = md->bdev;
1638 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1640 dm_stats_init(&md->stats);
1642 /* Populate the mapping, nobody knows we exist yet */
1643 spin_lock(&_minor_lock);
1644 old_md = idr_replace(&_minor_idr, md, minor);
1645 spin_unlock(&_minor_lock);
1647 BUG_ON(old_md != MINOR_ALLOCED);
1652 cleanup_mapped_device(md);
1656 module_put(THIS_MODULE);
1662 static void unlock_fs(struct mapped_device *md);
1664 static void free_dev(struct mapped_device *md)
1666 int minor = MINOR(disk_devt(md->disk));
1670 cleanup_mapped_device(md);
1672 free_table_devices(&md->table_devices);
1673 dm_stats_cleanup(&md->stats);
1676 module_put(THIS_MODULE);
1680 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1682 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1685 /* The md already has necessary mempools. */
1686 if (dm_table_bio_based(t)) {
1688 * Reload bioset because front_pad may have changed
1689 * because a different table was loaded.
1691 bioset_free(md->bs);
1696 * There's no need to reload with request-based dm
1697 * because the size of front_pad doesn't change.
1698 * Note for future: If you are to reload bioset,
1699 * prep-ed requests in the queue may refer
1700 * to bio from the old bioset, so you must walk
1701 * through the queue to unprep.
1706 BUG_ON(!p || md->io_pool || md->bs);
1708 md->io_pool = p->io_pool;
1714 /* mempool bind completed, no longer need any mempools in the table */
1715 dm_table_free_md_mempools(t);
1719 * Bind a table to the device.
1721 static void event_callback(void *context)
1723 unsigned long flags;
1725 struct mapped_device *md = (struct mapped_device *) context;
1727 spin_lock_irqsave(&md->uevent_lock, flags);
1728 list_splice_init(&md->uevent_list, &uevents);
1729 spin_unlock_irqrestore(&md->uevent_lock, flags);
1731 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1733 atomic_inc(&md->event_nr);
1734 wake_up(&md->eventq);
1738 * Protected by md->suspend_lock obtained by dm_swap_table().
1740 static void __set_size(struct mapped_device *md, sector_t size)
1742 set_capacity(md->disk, size);
1744 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1748 * Returns old map, which caller must destroy.
1750 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1751 struct queue_limits *limits)
1753 struct dm_table *old_map;
1754 struct request_queue *q = md->queue;
1757 lockdep_assert_held(&md->suspend_lock);
1759 size = dm_table_get_size(t);
1762 * Wipe any geometry if the size of the table changed.
1764 if (size != dm_get_size(md))
1765 memset(&md->geometry, 0, sizeof(md->geometry));
1767 __set_size(md, size);
1769 dm_table_event_callback(t, event_callback, md);
1772 * The queue hasn't been stopped yet, if the old table type wasn't
1773 * for request-based during suspension. So stop it to prevent
1774 * I/O mapping before resume.
1775 * This must be done before setting the queue restrictions,
1776 * because request-based dm may be run just after the setting.
1778 if (dm_table_request_based(t)) {
1781 * Leverage the fact that request-based DM targets are
1782 * immutable singletons and establish md->immutable_target
1783 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1785 md->immutable_target = dm_table_get_immutable_target(t);
1788 __bind_mempools(md, t);
1790 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1791 rcu_assign_pointer(md->map, (void *)t);
1792 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1794 dm_table_set_restrictions(t, q, limits);
1802 * Returns unbound table for the caller to free.
1804 static struct dm_table *__unbind(struct mapped_device *md)
1806 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1811 dm_table_event_callback(map, NULL, NULL);
1812 RCU_INIT_POINTER(md->map, NULL);
1819 * Constructor for a new device.
1821 int dm_create(int minor, struct mapped_device **result)
1823 struct mapped_device *md;
1825 md = alloc_dev(minor);
1836 * Functions to manage md->type.
1837 * All are required to hold md->type_lock.
