4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
138 task->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
163 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
165 __sync_task_rss_stat(task, mm);
167 #else /* SPLIT_RSS_COUNTING */
169 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
170 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172 static void check_sync_rss_stat(struct task_struct *task)
176 #endif /* SPLIT_RSS_COUNTING */
178 #ifdef HAVE_GENERIC_MMU_GATHER
180 static int tlb_next_batch(struct mmu_gather *tlb)
182 struct mmu_gather_batch *batch;
186 tlb->active = batch->next;
190 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
196 batch->max = MAX_GATHER_BATCH;
198 tlb->active->next = batch;
205 * Called to initialize an (on-stack) mmu_gather structure for page-table
206 * tear-down from @mm. The @fullmm argument is used when @mm is without
207 * users and we're going to destroy the full address space (exit/execve).
209 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
213 tlb->fullmm = fullmm;
215 tlb->fast_mode = (num_possible_cpus() == 1);
216 tlb->local.next = NULL;
218 tlb->local.max = ARRAY_SIZE(tlb->__pages);
219 tlb->active = &tlb->local;
221 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
226 void tlb_flush_mmu(struct mmu_gather *tlb)
228 struct mmu_gather_batch *batch;
230 if (!tlb->need_flush)
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 tlb_table_flush(tlb);
238 if (tlb_fast_mode(tlb))
241 for (batch = &tlb->local; batch; batch = batch->next) {
242 free_pages_and_swap_cache(batch->pages, batch->nr);
245 tlb->active = &tlb->local;
249 * Called at the end of the shootdown operation to free up any resources
250 * that were required.
252 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
254 struct mmu_gather_batch *batch, *next;
258 /* keep the page table cache within bounds */
261 for (batch = tlb->local.next; batch; batch = next) {
263 free_pages((unsigned long)batch, 0);
265 tlb->local.next = NULL;
269 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
270 * handling the additional races in SMP caused by other CPUs caching valid
271 * mappings in their TLBs. Returns the number of free page slots left.
272 * When out of page slots we must call tlb_flush_mmu().
274 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
276 struct mmu_gather_batch *batch;
278 VM_BUG_ON(!tlb->need_flush);
280 if (tlb_fast_mode(tlb)) {
281 free_page_and_swap_cache(page);
282 return 1; /* avoid calling tlb_flush_mmu() */
286 batch->pages[batch->nr++] = page;
287 if (batch->nr == batch->max) {
288 if (!tlb_next_batch(tlb))
292 VM_BUG_ON(batch->nr > batch->max);
294 return batch->max - batch->nr;
297 #endif /* HAVE_GENERIC_MMU_GATHER */
299 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
302 * See the comment near struct mmu_table_batch.
305 static void tlb_remove_table_smp_sync(void *arg)
307 /* Simply deliver the interrupt */
310 static void tlb_remove_table_one(void *table)
313 * This isn't an RCU grace period and hence the page-tables cannot be
314 * assumed to be actually RCU-freed.
316 * It is however sufficient for software page-table walkers that rely on
317 * IRQ disabling. See the comment near struct mmu_table_batch.
319 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
320 __tlb_remove_table(table);
323 static void tlb_remove_table_rcu(struct rcu_head *head)
325 struct mmu_table_batch *batch;
328 batch = container_of(head, struct mmu_table_batch, rcu);
330 for (i = 0; i < batch->nr; i++)
331 __tlb_remove_table(batch->tables[i]);
333 free_page((unsigned long)batch);
336 void tlb_table_flush(struct mmu_gather *tlb)
338 struct mmu_table_batch **batch = &tlb->batch;
341 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
346 void tlb_remove_table(struct mmu_gather *tlb, void *table)
348 struct mmu_table_batch **batch = &tlb->batch;
353 * When there's less then two users of this mm there cannot be a
354 * concurrent page-table walk.
356 if (atomic_read(&tlb->mm->mm_users) < 2) {
357 __tlb_remove_table(table);
361 if (*batch == NULL) {
362 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
363 if (*batch == NULL) {
364 tlb_remove_table_one(table);
369 (*batch)->tables[(*batch)->nr++] = table;
370 if ((*batch)->nr == MAX_TABLE_BATCH)
371 tlb_table_flush(tlb);
374 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
377 * If a p?d_bad entry is found while walking page tables, report
378 * the error, before resetting entry to p?d_none. Usually (but
379 * very seldom) called out from the p?d_none_or_clear_bad macros.
382 void pgd_clear_bad(pgd_t *pgd)
388 void pud_clear_bad(pud_t *pud)
394 void pmd_clear_bad(pmd_t *pmd)
401 * Note: this doesn't free the actual pages themselves. That
402 * has been handled earlier when unmapping all the memory regions.
404 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
407 pgtable_t token = pmd_pgtable(*pmd);
409 pte_free_tlb(tlb, token, addr);
413 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
414 unsigned long addr, unsigned long end,
415 unsigned long floor, unsigned long ceiling)
422 pmd = pmd_offset(pud, addr);
424 next = pmd_addr_end(addr, end);
425 if (pmd_none_or_clear_bad(pmd))
427 free_pte_range(tlb, pmd, addr);
428 } while (pmd++, addr = next, addr != end);
438 if (end - 1 > ceiling - 1)
441 pmd = pmd_offset(pud, start);
443 pmd_free_tlb(tlb, pmd, start);
446 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
447 unsigned long addr, unsigned long end,
448 unsigned long floor, unsigned long ceiling)
455 pud = pud_offset(pgd, addr);
457 next = pud_addr_end(addr, end);
458 if (pud_none_or_clear_bad(pud))
460 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
461 } while (pud++, addr = next, addr != end);
467 ceiling &= PGDIR_MASK;
471 if (end - 1 > ceiling - 1)
474 pud = pud_offset(pgd, start);
476 pud_free_tlb(tlb, pud, start);
480 * This function frees user-level page tables of a process.
482 * Must be called with pagetable lock held.
484 void free_pgd_range(struct mmu_gather *tlb,
485 unsigned long addr, unsigned long end,
486 unsigned long floor, unsigned long ceiling)
492 * The next few lines have given us lots of grief...
494 * Why are we testing PMD* at this top level? Because often
495 * there will be no work to do at all, and we'd prefer not to
496 * go all the way down to the bottom just to discover that.
498 * Why all these "- 1"s? Because 0 represents both the bottom
499 * of the address space and the top of it (using -1 for the
500 * top wouldn't help much: the masks would do the wrong thing).
501 * The rule is that addr 0 and floor 0 refer to the bottom of
502 * the address space, but end 0 and ceiling 0 refer to the top
503 * Comparisons need to use "end - 1" and "ceiling - 1" (though
504 * that end 0 case should be mythical).
506 * Wherever addr is brought up or ceiling brought down, we must
507 * be careful to reject "the opposite 0" before it confuses the
508 * subsequent tests. But what about where end is brought down
509 * by PMD_SIZE below? no, end can't go down to 0 there.
511 * Whereas we round start (addr) and ceiling down, by different
512 * masks at different levels, in order to test whether a table
513 * now has no other vmas using it, so can be freed, we don't
514 * bother to round floor or end up - the tests don't need that.
528 if (end - 1 > ceiling - 1)
533 pgd = pgd_offset(tlb->mm, addr);
535 next = pgd_addr_end(addr, end);
536 if (pgd_none_or_clear_bad(pgd))
538 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
539 } while (pgd++, addr = next, addr != end);
542 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
543 unsigned long floor, unsigned long ceiling)
546 struct vm_area_struct *next = vma->vm_next;
547 unsigned long addr = vma->vm_start;
550 * Hide vma from rmap and truncate_pagecache before freeing
553 unlink_anon_vmas(vma);
554 unlink_file_vma(vma);
556 if (is_vm_hugetlb_page(vma)) {
557 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
558 floor, next? next->vm_start: ceiling);
561 * Optimization: gather nearby vmas into one call down
563 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
564 && !is_vm_hugetlb_page(next)) {
567 unlink_anon_vmas(vma);
568 unlink_file_vma(vma);
570 free_pgd_range(tlb, addr, vma->vm_end,
571 floor, next? next->vm_start: ceiling);
577 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
578 pmd_t *pmd, unsigned long address)
580 pgtable_t new = pte_alloc_one(mm, address);
581 int wait_split_huge_page;
586 * Ensure all pte setup (eg. pte page lock and page clearing) are
587 * visible before the pte is made visible to other CPUs by being
588 * put into page tables.
590 * The other side of the story is the pointer chasing in the page
591 * table walking code (when walking the page table without locking;
592 * ie. most of the time). Fortunately, these data accesses consist
593 * of a chain of data-dependent loads, meaning most CPUs (alpha
594 * being the notable exception) will already guarantee loads are
595 * seen in-order. See the alpha page table accessors for the
596 * smp_read_barrier_depends() barriers in page table walking code.
598 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
600 spin_lock(&mm->page_table_lock);
601 wait_split_huge_page = 0;
602 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
604 pmd_populate(mm, pmd, new);
606 } else if (unlikely(pmd_trans_splitting(*pmd)))
607 wait_split_huge_page = 1;
608 spin_unlock(&mm->page_table_lock);
611 if (wait_split_huge_page)
612 wait_split_huge_page(vma->anon_vma, pmd);
616 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
618 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
622 smp_wmb(); /* See comment in __pte_alloc */
624 spin_lock(&init_mm.page_table_lock);
625 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
626 pmd_populate_kernel(&init_mm, pmd, new);
629 VM_BUG_ON(pmd_trans_splitting(*pmd));
630 spin_unlock(&init_mm.page_table_lock);
632 pte_free_kernel(&init_mm, new);
636 static inline void init_rss_vec(int *rss)
638 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
641 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
645 if (current->mm == mm)
646 sync_mm_rss(current, mm);
647 for (i = 0; i < NR_MM_COUNTERS; i++)
649 add_mm_counter(mm, i, rss[i]);
653 * This function is called to print an error when a bad pte
654 * is found. For example, we might have a PFN-mapped pte in
655 * a region that doesn't allow it.
657 * The calling function must still handle the error.
659 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
660 pte_t pte, struct page *page)
662 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
663 pud_t *pud = pud_offset(pgd, addr);
664 pmd_t *pmd = pmd_offset(pud, addr);
665 struct address_space *mapping;
667 static unsigned long resume;
668 static unsigned long nr_shown;
669 static unsigned long nr_unshown;
672 * Allow a burst of 60 reports, then keep quiet for that minute;
673 * or allow a steady drip of one report per second.
675 if (nr_shown == 60) {
676 if (time_before(jiffies, resume)) {
682 "BUG: Bad page map: %lu messages suppressed\n",
689 resume = jiffies + 60 * HZ;
691 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
692 index = linear_page_index(vma, addr);
695 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
697 (long long)pte_val(pte), (long long)pmd_val(*pmd));
701 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
702 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
704 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
707 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
708 (unsigned long)vma->vm_ops->fault);
709 if (vma->vm_file && vma->vm_file->f_op)
710 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
711 (unsigned long)vma->vm_file->f_op->mmap);
713 add_taint(TAINT_BAD_PAGE);
716 static inline int is_cow_mapping(vm_flags_t flags)
718 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
722 static inline int is_zero_pfn(unsigned long pfn)
724 return pfn == zero_pfn;
729 static inline unsigned long my_zero_pfn(unsigned long addr)
736 * vm_normal_page -- This function gets the "struct page" associated with a pte.
