1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/kernfs/dir.c - kernfs directory implementation
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
10 #include <linux/sched.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
18 #include "kernfs-internal.h"
20 DEFINE_MUTEX(kernfs_mutex);
21 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
22 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
23 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27 static bool kernfs_active(struct kernfs_node *kn)
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
33 static bool kernfs_lockdep(struct kernfs_node *kn)
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
45 return strlcpy(buf, "(null)", buflen);
47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
50 /* kernfs_node_depth - compute depth from @from to @to */
51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
55 while (to->parent && to != from) {
62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 struct kernfs_node *b)
66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
71 da = kernfs_depth(ra->kn, a);
72 db = kernfs_depth(rb->kn, b);
83 /* worst case b and a will be the same at root */
93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94 * where kn_from is treated as root of the path.
95 * @kn_from: kernfs node which should be treated as root for the path
96 * @kn_to: kernfs node to which path is needed
97 * @buf: buffer to copy the path into
98 * @buflen: size of @buf
100 * We need to handle couple of scenarios here:
101 * [1] when @kn_from is an ancestor of @kn_to at some level
103 * kn_to: /n1/n2/n3/n4/n5
106 * [2] when @kn_from is on a different hierarchy and we need to find common
107 * ancestor between @kn_from and @kn_to.
108 * kn_from: /n1/n2/n3/n4
112 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
113 * kn_to: /n1/n2/n3 [depth=3]
116 * [3] when @kn_to is NULL result will be "(null)"
118 * Returns the length of the full path. If the full length is equal to or
119 * greater than @buflen, @buf contains the truncated path with the trailing
120 * '\0'. On error, -errno is returned.
122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 struct kernfs_node *kn_from,
124 char *buf, size_t buflen)
126 struct kernfs_node *kn, *common;
127 const char parent_str[] = "/..";
128 size_t depth_from, depth_to, len = 0;
132 return strlcpy(buf, "(null)", buflen);
135 kn_from = kernfs_root(kn_to)->kn;
137 if (kn_from == kn_to)
138 return strlcpy(buf, "/", buflen);
140 common = kernfs_common_ancestor(kn_from, kn_to);
141 if (WARN_ON(!common))
144 depth_to = kernfs_depth(common, kn_to);
145 depth_from = kernfs_depth(common, kn_from);
150 for (i = 0; i < depth_from; i++)
151 len += strlcpy(buf + len, parent_str,
152 len < buflen ? buflen - len : 0);
154 /* Calculate how many bytes we need for the rest */
155 for (i = depth_to - 1; i >= 0; i--) {
156 for (kn = kn_to, j = 0; j < i; j++)
158 len += strlcpy(buf + len, "/",
159 len < buflen ? buflen - len : 0);
160 len += strlcpy(buf + len, kn->name,
161 len < buflen ? buflen - len : 0);
168 * kernfs_name - obtain the name of a given node
169 * @kn: kernfs_node of interest
170 * @buf: buffer to copy @kn's name into
171 * @buflen: size of @buf
173 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
174 * similar to strlcpy(). It returns the length of @kn's name and if @buf
175 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
177 * Fills buffer with "(null)" if @kn is NULL.
179 * This function can be called from any context.
181 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
186 spin_lock_irqsave(&kernfs_rename_lock, flags);
187 ret = kernfs_name_locked(kn, buf, buflen);
188 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
193 * kernfs_path_from_node - build path of node @to relative to @from.
194 * @from: parent kernfs_node relative to which we need to build the path
195 * @to: kernfs_node of interest
196 * @buf: buffer to copy @to's path into
197 * @buflen: size of @buf
199 * Builds @to's path relative to @from in @buf. @from and @to must
200 * be on the same kernfs-root. If @from is not parent of @to, then a relative
201 * path (which includes '..'s) as needed to reach from @from to @to is
204 * Returns the length of the full path. If the full length is equal to or
205 * greater than @buflen, @buf contains the truncated path with the trailing
206 * '\0'. On error, -errno is returned.
208 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
209 char *buf, size_t buflen)
214 spin_lock_irqsave(&kernfs_rename_lock, flags);
215 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
216 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
219 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
222 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
223 * @kn: kernfs_node of interest
225 * This function can be called from any context.
227 void pr_cont_kernfs_name(struct kernfs_node *kn)
231 spin_lock_irqsave(&kernfs_rename_lock, flags);
233 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
234 pr_cont("%s", kernfs_pr_cont_buf);
236 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
240 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
241 * @kn: kernfs_node of interest
243 * This function can be called from any context.