1839 void dm_lock_md_type(struct mapped_device *md)
1841 mutex_lock(&md->type_lock);
1844 void dm_unlock_md_type(struct mapped_device *md)
1846 mutex_unlock(&md->type_lock);
1849 void dm_set_md_type(struct mapped_device *md, unsigned type)
1851 BUG_ON(!mutex_is_locked(&md->type_lock));
1855 unsigned dm_get_md_type(struct mapped_device *md)
1860 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1862 return md->immutable_target_type;
1866 * The queue_limits are only valid as long as you have a reference
1869 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1871 BUG_ON(!atomic_read(&md->holders));
1872 return &md->queue->limits;
1874 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1877 * Setup the DM device's queue based on md's type
1879 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1882 unsigned type = dm_get_md_type(md);
1885 case DM_TYPE_REQUEST_BASED:
1886 r = dm_old_init_request_queue(md, t);
1888 DMERR("Cannot initialize queue for request-based mapped device");
1892 case DM_TYPE_MQ_REQUEST_BASED:
1893 r = dm_mq_init_request_queue(md, t);
1895 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1899 case DM_TYPE_BIO_BASED:
1900 case DM_TYPE_DAX_BIO_BASED:
1901 dm_init_normal_md_queue(md);
1902 blk_queue_make_request(md->queue, dm_make_request);
1904 * DM handles splitting bios as needed. Free the bio_split bioset
1905 * since it won't be used (saves 1 process per bio-based DM device).
1907 bioset_free(md->queue->bio_split);
1908 md->queue->bio_split = NULL;
1910 if (type == DM_TYPE_DAX_BIO_BASED)
1911 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1918 struct mapped_device *dm_get_md(dev_t dev)
1920 struct mapped_device *md;
1921 unsigned minor = MINOR(dev);
1923 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1926 spin_lock(&_minor_lock);
1928 md = idr_find(&_minor_idr, minor);
1930 if ((md == MINOR_ALLOCED ||
1931 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1932 dm_deleting_md(md) ||
1933 test_bit(DMF_FREEING, &md->flags))) {
1941 spin_unlock(&_minor_lock);
1945 EXPORT_SYMBOL_GPL(dm_get_md);
1947 void *dm_get_mdptr(struct mapped_device *md)
1949 return md->interface_ptr;
1952 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1954 md->interface_ptr = ptr;
1957 void dm_get(struct mapped_device *md)
1959 atomic_inc(&md->holders);
1960 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1963 int dm_hold(struct mapped_device *md)
1965 spin_lock(&_minor_lock);
1966 if (test_bit(DMF_FREEING, &md->flags)) {
1967 spin_unlock(&_minor_lock);
1971 spin_unlock(&_minor_lock);
1974 EXPORT_SYMBOL_GPL(dm_hold);
1976 const char *dm_device_name(struct mapped_device *md)
1980 EXPORT_SYMBOL_GPL(dm_device_name);
1982 static void __dm_destroy(struct mapped_device *md, bool wait)
1984 struct request_queue *q = dm_get_md_queue(md);
1985 struct dm_table *map;
1990 spin_lock(&_minor_lock);
1991 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1992 set_bit(DMF_FREEING, &md->flags);
1993 spin_unlock(&_minor_lock);
1995 blk_set_queue_dying(q);
1997 if (dm_request_based(md) && md->kworker_task)
1998 kthread_flush_worker(&md->kworker);
2001 * Take suspend_lock so that presuspend and postsuspend methods
2002 * do not race with internal suspend.
2004 mutex_lock(&md->suspend_lock);
2005 map = dm_get_live_table(md, &srcu_idx);
2006 if (!dm_suspended_md(md)) {
2007 dm_table_presuspend_targets(map);
2008 dm_table_postsuspend_targets(map);
2010 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2011 dm_put_live_table(md, srcu_idx);
2012 mutex_unlock(&md->suspend_lock);
2015 * Rare, but there may be I/O requests still going to complete,
2016 * for example. Wait for all references to disappear.
2017 * No one should increment the reference count of the mapped_device,
2018 * after the mapped_device state becomes DMF_FREEING.