738 * "Special" mappings do not wish to be associated with a "struct page" (either
739 * it doesn't exist, or it exists but they don't want to touch it). In this
740 * case, NULL is returned here. "Normal" mappings do have a struct page.
742 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
743 * pte bit, in which case this function is trivial. Secondly, an architecture
744 * may not have a spare pte bit, which requires a more complicated scheme,
747 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
748 * special mapping (even if there are underlying and valid "struct pages").
749 * COWed pages of a VM_PFNMAP are always normal.
751 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
752 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
753 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
754 * mapping will always honor the rule
756 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
758 * And for normal mappings this is false.
760 * This restricts such mappings to be a linear translation from virtual address
761 * to pfn. To get around this restriction, we allow arbitrary mappings so long
762 * as the vma is not a COW mapping; in that case, we know that all ptes are
763 * special (because none can have been COWed).
766 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
768 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
769 * page" backing, however the difference is that _all_ pages with a struct
770 * page (that is, those where pfn_valid is true) are refcounted and considered
771 * normal pages by the VM. The disadvantage is that pages are refcounted
772 * (which can be slower and simply not an option for some PFNMAP users). The
773 * advantage is that we don't have to follow the strict linearity rule of
774 * PFNMAP mappings in order to support COWable mappings.
777 #ifdef __HAVE_ARCH_PTE_SPECIAL
778 # define HAVE_PTE_SPECIAL 1
780 # define HAVE_PTE_SPECIAL 0
782 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
785 unsigned long pfn = pte_pfn(pte);
787 if (HAVE_PTE_SPECIAL) {
788 if (likely(!pte_special(pte)))
790 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
792 if (!is_zero_pfn(pfn))
793 print_bad_pte(vma, addr, pte, NULL);
797 /* !HAVE_PTE_SPECIAL case follows: */
799 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
800 if (vma->vm_flags & VM_MIXEDMAP) {
806 off = (addr - vma->vm_start) >> PAGE_SHIFT;
807 if (pfn == vma->vm_pgoff + off)
809 if (!is_cow_mapping(vma->vm_flags))
814 if (is_zero_pfn(pfn))
817 if (unlikely(pfn > highest_memmap_pfn)) {
818 print_bad_pte(vma, addr, pte, NULL);
823 * NOTE! We still have PageReserved() pages in the page tables.
824 * eg. VDSO mappings can cause them to exist.
827 return pfn_to_page(pfn);
831 * copy one vm_area from one task to the other. Assumes the page tables
832 * already present in the new task to be cleared in the whole range
833 * covered by this vma.
836 static inline unsigned long
837 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
838 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
839 unsigned long addr, int *rss)
841 unsigned long vm_flags = vma->vm_flags;
842 pte_t pte = *src_pte;
845 /* pte contains position in swap or file, so copy. */
846 if (unlikely(!pte_present(pte))) {
847 if (!pte_file(pte)) {
848 swp_entry_t entry = pte_to_swp_entry(pte);
850 if (swap_duplicate(entry) < 0)
853 /* make sure dst_mm is on swapoff's mmlist. */
854 if (unlikely(list_empty(&dst_mm->mmlist))) {
855 spin_lock(&mmlist_lock);
856 if (list_empty(&dst_mm->mmlist))
857 list_add(&dst_mm->mmlist,
859 spin_unlock(&mmlist_lock);
861 if (likely(!non_swap_entry(entry)))
863 else if (is_migration_entry(entry)) {
864 page = migration_entry_to_page(entry);
871 if (is_write_migration_entry(entry) &&
872 is_cow_mapping(vm_flags)) {
874 * COW mappings require pages in both
875 * parent and child to be set to read.
877 make_migration_entry_read(&entry);
878 pte = swp_entry_to_pte(entry);
879 set_pte_at(src_mm, addr, src_pte, pte);
887 * If it's a COW mapping, write protect it both
888 * in the parent and the child
890 if (is_cow_mapping(vm_flags)) {
891 ptep_set_wrprotect(src_mm, addr, src_pte);
892 pte = pte_wrprotect(pte);
896 * If it's a shared mapping, mark it clean in
899 if (vm_flags & VM_SHARED)
900 pte = pte_mkclean(pte);
901 pte = pte_mkold(pte);
903 page = vm_normal_page(vma, addr, pte);
914 set_pte_at(dst_mm, addr, dst_pte, pte);
918 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
919 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
920 unsigned long addr, unsigned long end)
922 pte_t *orig_src_pte, *orig_dst_pte;
923 pte_t *src_pte, *dst_pte;
924 spinlock_t *src_ptl, *dst_ptl;
926 int rss[NR_MM_COUNTERS];
927 swp_entry_t entry = (swp_entry_t){0};
932 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
935 src_pte = pte_offset_map(src_pmd, addr);
936 src_ptl = pte_lockptr(src_mm, src_pmd);
937 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
938 orig_src_pte = src_pte;
939 orig_dst_pte = dst_pte;
940 arch_enter_lazy_mmu_mode();
944 * We are holding two locks at this point - either of them
945 * could generate latencies in another task on another CPU.
947 if (progress >= 32) {
949 if (need_resched() ||
950 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
953 if (pte_none(*src_pte)) {
957 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
962 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
964 arch_leave_lazy_mmu_mode();
965 spin_unlock(src_ptl);
966 pte_unmap(orig_src_pte);
967 add_mm_rss_vec(dst_mm, rss);
968 pte_unmap_unlock(orig_dst_pte, dst_ptl);
972 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
981 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
982 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
983 unsigned long addr, unsigned long end)
985 pmd_t *src_pmd, *dst_pmd;
988 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
991 src_pmd = pmd_offset(src_pud, addr);
993 next = pmd_addr_end(addr, end);
994 if (pmd_trans_huge(*src_pmd)) {
996 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
997 err = copy_huge_pmd(dst_mm, src_mm,
998 dst_pmd, src_pmd, addr, vma);
1005 if (pmd_none_or_clear_bad(src_pmd))
1007 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1010 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1014 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1015 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1016 unsigned long addr, unsigned long end)
1018 pud_t *src_pud, *dst_pud;
1021 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1024 src_pud = pud_offset(src_pgd, addr);
1026 next = pud_addr_end(addr, end);
1027 if (pud_none_or_clear_bad(src_pud))
1029 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1032 } while (dst_pud++, src_pud++, addr = next, addr != end);
1036 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1037 struct vm_area_struct *vma)
1039 pgd_t *src_pgd, *dst_pgd;
1041 unsigned long addr = vma->vm_start;
1042 unsigned long end = vma->vm_end;
1046 * Don't copy ptes where a page fault will fill them correctly.
1047 * Fork becomes much lighter when there are big shared or private
1048 * readonly mappings. The tradeoff is that copy_page_range is more
1049 * efficient than faulting.
1051 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1056 if (is_vm_hugetlb_page(vma))
1057 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1059 if (unlikely(is_pfn_mapping(vma))) {
1061 * We do not free on error cases below as remove_vma
1062 * gets called on error from higher level routine
1064 ret = track_pfn_vma_copy(vma);
1070 * We need to invalidate the secondary MMU mappings only when
1071 * there could be a permission downgrade on the ptes of the
1072 * parent mm. And a permission downgrade will only happen if
1073 * is_cow_mapping() returns true.
1075 if (is_cow_mapping(vma->vm_flags))
1076 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1079 dst_pgd = pgd_offset(dst_mm, addr);
1080 src_pgd = pgd_offset(src_mm, addr);
1082 next = pgd_addr_end(addr, end);
1083 if (pgd_none_or_clear_bad(src_pgd))
1085 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1086 vma, addr, next))) {
1090 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1092 if (is_cow_mapping(vma->vm_flags))
1093 mmu_notifier_invalidate_range_end(src_mm,
1094 vma->vm_start, end);
1098 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1099 struct vm_area_struct *vma, pmd_t *pmd,
1100 unsigned long addr, unsigned long end,
1101 struct zap_details *details)
1103 struct mm_struct *mm = tlb->mm;
1104 int force_flush = 0;
1105 int rss[NR_MM_COUNTERS];
1112 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1114 arch_enter_lazy_mmu_mode();
1117 if (pte_none(ptent)) {
1121 if (pte_present(ptent)) {
1124 page = vm_normal_page(vma, addr, ptent);
1125 if (unlikely(details) && page) {
1127 * unmap_shared_mapping_pages() wants to
1128 * invalidate cache without truncating:
1129 * unmap shared but keep private pages.
1131 if (details->check_mapping &&
1132 details->check_mapping != page->mapping)
1135 * Each page->index must be checked when
1136 * invalidating or truncating nonlinear.
1138 if (details->nonlinear_vma &&
1139 (page->index < details->first_index ||
1140 page->index > details->last_index))
1143 ptent = ptep_get_and_clear_full(mm, addr, pte,
1145 tlb_remove_tlb_entry(tlb, pte, addr);
1146 if (unlikely(!page))
1148 if (unlikely(details) && details->nonlinear_vma
1149 && linear_page_index(details->nonlinear_vma,
1150 addr) != page->index)
1151 set_pte_at(mm, addr, pte,
1152 pgoff_to_pte(page->index));
1154 rss[MM_ANONPAGES]--;
1156 if (pte_dirty(ptent))
1157 set_page_dirty(page);
1158 if (pte_young(ptent) &&
1159 likely(!VM_SequentialReadHint(vma)))
1160 mark_page_accessed(page);
1161 rss[MM_FILEPAGES]--;
1163 page_remove_rmap(page);
1164 if (unlikely(page_mapcount(page) < 0))
1165 print_bad_pte(vma, addr, ptent, page);
1166 force_flush = !__tlb_remove_page(tlb, page);
1172 * If details->check_mapping, we leave swap entries;
1173 * if details->nonlinear_vma, we leave file entries.
1175 if (unlikely(details))
1177 if (pte_file(ptent)) {
1178 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1179 print_bad_pte(vma, addr, ptent, NULL);
1181 swp_entry_t entry = pte_to_swp_entry(ptent);
1183 if (!non_swap_entry(entry))
1185 else if (is_migration_entry(entry)) {
1188 page = migration_entry_to_page(entry);
1191 rss[MM_ANONPAGES]--;
1193 rss[MM_FILEPAGES]--;
1195 if (unlikely(!free_swap_and_cache(entry)))
1196 print_bad_pte(vma, addr, ptent, NULL);
1198 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1199 } while (pte++, addr += PAGE_SIZE, addr != end);
1201 add_mm_rss_vec(mm, rss);
1202 arch_leave_lazy_mmu_mode();
1203 pte_unmap_unlock(start_pte, ptl);
1206 * mmu_gather ran out of room to batch pages, we break out of
1207 * the PTE lock to avoid doing the potential expensive TLB invalidate
1208 * and page-free while holding it.