245 void pr_cont_kernfs_path(struct kernfs_node *kn)
250 spin_lock_irqsave(&kernfs_rename_lock, flags);
252 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
253 sizeof(kernfs_pr_cont_buf));
259 if (sz >= sizeof(kernfs_pr_cont_buf)) {
260 pr_cont("(name too long)");
264 pr_cont("%s", kernfs_pr_cont_buf);
267 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
271 * kernfs_get_parent - determine the parent node and pin it
272 * @kn: kernfs_node of interest
274 * Determines @kn's parent, pins and returns it. This function can be
275 * called from any context.
277 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
279 struct kernfs_node *parent;
282 spin_lock_irqsave(&kernfs_rename_lock, flags);
285 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
292 * @name: Null terminated string to hash
293 * @ns: Namespace tag to hash
295 * Returns 31 bit hash of ns + name (so it fits in an off_t )
297 static unsigned int kernfs_name_hash(const char *name, const void *ns)
299 unsigned long hash = init_name_hash(ns);
300 unsigned int len = strlen(name);
302 hash = partial_name_hash(*name++, hash);
303 hash = end_name_hash(hash);
305 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
313 static int kernfs_name_compare(unsigned int hash, const char *name,
314 const void *ns, const struct kernfs_node *kn)
324 return strcmp(name, kn->name);
327 static int kernfs_sd_compare(const struct kernfs_node *left,
328 const struct kernfs_node *right)
330 return kernfs_name_compare(left->hash, left->name, left->ns, right);
334 * kernfs_link_sibling - link kernfs_node into sibling rbtree
335 * @kn: kernfs_node of interest
337 * Link @kn into its sibling rbtree which starts from
338 * @kn->parent->dir.children.
341 * mutex_lock(kernfs_mutex)
344 * 0 on susccess -EEXIST on failure.
346 static int kernfs_link_sibling(struct kernfs_node *kn)
348 struct rb_node **node = &kn->parent->dir.children.rb_node;
349 struct rb_node *parent = NULL;
352 struct kernfs_node *pos;
355 pos = rb_to_kn(*node);
357 result = kernfs_sd_compare(kn, pos);
359 node = &pos->rb.rb_left;
361 node = &pos->rb.rb_right;
366 /* add new node and rebalance the tree */
367 rb_link_node(&kn->rb, parent, node);
368 rb_insert_color(&kn->rb, &kn->parent->dir.children);
370 /* successfully added, account subdir number */
371 if (kernfs_type(kn) == KERNFS_DIR)
372 kn->parent->dir.subdirs++;
378 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
379 * @kn: kernfs_node of interest
381 * Try to unlink @kn from its sibling rbtree which starts from
382 * kn->parent->dir.children. Returns %true if @kn was actually
383 * removed, %false if @kn wasn't on the rbtree.
386 * mutex_lock(kernfs_mutex)
388 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
390 if (RB_EMPTY_NODE(&kn->rb))
393 if (kernfs_type(kn) == KERNFS_DIR)
394 kn->parent->dir.subdirs--;
396 rb_erase(&kn->rb, &kn->parent->dir.children);
397 RB_CLEAR_NODE(&kn->rb);
402 * kernfs_get_active - get an active reference to kernfs_node
403 * @kn: kernfs_node to get an active reference to
405 * Get an active reference of @kn. This function is noop if @kn
409 * Pointer to @kn on success, NULL on failure.
411 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
416 if (!atomic_inc_unless_negative(&kn->active))
419 if (kernfs_lockdep(kn))
420 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
425 * kernfs_put_active - put an active reference to kernfs_node
426 * @kn: kernfs_node to put an active reference to
428 * Put an active reference to @kn. This function is noop if @kn
431 void kernfs_put_active(struct kernfs_node *kn)
433 struct kernfs_root *root = kernfs_root(kn);
439 if (kernfs_lockdep(kn))
440 rwsem_release(&kn->dep_map, 1, _RET_IP_);
441 v = atomic_dec_return(&kn->active);
442 if (likely(v != KN_DEACTIVATED_BIAS))
445 wake_up_all(&root->deactivate_waitq);
449 * kernfs_drain - drain kernfs_node
450 * @kn: kernfs_node to drain
452 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
453 * removers may invoke this function concurrently on @kn and all will
454 * return after draining is complete.