2021 while (atomic_read(&md->holders))
2023 else if (atomic_read(&md->holders))
2024 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2025 dm_device_name(md), atomic_read(&md->holders));
2028 dm_table_destroy(__unbind(md));
2032 void dm_destroy(struct mapped_device *md)
2034 __dm_destroy(md, true);
2037 void dm_destroy_immediate(struct mapped_device *md)
2039 __dm_destroy(md, false);
2042 void dm_put(struct mapped_device *md)
2044 atomic_dec(&md->holders);
2046 EXPORT_SYMBOL_GPL(dm_put);
2048 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2054 prepare_to_wait(&md->wait, &wait, task_state);
2056 if (!md_in_flight(md))
2059 if (signal_pending_state(task_state, current)) {
2066 finish_wait(&md->wait, &wait);
2072 * Process the deferred bios
2074 static void dm_wq_work(struct work_struct *work)
2076 struct mapped_device *md = container_of(work, struct mapped_device,
2080 struct dm_table *map;
2082 map = dm_get_live_table(md, &srcu_idx);
2084 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2085 spin_lock_irq(&md->deferred_lock);
2086 c = bio_list_pop(&md->deferred);
2087 spin_unlock_irq(&md->deferred_lock);
2092 if (dm_request_based(md))
2093 generic_make_request(c);
2095 __split_and_process_bio(md, map, c);
2098 dm_put_live_table(md, srcu_idx);
2101 static void dm_queue_flush(struct mapped_device *md)
2103 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2104 smp_mb__after_atomic();
2105 queue_work(md->wq, &md->work);
2109 * Swap in a new table, returning the old one for the caller to destroy.
2111 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2113 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2114 struct queue_limits limits;
2117 mutex_lock(&md->suspend_lock);
2119 /* device must be suspended */
2120 if (!dm_suspended_md(md))
2124 * If the new table has no data devices, retain the existing limits.
2125 * This helps multipath with queue_if_no_path if all paths disappear,
2126 * then new I/O is queued based on these limits, and then some paths
2129 if (dm_table_has_no_data_devices(table)) {
2130 live_map = dm_get_live_table_fast(md);
2132 limits = md->queue->limits;
2133 dm_put_live_table_fast(md);
2137 r = dm_calculate_queue_limits(table, &limits);
2144 map = __bind(md, table, &limits);
2147 mutex_unlock(&md->suspend_lock);
2152 * Functions to lock and unlock any filesystem running on the
2155 static int lock_fs(struct mapped_device *md)
2159 WARN_ON(md->frozen_sb);
2161 md->frozen_sb = freeze_bdev(md->bdev);
2162 if (IS_ERR(md->frozen_sb)) {
2163 r = PTR_ERR(md->frozen_sb);
2164 md->frozen_sb = NULL;
2168 set_bit(DMF_FROZEN, &md->flags);
2173 static void unlock_fs(struct mapped_device *md)
2175 if (!test_bit(DMF_FROZEN, &md->flags))
2178 thaw_bdev(md->bdev, md->frozen_sb);
2179 md->frozen_sb = NULL;
2180 clear_bit(DMF_FROZEN, &md->flags);
2184 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2185 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2186 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2188 * If __dm_suspend returns 0, the device is completely quiescent
2189 * now. There is no request-processing activity. All new requests
2190 * are being added to md->deferred list.
2192 * Caller must hold md->suspend_lock
2194 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2195 unsigned suspend_flags, long task_state,
2196 int dmf_suspended_flag)
2198 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2199 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2202 lockdep_assert_held(&md->suspend_lock);
2205 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2206 * This flag is cleared before dm_suspend returns.
2209 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2212 * This gets reverted if there's an error later and the targets
2213 * provide the .presuspend_undo hook.
2215 dm_table_presuspend_targets(map);
2218 * Flush I/O to the device.
2219 * Any I/O submitted after lock_fs() may not be flushed.
2220 * noflush takes precedence over do_lockfs.
2221 * (lock_fs() flushes I/Os and waits for them to complete.)