1220 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1221 struct vm_area_struct *vma, pud_t *pud,
1222 unsigned long addr, unsigned long end,
1223 struct zap_details *details)
1228 pmd = pmd_offset(pud, addr);
1230 next = pmd_addr_end(addr, end);
1231 if (pmd_trans_huge(*pmd)) {
1232 if (next - addr != HPAGE_PMD_SIZE) {
1233 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1234 split_huge_page_pmd(vma->vm_mm, pmd);
1235 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1240 * Here there can be other concurrent MADV_DONTNEED or
1241 * trans huge page faults running, and if the pmd is
1242 * none or trans huge it can change under us. This is
1243 * because MADV_DONTNEED holds the mmap_sem in read
1246 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1248 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1251 } while (pmd++, addr = next, addr != end);
1256 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1257 struct vm_area_struct *vma, pgd_t *pgd,
1258 unsigned long addr, unsigned long end,
1259 struct zap_details *details)
1264 pud = pud_offset(pgd, addr);
1266 next = pud_addr_end(addr, end);
1267 if (pud_none_or_clear_bad(pud))
1269 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1270 } while (pud++, addr = next, addr != end);
1275 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1276 struct vm_area_struct *vma,
1277 unsigned long addr, unsigned long end,
1278 struct zap_details *details)
1283 if (details && !details->check_mapping && !details->nonlinear_vma)
1286 BUG_ON(addr >= end);
1287 mem_cgroup_uncharge_start();
1288 tlb_start_vma(tlb, vma);
1289 pgd = pgd_offset(vma->vm_mm, addr);
1291 next = pgd_addr_end(addr, end);
1292 if (pgd_none_or_clear_bad(pgd))
1294 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1295 } while (pgd++, addr = next, addr != end);
1296 tlb_end_vma(tlb, vma);
1297 mem_cgroup_uncharge_end();
1303 * unmap_vmas - unmap a range of memory covered by a list of vma's
1304 * @tlb: address of the caller's struct mmu_gather
1305 * @vma: the starting vma
1306 * @start_addr: virtual address at which to start unmapping
1307 * @end_addr: virtual address at which to end unmapping
1308 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1309 * @details: details of nonlinear truncation or shared cache invalidation
1311 * Returns the end address of the unmapping (restart addr if interrupted).
1313 * Unmap all pages in the vma list.
1315 * Only addresses between `start' and `end' will be unmapped.
1317 * The VMA list must be sorted in ascending virtual address order.
1319 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1320 * range after unmap_vmas() returns. So the only responsibility here is to
1321 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1322 * drops the lock and schedules.
1324 unsigned long unmap_vmas(struct mmu_gather *tlb,
1325 struct vm_area_struct *vma, unsigned long start_addr,
1326 unsigned long end_addr, unsigned long *nr_accounted,
1327 struct zap_details *details)
1329 unsigned long start = start_addr;
1330 struct mm_struct *mm = vma->vm_mm;
1332 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1333 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1336 start = max(vma->vm_start, start_addr);
1337 if (start >= vma->vm_end)
1339 end = min(vma->vm_end, end_addr);
1340 if (end <= vma->vm_start)
1343 if (vma->vm_flags & VM_ACCOUNT)
1344 *nr_accounted += (end - start) >> PAGE_SHIFT;
1346 if (unlikely(is_pfn_mapping(vma)))
1347 untrack_pfn_vma(vma, 0, 0);
1349 while (start != end) {
1350 if (unlikely(is_vm_hugetlb_page(vma))) {
1352 * It is undesirable to test vma->vm_file as it
1353 * should be non-null for valid hugetlb area.
1354 * However, vm_file will be NULL in the error
1355 * cleanup path of do_mmap_pgoff. When
1356 * hugetlbfs ->mmap method fails,
1357 * do_mmap_pgoff() nullifies vma->vm_file
1358 * before calling this function to clean up.
1359 * Since no pte has actually been setup, it is
1360 * safe to do nothing in this case.
1363 unmap_hugepage_range(vma, start, end, NULL);
1367 start = unmap_page_range(tlb, vma, start, end, details);
1371 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1372 return start; /* which is now the end (or restart) address */
1376 * zap_page_range - remove user pages in a given range
1377 * @vma: vm_area_struct holding the applicable pages
1378 * @address: starting address of pages to zap
1379 * @size: number of bytes to zap
1380 * @details: details of nonlinear truncation or shared cache invalidation
1382 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1383 unsigned long size, struct zap_details *details)
1385 struct mm_struct *mm = vma->vm_mm;
1386 struct mmu_gather tlb;
1387 unsigned long end = address + size;
1388 unsigned long nr_accounted = 0;
1391 tlb_gather_mmu(&tlb, mm, 0);
1392 update_hiwater_rss(mm);
1393 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1394 tlb_finish_mmu(&tlb, address, end);
1399 * zap_vma_ptes - remove ptes mapping the vma
1400 * @vma: vm_area_struct holding ptes to be zapped
1401 * @address: starting address of pages to zap
1402 * @size: number of bytes to zap
1404 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1406 * The entire address range must be fully contained within the vma.
1408 * Returns 0 if successful.
1410 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1413 if (address < vma->vm_start || address + size > vma->vm_end ||
1414 !(vma->vm_flags & VM_PFNMAP))
1416 zap_page_range(vma, address, size, NULL);
1419 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1422 * follow_page - look up a page descriptor from a user-virtual address
1423 * @vma: vm_area_struct mapping @address
1424 * @address: virtual address to look up
1425 * @flags: flags modifying lookup behaviour
1427 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1429 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1430 * an error pointer if there is a mapping to something not represented
1431 * by a page descriptor (see also vm_normal_page()).
1433 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1442 struct mm_struct *mm = vma->vm_mm;
1444 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1445 if (!IS_ERR(page)) {
1446 BUG_ON(flags & FOLL_GET);
1451 pgd = pgd_offset(mm, address);
1452 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1455 pud = pud_offset(pgd, address);
1458 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1459 BUG_ON(flags & FOLL_GET);
1460 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1463 if (unlikely(pud_bad(*pud)))
1466 pmd = pmd_offset(pud, address);
1469 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1470 BUG_ON(flags & FOLL_GET);
1471 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1474 if (pmd_trans_huge(*pmd)) {
1475 if (flags & FOLL_SPLIT) {
1476 split_huge_page_pmd(mm, pmd);
1477 goto split_fallthrough;
1479 spin_lock(&mm->page_table_lock);
1480 if (likely(pmd_trans_huge(*pmd))) {
1481 if (unlikely(pmd_trans_splitting(*pmd))) {
1482 spin_unlock(&mm->page_table_lock);
1483 wait_split_huge_page(vma->anon_vma, pmd);
1485 page = follow_trans_huge_pmd(mm, address,
1487 spin_unlock(&mm->page_table_lock);
1491 spin_unlock(&mm->page_table_lock);
1495 if (unlikely(pmd_bad(*pmd)))
1498 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1501 if (!pte_present(pte))
1503 if ((flags & FOLL_WRITE) && !pte_write(pte))
1506 page = vm_normal_page(vma, address, pte);
1507 if (unlikely(!page)) {
1508 if ((flags & FOLL_DUMP) ||
1509 !is_zero_pfn(pte_pfn(pte)))
1511 page = pte_page(pte);
1514 if (flags & FOLL_GET)
1515 get_page_foll(page);
1516 if (flags & FOLL_TOUCH) {
1517 if ((flags & FOLL_WRITE) &&
1518 !pte_dirty(pte) && !PageDirty(page))
1519 set_page_dirty(page);
1521 * pte_mkyoung() would be more correct here, but atomic care
1522 * is needed to avoid losing the dirty bit: it is easier to use
1523 * mark_page_accessed().
1525 mark_page_accessed(page);
1527 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1529 * The preliminary mapping check is mainly to avoid the
1530 * pointless overhead of lock_page on the ZERO_PAGE
1531 * which might bounce very badly if there is contention.
1533 * If the page is already locked, we don't need to
1534 * handle it now - vmscan will handle it later if and
1535 * when it attempts to reclaim the page.
1537 if (page->mapping && trylock_page(page)) {
1538 lru_add_drain(); /* push cached pages to LRU */
1540 * Because we lock page here and migration is
1541 * blocked by the pte's page reference, we need
1542 * only check for file-cache page truncation.
1545 mlock_vma_page(page);
1550 pte_unmap_unlock(ptep, ptl);
1555 pte_unmap_unlock(ptep, ptl);
1556 return ERR_PTR(-EFAULT);
1559 pte_unmap_unlock(ptep, ptl);
1565 * When core dumping an enormous anonymous area that nobody
1566 * has touched so far, we don't want to allocate unnecessary pages or
1567 * page tables. Return error instead of NULL to skip handle_mm_fault,
1568 * then get_dump_page() will return NULL to leave a hole in the dump.
1569 * But we can only make this optimization where a hole would surely
1570 * be zero-filled if handle_mm_fault() actually did handle it.
1572 if ((flags & FOLL_DUMP) &&
1573 (!vma->vm_ops || !vma->vm_ops->fault))
1574 return ERR_PTR(-EFAULT);
1578 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1580 return stack_guard_page_start(vma, addr) ||
1581 stack_guard_page_end(vma, addr+PAGE_SIZE);
1585 * __get_user_pages() - pin user pages in memory
1586 * @tsk: task_struct of target task
1587 * @mm: mm_struct of target mm
1588 * @start: starting user address
1589 * @nr_pages: number of pages from start to pin
1590 * @gup_flags: flags modifying pin behaviour
1591 * @pages: array that receives pointers to the pages pinned.
1592 * Should be at least nr_pages long. Or NULL, if caller
1593 * only intends to ensure the pages are faulted in.
1594 * @vmas: array of pointers to vmas corresponding to each page.
1595 * Or NULL if the caller does not require them.
1596 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1598 * Returns number of pages pinned. This may be fewer than the number
1599 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1600 * were pinned, returns -errno. Each page returned must be released
1601 * with a put_page() call when it is finished with. vmas will only
1602 * remain valid while mmap_sem is held.
1604 * Must be called with mmap_sem held for read or write.
1606 * __get_user_pages walks a process's page tables and takes a reference to
1607 * each struct page that each user address corresponds to at a given
1608 * instant. That is, it takes the page that would be accessed if a user
1609 * thread accesses the given user virtual address at that instant.
1611 * This does not guarantee that the page exists in the user mappings when
1612 * __get_user_pages returns, and there may even be a completely different
1613 * page there in some cases (eg. if mmapped pagecache has been invalidated
1614 * and subsequently re faulted). However it does guarantee that the page
1615 * won't be freed completely. And mostly callers simply care that the page
1616 * contains data that was valid *at some point in time*. Typically, an IO
1617 * or similar operation cannot guarantee anything stronger anyway because
1618 * locks can't be held over the syscall boundary.
1620 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1621 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1622 * appropriate) must be called after the page is finished with, and
1623 * before put_page is called.
1625 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1626 * or mmap_sem contention, and if waiting is needed to pin all pages,
1627 * *@nonblocking will be set to 0.
1629 * In most cases, get_user_pages or get_user_pages_fast should be used
1630 * instead of __get_user_pages. __get_user_pages should be used only if
1631 * you need some special @gup_flags.
1633 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1634 unsigned long start, int nr_pages, unsigned int gup_flags,
1635 struct page **pages, struct vm_area_struct **vmas,
1639 unsigned long vm_flags;
1644 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1647 * Require read or write permissions.
1648 * If FOLL_FORCE is set, we only require the "MAY" flags.