456 static void kernfs_drain(struct kernfs_node *kn)
457 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
459 struct kernfs_root *root = kernfs_root(kn);
461 lockdep_assert_held(&kernfs_mutex);
462 WARN_ON_ONCE(kernfs_active(kn));
464 mutex_unlock(&kernfs_mutex);
466 if (kernfs_lockdep(kn)) {
467 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
468 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
469 lock_contended(&kn->dep_map, _RET_IP_);
472 /* but everyone should wait for draining */
473 wait_event(root->deactivate_waitq,
474 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
476 if (kernfs_lockdep(kn)) {
477 lock_acquired(&kn->dep_map, _RET_IP_);
478 rwsem_release(&kn->dep_map, 1, _RET_IP_);
481 kernfs_drain_open_files(kn);
483 mutex_lock(&kernfs_mutex);
487 * kernfs_get - get a reference count on a kernfs_node
488 * @kn: the target kernfs_node
490 void kernfs_get(struct kernfs_node *kn)
493 WARN_ON(!atomic_read(&kn->count));
494 atomic_inc(&kn->count);
497 EXPORT_SYMBOL_GPL(kernfs_get);
500 * kernfs_put - put a reference count on a kernfs_node
501 * @kn: the target kernfs_node
503 * Put a reference count of @kn and destroy it if it reached zero.
505 void kernfs_put(struct kernfs_node *kn)
507 struct kernfs_node *parent;
508 struct kernfs_root *root;
511 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
512 * depends on this to filter reused stale node
514 if (!kn || !atomic_dec_and_test(&kn->count))
516 root = kernfs_root(kn);
519 * Moving/renaming is always done while holding reference.
520 * kn->parent won't change beneath us.
524 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
525 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
526 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
528 if (kernfs_type(kn) == KERNFS_LINK)
529 kernfs_put(kn->symlink.target_kn);
531 kfree_const(kn->name);
534 simple_xattrs_free(&kn->iattr->xattrs);
535 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
537 spin_lock(&kernfs_idr_lock);
538 idr_remove(&root->ino_idr, kn->id.ino);
539 spin_unlock(&kernfs_idr_lock);
540 kmem_cache_free(kernfs_node_cache, kn);
544 if (atomic_dec_and_test(&kn->count))
547 /* just released the root kn, free @root too */
548 idr_destroy(&root->ino_idr);
552 EXPORT_SYMBOL_GPL(kernfs_put);
554 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
556 struct kernfs_node *kn;
558 if (flags & LOOKUP_RCU)
561 /* Always perform fresh lookup for negatives */
562 if (d_really_is_negative(dentry))
563 goto out_bad_unlocked;
565 kn = kernfs_dentry_node(dentry);
566 mutex_lock(&kernfs_mutex);
568 /* The kernfs node has been deactivated */
569 if (!kernfs_active(kn))
572 /* The kernfs node has been moved? */
573 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
576 /* The kernfs node has been renamed */
577 if (strcmp(dentry->d_name.name, kn->name) != 0)
580 /* The kernfs node has been moved to a different namespace */
581 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
582 kernfs_info(dentry->d_sb)->ns != kn->ns)
585 mutex_unlock(&kernfs_mutex);
588 mutex_unlock(&kernfs_mutex);
593 const struct dentry_operations kernfs_dops = {
594 .d_revalidate = kernfs_dop_revalidate,
598 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
599 * @dentry: the dentry in question
601 * Return the kernfs_node associated with @dentry. If @dentry is not a
602 * kernfs one, %NULL is returned.
604 * While the returned kernfs_node will stay accessible as long as @dentry
605 * is accessible, the returned node can be in any state and the caller is
606 * fully responsible for determining what's accessible.