2223 if (!noflush && do_lockfs) {
2226 dm_table_presuspend_undo_targets(map);
2232 * Here we must make sure that no processes are submitting requests
2233 * to target drivers i.e. no one may be executing
2234 * __split_and_process_bio. This is called from dm_request and
2237 * To get all processes out of __split_and_process_bio in dm_request,
2238 * we take the write lock. To prevent any process from reentering
2239 * __split_and_process_bio from dm_request and quiesce the thread
2240 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2241 * flush_workqueue(md->wq).
2243 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2245 synchronize_srcu(&md->io_barrier);
2248 * Stop md->queue before flushing md->wq in case request-based
2249 * dm defers requests to md->wq from md->queue.
2251 if (dm_request_based(md)) {
2252 dm_stop_queue(md->queue);
2253 if (md->kworker_task)
2254 kthread_flush_worker(&md->kworker);
2257 flush_workqueue(md->wq);
2260 * At this point no more requests are entering target request routines.
2261 * We call dm_wait_for_completion to wait for all existing requests
2264 r = dm_wait_for_completion(md, task_state);
2266 set_bit(dmf_suspended_flag, &md->flags);
2269 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2271 synchronize_srcu(&md->io_barrier);
2273 /* were we interrupted ? */
2277 if (dm_request_based(md))
2278 dm_start_queue(md->queue);
2281 dm_table_presuspend_undo_targets(map);
2282 /* pushback list is already flushed, so skip flush */
2289 * We need to be able to change a mapping table under a mounted
2290 * filesystem. For example we might want to move some data in
2291 * the background. Before the table can be swapped with
2292 * dm_bind_table, dm_suspend must be called to flush any in
2293 * flight bios and ensure that any further io gets deferred.
2296 * Suspend mechanism in request-based dm.
2298 * 1. Flush all I/Os by lock_fs() if needed.
2299 * 2. Stop dispatching any I/O by stopping the request_queue.
2300 * 3. Wait for all in-flight I/Os to be completed or requeued.
2302 * To abort suspend, start the request_queue.
2304 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2306 struct dm_table *map = NULL;
2310 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2312 if (dm_suspended_md(md)) {
2317 if (dm_suspended_internally_md(md)) {
2318 /* already internally suspended, wait for internal resume */
2319 mutex_unlock(&md->suspend_lock);
2320 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2326 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2328 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2332 dm_table_postsuspend_targets(map);
2335 mutex_unlock(&md->suspend_lock);
2339 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2342 int r = dm_table_resume_targets(map);
2350 * Flushing deferred I/Os must be done after targets are resumed
2351 * so that mapping of targets can work correctly.
2352 * Request-based dm is queueing the deferred I/Os in its request_queue.
2354 if (dm_request_based(md))
2355 dm_start_queue(md->queue);
2362 int dm_resume(struct mapped_device *md)
2365 struct dm_table *map = NULL;
2369 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2371 if (!dm_suspended_md(md))
2374 if (dm_suspended_internally_md(md)) {
2375 /* already internally suspended, wait for internal resume */
2376 mutex_unlock(&md->suspend_lock);
2377 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2383 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2384 if (!map || !dm_table_get_size(map))
2387 r = __dm_resume(md, map);
2391 clear_bit(DMF_SUSPENDED, &md->flags);
2393 mutex_unlock(&md->suspend_lock);
2399 * Internal suspend/resume works like userspace-driven suspend. It waits
2400 * until all bios finish and prevents issuing new bios to the target drivers.
2401 * It may be used only from the kernel.
2404 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2406 struct dm_table *map = NULL;
2408 if (md->internal_suspend_count++)
2409 return; /* nested internal suspend */
2411 if (dm_suspended_md(md)) {
2412 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2413 return; /* nest suspend */
2416 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2419 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2420 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2421 * would require changing .presuspend to return an error -- avoid this
2422 * until there is a need for more elaborate variants of internal suspend.