1650 vm_flags = (gup_flags & FOLL_WRITE) ?
1651 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1652 vm_flags &= (gup_flags & FOLL_FORCE) ?
1653 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1657 struct vm_area_struct *vma;
1659 vma = find_extend_vma(mm, start);
1660 if (!vma && in_gate_area(mm, start)) {
1661 unsigned long pg = start & PAGE_MASK;
1667 /* user gate pages are read-only */
1668 if (gup_flags & FOLL_WRITE)
1669 return i ? : -EFAULT;
1671 pgd = pgd_offset_k(pg);
1673 pgd = pgd_offset_gate(mm, pg);
1674 BUG_ON(pgd_none(*pgd));
1675 pud = pud_offset(pgd, pg);
1676 BUG_ON(pud_none(*pud));
1677 pmd = pmd_offset(pud, pg);
1679 return i ? : -EFAULT;
1680 VM_BUG_ON(pmd_trans_huge(*pmd));
1681 pte = pte_offset_map(pmd, pg);
1682 if (pte_none(*pte)) {
1684 return i ? : -EFAULT;
1686 vma = get_gate_vma(mm);
1690 page = vm_normal_page(vma, start, *pte);
1692 if (!(gup_flags & FOLL_DUMP) &&
1693 is_zero_pfn(pte_pfn(*pte)))
1694 page = pte_page(*pte);
1697 return i ? : -EFAULT;
1708 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1709 !(vm_flags & vma->vm_flags))
1710 return i ? : -EFAULT;
1712 if (is_vm_hugetlb_page(vma)) {
1713 i = follow_hugetlb_page(mm, vma, pages, vmas,
1714 &start, &nr_pages, i, gup_flags);
1720 unsigned int foll_flags = gup_flags;
1723 * If we have a pending SIGKILL, don't keep faulting
1724 * pages and potentially allocating memory.
1726 if (unlikely(fatal_signal_pending(current)))
1727 return i ? i : -ERESTARTSYS;
1730 while (!(page = follow_page(vma, start, foll_flags))) {
1732 unsigned int fault_flags = 0;
1734 /* For mlock, just skip the stack guard page. */
1735 if (foll_flags & FOLL_MLOCK) {
1736 if (stack_guard_page(vma, start))
1739 if (foll_flags & FOLL_WRITE)
1740 fault_flags |= FAULT_FLAG_WRITE;
1742 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1743 if (foll_flags & FOLL_NOWAIT)
1744 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1746 ret = handle_mm_fault(mm, vma, start,
1749 if (ret & VM_FAULT_ERROR) {
1750 if (ret & VM_FAULT_OOM)
1751 return i ? i : -ENOMEM;
1752 if (ret & (VM_FAULT_HWPOISON |
1753 VM_FAULT_HWPOISON_LARGE)) {
1756 else if (gup_flags & FOLL_HWPOISON)
1761 if (ret & VM_FAULT_SIGBUS)
1762 return i ? i : -EFAULT;
1767 if (ret & VM_FAULT_MAJOR)
1773 if (ret & VM_FAULT_RETRY) {
1780 * The VM_FAULT_WRITE bit tells us that
1781 * do_wp_page has broken COW when necessary,
1782 * even if maybe_mkwrite decided not to set
1783 * pte_write. We can thus safely do subsequent
1784 * page lookups as if they were reads. But only
1785 * do so when looping for pte_write is futile:
1786 * in some cases userspace may also be wanting
1787 * to write to the gotten user page, which a
1788 * read fault here might prevent (a readonly
1789 * page might get reCOWed by userspace write).
1791 if ((ret & VM_FAULT_WRITE) &&
1792 !(vma->vm_flags & VM_WRITE))
1793 foll_flags &= ~FOLL_WRITE;
1798 return i ? i : PTR_ERR(page);
1802 flush_anon_page(vma, page, start);
1803 flush_dcache_page(page);
1811 } while (nr_pages && start < vma->vm_end);
1815 EXPORT_SYMBOL(__get_user_pages);
1818 * fixup_user_fault() - manually resolve a user page fault
1819 * @tsk: the task_struct to use for page fault accounting, or
1820 * NULL if faults are not to be recorded.
1821 * @mm: mm_struct of target mm
1822 * @address: user address
1823 * @fault_flags:flags to pass down to handle_mm_fault()
1825 * This is meant to be called in the specific scenario where for locking reasons
1826 * we try to access user memory in atomic context (within a pagefault_disable()
1827 * section), this returns -EFAULT, and we want to resolve the user fault before
1830 * Typically this is meant to be used by the futex code.
1832 * The main difference with get_user_pages() is that this function will
1833 * unconditionally call handle_mm_fault() which will in turn perform all the
1834 * necessary SW fixup of the dirty and young bits in the PTE, while
1835 * handle_mm_fault() only guarantees to update these in the struct page.
1837 * This is important for some architectures where those bits also gate the
1838 * access permission to the page because they are maintained in software. On
1839 * such architectures, gup() will not be enough to make a subsequent access
1842 * This should be called with the mm_sem held for read.
1844 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1845 unsigned long address, unsigned int fault_flags)
1847 struct vm_area_struct *vma;
1850 vma = find_extend_vma(mm, address);
1851 if (!vma || address < vma->vm_start)
1854 ret = handle_mm_fault(mm, vma, address, fault_flags);
1855 if (ret & VM_FAULT_ERROR) {
1856 if (ret & VM_FAULT_OOM)
1858 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1860 if (ret & VM_FAULT_SIGBUS)
1865 if (ret & VM_FAULT_MAJOR)
1874 * get_user_pages() - pin user pages in memory
1875 * @tsk: the task_struct to use for page fault accounting, or
1876 * NULL if faults are not to be recorded.
1877 * @mm: mm_struct of target mm
1878 * @start: starting user address
1879 * @nr_pages: number of pages from start to pin
1880 * @write: whether pages will be written to by the caller
1881 * @force: whether to force write access even if user mapping is
1882 * readonly. This will result in the page being COWed even
1883 * in MAP_SHARED mappings. You do not want this.
1884 * @pages: array that receives pointers to the pages pinned.
1885 * Should be at least nr_pages long. Or NULL, if caller
1886 * only intends to ensure the pages are faulted in.
1887 * @vmas: array of pointers to vmas corresponding to each page.
1888 * Or NULL if the caller does not require them.
1890 * Returns number of pages pinned. This may be fewer than the number
1891 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1892 * were pinned, returns -errno. Each page returned must be released
1893 * with a put_page() call when it is finished with. vmas will only
1894 * remain valid while mmap_sem is held.
1896 * Must be called with mmap_sem held for read or write.
1898 * get_user_pages walks a process's page tables and takes a reference to
1899 * each struct page that each user address corresponds to at a given
1900 * instant. That is, it takes the page that would be accessed if a user
1901 * thread accesses the given user virtual address at that instant.
1903 * This does not guarantee that the page exists in the user mappings when
1904 * get_user_pages returns, and there may even be a completely different
1905 * page there in some cases (eg. if mmapped pagecache has been invalidated
1906 * and subsequently re faulted). However it does guarantee that the page
1907 * won't be freed completely. And mostly callers simply care that the page
1908 * contains data that was valid *at some point in time*. Typically, an IO
1909 * or similar operation cannot guarantee anything stronger anyway because
1910 * locks can't be held over the syscall boundary.
1912 * If write=0, the page must not be written to. If the page is written to,
1913 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1914 * after the page is finished with, and before put_page is called.
1916 * get_user_pages is typically used for fewer-copy IO operations, to get a
1917 * handle on the memory by some means other than accesses via the user virtual
1918 * addresses. The pages may be submitted for DMA to devices or accessed via
1919 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1920 * use the correct cache flushing APIs.
1922 * See also get_user_pages_fast, for performance critical applications.
1924 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1925 unsigned long start, int nr_pages, int write, int force,
1926 struct page **pages, struct vm_area_struct **vmas)
1928 int flags = FOLL_TOUCH;
1933 flags |= FOLL_WRITE;
1935 flags |= FOLL_FORCE;
1937 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1940 EXPORT_SYMBOL(get_user_pages);
1943 * get_dump_page() - pin user page in memory while writing it to core dump
1944 * @addr: user address
1946 * Returns struct page pointer of user page pinned for dump,
1947 * to be freed afterwards by page_cache_release() or put_page().
1949 * Returns NULL on any kind of failure - a hole must then be inserted into
1950 * the corefile, to preserve alignment with its headers; and also returns
1951 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1952 * allowing a hole to be left in the corefile to save diskspace.
1954 * Called without mmap_sem, but after all other threads have been killed.
1956 #ifdef CONFIG_ELF_CORE
1957 struct page *get_dump_page(unsigned long addr)
1959 struct vm_area_struct *vma;
1962 if (__get_user_pages(current, current->mm, addr, 1,
1963 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1966 flush_cache_page(vma, addr, page_to_pfn(page));
1969 #endif /* CONFIG_ELF_CORE */
1971 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1974 pgd_t * pgd = pgd_offset(mm, addr);
1975 pud_t * pud = pud_alloc(mm, pgd, addr);
1977 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1979 VM_BUG_ON(pmd_trans_huge(*pmd));
1980 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1987 * This is the old fallback for page remapping.
1989 * For historical reasons, it only allows reserved pages. Only
1990 * old drivers should use this, and they needed to mark their
1991 * pages reserved for the old functions anyway.
1993 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1994 struct page *page, pgprot_t prot)
1996 struct mm_struct *mm = vma->vm_mm;
2005 flush_dcache_page(page);
2006 pte = get_locked_pte(mm, addr, &ptl);
2010 if (!pte_none(*pte))
2013 /* Ok, finally just insert the thing.. */
2015 inc_mm_counter_fast(mm, MM_FILEPAGES);
2016 page_add_file_rmap(page);
2017 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2020 pte_unmap_unlock(pte, ptl);
2023 pte_unmap_unlock(pte, ptl);
2029 * vm_insert_page - insert single page into user vma
2030 * @vma: user vma to map to
2031 * @addr: target user address of this page
2032 * @page: source kernel page
2034 * This allows drivers to insert individual pages they've allocated
2037 * The page has to be a nice clean _individual_ kernel allocation.
2038 * If you allocate a compound page, you need to have marked it as
2039 * such (__GFP_COMP), or manually just split the page up yourself
2040 * (see split_page()).
2042 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2043 * took an arbitrary page protection parameter. This doesn't allow
2044 * that. Your vma protection will have to be set up correctly, which
2045 * means that if you want a shared writable mapping, you'd better
2046 * ask for a shared writable mapping!
2048 * The page does not need to be reserved.
2050 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2053 if (addr < vma->vm_start || addr >= vma->vm_end)
2055 if (!page_count(page))
2057 vma->vm_flags |= VM_INSERTPAGE;
2058 return insert_page(vma, addr, page, vma->vm_page_prot);
2060 EXPORT_SYMBOL(vm_insert_page);
2062 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2063 unsigned long pfn, pgprot_t prot)
2065 struct mm_struct *mm = vma->vm_mm;
2071 pte = get_locked_pte(mm, addr, &ptl);
2075 if (!pte_none(*pte))
2078 /* Ok, finally just insert the thing.. */
2079 entry = pte_mkspecial(pfn_pte(pfn, prot));
2080 set_pte_at(mm, addr, pte, entry);
2081 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2085 pte_unmap_unlock(pte, ptl);
2091 * vm_insert_pfn - insert single pfn into user vma
2092 * @vma: user vma to map to
2093 * @addr: target user address of this page
2094 * @pfn: source kernel pfn
2096 * Similar to vm_inert_page, this allows drivers to insert individual pages
2097 * they've allocated into a user vma. Same comments apply.