608 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
610 if (dentry->d_sb->s_op == &kernfs_sops &&
611 !d_really_is_negative(dentry))
612 return kernfs_dentry_node(dentry);
616 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
617 struct kernfs_node *parent,
618 const char *name, umode_t mode,
619 kuid_t uid, kgid_t gid,
622 struct kernfs_node *kn;
627 name = kstrdup_const(name, GFP_KERNEL);
631 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
635 idr_preload(GFP_KERNEL);
636 spin_lock(&kernfs_idr_lock);
637 cursor = idr_get_cursor(&root->ino_idr);
638 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
639 if (ret >= 0 && ret < cursor)
640 root->next_generation++;
641 gen = root->next_generation;
642 spin_unlock(&kernfs_idr_lock);
647 kn->id.generation = gen;
650 * set ino first. This RELEASE is paired with atomic_inc_not_zero in
651 * kernfs_find_and_get_node_by_ino
653 atomic_set_release(&kn->count, 1);
654 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
655 RB_CLEAR_NODE(&kn->rb);
661 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
662 struct iattr iattr = {
663 .ia_valid = ATTR_UID | ATTR_GID,
668 ret = __kernfs_setattr(kn, &iattr);
674 ret = security_kernfs_init_security(parent, kn);
682 idr_remove(&root->ino_idr, kn->id.ino);
684 kmem_cache_free(kernfs_node_cache, kn);
690 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
691 const char *name, umode_t mode,
692 kuid_t uid, kgid_t gid,
695 struct kernfs_node *kn;
697 kn = __kernfs_new_node(kernfs_root(parent), parent,
698 name, mode, uid, gid, flags);
707 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
708 * @root: the kernfs root
712 * NULL on failure. Return a kernfs node with reference counter incremented
714 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
717 struct kernfs_node *kn;
720 kn = idr_find(&root->ino_idr, ino);
725 * Since kernfs_node is freed in RCU, it's possible an old node for ino
726 * is freed, but reused before RCU grace period. But a freed node (see
727 * kernfs_put) or an incompletedly initialized node (see
728 * __kernfs_new_node) should have 'count' 0. We can use this fact to
729 * filter out such node.
731 if (!atomic_inc_not_zero(&kn->count)) {
737 * The node could be a new node or a reused node. If it's a new node,
738 * we are ok. If it's reused because of RCU (because of
739 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
740 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
741 * hence we can use 'ino' to filter stale node.
743 if (kn->id.ino != ino)
755 * kernfs_add_one - add kernfs_node to parent without warning
756 * @kn: kernfs_node to be added
758 * The caller must already have initialized @kn->parent. This
759 * function increments nlink of the parent's inode if @kn is a
760 * directory and link into the children list of the parent.
763 * 0 on success, -EEXIST if entry with the given name already
766 int kernfs_add_one(struct kernfs_node *kn)
768 struct kernfs_node *parent = kn->parent;
769 struct kernfs_iattrs *ps_iattr;
773 mutex_lock(&kernfs_mutex);
776 has_ns = kernfs_ns_enabled(parent);
777 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
778 has_ns ? "required" : "invalid", parent->name, kn->name))
781 if (kernfs_type(parent) != KERNFS_DIR)
785 if (parent->flags & KERNFS_EMPTY_DIR)
788 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
791 kn->hash = kernfs_name_hash(kn->name, kn->ns);
793 ret = kernfs_link_sibling(kn);
797 /* Update timestamps on the parent */
798 ps_iattr = parent->iattr;
800 ktime_get_real_ts64(&ps_iattr->ia_ctime);
801 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
804 mutex_unlock(&kernfs_mutex);
807 * Activate the new node unless CREATE_DEACTIVATED is requested.
808 * If not activated here, the kernfs user is responsible for
809 * activating the node with kernfs_activate(). A node which hasn't
810 * been activated is not visible to userland and its removal won't
811 * trigger deactivation.
813 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
818 mutex_unlock(&kernfs_mutex);
823 * kernfs_find_ns - find kernfs_node with the given name
824 * @parent: kernfs_node to search under
825 * @name: name to look for
826 * @ns: the namespace tag to use
828 * Look for kernfs_node with name @name under @parent. Returns pointer to
829 * the found kernfs_node on success, %NULL on failure.
831 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
832 const unsigned char *name,
835 struct rb_node *node = parent->dir.children.rb_node;
836 bool has_ns = kernfs_ns_enabled(parent);
839 lockdep_assert_held(&kernfs_mutex);
841 if (has_ns != (bool)ns) {
842 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
843 has_ns ? "required" : "invalid", parent->name, name);
847 hash = kernfs_name_hash(name, ns);
849 struct kernfs_node *kn;
853 result = kernfs_name_compare(hash, name, ns, kn);
855 node = node->rb_left;
857 node = node->rb_right;
864 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
865 const unsigned char *path,
871 lockdep_assert_held(&kernfs_mutex);
873 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
874 spin_lock_irq(&kernfs_rename_lock);
876 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
878 if (len >= sizeof(kernfs_pr_cont_buf)) {
879 spin_unlock_irq(&kernfs_rename_lock);
883 p = kernfs_pr_cont_buf;
885 while ((name = strsep(&p, "/")) && parent) {
888 parent = kernfs_find_ns(parent, name, ns);
891 spin_unlock_irq(&kernfs_rename_lock);
897 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
898 * @parent: kernfs_node to search under
899 * @name: name to look for
900 * @ns: the namespace tag to use
902 * Look for kernfs_node with name @name under @parent and get a reference
903 * if found. This function may sleep and returns pointer to the found
904 * kernfs_node on success, %NULL on failure.