2424 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2425 DMF_SUSPENDED_INTERNALLY);
2427 dm_table_postsuspend_targets(map);
2430 static void __dm_internal_resume(struct mapped_device *md)
2432 BUG_ON(!md->internal_suspend_count);
2434 if (--md->internal_suspend_count)
2435 return; /* resume from nested internal suspend */
2437 if (dm_suspended_md(md))
2438 goto done; /* resume from nested suspend */
2441 * NOTE: existing callers don't need to call dm_table_resume_targets
2442 * (which may fail -- so best to avoid it for now by passing NULL map)
2444 (void) __dm_resume(md, NULL);
2447 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2448 smp_mb__after_atomic();
2449 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2452 void dm_internal_suspend_noflush(struct mapped_device *md)
2454 mutex_lock(&md->suspend_lock);
2455 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2456 mutex_unlock(&md->suspend_lock);
2458 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2460 void dm_internal_resume(struct mapped_device *md)
2462 mutex_lock(&md->suspend_lock);
2463 __dm_internal_resume(md);
2464 mutex_unlock(&md->suspend_lock);
2466 EXPORT_SYMBOL_GPL(dm_internal_resume);
2469 * Fast variants of internal suspend/resume hold md->suspend_lock,
2470 * which prevents interaction with userspace-driven suspend.
2473 void dm_internal_suspend_fast(struct mapped_device *md)
2475 mutex_lock(&md->suspend_lock);
2476 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2479 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2480 synchronize_srcu(&md->io_barrier);
2481 flush_workqueue(md->wq);
2482 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2484 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2486 void dm_internal_resume_fast(struct mapped_device *md)
2488 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2494 mutex_unlock(&md->suspend_lock);
2496 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2498 /*-----------------------------------------------------------------
2499 * Event notification.
2500 *---------------------------------------------------------------*/
2501 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2504 char udev_cookie[DM_COOKIE_LENGTH];
2505 char *envp[] = { udev_cookie, NULL };
2508 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2510 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2511 DM_COOKIE_ENV_VAR_NAME, cookie);
2512 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2517 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2519 return atomic_add_return(1, &md->uevent_seq);
2522 uint32_t dm_get_event_nr(struct mapped_device *md)
2524 return atomic_read(&md->event_nr);
2527 int dm_wait_event(struct mapped_device *md, int event_nr)
2529 return wait_event_interruptible(md->eventq,
2530 (event_nr != atomic_read(&md->event_nr)));
2533 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2535 unsigned long flags;
2537 spin_lock_irqsave(&md->uevent_lock, flags);
2538 list_add(elist, &md->uevent_list);
2539 spin_unlock_irqrestore(&md->uevent_lock, flags);
2543 * The gendisk is only valid as long as you have a reference
2546 struct gendisk *dm_disk(struct mapped_device *md)
2550 EXPORT_SYMBOL_GPL(dm_disk);
2552 struct kobject *dm_kobject(struct mapped_device *md)
2554 return &md->kobj_holder.kobj;
2557 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2559 struct mapped_device *md;
2561 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2563 if (test_bit(DMF_FREEING, &md->flags) ||
2571 int dm_suspended_md(struct mapped_device *md)
2573 return test_bit(DMF_SUSPENDED, &md->flags);
2576 int dm_suspended_internally_md(struct mapped_device *md)
2578 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2581 int dm_test_deferred_remove_flag(struct mapped_device *md)
2583 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2586 int dm_suspended(struct dm_target *ti)
2588 return dm_suspended_md(dm_table_get_md(ti->table));
2590 EXPORT_SYMBOL_GPL(dm_suspended);
2592 int dm_noflush_suspending(struct dm_target *ti)
2594 return __noflush_suspending(dm_table_get_md(ti->table));
2596 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2598 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2599 unsigned integrity, unsigned per_io_data_size)
2601 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2602 unsigned int pool_size = 0;
2603 unsigned int front_pad;
2609 case DM_TYPE_BIO_BASED:
2610 case DM_TYPE_DAX_BIO_BASED:
2611 pool_size = dm_get_reserved_bio_based_ios();
2612 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2614 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2615 if (!pools->io_pool)
2618 case DM_TYPE_REQUEST_BASED:
2619 case DM_TYPE_MQ_REQUEST_BASED:
2620 pool_size = dm_get_reserved_rq_based_ios();
2621 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2622 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2628 pools->bs = bioset_create_nobvec(pool_size, front_pad);
2632 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2638 dm_free_md_mempools(pools);
2643 void dm_free_md_mempools(struct dm_md_mempools *pools)
2648 mempool_destroy(pools->io_pool);
2651 bioset_free(pools->bs);
2663 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2666 struct mapped_device *md = bdev->bd_disk->private_data;
2667 struct dm_table *table;
2668 struct dm_target *ti;
2669 int ret = -ENOTTY, srcu_idx;
2671 table = dm_get_live_table(md, &srcu_idx);
2672 if (!table || !dm_table_get_size(table))
2675 /* We only support devices that have a single target */
2676 if (dm_table_get_num_targets(table) != 1)
2678 ti = dm_table_get_target(table, 0);
2681 if (!ti->type->iterate_devices)
2684 ret = ti->type->iterate_devices(ti, fn, data);
2686 dm_put_live_table(md, srcu_idx);
2691 * For register / unregister we need to manually call out to every path.