2099 * This function should only be called from a vm_ops->fault handler, and
2100 * in that case the handler should return NULL.
2102 * vma cannot be a COW mapping.
2104 * As this is called only for pages that do not currently exist, we
2105 * do not need to flush old virtual caches or the TLB.
2107 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2111 pgprot_t pgprot = vma->vm_page_prot;
2113 * Technically, architectures with pte_special can avoid all these
2114 * restrictions (same for remap_pfn_range). However we would like
2115 * consistency in testing and feature parity among all, so we should
2116 * try to keep these invariants in place for everybody.
2118 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2119 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2120 (VM_PFNMAP|VM_MIXEDMAP));
2121 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2122 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2124 if (addr < vma->vm_start || addr >= vma->vm_end)
2126 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2129 ret = insert_pfn(vma, addr, pfn, pgprot);
2132 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2136 EXPORT_SYMBOL(vm_insert_pfn);
2138 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2141 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2143 if (addr < vma->vm_start || addr >= vma->vm_end)
2147 * If we don't have pte special, then we have to use the pfn_valid()
2148 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2149 * refcount the page if pfn_valid is true (hence insert_page rather
2150 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2151 * without pte special, it would there be refcounted as a normal page.
2153 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2156 page = pfn_to_page(pfn);
2157 return insert_page(vma, addr, page, vma->vm_page_prot);
2159 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2161 EXPORT_SYMBOL(vm_insert_mixed);
2164 * maps a range of physical memory into the requested pages. the old
2165 * mappings are removed. any references to nonexistent pages results
2166 * in null mappings (currently treated as "copy-on-access")
2168 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2169 unsigned long addr, unsigned long end,
2170 unsigned long pfn, pgprot_t prot)
2175 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2178 arch_enter_lazy_mmu_mode();
2180 BUG_ON(!pte_none(*pte));
2181 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2183 } while (pte++, addr += PAGE_SIZE, addr != end);
2184 arch_leave_lazy_mmu_mode();
2185 pte_unmap_unlock(pte - 1, ptl);
2189 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2190 unsigned long addr, unsigned long end,
2191 unsigned long pfn, pgprot_t prot)
2196 pfn -= addr >> PAGE_SHIFT;
2197 pmd = pmd_alloc(mm, pud, addr);
2200 VM_BUG_ON(pmd_trans_huge(*pmd));
2202 next = pmd_addr_end(addr, end);
2203 if (remap_pte_range(mm, pmd, addr, next,
2204 pfn + (addr >> PAGE_SHIFT), prot))
2206 } while (pmd++, addr = next, addr != end);
2210 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2211 unsigned long addr, unsigned long end,
2212 unsigned long pfn, pgprot_t prot)
2217 pfn -= addr >> PAGE_SHIFT;
2218 pud = pud_alloc(mm, pgd, addr);
2222 next = pud_addr_end(addr, end);
2223 if (remap_pmd_range(mm, pud, addr, next,
2224 pfn + (addr >> PAGE_SHIFT), prot))
2226 } while (pud++, addr = next, addr != end);
2231 * remap_pfn_range - remap kernel memory to userspace
2232 * @vma: user vma to map to
2233 * @addr: target user address to start at
2234 * @pfn: physical address of kernel memory
2235 * @size: size of map area
2236 * @prot: page protection flags for this mapping
2238 * Note: this is only safe if the mm semaphore is held when called.
2240 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2241 unsigned long pfn, unsigned long size, pgprot_t prot)
2245 unsigned long end = addr + PAGE_ALIGN(size);
2246 struct mm_struct *mm = vma->vm_mm;
2250 * Physically remapped pages are special. Tell the
2251 * rest of the world about it:
2252 * VM_IO tells people not to look at these pages
2253 * (accesses can have side effects).
2254 * VM_RESERVED is specified all over the place, because
2255 * in 2.4 it kept swapout's vma scan off this vma; but
2256 * in 2.6 the LRU scan won't even find its pages, so this
2257 * flag means no more than count its pages in reserved_vm,
2258 * and omit it from core dump, even when VM_IO turned off.
2259 * VM_PFNMAP tells the core MM that the base pages are just
2260 * raw PFN mappings, and do not have a "struct page" associated
2263 * There's a horrible special case to handle copy-on-write
2264 * behaviour that some programs depend on. We mark the "original"
2265 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2267 if (addr == vma->vm_start && end == vma->vm_end) {
2268 vma->vm_pgoff = pfn;
2269 vma->vm_flags |= VM_PFN_AT_MMAP;
2270 } else if (is_cow_mapping(vma->vm_flags))
2273 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2275 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2278 * To indicate that track_pfn related cleanup is not
2279 * needed from higher level routine calling unmap_vmas
2281 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2282 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2286 BUG_ON(addr >= end);
2287 pfn -= addr >> PAGE_SHIFT;
2288 pgd = pgd_offset(mm, addr);
2289 flush_cache_range(vma, addr, end);
2291 next = pgd_addr_end(addr, end);
2292 err = remap_pud_range(mm, pgd, addr, next,
2293 pfn + (addr >> PAGE_SHIFT), prot);
2296 } while (pgd++, addr = next, addr != end);
2299 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2303 EXPORT_SYMBOL(remap_pfn_range);
2305 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2306 unsigned long addr, unsigned long end,
2307 pte_fn_t fn, void *data)
2312 spinlock_t *uninitialized_var(ptl);
2314 pte = (mm == &init_mm) ?
2315 pte_alloc_kernel(pmd, addr) :
2316 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2320 BUG_ON(pmd_huge(*pmd));
2322 arch_enter_lazy_mmu_mode();
2324 token = pmd_pgtable(*pmd);
2327 err = fn(pte++, token, addr, data);
2330 } while (addr += PAGE_SIZE, addr != end);
2332 arch_leave_lazy_mmu_mode();
2335 pte_unmap_unlock(pte-1, ptl);
2339 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2340 unsigned long addr, unsigned long end,
2341 pte_fn_t fn, void *data)
2347 BUG_ON(pud_huge(*pud));
2349 pmd = pmd_alloc(mm, pud, addr);
2353 next = pmd_addr_end(addr, end);
2354 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2357 } while (pmd++, addr = next, addr != end);
2361 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2362 unsigned long addr, unsigned long end,
2363 pte_fn_t fn, void *data)
2369 pud = pud_alloc(mm, pgd, addr);
2373 next = pud_addr_end(addr, end);
2374 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2377 } while (pud++, addr = next, addr != end);
2382 * Scan a region of virtual memory, filling in page tables as necessary
2383 * and calling a provided function on each leaf page table.
2385 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2386 unsigned long size, pte_fn_t fn, void *data)
2390 unsigned long end = addr + size;
2393 BUG_ON(addr >= end);
2394 pgd = pgd_offset(mm, addr);
2396 next = pgd_addr_end(addr, end);
2397 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2400 } while (pgd++, addr = next, addr != end);
2404 EXPORT_SYMBOL_GPL(apply_to_page_range);
2407 * handle_pte_fault chooses page fault handler according to an entry
2408 * which was read non-atomically. Before making any commitment, on
2409 * those architectures or configurations (e.g. i386 with PAE) which
2410 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2411 * must check under lock before unmapping the pte and proceeding
2412 * (but do_wp_page is only called after already making such a check;
2413 * and do_anonymous_page can safely check later on).
2415 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2416 pte_t *page_table, pte_t orig_pte)
2419 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2420 if (sizeof(pte_t) > sizeof(unsigned long)) {
2421 spinlock_t *ptl = pte_lockptr(mm, pmd);
2423 same = pte_same(*page_table, orig_pte);
2427 pte_unmap(page_table);
2431 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2434 * If the source page was a PFN mapping, we don't have
2435 * a "struct page" for it. We do a best-effort copy by
2436 * just copying from the original user address. If that
2437 * fails, we just zero-fill it. Live with it.
2439 if (unlikely(!src)) {
2440 void *kaddr = kmap_atomic(dst);
2441 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2444 * This really shouldn't fail, because the page is there
2445 * in the page tables. But it might just be unreadable,
2446 * in which case we just give up and fill the result with
2449 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2451 kunmap_atomic(kaddr);
2452 flush_dcache_page(dst);
2454 copy_user_highpage(dst, src, va, vma);
2458 * This routine handles present pages, when users try to write
2459 * to a shared page. It is done by copying the page to a new address
2460 * and decrementing the shared-page counter for the old page.
2462 * Note that this routine assumes that the protection checks have been
2463 * done by the caller (the low-level page fault routine in most cases).
2464 * Thus we can safely just mark it writable once we've done any necessary
2467 * We also mark the page dirty at this point even though the page will
2468 * change only once the write actually happens. This avoids a few races,
2469 * and potentially makes it more efficient.
2471 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2472 * but allow concurrent faults), with pte both mapped and locked.
2473 * We return with mmap_sem still held, but pte unmapped and unlocked.
2475 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2476 unsigned long address, pte_t *page_table, pmd_t *pmd,
2477 spinlock_t *ptl, pte_t orig_pte)
2480 struct page *old_page, *new_page;
2483 int page_mkwrite = 0;
2484 struct page *dirty_page = NULL;
2486 old_page = vm_normal_page(vma, address, orig_pte);
2489 * VM_MIXEDMAP !pfn_valid() case
2491 * We should not cow pages in a shared writeable mapping.
2492 * Just mark the pages writable as we can't do any dirty
2493 * accounting on raw pfn maps.
2495 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2496 (VM_WRITE|VM_SHARED))
2502 * Take out anonymous pages first, anonymous shared vmas are
2503 * not dirty accountable.
2505 if (PageAnon(old_page) && !PageKsm(old_page)) {
2506 if (!trylock_page(old_page)) {
2507 page_cache_get(old_page);
2508 pte_unmap_unlock(page_table, ptl);
2509 lock_page(old_page);
2510 page_table = pte_offset_map_lock(mm, pmd, address,
2512 if (!pte_same(*page_table, orig_pte)) {
2513 unlock_page(old_page);
2516 page_cache_release(old_page);
2518 if (reuse_swap_page(old_page)) {
2520 * The page is all ours. Move it to our anon_vma so
2521 * the rmap code will not search our parent or siblings.
2522 * Protected against the rmap code by the page lock.
2524 page_move_anon_rmap(old_page, vma, address);
2525 unlock_page(old_page);
2528 unlock_page(old_page);
2529 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2530 (VM_WRITE|VM_SHARED))) {
2532 * Only catch write-faults on shared writable pages,
2533 * read-only shared pages can get COWed by
2534 * get_user_pages(.write=1, .force=1).
2536 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2537 struct vm_fault vmf;
2540 vmf.virtual_address = (void __user *)(address &
2542 vmf.pgoff = old_page->index;
2543 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2544 vmf.page = old_page;
2547 * Notify the address space that the page is about to
2548 * become writable so that it can prohibit this or wait
2549 * for the page to get into an appropriate state.