906 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
907 const char *name, const void *ns)
909 struct kernfs_node *kn;
911 mutex_lock(&kernfs_mutex);
912 kn = kernfs_find_ns(parent, name, ns);
914 mutex_unlock(&kernfs_mutex);
918 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
921 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
922 * @parent: kernfs_node to search under
923 * @path: path to look for
924 * @ns: the namespace tag to use
926 * Look for kernfs_node with path @path under @parent and get a reference
927 * if found. This function may sleep and returns pointer to the found
928 * kernfs_node on success, %NULL on failure.
930 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
931 const char *path, const void *ns)
933 struct kernfs_node *kn;
935 mutex_lock(&kernfs_mutex);
936 kn = kernfs_walk_ns(parent, path, ns);
938 mutex_unlock(&kernfs_mutex);
944 * kernfs_create_root - create a new kernfs hierarchy
945 * @scops: optional syscall operations for the hierarchy
946 * @flags: KERNFS_ROOT_* flags
947 * @priv: opaque data associated with the new directory
949 * Returns the root of the new hierarchy on success, ERR_PTR() value on
952 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
953 unsigned int flags, void *priv)
955 struct kernfs_root *root;
956 struct kernfs_node *kn;
958 root = kzalloc(sizeof(*root), GFP_KERNEL);
960 return ERR_PTR(-ENOMEM);
962 idr_init(&root->ino_idr);
963 INIT_LIST_HEAD(&root->supers);
964 root->next_generation = 1;
966 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
967 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
970 idr_destroy(&root->ino_idr);
972 return ERR_PTR(-ENOMEM);
978 root->syscall_ops = scops;
981 init_waitqueue_head(&root->deactivate_waitq);
983 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
990 * kernfs_destroy_root - destroy a kernfs hierarchy
991 * @root: root of the hierarchy to destroy
993 * Destroy the hierarchy anchored at @root by removing all existing
994 * directories and destroying @root.
996 void kernfs_destroy_root(struct kernfs_root *root)
998 kernfs_remove(root->kn); /* will also free @root */
1002 * kernfs_create_dir_ns - create a directory
1003 * @parent: parent in which to create a new directory
1004 * @name: name of the new directory
1005 * @mode: mode of the new directory
1006 * @uid: uid of the new directory
1007 * @gid: gid of the new directory
1008 * @priv: opaque data associated with the new directory
1009 * @ns: optional namespace tag of the directory
1011 * Returns the created node on success, ERR_PTR() value on failure.
1013 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1014 const char *name, umode_t mode,
1015 kuid_t uid, kgid_t gid,
1016 void *priv, const void *ns)
1018 struct kernfs_node *kn;
1022 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1023 uid, gid, KERNFS_DIR);
1025 return ERR_PTR(-ENOMEM);
1027 kn->dir.root = parent->dir.root;
1032 rc = kernfs_add_one(kn);
1041 * kernfs_create_empty_dir - create an always empty directory
1042 * @parent: parent in which to create a new directory
1043 * @name: name of the new directory
1045 * Returns the created node on success, ERR_PTR() value on failure.