2693 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2694 sector_t start, sector_t len, void *data)
2696 struct dm_pr *pr = data;
2697 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2699 if (!ops || !ops->pr_register)
2701 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2704 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2715 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2716 if (ret && new_key) {
2717 /* unregister all paths if we failed to register any path */
2718 pr.old_key = new_key;
2721 pr.fail_early = false;
2722 dm_call_pr(bdev, __dm_pr_register, &pr);
2728 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2731 struct mapped_device *md = bdev->bd_disk->private_data;
2732 const struct pr_ops *ops;
2736 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2740 ops = bdev->bd_disk->fops->pr_ops;
2741 if (ops && ops->pr_reserve)
2742 r = ops->pr_reserve(bdev, key, type, flags);
2750 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2752 struct mapped_device *md = bdev->bd_disk->private_data;
2753 const struct pr_ops *ops;
2757 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2761 ops = bdev->bd_disk->fops->pr_ops;
2762 if (ops && ops->pr_release)
2763 r = ops->pr_release(bdev, key, type);
2771 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2772 enum pr_type type, bool abort)
2774 struct mapped_device *md = bdev->bd_disk->private_data;
2775 const struct pr_ops *ops;
2779 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2783 ops = bdev->bd_disk->fops->pr_ops;
2784 if (ops && ops->pr_preempt)
2785 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2793 static int dm_pr_clear(struct block_device *bdev, u64 key)
2795 struct mapped_device *md = bdev->bd_disk->private_data;
2796 const struct pr_ops *ops;
2800 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2804 ops = bdev->bd_disk->fops->pr_ops;
2805 if (ops && ops->pr_clear)
2806 r = ops->pr_clear(bdev, key);
2814 static const struct pr_ops dm_pr_ops = {
2815 .pr_register = dm_pr_register,
2816 .pr_reserve = dm_pr_reserve,
2817 .pr_release = dm_pr_release,
2818 .pr_preempt = dm_pr_preempt,
2819 .pr_clear = dm_pr_clear,
2822 static const struct block_device_operations dm_blk_dops = {
2823 .open = dm_blk_open,
2824 .release = dm_blk_close,
2825 .ioctl = dm_blk_ioctl,
2826 .direct_access = dm_blk_direct_access,
2827 .getgeo = dm_blk_getgeo,
2828 .pr_ops = &dm_pr_ops,
2829 .owner = THIS_MODULE
2832 static const struct dax_operations dm_dax_ops = {
2833 .direct_access = dm_dax_direct_access,
2839 module_init(dm_init);
2840 module_exit(dm_exit);
2842 module_param(major, uint, 0);
2843 MODULE_PARM_DESC(major, "The major number of the device mapper");
2845 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2846 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2848 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2849 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2851 MODULE_DESCRIPTION(DM_NAME " driver");
2853 MODULE_LICENSE("GPL");