2551 * We do this without the lock held, so that it can
2552 * sleep if it needs to.
2554 page_cache_get(old_page);
2555 pte_unmap_unlock(page_table, ptl);
2557 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2559 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2561 goto unwritable_page;
2563 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2564 lock_page(old_page);
2565 if (!old_page->mapping) {
2566 ret = 0; /* retry the fault */
2567 unlock_page(old_page);
2568 goto unwritable_page;
2571 VM_BUG_ON(!PageLocked(old_page));
2574 * Since we dropped the lock we need to revalidate
2575 * the PTE as someone else may have changed it. If
2576 * they did, we just return, as we can count on the
2577 * MMU to tell us if they didn't also make it writable.
2579 page_table = pte_offset_map_lock(mm, pmd, address,
2581 if (!pte_same(*page_table, orig_pte)) {
2582 unlock_page(old_page);
2588 dirty_page = old_page;
2589 get_page(dirty_page);
2592 flush_cache_page(vma, address, pte_pfn(orig_pte));
2593 entry = pte_mkyoung(orig_pte);
2594 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2595 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2596 update_mmu_cache(vma, address, page_table);
2597 pte_unmap_unlock(page_table, ptl);
2598 ret |= VM_FAULT_WRITE;
2604 * Yes, Virginia, this is actually required to prevent a race
2605 * with clear_page_dirty_for_io() from clearing the page dirty
2606 * bit after it clear all dirty ptes, but before a racing
2607 * do_wp_page installs a dirty pte.
2609 * __do_fault is protected similarly.
2611 if (!page_mkwrite) {
2612 wait_on_page_locked(dirty_page);
2613 set_page_dirty_balance(dirty_page, page_mkwrite);
2615 put_page(dirty_page);
2617 struct address_space *mapping = dirty_page->mapping;
2619 set_page_dirty(dirty_page);
2620 unlock_page(dirty_page);
2621 page_cache_release(dirty_page);
2624 * Some device drivers do not set page.mapping
2625 * but still dirty their pages
2627 balance_dirty_pages_ratelimited(mapping);
2631 /* file_update_time outside page_lock */
2633 file_update_time(vma->vm_file);
2639 * Ok, we need to copy. Oh, well..
2641 page_cache_get(old_page);
2643 pte_unmap_unlock(page_table, ptl);
2645 if (unlikely(anon_vma_prepare(vma)))
2648 if (is_zero_pfn(pte_pfn(orig_pte))) {
2649 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2653 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2656 cow_user_page(new_page, old_page, address, vma);
2658 __SetPageUptodate(new_page);
2660 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2664 * Re-check the pte - we dropped the lock
2666 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2667 if (likely(pte_same(*page_table, orig_pte))) {
2669 if (!PageAnon(old_page)) {
2670 dec_mm_counter_fast(mm, MM_FILEPAGES);
2671 inc_mm_counter_fast(mm, MM_ANONPAGES);
2674 inc_mm_counter_fast(mm, MM_ANONPAGES);
2675 flush_cache_page(vma, address, pte_pfn(orig_pte));
2676 entry = mk_pte(new_page, vma->vm_page_prot);
2677 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2679 * Clear the pte entry and flush it first, before updating the
2680 * pte with the new entry. This will avoid a race condition
2681 * seen in the presence of one thread doing SMC and another
2684 ptep_clear_flush(vma, address, page_table);
2685 page_add_new_anon_rmap(new_page, vma, address);
2687 * We call the notify macro here because, when using secondary
2688 * mmu page tables (such as kvm shadow page tables), we want the
2689 * new page to be mapped directly into the secondary page table.
2691 set_pte_at_notify(mm, address, page_table, entry);
2692 update_mmu_cache(vma, address, page_table);
2695 * Only after switching the pte to the new page may
2696 * we remove the mapcount here. Otherwise another
2697 * process may come and find the rmap count decremented
2698 * before the pte is switched to the new page, and
2699 * "reuse" the old page writing into it while our pte
2700 * here still points into it and can be read by other
2703 * The critical issue is to order this
2704 * page_remove_rmap with the ptp_clear_flush above.
2705 * Those stores are ordered by (if nothing else,)
2706 * the barrier present in the atomic_add_negative
2707 * in page_remove_rmap.
2709 * Then the TLB flush in ptep_clear_flush ensures that
2710 * no process can access the old page before the
2711 * decremented mapcount is visible. And the old page
2712 * cannot be reused until after the decremented
2713 * mapcount is visible. So transitively, TLBs to
2714 * old page will be flushed before it can be reused.
2716 page_remove_rmap(old_page);
2719 /* Free the old page.. */
2720 new_page = old_page;
2721 ret |= VM_FAULT_WRITE;
2723 mem_cgroup_uncharge_page(new_page);
2726 page_cache_release(new_page);
2728 pte_unmap_unlock(page_table, ptl);
2731 * Don't let another task, with possibly unlocked vma,
2732 * keep the mlocked page.
2734 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2735 lock_page(old_page); /* LRU manipulation */
2736 munlock_vma_page(old_page);
2737 unlock_page(old_page);
2739 page_cache_release(old_page);
2743 page_cache_release(new_page);
2747 unlock_page(old_page);
2748 page_cache_release(old_page);
2750 page_cache_release(old_page);
2752 return VM_FAULT_OOM;
2755 page_cache_release(old_page);
2759 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2760 unsigned long start_addr, unsigned long end_addr,
2761 struct zap_details *details)
2763 zap_page_range(vma, start_addr, end_addr - start_addr, details);
2766 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2767 struct zap_details *details)
2769 struct vm_area_struct *vma;
2770 struct prio_tree_iter iter;
2771 pgoff_t vba, vea, zba, zea;
2773 vma_prio_tree_foreach(vma, &iter, root,
2774 details->first_index, details->last_index) {
2776 vba = vma->vm_pgoff;
2777 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2778 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2779 zba = details->first_index;
2782 zea = details->last_index;
2786 unmap_mapping_range_vma(vma,
2787 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2788 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2793 static inline void unmap_mapping_range_list(struct list_head *head,
2794 struct zap_details *details)
2796 struct vm_area_struct *vma;
2799 * In nonlinear VMAs there is no correspondence between virtual address
2800 * offset and file offset. So we must perform an exhaustive search
2801 * across *all* the pages in each nonlinear VMA, not just the pages
2802 * whose virtual address lies outside the file truncation point.
2804 list_for_each_entry(vma, head, shared.vm_set.list) {
2805 details->nonlinear_vma = vma;
2806 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2811 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2812 * @mapping: the address space containing mmaps to be unmapped.
2813 * @holebegin: byte in first page to unmap, relative to the start of
2814 * the underlying file. This will be rounded down to a PAGE_SIZE
2815 * boundary. Note that this is different from truncate_pagecache(), which
2816 * must keep the partial page. In contrast, we must get rid of
2818 * @holelen: size of prospective hole in bytes. This will be rounded
2819 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2821 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2822 * but 0 when invalidating pagecache, don't throw away private data.
2824 void unmap_mapping_range(struct address_space *mapping,
2825 loff_t const holebegin, loff_t const holelen, int even_cows)
2827 struct zap_details details;
2828 pgoff_t hba = holebegin >> PAGE_SHIFT;
2829 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2831 /* Check for overflow. */
2832 if (sizeof(holelen) > sizeof(hlen)) {
2834 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2835 if (holeend & ~(long long)ULONG_MAX)
2836 hlen = ULONG_MAX - hba + 1;
2839 details.check_mapping = even_cows? NULL: mapping;
2840 details.nonlinear_vma = NULL;
2841 details.first_index = hba;
2842 details.last_index = hba + hlen - 1;
2843 if (details.last_index < details.first_index)
2844 details.last_index = ULONG_MAX;
2847 mutex_lock(&mapping->i_mmap_mutex);
2848 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2849 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2850 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2851 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2852 mutex_unlock(&mapping->i_mmap_mutex);
2854 EXPORT_SYMBOL(unmap_mapping_range);
2857 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2858 * but allow concurrent faults), and pte mapped but not yet locked.
2859 * We return with mmap_sem still held, but pte unmapped and unlocked.
2861 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2862 unsigned long address, pte_t *page_table, pmd_t *pmd,
2863 unsigned int flags, pte_t orig_pte)
2866 struct page *page, *swapcache = NULL;
2870 struct mem_cgroup *ptr;
2874 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2877 entry = pte_to_swp_entry(orig_pte);
2878 if (unlikely(non_swap_entry(entry))) {
2879 if (is_migration_entry(entry)) {
2880 migration_entry_wait(mm, pmd, address);
2881 } else if (is_hwpoison_entry(entry)) {
2882 ret = VM_FAULT_HWPOISON;
2884 print_bad_pte(vma, address, orig_pte, NULL);
2885 ret = VM_FAULT_SIGBUS;
2889 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2890 page = lookup_swap_cache(entry);
2892 grab_swap_token(mm); /* Contend for token _before_ read-in */
2893 page = swapin_readahead(entry,
2894 GFP_HIGHUSER_MOVABLE, vma, address);
2897 * Back out if somebody else faulted in this pte
2898 * while we released the pte lock.
2900 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2901 if (likely(pte_same(*page_table, orig_pte)))
2903 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2907 /* Had to read the page from swap area: Major fault */
2908 ret = VM_FAULT_MAJOR;
2909 count_vm_event(PGMAJFAULT);
2910 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2911 } else if (PageHWPoison(page)) {
2913 * hwpoisoned dirty swapcache pages are kept for killing
2914 * owner processes (which may be unknown at hwpoison time)
2916 ret = VM_FAULT_HWPOISON;
2917 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2921 locked = lock_page_or_retry(page, mm, flags);
2922 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2924 ret |= VM_FAULT_RETRY;
2929 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2930 * release the swapcache from under us. The page pin, and pte_same
2931 * test below, are not enough to exclude that. Even if it is still
2932 * swapcache, we need to check that the page's swap has not changed.
2934 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2937 if (ksm_might_need_to_copy(page, vma, address)) {
2939 page = ksm_does_need_to_copy(page, vma, address);
2941 if (unlikely(!page)) {
2949 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2955 * Back out if somebody else already faulted in this pte.
2957 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2958 if (unlikely(!pte_same(*page_table, orig_pte)))
2961 if (unlikely(!PageUptodate(page))) {
2962 ret = VM_FAULT_SIGBUS;
2967 * The page isn't present yet, go ahead with the fault.
2969 * Be careful about the sequence of operations here.
2970 * To get its accounting right, reuse_swap_page() must be called
2971 * while the page is counted on swap but not yet in mapcount i.e.
2972 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2973 * must be called after the swap_free(), or it will never succeed.
2974 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2975 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2976 * in page->private. In this case, a record in swap_cgroup is silently
2977 * discarded at swap_free().