1047 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1050 struct kernfs_node *kn;
1054 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1055 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1057 return ERR_PTR(-ENOMEM);
1059 kn->flags |= KERNFS_EMPTY_DIR;
1060 kn->dir.root = parent->dir.root;
1065 rc = kernfs_add_one(kn);
1073 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1074 struct dentry *dentry,
1078 struct kernfs_node *parent = dir->i_private;
1079 struct kernfs_node *kn;
1080 struct inode *inode;
1081 const void *ns = NULL;
1083 mutex_lock(&kernfs_mutex);
1085 if (kernfs_ns_enabled(parent))
1086 ns = kernfs_info(dir->i_sb)->ns;
1088 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1091 if (!kn || !kernfs_active(kn)) {
1096 /* attach dentry and inode */
1097 inode = kernfs_get_inode(dir->i_sb, kn);
1099 ret = ERR_PTR(-ENOMEM);
1103 /* instantiate and hash dentry */
1104 ret = d_splice_alias(inode, dentry);
1106 mutex_unlock(&kernfs_mutex);
1110 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1113 struct kernfs_node *parent = dir->i_private;
1114 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1117 if (!scops || !scops->mkdir)
1120 if (!kernfs_get_active(parent))
1123 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1125 kernfs_put_active(parent);
1129 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1131 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1132 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1135 if (!scops || !scops->rmdir)
1138 if (!kernfs_get_active(kn))
1141 ret = scops->rmdir(kn);
1143 kernfs_put_active(kn);
1147 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1148 struct inode *new_dir, struct dentry *new_dentry,
1151 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1152 struct kernfs_node *new_parent = new_dir->i_private;
1153 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1159 if (!scops || !scops->rename)
1162 if (!kernfs_get_active(kn))
1165 if (!kernfs_get_active(new_parent)) {
1166 kernfs_put_active(kn);
1170 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1172 kernfs_put_active(new_parent);
1173 kernfs_put_active(kn);
1177 const struct inode_operations kernfs_dir_iops = {
1178 .lookup = kernfs_iop_lookup,
1179 .permission = kernfs_iop_permission,
1180 .setattr = kernfs_iop_setattr,
1181 .getattr = kernfs_iop_getattr,
1182 .listxattr = kernfs_iop_listxattr,
1184 .mkdir = kernfs_iop_mkdir,
1185 .rmdir = kernfs_iop_rmdir,
1186 .rename = kernfs_iop_rename,
1189 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1191 struct kernfs_node *last;
1194 struct rb_node *rbn;
1198 if (kernfs_type(pos) != KERNFS_DIR)
1201 rbn = rb_first(&pos->dir.children);
1205 pos = rb_to_kn(rbn);
1212 * kernfs_next_descendant_post - find the next descendant for post-order walk
1213 * @pos: the current position (%NULL to initiate traversal)
1214 * @root: kernfs_node whose descendants to walk
1216 * Find the next descendant to visit for post-order traversal of @root's
1217 * descendants. @root is included in the iteration and the last node to be
1220 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1221 struct kernfs_node *root)
1223 struct rb_node *rbn;
1225 lockdep_assert_held(&kernfs_mutex);
1227 /* if first iteration, visit leftmost descendant which may be root */
1229 return kernfs_leftmost_descendant(root);
1231 /* if we visited @root, we're done */
1235 /* if there's an unvisited sibling, visit its leftmost descendant */
1236 rbn = rb_next(&pos->rb);
1238 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1240 /* no sibling left, visit parent */
1245 * kernfs_activate - activate a node which started deactivated
1246 * @kn: kernfs_node whose subtree is to be activated
1248 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1249 * needs to be explicitly activated. A node which hasn't been activated
1250 * isn't visible to userland and deactivation is skipped during its
1251 * removal. This is useful to construct atomic init sequences where
1252 * creation of multiple nodes should either succeed or fail atomically.
1254 * The caller is responsible for ensuring that this function is not called
1255 * after kernfs_remove*() is invoked on @kn.
1257 void kernfs_activate(struct kernfs_node *kn)
1259 struct kernfs_node *pos;
1261 mutex_lock(&kernfs_mutex);
1264 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1265 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1268 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1269 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1271 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1272 pos->flags |= KERNFS_ACTIVATED;
1275 mutex_unlock(&kernfs_mutex);
1278 static void __kernfs_remove(struct kernfs_node *kn)
1280 struct kernfs_node *pos;
1282 lockdep_assert_held(&kernfs_mutex);
1285 * Short-circuit if non-root @kn has already finished removal.
1286 * This is for kernfs_remove_self() which plays with active ref
1289 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1292 pr_debug("kernfs %s: removing\n", kn->name);
1294 /* prevent any new usage under @kn by deactivating all nodes */
1296 while ((pos = kernfs_next_descendant_post(pos, kn)))
1297 if (kernfs_active(pos))
1298 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1300 /* deactivate and unlink the subtree node-by-node */
1302 pos = kernfs_leftmost_descendant(kn);
1305 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1306 * base ref could have been put by someone else by the time
1307 * the function returns. Make sure it doesn't go away
1313 * Drain iff @kn was activated. This avoids draining and
1314 * its lockdep annotations for nodes which have never been
1315 * activated and allows embedding kernfs_remove() in create
1316 * error paths without worrying about draining.
1318 if (kn->flags & KERNFS_ACTIVATED)
1321 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1324 * kernfs_unlink_sibling() succeeds once per node. Use it
1325 * to decide who's responsible for cleanups.
1327 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1328 struct kernfs_iattrs *ps_iattr =
1329 pos->parent ? pos->parent->iattr : NULL;
1331 /* update timestamps on the parent */
1333 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1334 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1341 } while (pos != kn);
1345 * kernfs_remove - remove a kernfs_node recursively
1346 * @kn: the kernfs_node to remove
1348 * Remove @kn along with all its subdirectories and files.
1350 void kernfs_remove(struct kernfs_node *kn)
1352 mutex_lock(&kernfs_mutex);
1353 __kernfs_remove(kn);
1354 mutex_unlock(&kernfs_mutex);
1358 * kernfs_break_active_protection - break out of active protection
1359 * @kn: the self kernfs_node
1361 * The caller must be running off of a kernfs operation which is invoked
1362 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1363 * this function must also be matched with an invocation of
1364 * kernfs_unbreak_active_protection().
1366 * This function releases the active reference of @kn the caller is
1367 * holding. Once this function is called, @kn may be removed at any point
1368 * and the caller is solely responsible for ensuring that the objects it
1369 * dereferences are accessible.
1371 void kernfs_break_active_protection(struct kernfs_node *kn)
1374 * Take out ourself out of the active ref dependency chain. If
1375 * we're called without an active ref, lockdep will complain.
1377 kernfs_put_active(kn);
1381 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1382 * @kn: the self kernfs_node
1384 * If kernfs_break_active_protection() was called, this function must be
1385 * invoked before finishing the kernfs operation. Note that while this
1386 * function restores the active reference, it doesn't and can't actually
1387 * restore the active protection - @kn may already or be in the process of
1388 * being removed. Once kernfs_break_active_protection() is invoked, that
1389 * protection is irreversibly gone for the kernfs operation instance.
1391 * While this function may be called at any point after
1392 * kernfs_break_active_protection() is invoked, its most useful location
1393 * would be right before the enclosing kernfs operation returns.
1395 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1398 * @kn->active could be in any state; however, the increment we do
1399 * here will be undone as soon as the enclosing kernfs operation
1400 * finishes and this temporary bump can't break anything. If @kn
1401 * is alive, nothing changes. If @kn is being deactivated, the
1402 * soon-to-follow put will either finish deactivation or restore
1403 * deactivated state. If @kn is already removed, the temporary
1404 * bump is guaranteed to be gone before @kn is released.
1406 atomic_inc(&kn->active);
1407 if (kernfs_lockdep(kn))
1408 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1412 * kernfs_remove_self - remove a kernfs_node from its own method
1413 * @kn: the self kernfs_node to remove
1415 * The caller must be running off of a kernfs operation which is invoked
1416 * with an active reference - e.g. one of kernfs_ops. This can be used to
1417 * implement a file operation which deletes itself.
1419 * For example, the "delete" file for a sysfs device directory can be
1420 * implemented by invoking kernfs_remove_self() on the "delete" file
1421 * itself. This function breaks the circular dependency of trying to
1422 * deactivate self while holding an active ref itself. It isn't necessary
1423 * to modify the usual removal path to use kernfs_remove_self(). The
1424 * "delete" implementation can simply invoke kernfs_remove_self() on self
1425 * before proceeding with the usual removal path. kernfs will ignore later
1426 * kernfs_remove() on self.
1428 * kernfs_remove_self() can be called multiple times concurrently on the
1429 * same kernfs_node. Only the first one actually performs removal and
1430 * returns %true. All others will wait until the kernfs operation which
1431 * won self-removal finishes and return %false. Note that the losers wait
1432 * for the completion of not only the winning kernfs_remove_self() but also
1433 * the whole kernfs_ops which won the arbitration. This can be used to
1434 * guarantee, for example, all concurrent writes to a "delete" file to
1435 * finish only after the whole operation is complete.
1437 bool kernfs_remove_self(struct kernfs_node *kn)
1441 mutex_lock(&kernfs_mutex);
1442 kernfs_break_active_protection(kn);
1445 * SUICIDAL is used to arbitrate among competing invocations. Only
1446 * the first one will actually perform removal. When the removal
1447 * is complete, SUICIDED is set and the active ref is restored
1448 * while holding kernfs_mutex. The ones which lost arbitration
1449 * waits for SUICDED && drained which can happen only after the
1450 * enclosing kernfs operation which executed the winning instance
1451 * of kernfs_remove_self() finished.
1453 if (!(kn->flags & KERNFS_SUICIDAL)) {
1454 kn->flags |= KERNFS_SUICIDAL;
1455 __kernfs_remove(kn);
1456 kn->flags |= KERNFS_SUICIDED;
1459 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1463 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1465 if ((kn->flags & KERNFS_SUICIDED) &&
1466 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1469 mutex_unlock(&kernfs_mutex);
1471 mutex_lock(&kernfs_mutex);
1473 finish_wait(waitq, &wait);
1474 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1479 * This must be done while holding kernfs_mutex; otherwise, waiting
1480 * for SUICIDED && deactivated could finish prematurely.
1482 kernfs_unbreak_active_protection(kn);
1484 mutex_unlock(&kernfs_mutex);
1489 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1490 * @parent: parent of the target
1491 * @name: name of the kernfs_node to remove
1492 * @ns: namespace tag of the kernfs_node to remove
1494 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1495 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1497 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1500 struct kernfs_node *kn;
1503 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1508 mutex_lock(&kernfs_mutex);
1510 kn = kernfs_find_ns(parent, name, ns);
1512 __kernfs_remove(kn);
1514 mutex_unlock(&kernfs_mutex);
1523 * kernfs_rename_ns - move and rename a kernfs_node
1525 * @new_parent: new parent to put @sd under
1526 * @new_name: new name
1527 * @new_ns: new namespace tag
1529 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1530 const char *new_name, const void *new_ns)
1532 struct kernfs_node *old_parent;
1533 const char *old_name = NULL;
1536 /* can't move or rename root */
1540 mutex_lock(&kernfs_mutex);
1543 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1544 (new_parent->flags & KERNFS_EMPTY_DIR))
1548 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1549 (strcmp(kn->name, new_name) == 0))
1550 goto out; /* nothing to rename */
1553 if (kernfs_find_ns(new_parent, new_name, new_ns))
1556 /* rename kernfs_node */
1557 if (strcmp(kn->name, new_name) != 0) {
1559 new_name = kstrdup_const(new_name, GFP_KERNEL);
1567 * Move to the appropriate place in the appropriate directories rbtree.
1569 kernfs_unlink_sibling(kn);
1570 kernfs_get(new_parent);
1572 /* rename_lock protects ->parent and ->name accessors */
1573 spin_lock_irq(&kernfs_rename_lock);
1575 old_parent = kn->parent;
1576 kn->parent = new_parent;
1580 old_name = kn->name;
1581 kn->name = new_name;
1584 spin_unlock_irq(&kernfs_rename_lock);
1586 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1587 kernfs_link_sibling(kn);
1589 kernfs_put(old_parent);
1590 kfree_const(old_name);
1594 mutex_unlock(&kernfs_mutex);
1598 /* Relationship between s_mode and the DT_xxx types */
1599 static inline unsigned char dt_type(struct kernfs_node *kn)
1601 return (kn->mode >> 12) & 15;
1604 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1606 kernfs_put(filp->private_data);
1610 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1611 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1614 int valid = kernfs_active(pos) &&
1615 pos->parent == parent && hash == pos->hash;
1620 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1621 struct rb_node *node = parent->dir.children.rb_node;
1623 pos = rb_to_kn(node);
1625 if (hash < pos->hash)
1626 node = node->rb_left;
1627 else if (hash > pos->hash)
1628 node = node->rb_right;
1633 /* Skip over entries which are dying/dead or in the wrong namespace */
1634 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1635 struct rb_node *node = rb_next(&pos->rb);
1639 pos = rb_to_kn(node);
1644 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1645 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1647 pos = kernfs_dir_pos(ns, parent, ino, pos);
1650 struct rb_node *node = rb_next(&pos->rb);
1654 pos = rb_to_kn(node);
1655 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1660 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1662 struct dentry *dentry = file->f_path.dentry;
1663 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1664 struct kernfs_node *pos = file->private_data;
1665 const void *ns = NULL;
1667 if (!dir_emit_dots(file, ctx))
1669 mutex_lock(&kernfs_mutex);
1671 if (kernfs_ns_enabled(parent))
1672 ns = kernfs_info(dentry->d_sb)->ns;
1674 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1676 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1677 const char *name = pos->name;
1678 unsigned int type = dt_type(pos);
1679 int len = strlen(name);
1680 ino_t ino = pos->id.ino;
1682 ctx->pos = pos->hash;
1683 file->private_data = pos;
1686 mutex_unlock(&kernfs_mutex);
1687 if (unlikely(!dir_emit(ctx, name, len, ino, type))) {
1691 mutex_lock(&kernfs_mutex);
1693 mutex_unlock(&kernfs_mutex);
1695 file->private_data = NULL;
1700 const struct file_operations kernfs_dir_fops = {
1701 .read = generic_read_dir,
1702 .iterate_shared = kernfs_fop_readdir,
1703 .release = kernfs_dir_fop_release,
1704 .llseek = generic_file_llseek,