2980 inc_mm_counter_fast(mm, MM_ANONPAGES);
2981 dec_mm_counter_fast(mm, MM_SWAPENTS);
2982 pte = mk_pte(page, vma->vm_page_prot);
2983 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2984 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2985 flags &= ~FAULT_FLAG_WRITE;
2986 ret |= VM_FAULT_WRITE;
2989 flush_icache_page(vma, page);
2990 set_pte_at(mm, address, page_table, pte);
2991 do_page_add_anon_rmap(page, vma, address, exclusive);
2992 /* It's better to call commit-charge after rmap is established */
2993 mem_cgroup_commit_charge_swapin(page, ptr);
2996 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2997 try_to_free_swap(page);
3001 * Hold the lock to avoid the swap entry to be reused
3002 * until we take the PT lock for the pte_same() check
3003 * (to avoid false positives from pte_same). For
3004 * further safety release the lock after the swap_free
3005 * so that the swap count won't change under a
3006 * parallel locked swapcache.
3008 unlock_page(swapcache);
3009 page_cache_release(swapcache);
3012 if (flags & FAULT_FLAG_WRITE) {
3013 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3014 if (ret & VM_FAULT_ERROR)
3015 ret &= VM_FAULT_ERROR;
3019 /* No need to invalidate - it was non-present before */
3020 update_mmu_cache(vma, address, page_table);
3022 pte_unmap_unlock(page_table, ptl);
3026 mem_cgroup_cancel_charge_swapin(ptr);
3027 pte_unmap_unlock(page_table, ptl);
3031 page_cache_release(page);
3033 unlock_page(swapcache);
3034 page_cache_release(swapcache);
3040 * This is like a special single-page "expand_{down|up}wards()",
3041 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3042 * doesn't hit another vma.
3044 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3046 address &= PAGE_MASK;
3047 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3048 struct vm_area_struct *prev = vma->vm_prev;
3051 * Is there a mapping abutting this one below?
3053 * That's only ok if it's the same stack mapping
3054 * that has gotten split..
3056 if (prev && prev->vm_end == address)
3057 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3059 expand_downwards(vma, address - PAGE_SIZE);
3061 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3062 struct vm_area_struct *next = vma->vm_next;
3064 /* As VM_GROWSDOWN but s/below/above/ */
3065 if (next && next->vm_start == address + PAGE_SIZE)
3066 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3068 expand_upwards(vma, address + PAGE_SIZE);
3074 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3075 * but allow concurrent faults), and pte mapped but not yet locked.
3076 * We return with mmap_sem still held, but pte unmapped and unlocked.
3078 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3079 unsigned long address, pte_t *page_table, pmd_t *pmd,
3086 pte_unmap(page_table);
3088 /* Check if we need to add a guard page to the stack */
3089 if (check_stack_guard_page(vma, address) < 0)
3090 return VM_FAULT_SIGBUS;
3092 /* Use the zero-page for reads */
3093 if (!(flags & FAULT_FLAG_WRITE)) {
3094 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3095 vma->vm_page_prot));
3096 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3097 if (!pte_none(*page_table))
3102 /* Allocate our own private page. */
3103 if (unlikely(anon_vma_prepare(vma)))
3105 page = alloc_zeroed_user_highpage_movable(vma, address);
3108 __SetPageUptodate(page);
3110 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3113 entry = mk_pte(page, vma->vm_page_prot);
3114 if (vma->vm_flags & VM_WRITE)
3115 entry = pte_mkwrite(pte_mkdirty(entry));
3117 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3118 if (!pte_none(*page_table))
3121 inc_mm_counter_fast(mm, MM_ANONPAGES);
3122 page_add_new_anon_rmap(page, vma, address);
3124 set_pte_at(mm, address, page_table, entry);
3126 /* No need to invalidate - it was non-present before */
3127 update_mmu_cache(vma, address, page_table);
3129 pte_unmap_unlock(page_table, ptl);
3132 mem_cgroup_uncharge_page(page);
3133 page_cache_release(page);
3136 page_cache_release(page);
3138 return VM_FAULT_OOM;
3142 * __do_fault() tries to create a new page mapping. It aggressively
3143 * tries to share with existing pages, but makes a separate copy if
3144 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3145 * the next page fault.
3147 * As this is called only for pages that do not currently exist, we
3148 * do not need to flush old virtual caches or the TLB.
3150 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3151 * but allow concurrent faults), and pte neither mapped nor locked.
3152 * We return with mmap_sem still held, but pte unmapped and unlocked.
3154 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3155 unsigned long address, pmd_t *pmd,
3156 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3161 struct page *cow_page;
3164 struct page *dirty_page = NULL;
3165 struct vm_fault vmf;
3167 int page_mkwrite = 0;
3170 * If we do COW later, allocate page befor taking lock_page()
3171 * on the file cache page. This will reduce lock holding time.
3173 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3175 if (unlikely(anon_vma_prepare(vma)))
3176 return VM_FAULT_OOM;
3178 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3180 return VM_FAULT_OOM;
3182 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3183 page_cache_release(cow_page);
3184 return VM_FAULT_OOM;
3189 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3194 ret = vma->vm_ops->fault(vma, &vmf);
3195 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3199 if (unlikely(PageHWPoison(vmf.page))) {
3200 if (ret & VM_FAULT_LOCKED)
3201 unlock_page(vmf.page);
3202 ret = VM_FAULT_HWPOISON;
3207 * For consistency in subsequent calls, make the faulted page always
3210 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3211 lock_page(vmf.page);
3213 VM_BUG_ON(!PageLocked(vmf.page));
3216 * Should we do an early C-O-W break?
3219 if (flags & FAULT_FLAG_WRITE) {
3220 if (!(vma->vm_flags & VM_SHARED)) {
3223 copy_user_highpage(page, vmf.page, address, vma);
3224 __SetPageUptodate(page);
3227 * If the page will be shareable, see if the backing
3228 * address space wants to know that the page is about
3229 * to become writable
3231 if (vma->vm_ops->page_mkwrite) {
3235 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3236 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3238 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3240 goto unwritable_page;
3242 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3244 if (!page->mapping) {
3245 ret = 0; /* retry the fault */
3247 goto unwritable_page;
3250 VM_BUG_ON(!PageLocked(page));
3257 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3260 * This silly early PAGE_DIRTY setting removes a race
3261 * due to the bad i386 page protection. But it's valid
3262 * for other architectures too.
3264 * Note that if FAULT_FLAG_WRITE is set, we either now have
3265 * an exclusive copy of the page, or this is a shared mapping,
3266 * so we can make it writable and dirty to avoid having to
3267 * handle that later.
3269 /* Only go through if we didn't race with anybody else... */
3270 if (likely(pte_same(*page_table, orig_pte))) {
3271 flush_icache_page(vma, page);
3272 entry = mk_pte(page, vma->vm_page_prot);
3273 if (flags & FAULT_FLAG_WRITE)
3274 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3276 inc_mm_counter_fast(mm, MM_ANONPAGES);
3277 page_add_new_anon_rmap(page, vma, address);
3279 inc_mm_counter_fast(mm, MM_FILEPAGES);
3280 page_add_file_rmap(page);
3281 if (flags & FAULT_FLAG_WRITE) {
3283 get_page(dirty_page);
3286 set_pte_at(mm, address, page_table, entry);
3288 /* no need to invalidate: a not-present page won't be cached */
3289 update_mmu_cache(vma, address, page_table);
3292 mem_cgroup_uncharge_page(cow_page);
3294 page_cache_release(page);
3296 anon = 1; /* no anon but release faulted_page */
3299 pte_unmap_unlock(page_table, ptl);
3302 struct address_space *mapping = page->mapping;
3304 if (set_page_dirty(dirty_page))
3306 unlock_page(dirty_page);
3307 put_page(dirty_page);
3308 if (page_mkwrite && mapping) {
3310 * Some device drivers do not set page.mapping but still
3313 balance_dirty_pages_ratelimited(mapping);
3316 /* file_update_time outside page_lock */
3318 file_update_time(vma->vm_file);
3320 unlock_page(vmf.page);
3322 page_cache_release(vmf.page);
3328 page_cache_release(page);
3331 /* fs's fault handler get error */
3333 mem_cgroup_uncharge_page(cow_page);
3334 page_cache_release(cow_page);
3339 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3340 unsigned long address, pte_t *page_table, pmd_t *pmd,
3341 unsigned int flags, pte_t orig_pte)
3343 pgoff_t pgoff = (((address & PAGE_MASK)
3344 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3346 pte_unmap(page_table);
3347 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3351 * Fault of a previously existing named mapping. Repopulate the pte
3352 * from the encoded file_pte if possible. This enables swappable
3355 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3356 * but allow concurrent faults), and pte mapped but not yet locked.
3357 * We return with mmap_sem still held, but pte unmapped and unlocked.
3359 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3360 unsigned long address, pte_t *page_table, pmd_t *pmd,
3361 unsigned int flags, pte_t orig_pte)
3365 flags |= FAULT_FLAG_NONLINEAR;
3367 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3370 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3372 * Page table corrupted: show pte and kill process.
3374 print_bad_pte(vma, address, orig_pte, NULL);
3375 return VM_FAULT_SIGBUS;
3378 pgoff = pte_to_pgoff(orig_pte);
3379 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3383 * These routines also need to handle stuff like marking pages dirty
3384 * and/or accessed for architectures that don't do it in hardware (most
3385 * RISC architectures). The early dirtying is also good on the i386.
3387 * There is also a hook called "update_mmu_cache()" that architectures
3388 * with external mmu caches can use to update those (ie the Sparc or
3389 * PowerPC hashed page tables that act as extended TLBs).
3391 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3392 * but allow concurrent faults), and pte mapped but not yet locked.
3393 * We return with mmap_sem still held, but pte unmapped and unlocked.
3395 int handle_pte_fault(struct mm_struct *mm,
3396 struct vm_area_struct *vma, unsigned long address,
3397 pte_t *pte, pmd_t *pmd, unsigned int flags)
3403 if (!pte_present(entry)) {
3404 if (pte_none(entry)) {
3406 if (likely(vma->vm_ops->fault))
3407 return do_linear_fault(mm, vma, address,
3408 pte, pmd, flags, entry);
3410 return do_anonymous_page(mm, vma, address,
3413 if (pte_file(entry))
3414 return do_nonlinear_fault(mm, vma, address,
3415 pte, pmd, flags, entry);
3416 return do_swap_page(mm, vma, address,
3417 pte, pmd, flags, entry);
3420 ptl = pte_lockptr(mm, pmd);
3422 if (unlikely(!pte_same(*pte, entry)))
3424 if (flags & FAULT_FLAG_WRITE) {
3425 if (!pte_write(entry))
3426 return do_wp_page(mm, vma, address,
3427 pte, pmd, ptl, entry);
3428 entry = pte_mkdirty(entry);
3430 entry = pte_mkyoung(entry);
3431 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3432 update_mmu_cache(vma, address, pte);
3435 * This is needed only for protection faults but the arch code
3436 * is not yet telling us if this is a protection fault or not.
3437 * This still avoids useless tlb flushes for .text page faults
3440 if (flags & FAULT_FLAG_WRITE)
3441 flush_tlb_fix_spurious_fault(vma, address);
3444 pte_unmap_unlock(pte, ptl);
3449 * By the time we get here, we already hold the mm semaphore
3451 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3452 unsigned long address, unsigned int flags)
3459 __set_current_state(TASK_RUNNING);
3461 count_vm_event(PGFAULT);
3462 mem_cgroup_count_vm_event(mm, PGFAULT);
3464 /* do counter updates before entering really critical section. */
3465 check_sync_rss_stat(current);
3467 if (unlikely(is_vm_hugetlb_page(vma)))
3468 return hugetlb_fault(mm, vma, address, flags);
3470 pgd = pgd_offset(mm, address);
3471 pud = pud_alloc(mm, pgd, address);
3473 return VM_FAULT_OOM;
3474 pmd = pmd_alloc(mm, pud, address);
3476 return VM_FAULT_OOM;
3477 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3479 return do_huge_pmd_anonymous_page(mm, vma, address,
3482 pmd_t orig_pmd = *pmd;
3484 if (pmd_trans_huge(orig_pmd)) {
3485 if (flags & FAULT_FLAG_WRITE &&
3486 !pmd_write(orig_pmd) &&
3487 !pmd_trans_splitting(orig_pmd))
3488 return do_huge_pmd_wp_page(mm, vma, address,
3495 * Use __pte_alloc instead of pte_alloc_map, because we can't
3496 * run pte_offset_map on the pmd, if an huge pmd could
3497 * materialize from under us from a different thread.
3499 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3500 return VM_FAULT_OOM;
3501 /* if an huge pmd materialized from under us just retry later */
3502 if (unlikely(pmd_trans_huge(*pmd)))
3505 * A regular pmd is established and it can't morph into a huge pmd
3506 * from under us anymore at this point because we hold the mmap_sem
3507 * read mode and khugepaged takes it in write mode. So now it's
3508 * safe to run pte_offset_map().
3510 pte = pte_offset_map(pmd, address);
3512 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3515 #ifndef __PAGETABLE_PUD_FOLDED
3517 * Allocate page upper directory.
3518 * We've already handled the fast-path in-line.
3520 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3522 pud_t *new = pud_alloc_one(mm, address);
3526 smp_wmb(); /* See comment in __pte_alloc */
3528 spin_lock(&mm->page_table_lock);
3529 if (pgd_present(*pgd)) /* Another has populated it */
3532 pgd_populate(mm, pgd, new);
3533 spin_unlock(&mm->page_table_lock);
3536 #endif /* __PAGETABLE_PUD_FOLDED */
3538 #ifndef __PAGETABLE_PMD_FOLDED
3540 * Allocate page middle directory.
3541 * We've already handled the fast-path in-line.
3543 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3545 pmd_t *new = pmd_alloc_one(mm, address);
3549 smp_wmb(); /* See comment in __pte_alloc */
3551 spin_lock(&mm->page_table_lock);
3552 #ifndef __ARCH_HAS_4LEVEL_HACK
3553 if (pud_present(*pud)) /* Another has populated it */
3556 pud_populate(mm, pud, new);
3558 if (pgd_present(*pud)) /* Another has populated it */
3561 pgd_populate(mm, pud, new);
3562 #endif /* __ARCH_HAS_4LEVEL_HACK */
3563 spin_unlock(&mm->page_table_lock);
3566 #endif /* __PAGETABLE_PMD_FOLDED */
3568 int make_pages_present(unsigned long addr, unsigned long end)
3570 int ret, len, write;
3571 struct vm_area_struct * vma;
3573 vma = find_vma(current->mm, addr);
3577 * We want to touch writable mappings with a write fault in order
3578 * to break COW, except for shared mappings because these don't COW
3579 * and we would not want to dirty them for nothing.
3581 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3582 BUG_ON(addr >= end);
3583 BUG_ON(end > vma->vm_end);
3584 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3585 ret = get_user_pages(current, current->mm, addr,
3586 len, write, 0, NULL, NULL);
3589 return ret == len ? 0 : -EFAULT;
3592 #if !defined(__HAVE_ARCH_GATE_AREA)
3594 #if defined(AT_SYSINFO_EHDR)
3595 static struct vm_area_struct gate_vma;
3597 static int __init gate_vma_init(void)
3599 gate_vma.vm_mm = NULL;
3600 gate_vma.vm_start = FIXADDR_USER_START;
3601 gate_vma.vm_end = FIXADDR_USER_END;
3602 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3603 gate_vma.vm_page_prot = __P101;
3605 * Make sure the vDSO gets into every core dump.
3606 * Dumping its contents makes post-mortem fully interpretable later
3607 * without matching up the same kernel and hardware config to see
3608 * what PC values meant.
3610 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3613 __initcall(gate_vma_init);
3616 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3618 #ifdef AT_SYSINFO_EHDR
3625 int in_gate_area_no_mm(unsigned long addr)
3627 #ifdef AT_SYSINFO_EHDR
3628 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3634 #endif /* __HAVE_ARCH_GATE_AREA */
3636 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3637 pte_t **ptepp, spinlock_t **ptlp)
3644 pgd = pgd_offset(mm, address);
3645 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3648 pud = pud_offset(pgd, address);
3649 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3652 pmd = pmd_offset(pud, address);
3653 VM_BUG_ON(pmd_trans_huge(*pmd));
3654 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3657 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3661 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3664 if (!pte_present(*ptep))
3669 pte_unmap_unlock(ptep, *ptlp);
3674 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3675 pte_t **ptepp, spinlock_t **ptlp)
3679 /* (void) is needed to make gcc happy */
3680 (void) __cond_lock(*ptlp,
3681 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3686 * follow_pfn - look up PFN at a user virtual address
3687 * @vma: memory mapping
3688 * @address: user virtual address
3689 * @pfn: location to store found PFN
3691 * Only IO mappings and raw PFN mappings are allowed.
3693 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3695 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3702 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3705 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3708 *pfn = pte_pfn(*ptep);
3709 pte_unmap_unlock(ptep, ptl);
3712 EXPORT_SYMBOL(follow_pfn);
3714 #ifdef CONFIG_HAVE_IOREMAP_PROT
3715 int follow_phys(struct vm_area_struct *vma,
3716 unsigned long address, unsigned int flags,
3717 unsigned long *prot, resource_size_t *phys)
3723 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3726 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3730 if ((flags & FOLL_WRITE) && !pte_write(pte))
3733 *prot = pgprot_val(pte_pgprot(pte));
3734 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3738 pte_unmap_unlock(ptep, ptl);
3743 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3744 void *buf, int len, int write)
3746 resource_size_t phys_addr;
3747 unsigned long prot = 0;
3748 void __iomem *maddr;
3749 int offset = addr & (PAGE_SIZE-1);
3751 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3754 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3756 memcpy_toio(maddr + offset, buf, len);
3758 memcpy_fromio(buf, maddr + offset, len);
3766 * Access another process' address space as given in mm. If non-NULL, use the
3767 * given task for page fault accounting.
3769 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3770 unsigned long addr, void *buf, int len, int write)
3772 struct vm_area_struct *vma;
3773 void *old_buf = buf;
3775 down_read(&mm->mmap_sem);
3776 /* ignore errors, just check how much was successfully transferred */
3778 int bytes, ret, offset;
3780 struct page *page = NULL;
3782 ret = get_user_pages(tsk, mm, addr, 1,
3783 write, 1, &page, &vma);
3786 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3787 * we can access using slightly different code.
3789 #ifdef CONFIG_HAVE_IOREMAP_PROT
3790 vma = find_vma(mm, addr);
3791 if (!vma || vma->vm_start > addr)
3793 if (vma->vm_ops && vma->vm_ops->access)
3794 ret = vma->vm_ops->access(vma, addr, buf,
3802 offset = addr & (PAGE_SIZE-1);
3803 if (bytes > PAGE_SIZE-offset)
3804 bytes = PAGE_SIZE-offset;
3808 copy_to_user_page(vma, page, addr,
3809 maddr + offset, buf, bytes);
3810 set_page_dirty_lock(page);
3812 copy_from_user_page(vma, page, addr,
3813 buf, maddr + offset, bytes);
3816 page_cache_release(page);
3822 up_read(&mm->mmap_sem);
3824 return buf - old_buf;
3828 * access_remote_vm - access another process' address space
3829 * @mm: the mm_struct of the target address space
3830 * @addr: start address to access
3831 * @buf: source or destination buffer
3832 * @len: number of bytes to transfer
3833 * @write: whether the access is a write
3835 * The caller must hold a reference on @mm.
3837 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3838 void *buf, int len, int write)
3840 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3844 * Access another process' address space.
3845 * Source/target buffer must be kernel space,
3846 * Do not walk the page table directly, use get_user_pages
3848 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3849 void *buf, int len, int write)
3851 struct mm_struct *mm;
3854 mm = get_task_mm(tsk);
3858 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3865 * Print the name of a VMA.
3867 void print_vma_addr(char *prefix, unsigned long ip)
3869 struct mm_struct *mm = current->mm;
3870 struct vm_area_struct *vma;
3873 * Do not print if we are in atomic
3874 * contexts (in exception stacks, etc.):
3876 if (preempt_count())
3879 down_read(&mm->mmap_sem);
3880 vma = find_vma(mm, ip);
3881 if (vma && vma->vm_file) {
3882 struct file *f = vma->vm_file;
3883 char *buf = (char *)__get_free_page(GFP_KERNEL);
3887 p = d_path(&f->f_path, buf, PAGE_SIZE);
3890 s = strrchr(p, '/');
3893 printk("%s%s[%lx+%lx]", prefix, p,
3895 vma->vm_end - vma->vm_start);
3896 free_page((unsigned long)buf);
3899 up_read(¤t->mm->mmap_sem);
3902 #ifdef CONFIG_PROVE_LOCKING
3903 void might_fault(void)
3906 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3907 * holding the mmap_sem, this is safe because kernel memory doesn't
3908 * get paged out, therefore we'll never actually fault, and the
3909 * below annotations will generate false positives.
3911 if (segment_eq(get_fs(), KERNEL_DS))
3916 * it would be nicer only to annotate paths which are not under
3917 * pagefault_disable, however that requires a larger audit and
3918 * providing helpers like get_user_atomic.
3920 if (!in_atomic() && current->mm)
3921 might_lock_read(¤t->mm->mmap_sem);
3923 EXPORT_SYMBOL(might_fault);
3926 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3927 static void clear_gigantic_page(struct page *page,
3929 unsigned int pages_per_huge_page)
3932 struct page *p = page;
3935 for (i = 0; i < pages_per_huge_page;
3936 i++, p = mem_map_next(p, page, i)) {
3938 clear_user_highpage(p, addr + i * PAGE_SIZE);
3941 void clear_huge_page(struct page *page,
3942 unsigned long addr, unsigned int pages_per_huge_page)
3946 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3947 clear_gigantic_page(page, addr, pages_per_huge_page);
3952 for (i = 0; i < pages_per_huge_page; i++) {
3954 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3958 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3960 struct vm_area_struct *vma,
3961 unsigned int pages_per_huge_page)
3964 struct page *dst_base = dst;
3965 struct page *src_base = src;
3967 for (i = 0; i < pages_per_huge_page; ) {
3969 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3972 dst = mem_map_next(dst, dst_base, i);
3973 src = mem_map_next(src, src_base, i);
3977 void copy_user_huge_page(struct page *dst, struct page *src,
3978 unsigned long addr, struct vm_area_struct *vma,
3979 unsigned int pages_per_huge_page)
3983 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3984 copy_user_gigantic_page(dst, src, addr, vma,
3985 pages_per_huge_page);
3990 for (i = 0; i < pages_per_huge_page; i++) {
3992 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3995 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */